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The basal ganglia (BG) represent a critical center of the nervous system for sensorial discrimination.
Although it is known that Huntington’s disease (HD) affects this brain area, it still remains unclear
how HD patients achieve paradoxical improvement in sensorial discrimination tasks. This paper presents
a computational model of the BG including the main nuclei and the typical firing properties of their
neurons. The BG model has been embedded within an auditory signal detection task. We have emulated
the effect that the altered levels of dopamine and the degree of HD affectation have in information pro-
cessing at different layers of the BG, and how these aspects shape transient and steady states differently
throughout the selection task. By extracting the independent components of the BG activity at differ-
ent populations, it is evidenced that early and medium stages of HD affectation may enhance transient
activity in the striatum and the substantia nigra pars reticulata. These results represent a possible expla-
nation for the paradoxical improvement that HD patients present in discrimination task performance.
Thus, this paper provides a novel understanding on how the fast dynamics of the BG network at different
layers interact and enable transient states to emerge throughout the successive neuron populations.
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1. Introduction

Choosing the right action among many available
options represents a primary but also challenging
behavior for animal species. The basal ganglia (BG)
have long been thought to play a pivotal role in the
action selection process in the mammal brain.1 A
well-accepted hypothesis is that these nuclei choose
between multiple motor commands coming from cor-
tical areas.2,3 However, it is still unclear how the
BG filter incoming cortical commands in order to

produce an accurate and fast output. This paper
aims to explore the signal processing in the BG
by embedding a computational model of this brain
area in a behaviorally relevant experimental setting
involving action selection.

The BG network presents complex anatomi-
cal and functional sub-divisions, but it is usu-
ally structured in five main neuron populations4

which can be organized into following three sections
(Fig. 1):
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• The inputs of the BG are mainly received through
the corpus striatum, with its main cell type being
the medium spiny neurons (MSN), and the sub-
thalamic nucleus (STN) neurons.
• The intermediate layers are composed by the

external segment of the globus pallidus (GPe) and
the substantia nigra pars compacta (SNc).
• The output projection to the thalamus is finally

carried by the substantia nigra pars reticulate
(SNr).

The connectivity of these populations is mainly
drawn according to three main routes from the cortex
to the thalamus as follows (Fig. 1):

• The direct pathway, where the cerebral cortex
makes excitatory glutamatergic synapses into the
MSND1, which inhibits the SNr.
• The indirect pathway, where the cerebral cortex

excites the MSND2, which inhibits the GPe, and
finally, the GPe which also inhibits the SNr.
• The hyper direct pathway, where the cortex makes

glutamatergic connections into the STN, which
diffusely excites the SNr.

In addition to these broad pathways, there are
dopaminergic projections from the SNc to the MSN,

Fig. 1. (Color online) Computational model of the
BG. BG representation structured in channels (blue and
orange) showing the direct, indirect and hyper direct
pathways.

the STN and the GPe with modulatory effects
(shaded box in Fig. 1).1,5 Finally, the GPe forms
recurrent loops with the STN.

It has been hypothesized that the BG process a
large number of cognitive streams or channels in par-
allel,6,7 each of them representing a feasible action
to be performed.8 The BG are thought to act as an
action selection machinery by inhibiting every nonse-
lected action in the thalamus with the SNr, based on
their corresponding activity level or salience.3 A pos-
sible explanation for this mechanism was suggested
by Ref. 1. They identified two steady-state and tran-
sient selection components, generated both in the
striatum due to the cortex activity. According to
this theory, the transient component in the striatum
temporarily enhances the difference between several
competing cortical inputs.

In order to shed some light on this action selec-
tion process, previous research in the literature has
addressed both the natural and artificial alterations
of the BG circuitry. For instance, the use of levo-
dopa, a dopamine (DA) neurotransmitter precur-
sor, modifies the levels of DA in the BG and sys-
tematically produces reduced reaction times and
increased accuracy in simple auditory discrimina-
tion tasks in healthy subjects.9 Additionally, several
diseases can naturally affect the normal operation
of the BG. This is the case of Huntington’s dis-
ease (HD), which produces an enhanced activation
of the N-methyl-D-aspartate (NMDA) glutamater-
gic receptors of the MSN in the striatum,10 culmi-
nating in excitotoxicity (i.e. cell death).11 Moreover,
it is known that MSN expressing D2 dopaminer-
gic receptors are more affected than those express-
ing D1 dopaminergic receptors in the early stages
of HD,12 disrupting the indirect pathway (MSND2-
GPe-SNr). Finally, levodopa can potentiate the HD
symptoms by exacerbating choreiform movements.13

Despite these mainly negative effects of HD, some
researchers have found a paradoxical improvement
in auditory decision tasks (in both reaction time and
accuracy) during early stages of the disease, pre-
sumably caused by the enhanced efficacy of NMDA
receptors.14 This improvement can help us to better
understand both HD and the action selection process
in the BG.1

Although different noninvasive experimental
techniques and statistical analyses, such as electroen-
cephalogram (EEG) and information metrics, allow
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the identification of important brain areas related
to specific tasks,15,16 the way in which they con-
tribute to complex behaviors remains highly elusive.
In recent decades, the use of biologically inspired
computational models emulating spiking neural net-
works17 has been demonstrated as being useful for
understanding experimental recordings from multi-
ple brain areas18,19 and for studying different neu-
rological alterations.20–22 Thus, computational mod-
els represent a promising approach to explore not
only the normal operation of the BG, but also how
different artificial alterations (e.g. levodopa) or dis-
eases (e.g. HD1 or Parkinson’s disease (PD)23,24) can
affect this nucleus. Although many computational
models of the BG have been proposed to explain the
overall operation of this brain area,6,25–29 it remains
unclear how the transient phenomena generated by
the MSN1 in the striatum on HD patients propagates
to the SNr (BG output nucleus), how this transient
phenomena facilitates action selection, and how DA
affects this process.

In this paper, we present a computational model
of the BG integrating all its main neuron types. This
model facilitates the exploration of the emergence of
both steady and transient phenomena in the MSN
and the interplay between the three BG pathways in
the propagation of these phenomena. In this frame-
work, we have been able to quantify the selectivity
between competing actions transmitted to the thala-
mus from the SNr output. In addition to this, we have
explored how altered conditions, such as increased
DA levels or the alterations produced by HD, affect
the performance of the BG as selection machinery
using a stimulus discrimination task as a test-bench.

Section 2 provides details on the implementation
of the computational model. Section 3 describes the
results emerging from the simulation of the compu-
tational model in the framework of the stimulus dis-
crimination task. In Sec. 4, we discuss these results
regarding previous computational models and exper-
imental evidence in the literature. Finally, Sec. 5
summarizes the main contributions of this paper.

2. Computational Modeling of BG
and HD

A computational model of the BG, including all its
main nuclei and connections, has been implemented
(Fig. 1). The network structure and the neuron mod-
els used in this paper are based on recent work by

Fountas and Shanahan.30 The model includes five
neuronal populations and nine neuronal types (all of
them implemented as Izhikevich neuron models, but
with different parameters in order to capture their
particular cell dynamics). The total number of sim-
ulated neurons is 5494 divided as follows: the MSN
layer contains 2292 neurons, with half of them (1146)
expressing D1 receptor and the other half D2 recep-
tor. The STN layer contains 47 neurons, the GPe 155
neurons and the SNr 3000 neurons.

The neuron populations in our BG model have
been connected following a channel structure. As a
general norm, the neurons in every channel are only
allowed to synapse neurons in the same channel. The
exceptions are the STN efferents, which are diffuse
and connect to all the channels (Fig. 1), and the lat-
eral inhibition within and between the MSN channels
and SNr channels. The modulatory connections from
the SNc are considered implicitly as the global level
of tonic DA in the model. The average level of acti-
vation (i.e. the firing rate) in each channel at the
MSN represents the salience or urgency of the action
represented at that particular channel.31

For the proposed selection task, we have imple-
mented three different channels in our BG model fol-
lowing Ref. 1: one for the selected option (with 40%
of the neurons), one for the nonselected option (with
40% of the neurons) and the third not competing in
the selection task (with 20% of the neurons). The
third channel represents background neuronal activ-
ity able to influence the other channels through the
diffuse connectivity from STN and the lateral com-
petition in MSN and SNr. For the sake of simplic-
ity, only the selected (blue) and nonselected (orange)
channels have been represented in the figures.

The following sections describe the behavior of
the neuron models used, and the appendices go
deeper into the modeling details. The source code
of the model implementation for NEST 2.12,32 as
well as the scripts allowing the reproduction of the
results shown in this paper, have been made avail-
able at the following address: https://github.com/
EduardoRosLab/BG selectivity.

2.1. Neuron and synapse models

The Izhikevich neuron model33 has been chosen to
reproduce the experimental firing modes recorded in
the different neuron types of the BG. The parameters
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Fig. 2. Frequency–current (F–I) curves. Solid lines rep-
resent our computational results, while triangles and
dots, respectively, represent the simulated and experi-
mental data used to tune our models.

for each neuron type have been optimized following
the adjustment procedure described in Ref. 34. This
method aims to approximate electrophysiological
properties (e.g. the action potential amplitude and
width, the resting and threshold potentials and the
rheobase current) and their steady-state frequency–
current (F–I) relations. Figure 2 shows the ref-
erence and resulting F–I curves for each neuron
type. We selected the parameters of our MSN (see
https://github.com/EduardoRosLab/BG selectivity/
raw/master/parameters tables.pdf in the repository)
from different sources in order to obtain a good
match between experimental data and simulated
behavior, namely transient selectivity (see below).
When the rest of the BG nuclei were added, their
neuron model parameters were calculated following
the previously described parameter estimation pro-
cedures34 or by local search/manual tuning.

More than 90% of the striatal neurons are MSN,
showing competitive behaviors between channels
through lateral inhibition, both directly and through
interneurons.35 We modeled the striatum as a popu-
lation of MSN with lateral inhibition. These neurons
show characteristic firing patterns such as long-
latency first spike following current injection or mem-
brane potential bi-stability in response to random
input activity, with a hyperpolarized down-state and

depolarized up-state plateau.28 Although other neu-
ron types have been reported (e.g. diverse GABAer-
gic populations36 and cholinergic interneurons with
a role in reinforcement-related signals37), we have
intentionally ruled them out since our preliminary
simulations showed that they did not impact the
transitory effect under study in the proposed experi-
mental setup. The MSN are divided into two sub-
populations of 1146 neurons expressing different
types of DA receptors (D1 and D2). Thus, two neu-
ron types have been adjusted for the MSN sub-
population (see Appendix A for further details). Fig-
ure 2 shows the comparison of the F–I curves from
our Izhikevich neuron models and the highly-detailed
multi-compartment models of the MSN.27

Neurons in the GPe have shown at least two dif-
ferent firing patterns in primates: high-frequency dis-
charge (HFD) separated by intervals of total silence
and low-frequency discharge (LFD) and bursts.38

Interestingly, similar intracellular recording in rats39

has been reported to show three different identifi-
able firing patterns. In our model, we have followed
this latter approach by including three neuron types
named A, B and C.34 Our model includes 131 neu-
rons of type B, which behave similarly to HFD neu-
rons (the only neuron type able to evoke rebound
firing), and 7 and 17 neurons of types A and C,
respectively, which behave similarly to LFD. Figure 2
shows the matching of the simulated neurons and the
experimental data (dotted) from Ref. 39.

The STN is composed of three different neuron
sub-types. All of them behave similarly when depo-
larized, with sigmoid F–I relation.40 However, they
have shown different responses after long depolar-
ization, including rebound bursts (RB), long-lasting
rebound spikes (LLRS) and no rebound (NR) effect.
Our model, respectively, includes 28, 12 and 7 neu-
rons of each cell type distributed between the three
channels. Figure 2 includes experimental data (dots)
for STN RB cell type from Ref. 40.

Finally, the GABAergic SNr neurons show spon-
taneous high-frequency firing that may turn abruptly
into bursting or silence depending on external input.
In addition to this, this type of neuron emits rebound
spikes.41,42 Our model includes 3000 SNr neurons,
whose parameters have been adjusted to obtain fir-
ing rates around 20Hz in absence of external cur-
rent stimulation, and silent when the channel is
selected. These firing rates fall within the range
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obtained in cell recordings considered in other com-
putational models.37,43,44 Figure 2 shows a compar-
ison of the firing rate of the simulated neuron and
the experimental data for the SNr neuron type from
Ref. 45.

All the neurons included in our BG model imple-
mented chemical synapses. These were modeled
using synaptic conductances governed by exponen-
tially-decaying functions and constant synaptic
weights (without plasticity mechanisms). Three
types of chemical receptors with different tempo-
ral dynamics were implemented: AMPA, NMDA
and GABAA. The NMDA receptor also models the
voltage-dependent magnesium plug.46 In Table 1,
we show the interconnectivity topology of our BG
models. All the neurons implemented a probabilistic
all-to-all connectivity distribution with connectivity
ratios between neuron types extracted from litera-
ture.1,34 These connections could be intra-channel
(neurons just connected with neurons in the same
channel) or inter-channels (neurons connected with
neurons in the same or different channels). The rest
of synaptic parameters were selected from the lit-
erature or obtained from local search/manual tun-
ing. Details on the implementation can be found
in Appendix B.

2.2. Huntington’s disease modeling

HD has been demonstrated to disrupt the indirect
pathway of the BG by reducing the number of MSN
D2 neurons12 during the early stages of the evolution

Table 1. Synaptic and connectivity parameters.

Connection Receptor Connectivity Probability

Cortex → MSN AMPA Intra-channel 1.0
NMDA Intra-channel 1.0

MSN → MSN GABAA Inter-channels 0.32
MSN → SNr GABAA Intra-channel 0.033
SNr → SNr GABAA Inter-channels 0.1
Cortex → STN AMPA Intra-channel 1.0

NMDA Intra-channel 1.0
STN → GPe AMPA Inter-channels 0.3

NMDA Inter-channels 0.3
GPe → STN GABAA Intra-channel 0.1
GPe → GPe GABAA Intra-channel 0.1
MSN → GPe GABAA Intra-channel 0.033
STN → SNr AMPA Inter-channels 0.3

NMDA Inter-channels 0.3
GPe → SNr GABAA Intra-channel 0.1066

of the disease. In our study we have modeled this
effect by randomly removing a fraction of the MSN
D2 neurons (Eq. (1)). Additionally, MSN D2 neurons
also over-express NMDA receptors in early symp-
tomatic and pre-symptomatic HD patients, leading
to excessive action potential emission and eventually
neuronal apoptosis.47 This effect has been modeled
by increasing the synaptic weight of NMDA recep-
tors onto the MSN neurons (Eq. (2)).

nMSN−D2 ← nMSN−D2(1 − hd · ar), (1)

wNMDA ← wNMDA(1 + hd · sr), (2)

where hd represents the level of HD ranging from
zero (no HD effect) to one (maximum considered HD
affectation), nMSN−D2 is the number of MSN neurons
with DA receptor D2, ar is the cell apoptosis ratio
ranging from zero (no apoptosis) to one (maximum
apoptosis), wNMDA is the synaptic weight from cor-
tex to MSN and sr is the NMDA increase factor. The
ar and sr parameters have been set to 0.8 and 1.0
since these values maximize the network effect during
selection tasks according to previous research.1 The
combination of both effects simulates the early and
middle stages of HD (grades one and two in the neu-
ropathological scale proposed by Ref. 12). Finally,
since advanced stages of HD are incompatible with
behavioral experimentation (HD patients lose their
motor control capabilities), modeling further dam-
ages in our BG model due to advanced stages of HD48

remains beyond the scope of this work.

3. Results

3.1. Experimental framework

HD patients show a paradoxical improvement (both
in speed and precision) in the auditory decision task
proposed by Beste.14 In this experiment, the subject
is told to distinguish between short (200ms) and long
(400ms) auditory tones in a series by pressing a left
or right button for each option (Fig. 3(a)).

The main inputs to the MSN and STN come
from afferent axons of the pyramidal neurons in layer
V from different cortex areas49 (e.g. the auditory
cortex50). This model assumes that the decision on
the presented tone length, and its consequent motor
action, has previously been performed in the cere-
bral cortex and propagated to the BG by modifying
the firing rate of the input fibers that arrive to each
BG channel. This cortical input activity has been
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(a)

(b)

Fig. 3. Experimental framework. (a) Stimulus discrim-
ination experimental procedure: The subject must press
the left (right) button straight after a short (long) tone
onset. (b) Firing rate evolution in the selected and
nonselected channels in the cortex.

emulated by means of three populations of Poisson
spike train generators emulating the cortical activ-
ity. These three populations project over the three
channels in the MSN and STN (two channels for
the left and right motor response, and a third chan-
nel processing cortical activity not related with the
task). Thus, each neuron in MSN and STN receives
the equivalent of 250 randomly-chosen input spike
trains.29

The simulated protocol was taken from Ref. 1.
It started with a stabilization period of 1500ms in
which the mean firing rate of the three Poisson pop-
ulations was fixed to a baseline activity of 2.2Hz. The

end of this stabilization period corresponded with the
end of the auditory stimulus. During the following
25ms, the two Poisson populations corresponding
with the short and long tones (press left and right
button) gradually increased their mean firing rate to
a medium excitation level of 2.9Hz (Fig. 3(b)). After
this 25ms period, the subject was able to discrimi-
nate the tone length and select the corresponding
motor action. During the next 25ms, the Poisson
population corresponding with the selected action
kept increasing its firing rate until it reached an
average firing rate of 3.6Hz. On the contrary, the
nonselected population returned to the baseline level
of activity. These activation levels were maintained
during an additional period of 1000ms. Finally, the
third Poisson population remained in the baseline
state during the whole experiment (2550ms). All
these firing rates range within reported biological
constraints for the auditory cortical layer.51 Note
that with this experimental protocol, we were not
modeling the detection of longer tones (which were
already encoded in the incoming cortex activity), but
rather the selection of the action to be performed in
response to the detection of short or long tones.

3.2. Data analysis: Selectivity metrics

The resulting action potentials obtained during the
simulation of the model (each experiment lasting
2550ms) were used to generate the activity his-
togram (1-ms bin) for each channel in every neuron
population. The population spikes were filtered by
convolving with a 7.5-ms Gaussian kernel to mimic
the resulting excitation/inhibition received in the
successive layer. Aiming to rule out the high variabil-
ity of the resulting activity histograms, the instanta-
neous firing rate in each time bin has been averaged
over 40 simulations with different random seeds for
each experimental condition (Fig. 4(c)).

In order to provide a quantitative evaluation of
the performance of the computational model in the
proposed behavioral task, the following assumption
has been made, which has been widely hypothesized
before2,6,7,52–54: the BG chooses the action with the
highest reward expectance between multiple possi-
ble actions by increasing (decreasing) the activity in
the corresponding MSN (SNr) channel and reducing
(maintaining) the firing rate in the remaining MSN
(SNr) channels. Thus, the following estimators aim
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(a) (b)

(c)

Fig. 4. (Color online) Analysis performed on the simulations results. (a) Selected (blue) and nonselected (orange) channel
activities after the application of Gaussian kernels to the raster plot histograms (MSN or SNr). (b) Mean activity levels
of the SNr channels before the tone onset (Ftonic) and after the tone onset (Fi, Fj), where Fj is the selected channel and
Fi the nonselected one. (c) For the ICA analysis, the raster plot histograms are filtered, normalized and decomposed in
their ICA components with their corresponding weights.

to quantify how distinguishable the activity profiles
of the MSN and the SNr are in the considered
channels.

Activity evaluation in the striatum: Selectivity

Following the approach in Ref. 1, the selectivity in
the MSN can be defined as the ability to robustly
distinguish competing signals. Two complementary
modes of selectivity have been proposed, measured
with different metrics applied to the mean activation
of each MSN channel population. Given a compe-
tition between different cortical inputs, a transient
selectivity is the temporary promotion of the most
salient signal simultaneously to suppression of the
least-salient signal. This effect results in the tran-
sient boost of the difference in salience between the
competing signals. The transient selectivity in the
MSN (TSMSN) is defined according to

TSMSN = 1− F1 − F2

ΔF1,2
, (3)

where F1 and F2 are two signals (firing rates of the
two competing channels), ΔF1,2 is the maximum dif-
ference between F1 and F2 occurred during a tran-
sition window between 0ms and 200ms after the
stimulation, and F1, F2 are the mean stable activ-
ity of signals F1 and F2 after the transition period
(Fig. 4(a)).

Moreover, given a competition between different
input signals, the least-salient signal (in our experi-
ments, F2) tends to be inhibited on a sustained basis
by the most salient signal (Fig. 4(a)); this is called
the stationary selectivity (SSMSN) and is defined as
follows:

SSMSN = 100×
(

1− F2

FPre

)
, (4)

where FPre is the mean stable activity of the sig-
nal F1 or F2 before the tone onset (both activity
level are similar before the stimulus onset). Thus, the
TSMSN provides an estimation of how distinguishable
the competing signals are during the transitory state
while the SSMSN quantifies how distinguishable the
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Á. González-Redondo et al.

competing signals are once they have reached their
steady state.

Activity evaluation in the SNr: Distinctiveness

A more general metric, which can be applied to the
SNr, is the distinctiveness of a single selected chan-
nel, defined as the ability of a channel to generate
distinctively less activity than any other channel in
the layer.34 Since the SNr inhibits the thalamus,
the distinctive channel (the selected one with the
lower activity) inhibits the corresponding channel
in the thalamus in a lesser degree, propagating the
BG selection to the thalamus. The distinctiveness in
the SNr represents the degree to which the following
two conditions are fulfilled: (a) the firing rate of the
selected channel in the SNr is close to zero, and (b)
no other channel is far below tonic levels. These two
conditions can be quantitatively evaluated over the
time t according to aj(t) and bj(t), respectively:

aj(t) = 1− Fj(t)
max{Ftonic, Fj(t)} , (5)

bj(t) =
min Fi�=j(t)

max{Ftonic, min Fi�=j(t)} , (6)

where j is the examined channel, Fj(t) is the firing
rate of channel j at time t, min Fi�=j(t) is the mini-
mum SNr firing rate of any channel different to j at
time t and Ftonic is the tonic firing rate of the SNr,
assumed here to be 20 spikes/sec (Fig. 4(b)). Then
the distinctiveness Dj(t) is defined as

Dj(t) = aj(t) · bj(t), (7)

where Dj(t) values range in [0, 1], with 1 indicat-
ing that the channel j at time t propagates distinc-
tively less inhibition than any other channel to the
thalamus, and 0 the opposite condition (or channel
activity j is far from zero i.e. it is not chosen, or some
other channel is closer to zero i.e. the other channel is
chosen instead). The steady-state distinctiveness and
transient distinctiveness55 are both calculated from
Dj(t). The former is calculated as the average of the
stable post-transient activity (the signal is assumed
to reach steady state after 500ms from the stimulus
onset) while the latter is defined as the maximum
distance between the distinctiveness of the channels
during a fixed short interval (200ms in our experi-
ments) after the generation of the salient signal.

Independent component analysis

In order to evaluate the different temporal compo-
nents emerging from the population activity, we have
applied the independent component analysis (ICA)
algorithm56 to the filtered signal in the selected chan-
nel of the MSN (Fig. 4(c)). ICA is a widely used
computational method for separating a multivari-
ate signal into its additive nonorthogonal compo-
nents. This is done by assuming that the subcompo-
nents are non-Gaussian and statistically independent
signals. Although this algorithm is similar to other
classic methods, such as principal component analy-
sis (PCA), ICA imposes to the resulting signals the
harder constraint of being statistically independent
(and not just linearly uncorrelated as in PCA). Based
on preliminary simulations within the experimental
setup under evaluation in this paper, ICA demon-
strated to be more successful than the PCA on find-
ing significant components.

Prior to the application of the ICA algorithm,
each signal was normalized by subtracting the mean
activation level before stimulus onset and the result-
ing signal was divided by its standard deviation,
so that it becomes insensitive to any possible firing
rate additive or multiplicative variation. After that,
we used the fastICA decomposition function from
the scikit-learn python library57 to obtain the inde-
pendent components from the signals. We chose the
number of independent components to be at least
two (as we make the assumption of the existence of
the transient and the steady-state components) and
as high as needed to be able to explain at least 90%
of the variability of the signal. The same analysis
was applied to both the selected and the nonselected
channel populations of the SNr. Finally, the ICA
algorithm provided the relative weights of each com-
ponent in each experimental condition. The resulting
weights allowed us to evaluate the presence and the
relative importance of each temporal component for
different combinations of factors.

3.3. General network behavior

Our network model was first simulated in control
conditions (no HD hd = 0 and default level of DA
d1 = d2 = 0.3) during Beste’s task.14 The resulting
activity of each population and their respective chan-
nels are shown in Fig. 5. This activity falls within
in vivo values in all nuclei: the MSN firing rates are
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below 2 Hz when low activity and above 17Hz in
high activity.34,44 The STN normally fires at around
10Hz, but can get as high as 30–50Hz.58 The GPe fir-
ing rate is around 30Hz without activation but raise
to 40Hz when its channel is not selected and decrease
to almost zero when its channel is selected.34 The
SNr activity has been reported to be close to zero
when receiving inhibition from MSN D1 and around
20–30Hz when it is being activated.34,44 Not surpris-
ingly, the variability (standard deviation) of the pop-
ulation firing rate depends on the number of neurons
included in each nucleus (ranging from 46 neurons
in the GPe to 3000 neurons in the SNr). The initial
1500ms are devoted to stabilizing the network activ-
ity in response to the basal activation in the cortex
(Figs. 3(b) and 5). Some nuclei, such as the GPe and
the SNr, show intrinsic activation, resulting in high
firing rates at the beginning of the simulation that
slowly decrease due to the lateral inhibition existing
within each nucleus (Fig. 5). On the contrary, the
MSN demonstrated the slowest adaptation mainly
due to the intrinsic long first-spike latency of this
neuron model.

Once the network activity becomes steady, the
cortex increases its activity in both channels (cortex
selection onset) (Fig. 3(b)). After 25ms, the cortex
selects only one channel (which further increases the

Fig. 5. (Color online) General network behavior. Raster
plot (black dots) and population firing rates (solid lines)
for the cortex (Ctx), MSN, STN, GPe and SNr popula-
tions. Selected and nonselected channels are, respectively,
drawn with blue and orange background/line colors.

firing rate, while the other one returns to the basal
level of firing) (Fig. 3(b)). This channel selection in
the cortex produces a strong response in the BG:
the selected channel increases their firing rate in the
MSN and STN and inhibits, in turn, the nonselected
channels (Fig. 5). However, the selected channel in
the MSN shows transient phenomena by producing
peaks of activity (200ms long or less, as will be dis-
cussed later in Fig. 6(b)) due to the intrinsic prop-
erties of its neuron model, the long time constant of
the NMDA receptor and the lateral inhibition. Con-
versely, the selected channel in the GPe and the SNr
receives strong inhibition from the MSN, thus com-
pensating for the stronger excitation from the STN
and leading to a notorious reduction of the firing rate
in the selected channel of the GPe and SNr (Fig. 5).
Due to the recurrent loops between the GPe and STN
(Fig. 1), the activity of the GPe remains unstable for
500ms after the cortex selection onset. The output
nucleus (SNr), not unexpectedly, decreases the activ-
ity for the selected channel, while the nonselected one
remains with a basal level of activity (after a tran-
sient activity peak) (Fig. 5).

The commented network operation is valid for the
control case (default DA and no HD affectation). We
also tested the network with different levels of DA or
HD. Increased DA levels in the model resulted in
enhanced response of the MSN to the cortical input,
as previously reported in freely moving rats.59 In
addition to this, the firing rates obtained for control
and pathological HD MSNs are in agreement with
the experimental results obtained from mice.60 We
used our model to explore if altered levels of DA and
the presence of HD affectation may change the bal-
ance between excitation and inhibition in any net-
work layer and, as a consequence, if they produce
enhanced/reduced levels of selectivity in the MSN
and distinctiveness in the SNr.

3.4. Striatum (MSN) activity

Overall, our simulations demonstrated that increase
in either DA levels or noteworthy HD affectation
(or both conditions together) resulted in enhanced
levels of MSN activation (Fig. 6(a) green, orange
and purple solid lines in the top plot) and the
rest of the BG nuclei, resulting in different balances
of excitation/inhibition depending on the particular
configuration.
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(a) (b)

Fig. 6. (Color online) Effect of different DA levels and HD conditions in the MSN. (a) (Top) Average firing rate of the
selected channel in the MSN. Each trace represents a different setting, while some representative conditions have been
highlighted in colors: control (default DA level and no HD) (blue), hiHD (default DA and high HD) (orange), hiDA
(high DA and no HD) (green), loDA (low DA and no HD) (red) and hiDAHD (high DA and HD) (purple). (Bottom)
Steady-state (SSMSN) (left) and transient (TSMSN) (right) selectivity within the studied parameter space (DA versus
HD level). Colored circles mark the cases previously considered. (b) (Top) Independent components obtained from the
MSN firing histogram by using the ICA algorithm over all the experimental conditions. (Bottom) Weight of each signal
component in each experimental condition as obtained from the ICA algorithm.

In order to achieve a fuller understanding of the
functional effect that altered DA and HD levels pro-
duce in the processing layers of the BG, we simu-
lated a whole set of different configurations of the
network to perform Beste’s task. For each experimen-
tal condition, the activity histogram of the selected
channel in the MSN has been extracted (top plot
in Fig. 6(a)) and the steady-state and the transient-
state selectivity have been analyzed (bottom plots
in Fig. 6(a)). As a general rule, steady-state selec-
tivity is enhanced by increased DA levels while HD
affectation reduces it. On the other hand, transient
selectivity is increased by HD affectation and shows
an inverted “U” relationship with DA levels (medium
DA levels resulted in increased transient selectivity).

Aiming to discriminate the effect of DA and HD
in the emergence of steady or transient components
of activity, we applied the ICA algorithm on the
activity histograms of the selected channel in the
MSN, resulting in the two components indicated in
the top row plots in Fig. 6(b). The first component
(left plot) represents a steady signal (correspond-
ing with the steady state before and after stimu-
lus onset), while the second component (right plot)

shows transient behavior around the stimulus onset.
By exploring the weights associated to each compo-
nent for each experimental condition, the first com-
ponent is similarly present in all the experimental
conditions, while the second component shows dif-
ferences among the configurations (bottom row in
Fig. 6(b)). The second component is more prominent
with high HD affectation and medium DA levels.

3.5. Substantia nigra (SNr) activity

Similarly, as previously analyzed in the MSN, we
have explored the averaged firing activity of the SNr
(Fig. 7(a)) in response to the cortex input activity
that mimics the stimulation received during Beste’s
task. Moreover, we have also analyzed the distinc-
tiveness34 of the stimulus with different network con-
ditions (DA and HD levels). The results show that
both the transient and the steady-state distinctive-
ness increase with high levels of DA and reduced HD
affectation.

We also used ICA in the SNr signals, obtain-
ing three independent components able to explain at
least the 90% of the variability of the original signal.
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(a) (b)

Fig. 7. (Color online) Effect of different DA levels and HD conditions in the SNr. (a) (Top) Average firing rate of the
nonselected channel in the SNr. Each trace represents a different setting, while some representative conditions have been
highlighted in colors: control (default DA level and no HD) (blue), hiHD (default DA level and high HD) (orange), hiDA
(high DA level and no HD) (green), loDA (low DA level and no HD) (red) and hiDAHD (high DA level and HD) (purple).
(Bottom) Steady-state (left) and transient (right) distinctiveness in the SNr within the parameters space studied (DA
versus HD level). Colored circles mark the cases previously considered. (b) (Top) Independent components obtained from
the SNr firing histogram by using the ICA algorithm over all the experimental conditions. (Bottom) Weight of each signal
component in each experimental condition as obtained from the ICA algorithm.

Figure 7(b) shows the extracted independent compo-
nents and their corresponding weights for each exper-
imental condition. The first component is associated
to the steady-state evolution, while the other two are
related to the transient phenomena (slow and fast).
The distribution of the weights of these components
shows very distinct patterns. While the steady-state
and slow-transient components show some linearity
(the first with DA level and the second with HD
level), the fast-transient component shows a nonlin-
ear behavior, with more weight when the DA level is
low and the HD level is medium.

4. Discussion

4.1. Interpretation of results

The obtained results are in agreement with previous
research. Reference 1 showed that the potentiation
of the transient component explains (at least, par-
tially) why HD patients achieve better performance
in timed decision tasks. This effect was previously
explained as enhanced information processing in sim-
ple sensorimotor tasks. By using ICA, we have evi-
denced neuronal correlates of this experimental per-
formance improvement resulting from increased DA

levels in healthy subjects receiving levodopa.9 Specif-
ically, the transient independent component detected
at MSN is more prominent with high HD affectation
and medium DA levels.

Regarding the SNr activity, both the steady-state
and the transient distinctiveness fail to explain the
enhanced performance of HD patients in Beste’s
task. Although previous papers in the literature have
associated this paradoxical improvement to the alter-
ation of the selectivity in the MSN, our simula-
tions demonstrate that increased selectivity does not
propagate to the subsequent SNr layer (the output
nucleus of the BG). By studying the independent
components obtained from the activity histograms
we are able to offer an alternative explanation to this
paradoxical improvement. After observing the shape
of each component (bottom plots in Fig. 7(b)), we
have concluded that these components can propagate
from the MSN to the SNr. The weight of each compo-
nent for each experimental condition indicates which
circumstances facilitate the propagation of the cor-
responding component (e.g. while the slow-transient
component reliably propagates with high HD, the
fast-transient component more consistently propa-
gates with medium HD and low–medium DA). Thus,

2050057-11

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

20
.3

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 G
R

A
N

A
D

A
 o

n 
01

/2
4/

25
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



September 15, 2020 16:38 2050057
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the propagation of the fast-transient component from
the MSN to the SNr may support the paradoxical
improvement in Beste’s task observed in patients in
the early stages of HD.

4.2. Comparison with previous studies

To date, several BG computational models have
been proposed for different purposes. A detailed27

and a subsequently simplified28 computational model
expressing the DA modulation in MSN D1 and
D2 were proposed, and then added to a three-
dimensional network model together with fast spik-
ing interneurons (FSI) in the striatum.29 Other
models studied the exploration/exploitation trade-
off,8,30,61,62 or reproduced diverse behavioral tasks
with a complex model containing several neuronal
nuclei (cortex, BG and thalamus).63 In some mod-
els, phasic DA signals have been added on top of
a tonic DA value, reproducing the neural mecha-
nism for which the triggering of a movement requires
a dopaminergic burst just preceding the movement
onset.64,65 There are studies, more focused on HD, as
in Ref. 1, where they studied the origin of HD para-
doxical effects as a consequence of the alteration of
the transient selectivity in the MSN.

The general behavior of the MSN population has
been evaluated against selectivity metrics previously
proposed in the literature.1 According to these met-
rics, high levels of HD affectation present contra-
dictory effects (decrease and increase) in steady-
state and transient-state selectivity, in agreement
with previous simulations. These results confirm
the prediction that the transient-state selectivity
metric in the MSN may explain the paradoxical
speed improvement in Beste’s task by HD patients,14

assuming that middle levels of HD in our model
correspond to the early stages of HD patients.10,66

Although our simulations support this prediction,
the evaluation of similar metrics in the subsequent
layer (the SNr) indicates that the transient distinc-
tiveness does not reflect the paradoxical behavioral
improvement in HD patients. However, the analysis
of the components extracted by the ICA algorithm
in the SNr activity (the BG output layer) evidenced
two transient components and one steady compo-
nent. The weights of the components in HD condi-
tions indicate that only the fastest component sup-
ports the paradoxical speed improvement in Beste’s

task. This component would act by abruptly avoid-
ing the activity of alternative behavioral options.

Our computational model also allowed the anal-
ysis of tonic DA effect on BG operation. Previous
studies did not specifically address the effect of DA in
steady-state or transient-state selectivity (e.g. Ref. 1
included DA in the computational model of HD but
with a fixed value throughout all experimental con-
ditions). In our simulations, only the transient-state
metric in the MSN evidenced decremented selectiv-
ity caused by high or low (nonmedium) DA levels.
According to these simulations, medium levels of DA
may improve the subject’s performance in selection
tasks. Similar metrics in the SNr show enhanced
steady-state and transient distinctiveness linked to
higher levels of DA. These results are supported
by the cognitive improvement registered in behav-
ioral tasks by subjects receiving levodopa.9 The ICA
algorithm used on the SNr signals shows that tran-
sient components also occur in the SNr for high HD
affectation (slow component) or a combination of
medium HD affectation and low DA levels (fast com-
ponent). These results explain how the augmented
transient selectivity associated to the MSN of HD
patients propagates to the SNr, projecting to the cor-
tex through the thalamus and originating behavioral
effects.

The application of the ICA algorithm in the SNr
also evidences how different conditions affect each
component of the signal. The steady-state compo-
nent mainly depends on DA level, making this com-
ponent a candidate for a nonpathological improve-
ment mechanism in performance during selection
tasks. It is in agreement with the experimental
improvement of healthy subjects with high DA lev-
els in selection tasks.9 The slow-transient component
is affected by the HD affectation but not by DA
levels while the fast-transient component requires
medium–low levels of DA and medium levels of HD
affectation. Since paradoxical improvement on HD
patients requires medium levels of HD affectation14

and low or normal levels of DA, the fast-transient
component closely fits this experimentally observed
pattern. Thus, this fast component could be consid-
ered as a plausible marker for sensorial discrimina-
tion performance. Our model is also compatible with
the reported deterioration of HD patients treated
with levodopa,13 where high HD and DA levels
would deteriorate performance as the fast-transient
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component is reduced. In any case, further experi-
mental studies are required in order to validate this
hypothesis.

4.3. Model limitations and future work

One of the main limitations of the proposed model
is that it lacks the recurrent loop between the BG
and the cortex (where the decision process is thought
to take place) through the thalamus. In absence of
the cortico-BG-thalamic-cortical loop, our model is
assuming a simple cause-effect relationship between
the cortex and the BG. Current research considers a
system-level approach where specific behaviors are
generated by the interplay of different subsets of
components of the brain.67–69 The BG is not making
the decision in isolation as the cortex is also tak-
ing part in this process: cortical feedback projec-
tions to the striatum and STN make the internal
competition between channels a cumulative dynam-
ical process.70 Because of this, our result analysis
is restricted to a small time window around the
stimulus (before the re-entrant signal from the cor-
tex is able to affect the BG activity). This time
window is wide enough to allow us to explore the
propagation of the transient components through a
more extensive model of the BG than any previous
research. Integrating the whole closed-loop is key in
future research, as recently proposed.64,65 The inclu-
sion of cortical processing structures in a closed-loop
could facilitate further understanding of larger-time-
scale motor phenomena, such as the mechanisms
of event-related desynchronization/synchronization
found during motor imagery tasks.71

For the sake of simplicity of the analyses car-
ried out in this study, we just took into account
the tonic DA signals in our simulations (phasic DA
signals were simplified). Future approaches should
address how phasic DA signals might unbalance the
state of equilibrium between the direct and indi-
rect pathways.64,65,70 Moreover, the presence of DA-
dependent plasticity26,31 in the cortex-MSN con-
nections may somehow affect the BG processing of
the incoming decisions. Nevertheless, the proposed
model does not consider learning at any level (cor-
tical or sub-cortical). Our simulations assumed the
subject had previously learnt the action selection
task and it was on the automatization phase in which
the cortex-striatum network plays a pivotal role.72

Although interneurons in the striatum (and
specifically the FSI) shape the activity of the
MSN,36 and other models in the literature have
already included these type of neurons,1,34,35 we have
avoided including these kinds of neurons as our pre-
liminary simulations have shown no relevant effect
for our particular behavioral task. This might hap-
pen due to the relatively low levels of input activ-
ity we have used in our experiments. The FSI show
a stronger influence when a higher baseline and
stepped inputs are used.1

Finally, one possible use of the components found
in this study is to help us understand the origin
of neurophysiology data obtained in real behavioral
experiments. In Ref. 14, HD patients and controls
were required to differentiate between short and long
tones (a task very similar to the one simulated in
this paper) while an EEG was recording the brain
activity. They found that the paradoxical behavioral
improvement (reflected as better accuracy and faster
time responses in HD patients) correlated with the
intensity of an event-related potential (ERP) signal
obtained in the EEG known as mismatch negativity
(MMN). This ERP signal could indicate the recogni-
tion of unexpected events by the auditory system.14

Specifically, its presence can be measured in an EEG
as a negative peak around 100ms after the stimu-
lus presentation. This timing precisely matches the
propagation of the fast-transient component from
the cortex to the SNr (∼70ms after the stimulus
presentation according to the ICA algorithm) plus
the transmission delay from the SNr to the cortex
through the thalamus, which has been estimated
around 35ms.73–75 In any case, additional research
with computational models (possibly including tha-
lamic and cortical areas in the loop with BG) is
required to better understand this process.

5. Conclusion

In this paper, we propose a new analysis method
for evaluating transient phenomena, and it has
been applied to the activity of BG populations in
the framework of a detailed computational model.
These novel metrics allow the explicit assessment of
how cortical activity is transferred to the thalamus
through the BG. We have analyzed how the rele-
vant independent components of the signals in the
input and output layers of the BG are affected with
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HD affectation and tonic DA levels. This combined
study of DA and HD represents an innovative con-
tribution, explaining the nonmonotonic relationship
between DA/HD levels and the selectivity of the BG.
This paper describes the complex relations between
BG neuronal populations that are in accordance with
the behavioral results that have been observed in the
literature.
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lućıa Regional funds under the Grants EmbBrain
(A-TIC-276-UGR18) and CEREBIO (FEDER-P18-
FR-2378) and National Grant (MICINN-FEDER-
PID2019-109991GB-I00). This research has also
received funding from the EU H2020 Framework
Program under the Specific Grant Agreement No.
945539 (Human Brain Project SGA3). Additionally,
the main author has been funded with a national
research training Grant (FPU17/04432). Finally, the
3D character model used to illustrate this paper is
taken from Adobe’s Mixamo platform.

Appendix A. Neuron Models

All the neurons included in our BG model have been
simulated using different versions of the Izhikevich
neuron model. This model is computationally very
efficient and allows the reproduction of all the fir-
ing patterns previously described in the BG.28,33

According to the Izhikevich model, the membrane
potential v of the neuron is updated according to
the following equation:

C
dv

dt
= k(v − vr)(v − vt)− u + I, (A.1)

where I is the total synaptic input (defined below), C

is the membrane capacitance, vr is the resting poten-
tial, vt is the instantaneous threshold potential, k is
an abstract parameter that regulates the influence of
the current membrane potential value in its deriva-
tive and u is a recovery parameter updated by in the
following equation:

du

dt
= a(b(v − vr)− u), (A.2)

where a sets the time scale of the recovery variable
with low values corresponding to slow recoveries, and
b describes the sensitivity of the recovery variable to
fluctuations of the membrane potential.

An action potential is elicited in this model when
the firing threshold (vpeak) is exceeded by the mem-
brane potential v. In this case, the variables in the
model are updated according to the following equa-
tion:

v ← c; u← u + d, (A.3)

where c is the voltage reset value and d is the reset
of the recovery variable.

All the neuron sub-types defined in the MSN (D1
and D2), GPe (A, B and C) and SNr can be imple-
mented using the original Izhikevich neuron model.
On the contrary, the three neuron sub-types of the
STN show different responses after long depolariza-
tion, including RB, LLRS and NR. These effects
have been modeled by extending the original Izhike-
vich’s equations with one additional recovery vari-
able (u2).62 The state variables are updated accord-
ing to the following differential equations:

C
dv

dt
= k(v − vr)(v − vt)− u1

−w2 · u2 + I, (A.4)

du1

dt
= a1(b1(v − vr)− u1), (A.5)

du2

dt
= a2(Gb2(v − vr2)− u2), (A.6)

where one additional recovery variable (u2) and its
parameters (a1, a2, b1, b2, d1, d2, w1, w2, G and
U) have been added to account for the previously
described behavior without losing the basic reper-
toire of firing patterns supported by the basic recov-
ery variable u1.34,76 For the NR neurons, G is set to
1, while for RB and LLRS neurons, G = H(vr2 − v)
is the Heaviside step function:

H(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x < 0,

1
2
, x = 0,

1, x > 0.

(A.7)

When the membrane potential moves above the
adaptive firing threshold (v ≥ vpeak+Uu2) the model
variables are set as indicated in the following expres-
sions:

v = c− Uu2, (A.8)

u1 = u1 + d1, (A.9)

u2 = u2 + d2. (A.10)
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Finally, at high firing rates, u2 may increase dra-
matically. To avoid this phenomenon, the U value is
defined according to the following expression:

U =
1

w1|u2|+ 1
w1

. (A.11)

The value of all these neuron model parameters
for each cell type can be found in Tables 2–4 in
https://github.com/EduardoRosLab/BG selectivity/
raw/master/parameters tables.pdf.

Appendix B. Synapse Models

The input current (I) targeting a neuron is defined
as follows29:

I = IAMPA + INMDAB(v) + IGABA. (B.1)

IAMPA, INMDA and IGABA are current inputs
from AMPA, NMDA and GABA receptors, and B(v)
is a term that models the voltage-dependent magne-
sium plug in the NMDA receptors46 as follows:

B(v) =
1

1 + [Mg2+]0
3.57 e−0.062v

, (B.2)

where [Mg2+]0 is the equilibrium concentration of
magnesium ions. The input current of each channel
z is defined as follows:

Iz = yz(Ez − v), (B.3)

where yz is a exponentially-decaying conductance
representing the contribution of receptor z to the
membrane potential, Ez is reversal potential of
receptor z and v is the current membrane potential
of the neuron.

The value of all these synaptic parameters
can be found in Table 1 in https://github.com/
EduardoRosLab/BG selectivity/raw/master/para
meters tables.pdf.

Appendix C. Dopaminergic
Modulation Model

In the MSN, the overall in vivo effect of the DA
receptors D1 and D2 is that the stimulation of the
D1 receptors increases neuron excitability, while the
stimulation of the D2 receptors decrements the neu-
ron firing,77 as expressed in Eqs. (C.1) and (C.2).
There are also neuromodulatory effects implemented
following Refs. 1, 29 and 27, where da represents
the global level of DA in the system. This influ-
ences the D1 and D2 DA receptors according to

the neuromodulatory factors β1 and β2, respectively.
Equation (C.3) models the D1-receptor mediated
enhancement of the inward-rectifying potassium cur-
rent. Equation (C.4) models the enhancement of the
L-type Ca2+ current. Finally, Eq. (C.5) models the
increased sensitivity to injection current following D2
activation:

INMDA ← INMDA(1 + β1 · da), (C.1)

IAMPA ← IAMPA(1− β2 · da), (C.2)

vr ← vr(1 + β1 · da), (C.3)

d ← d(1 − β2 · da), (C.4)

k ← k(1 − β1 · da). (C.5)

GPe and STN neurons also show DA neuromodu-
latory effects on their synaptic receptors, which have
been modeled as follows:

IAMPA ← IAMPA(1− β1 · da), (C.6)

INMDA ← INMDA(1− β1 · da), (C.7)

IGABA ← IGABA(1− β2 · da). (C.8)

The value of all these dopaminergic modula-
tion parameters for each cell type can be found in
Tables 2–4 in https://github.com/EduardoRosLab/
BG selectivity/raw/master/parameters tables.pdf.

References

1. A. Tomkins, E. Vasilaki, C. Beste, K. Gurney and
M. D. Humphries, Transient and steady-state selec-
tion in the striatal microcircuit, Front. Comput.
Neurosci. 7 (2014) 192.

2. O. Hikosaka, Y. Takikawa and R. Kawagoe, Role of
the basal ganglia in the control of purposive saccadic
eye movements, Phys. Rev. 80(3) (2000) 953–978.

3. P. Redgrave, T. J. Prescott and K. Gurney, The
basal ganglia: A vertebrate solution to the selection
problem? Neuroscience 89(4) (1999) 1009–1023.

4. S. Shipp, The functional logic of corticostriatal con-
nections, Brain Struct. Funct. 222 (2017) 669–706.

5. M. D. Humphries, R. D. Stewart and K. N. Gurney,
A physiologically plausible model of action selection
and oscillatory activity in the basal ganglia, J. Neu-
rosci. 26(50) (2006) 12921–12942.

6. K. Gurney, T. J. Prescott and P. Redgrave, A com-
putational model of action selection in the basal gan-
glia. I. A new functional anatomy, Biol. Cybern. 84
(2001) 401–410.

7. K. Gurney, T. J. Prescott and P. Redgrave, A com-
putational model of action selection in the basal gan-
glia. II. Analysis and simulation of behavior, Biol.
Cybern. 84 (2001) 411–423.

2050057-15

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

20
.3

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 G
R

A
N

A
D

A
 o

n 
01

/2
4/

25
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



September 15, 2020 16:38 2050057
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