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Abstract 

Task-switching paradigms, which involve task repetitions and between-task switches, have long been 

used as a benchmark of cognitive control processes. When mixed and single-task blocks are presented, 

two types of costs usually occur: the switch cost, measured by contrasting performance on switch and 

repeat trials during the mixed-task blocks, and the mixing cost, calculated as the performance difference 

between the all-repeat trials from the single-task blocks and the repeat trials from the mixed-task 

blocks. Both costs can be mitigated by informational cues that signal the upcoming task switch 

beforehand. Recent electroencephalographic (EEG) studies have started unveiling the brain oscillatory 

activity underlying the switch cost during the preparatory cue-target interval, thus targeting proactive 

control processes. Less attention has instead been paid to the mixing cost and, importantly, to the 

oscillatory dynamics involved in switch and mixing costs during reactive control. To fill this gap, here we 

analyzed the time-frequency data obtained during a task-switching paradigm wherein the simultaneous 

presentation of task cues and targets increased the need for reactive control. Results showed that while 

alpha and beta bands were modulated by switch and mixing costs in a similar gradual fashion, with 

greater suppression going from switch to repeat and all-repeat trials, theta power was sensitive to the 

switch cost with increased power for switch than repeat trials. Together, our findings join previous 

studies underlining the importance of theta, alpha and beta oscillations in task-switching and extend 

them by depicting the oscillations involved in switch and mixing costs during reactive control processes. 
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1. Introduction 

“Repetita iuvant” 

While this ancient Latin quote was not coined with reference to task-switching, a common finding in the 

cognitive control literature is that switching from one task to another incurs a significant “switch cost” as 

compared to repeating the same task. Yet, there is also a “mixing cost” when contrasting performance 

on the all-repeat trials from the single-task blocks and the repeat trials from the mixed blocks (Monsell, 

2003; Rubin & Meiran, 2005). The switch cost is generally taken as an index of a phasic task-set 

reconfiguration process, which operates on a trial-by-trial basis to flexibly switch between different 

tasks and which itself includes multiple sub-processes such as retrieval of current rules and appropriate 

stimulus-response mappings from memory, resolution of carryover interference from the previous trial, 

suppression of the no longer relevant task-set and activation of the new relevant one (Monsell, 2003). 

Conversely, the mixing cost is thought to reflect higher memory demands and sustained cognitive 

control processes to maintain multiple task-sets active during the mixed block (e.g., Braver, Reynolds, & 

Donaldson, 2003; Rubin & Meiran, 2005).  

Support for the dissociation between the processes underlying switch and mixing costs comes from 

different lines of evidence. For example, from a normal aging perspective, older adults usually show 

larger mixing costs but similar switch costs with respect to their younger counterparts (e.g., Kray & 

Lindenberger, 2000; Mayr, 2001; Moretti, Semenza, & Vallesi, 2018). At the neural level, functional 

magnetic resonance imaging (fMRI; Braver et al., 2003) and resting-state electroencephalographic (EEG) 

studies (Ambrosini & Vallesi, 2016) link switch and mixing costs to the activity of left-lateralized and 

right-lateralized prefrontal areas, respectively. As concerns event-related potential (ERP) studies, the 

picture is instead much less clear-cut as both common and unique ERPs have been reported for the two 
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types of costs (e.g., Goffaux, Phillips, Sinai, & Pushkar, 2006; Tarantino, Mazzonetto, & Vallesi, 2016; 

Wylie, Murray, Javitt, & Foxe, 2009; see Karayanidis & Jamadar, 2014, for a review). 

In addition to ERP studies, in the last decade there has been a steep increase in research into the 

oscillatory activity involved in switching or repeating a task. In contrast to the switch cost, the oscillatory 

dynamics underlying the mixing cost have received much less attention. Moreover, the majority of EEG 

time-frequency task-switching studies focused on proactive control processes, namely, those processes 

that develop during the cue-target interval allowing preparation for a task switch or a task repetition 

(e.g., Cooper, Wong, McKewen, Michie, & Karayanidis, 2017; Cunillera et al., 2012; López, Pusil, Pereda, 

Maestú, & Barcelό, 2019). However, many real-life situations do not afford anticipatory preparation. For 

instance, while driving, we can either encounter a warning signal that lets us know in advance that a 

road change is coming up on our drive, or it may also happen that an unexpected falling rock prompts us 

to suddenly change direction. How does the brain behave in the latter situation? In order to address this 

question, here we investigated the oscillatory neural activity associated with switch and mixing costs 

during a task-switching paradigm stressing reactive control processes. To begin with, the following 

paragraph provides an overview of the brain oscillations observed in previous task-switching studies. 

Regarding the switch cost, a general finding is that switch trials are related to greater power increases in 

fronto-parietal theta oscillations as compared to repeat trials. This has led to the hypothesis that theta 

band could represent a possible frequency signature of the goal-directed and updating processes 

required to switch task, in line with mounting evidence linking increased theta to the “need for cognitive 

control” (Cavanagh & Frank, 2014). In support of this claim, theta power over fronto-parietal electrodes 

was shown to increase when participants were proactively cued to shift categorization rule during a 

cued-Wisconsin card sorting task (Cunillera et al., 2012). In another cued task-switching study, Cooper 

and colleagues (2017) also found greater theta power over fronto-parietal electrodes along with 

enhanced phase coherence across trials in response to switch cues (see also López et al., 2019, for 
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further evidence of greater fronto-parietal theta and fronto-temporal delta phase connectivity for 

switch cues). Taken together, these studies suggest a role for theta oscillations in switch-related 

proactive cognitive control. In addition, there is also evidence for the involvement of theta oscillations 

after target onset. For example, the use of a single-trial regression approach in a recent study showed 

that switch trials with increased mid-frontal theta power during both preparatory and post-target 

intervals were associated with smaller switch costs (Cooper et al., 2019). 

In contrast to enhanced theta activity, a different pattern has usually been found for alpha oscillations 

with lower power for switch versus repeat trials both during the preparatory cue-target interval (e.g., 

Cunillera et al., 2012; Foxe, Murphy, & De Sanctis, 2014; Murphy, Foxe, & Molholm, 2016; but see 

Cooper et al., 2019; Mansfield, Karayanidis, & Cohen, 2012) and after target onset (e.g., Rapela, 

Gramann, Westerfield, Townsend, & Makeig, 2012; Sauseng et al., 2006). In the majority of these 

studies, alpha suppression had a parieto-occipital scalp distribution but, in some work, it was also 

observed over central (Cunillera et al., 2012) and frontal electrodes (Foxe et al., 2014) or in frontal 

magnetoencephalography (MEG) reconstructed regions (Proskovec, Wiesman, & Wilson, 2019). A 

plausible explanation for the decrease of alpha activity during switch trials is that alpha oscillations 

would reflect the involvement of a suppressive top-down mechanism, in charge of diverting attention 

away from competing, distracting task-sets (Foxe et al., 2014). Another, not mutually exclusive, 

explanation is that a decrease in alpha activity during switch trials could index an increase in the 

retrieval of relevant information from memory (Sauseng et al., 2006). 

Lastly, there is also evidence for the sensitivity of beta oscillations to task-switching contexts (e.g., 

Cooper et al., 2017; 2019; Gladwin, Lindsen, & de Jong, 2006). As an example, Cunillera and colleagues 

(2012) observed that relative to repeat cues, switch cues during the cue-target interval were linked to 

decreased beta power across the scalp, though being more pronounced over posterior-occipital regions. 

In addition, a recent MEG work with a similar reactive paradigm as the one used here also reported 
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switch-related beta decrease in the left premotor cortex (Proskovec et al., 2019). A motor interpretation 

of beta has often been embraced to explain the finding of decreased beta oscillations during switch 

trials.  

Concerning the mixing cost, we are aware of only two previous studies1 examining brain oscillations 

associated with all-repeat trials and repeat trials from the mixed blocks. Both studies, however, had 

aims different from ours. The first study (Enriquez-Geppert & Barceló, 2018) investigated age-related 

changes in theta and beta oscillations by specifically considering the functional networks underlying the 

target-P300 potential. The second study (Cooper et al., 2017) focused primarily on the role of fronto-

parietal theta oscillations during proactive control processes and, hence, time-frequency analysis was 

restricted to cue-locked activity. The findings by Cooper and colleagues (2017) showed that fronto-

parietal theta was sensitive to both switch and mixing costs as it increased significantly from all-repeat 

trials to repeat trials, and from repeat trials to switch trials.  

Summarizing the aforementioned EEG studies, it becomes clear that specific brain frequencies are 

differentially modulated by the requirement to switch or repeat a task. However, since switch and 

mixing costs have been rarely compared and, when done, the focus was mainly on proactive control, it is 

still unsettled whether switch and mixing costs in reactive control tasks are tied to similar or distinct 

frequency bands as those found for proactive control. To improve our understanding of switch and 

mixing costs during reactive control, we conducted time-frequency analysis of a previous EEG dataset 

                                                           
1
 During the revision process, we found out another very recent time-frequency study comparing switch and 

mixing costs (McKewen et al., 2020). We report it here for the reader’s benefit. Of note, however, this study too 

tackled a different research question than the present work, as it investigated whether phase-locked and 

nonphase-locked power in the time-frequency EEG signal were differentially modulated by switch and mixing 

costs. Moreover, the specific focus of the study was on time-frequency effects usually observed at frontal and 

parietal sites, such that all the analyses were performed on two a-priori selected electrodes (FCz and Pz). 



  

 7 

from our laboratory (Capizzi, Ambrosini, Arbula, Mazzonetto, & Vallesi, 2016). The key design feature of 

that study was the simultaneous cue-target presentation. Accordingly, there was no opportunity for 

anticipatory preparation as the target color was the only cue that indicated the specific task to be 

implemented on any given trial. Therefore, in this task-switching scenario a successful switch operation 

depended exclusively on the involvement of strong stimulus-driven control mechanisms, which in turn 

allowed us to compare switch and mixing costs during reactive control.  

 

2. Method 

2.1 Participants 

Fifty-four university students2 (mean age: 22.8 years, age range: 21–29 years, 14 men, all right-handed) 

voluntarily took part in the experiment and received cash reimbursement for their time. All participants 

were native Italian speakers, with normal or corrected-to-normal visual acuity and normal color vision. 

They gave informed consent prior to their inclusion in the study, which was approved by the Bioethical 

Committee of the Azienda Ospedaliera di Padova in compliance with the Declaration of Helsinki. All 

participants reported no history of neurological or psychiatric disorders.  

2.2 Procedure and Task 

The general procedure and task are described in detail in Capizzi et al. (2016). 

In brief, as depicted in Figure 1, stimulus material consisted of visually presented three-dimensional 

words that could be categorized according to either verbal or spatial sorting rules. The verbal rules 
                                                           
2
 Participants were the same as in Capizzi et al. (2016). However, unlike our previous study where data from 6 

participants were discarded, here we used all the participants’ data according to the different analysis pipeline 

followed in the present study (see the Data Analysis section for further details).  
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required participants to classify the words according to two grammatical dimensions: gender 

(female/male) and name (proper/common), whereas the spatial rules regarded the roll 

(clockwise/counterclockwise) and pitch (upward/downward) rotations. In total, there were 18 proper 

names, divided into 9 proper female names and 9 proper male names, and 18 common names, divided 

into 9 common female names and 9 common male names.  

Verbal and spatial tasks were presented separately, with half of the participants starting with the verbal 

tasks and the other half with the spatial ones. Each word could be written in one of four colors: red, 

blue, green or brown. In the task-switching condition, the blue and red colors signaled the specific task 

to be performed on any given trial (see Figure 1 for further details). In the single-task condition, the 

colors also changed randomly between brown and green in order to match all the stimuli along the 

perceptual dimension, but participants were instructed not to pay attention to the color of the words.  

For both verbal and spatial tasks, there were two single-task blocks (one for each categorization rule, 

e.g., gender and name) and four task-switching blocks each comprising 32 trials. Repeat and switch trials 

were presented in a pseudo-random order to guarantee roughly the same number of trials per 

condition. The experimental blocks were preceded by a short practice session that allowed participants 

to familiarize themselves with the specific task rules.  

Both behavioral and EEG data were collapsed across spatial and verbal tasks after having confirmed 

comparable behavioral and EEG effects (ps > .05) as in our previous study (see Capizzi et al., 2016).  

--- Figure 1 about here--- 

2.3 EEG recording 

EEG was recorded using BrainAmp amplifiers (BrainProducts, Munich, Germany) from 64 Ag/AgCl 

electrodes that were mounted on an elastic cap (EASYCAP GmbH, Germany) according to the extended 

10–20 system. Electrooculography (EOG) activity was measured through an electrode placed under the 
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left eye and also monitored through the scalp electrodes placed in the proximity of both eyes. 

Impedances for each channel were measured and adjusted until they were kept below 10 kΩ before 

testing. An electrode positioned at FCz and another placed at AFz served as the online reference and 

ground electrodes, respectively. Raw data were digitized at a sampling rate of 500 Hz and bandpass 

filtered between .1 and 100 Hz. 

 

3. Data analysis 

3.1 Behavioral Data Analysis 

Data were analyzed in terms of both accuracy and response times (RTs). To improve normality, raw RT 

data and accuracy scores were, respectively, log- and arcsine-transformed before statistical analyses. 

For the RT analysis, the first trial of each task-switching block (2.08% of all the trials), anticipations (RT < 

150 ms; 3 trials) and errors (6.02% of the remaining trials) were discarded. Additionally, for each 

participant trials with an RT above or below 2 SDs from their individual task mean condition were 

treated as outliers and rejected (4.02% of the remaining trials). For the accuracy analysis, the first trial of 

each task-switching block was removed.  

For both correct RTs and accuracy scores, switch and mixing costs were computed by calculating, 

respectively, the difference between switch and repeat trials and between repeat and all-repeat trials. 

We then assessed the statistical significance of switch and mixing costs by means of two-sample t tests 

against zero. The Cohen’s d was used as a measure of the effect size (Cohen, 1977).  

 

3.2 Electrophysiological Data Analysis 
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Signal preprocessing was performed using BrainVision Analyzer 2.0 (Brain Products GmbH), custom 

Matlab (Mathworks, Natick, MA) scripts and functions from the EEGLAB environment (version 13.4.4b; 

Delorme & Makeig, 2004). The continuous EEG was filtered offline using a .5 Hz highpass filter 

(Butterworth zero-phase, 48 dB/oct) and subjected to an ocular correction algorithm based on 

independent component analysis (ICA) as implemented in BrainVision. After correcting for eye 

movements and blink activity, data were exported to EEGLAB and lowpass filtered at 45 Hz (cutoff) using 

a zero-phase Kaiser-windowed sinc FIR filter (beta = 6.317, transition bandwidth = 10 Hz; see Widmann, 

Schröger, & Maess, 2015). Channel rejection was then performed by means of the “clean_rawdata” 

EEGLAB plugin using an autocorrelation parameter of 0.7071 (Mullen et al., 2013). The resulting noisy 

channels (1 channel in 11 datasets, 5 channels in 1 dataset) were interpolated using spherical splines 

(Perrin, Pernier, Bertrand, & Echallier, 1989). After interpolation, EEG data were re-referenced to the 

average of all of the electrodes and segmented into epochs of 3500 ms (1500 ms prestimulus and 2000 

ms corresponding to the time interval during which the word was presented; see Figure 1). This wide 

range avoided edge artifacts resulting from time-frequency decomposition. The first trial of each task-

switching block and trials associated with incorrect behavioral responses were excluded from the 

segmentation. Epochs were corrected in the time domain using a prestimulus interval of [-200 0] ms and 

screened for artifacts and/or outliers with four different methods (see Delorme, Sejnowski, & Makeig, 

2007). The following criteria were applied according to a preliminary examination of our sample aimed 

at optimizing artifact rejection: 1) ± 100 µV for the standard extreme values thresholding; 2) current 

drifts larger than ± 50 µV/epoch and R2 > .3 for the linear trend test; 3) SD > 7 (for each channel) and SD 

> 3 (for all channels) for the improbability test; and 4) SD > 7 (for each channel) and SD > 3 (for all 

channels) for the kurtosis test. Epochs containing data points exceeding any of these criteria were 

excluded from further analyses. As a result, a mean of 9.13% of the epochs were rejected. The minimum 

number of retained epochs in each experimental condition was 50.  
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Time-frequency decomposition was performed on clean epochs via complex Morlet wavelet 

convolution. We extracted Event-Related Spectral Perturbation (ERSP) in the frequency range between 4 

and 45 Hz (resolution: 1 Hz) using a number of cycles that varied from 4 cycles at the lowest frequency 

(4 Hz) up to 22.5 at the highest frequency (45 Hz) in linearly increasing steps, with a temporal resolution 

of approximately 20 ms. ERSPs were expressed in decibel relative to the mean power in the baseline 

interval (-1000 -500 ms prestimulus).  

Statistics were performed via a Threshold Free Cluster Enhancement (TFCE) method, which avoids a-

priori assumptions about data while enabling correction for multiple comparisons (Smith & Nichols, 

2009). Specifically, TFCE has been shown to be more sensitive than traditional cluster-mass methods 

given that threshold, rather than cluster, of each data point is computed. The TFCE analyses included all 

the 64 channels, the entire epoch length (2000 ms), and all the frequencies range from 4 to 45 Hz 

(20000 permutations; p < .05). Please note that oscillations in the gamma band (> 30 Hz) were not 

considered here due to the possible influence of artefactual muscular activity. Three separate TFCE 

analyses were performed. The first two TFCE assessed the statistical significance of the ERSP switch and 

mixing effects by contrasting, respectively, ERSPs in switch vs. repeat trials and those in repeat vs. all-

repeat trials. A third TFCE tested for the interaction between ERSP switch and mixing effects by 

contrasting them.  

3.3 Time-frequency – Behavior Correlation Analysis 

Pearson’s correlation was used to test for relationship between behavioral switch and mixing costs and 

time-frequency measures. Specifically, we computed the correlations between the participants’ switch 

and mixing RT costs and the ERSP switch and mixing effects. As for the time-frequency analysis detailed 

above, we considered all the frequencies, time points, and channels, and assessed the statistical 

significance of the time-frequency – behavior correlation results using the TFCE method. This allowed 
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avoiding the circularity problem (Kriegeskorte, Lindquist, Nichols, Poldrack, & Vul, 2010). In order to 

control for possible biases due to a negative correlation between switch and mixing effects, we report 

only significant spatio-temporo-spectral data points for which the correlation between switch and 

mixing ERSP effects was not significant. 

 

4. Results 

4.1 Behavioral results 

Descriptive statistics are reported in Table 1. As expected from a task-switching paradigm, RT analysis 

showed reliable switch and mixing costs (M = .102, SD = .034, t(53) = 21.73, p < .001, d = 2.96, and M = 

.121, SD = .047, t(53) = 18.79, p < .001, d = 2.56, respectively) (Figure 2A). Analysis on the accuracy scores 

paralleled the RT findings with significant switch and mixing costs also for accuracy (M = .10, SD = .07, 

t(53) = 10.85, p < .001, d = 1.48, and M = .06, SD = .11, t(53) = 3.82, p < .001, d = .52, respectively) (Figure 

2B).  

 

--- Table 1 and Figure 2 about here--- 

4.2 Time-frequency results  

The TFCE analysis performed with a standard threshold value (p = .05) showed significant clusters of 

relatively sustained and broadly distributed oscillatory activity involving theta, alpha and beta 

frequencies. In order to refine the results and evaluate their robustness, a further TFCE analysis was thus 

performed using a more conservative threshold (p = .00001 instead of .05). The use of a more stringent 

threshold also allowed improving the scalp-based localization of the observed brain oscillations by 

revealing clusters that were more spatially distinct. The results of both analyses are reported here for 
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completeness but, of note, only the results from the conservative one are graphically represented, as 

they better depict the scalp-based localization of brain oscillations. The reader is referred to the 

Supplementary material for visualization of the TFCE results obtained with the conventional alpha value.  

Figure 3 shows the time-frequency plots for the three trial types (switch, repeat, all-repeat) over nine 

representative frontal (F3, Fz, F4), central (C3, Cz, C4) and parietal (P3, Pz, P4) electrodes. Overall, the 

ERSP results clearly involved an event-related increase in power for frequencies in the theta range (4-7 

Hz), as well as a sustained event-related decrease in power for frequencies mainly comprised in the 

alpha range (8-15 Hz), accompanied by a less sustained event-related decrease in power for frequencies 

in the beta range (16-30 Hz). These ERSP modulations were generally more pronounced for switch as 

compared to repeat trials and, even more, for repeat as compared to all-repeat trials.  

 

--- Figure 3 about here--- 

4.2.1 ERSP switch effect 

The TFCE on the ERSP switch effect showed a significant cluster of oscillatory activity in the theta range 

(4-7 Hz), which was due to a stronger event-related increase in power for switch compared to repeat 

trials. Such theta cluster was present from 900 to 1800 ms over fronto-central and right fronto-temporal 

electrodes (Supplementary Figure A, bottom). The control TFCE analysis confirmed this result by 

showing a significant theta effect (across 1000-1600 ms) over fronto-central electrodes (Figure 4A, B).  

A significant cluster with a stronger decrease of power for frequencies mainly included in the alpha 

range (8-15 Hz) for switch relative to repeat trials was also observed in a time window spanning from 

700 ms to the end of the epoch. This alpha effect was widely distributed across the scalp but strongest 

over anterior mid-frontal and bilateral centro-parietal electrodes (Supplementary Figure A, middle). The 

control analysis confirmed this result (across 1000-1600 ms) by revealing a frontal and left-lateralized 

posterior scalp distribution (Figure 4C, D).  
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Additionally, from 700 to 1800 ms there was a significant cluster with a stronger decrease in beta 

activity (16-30 Hz) for switch compared to repeat trials, which was broadly distributed over left fronto-

central and right centro-parietal electrodes (Supplementary Figure A, top). This result was confirmed in 

the control analysis (across 900-1600 ms), which showed a central scalp distribution more lateralized to 

left electrodes (Figure 4E, F).  

 

--- Figure 4 about here--- 

 

4.2.2 ERSP mixing effect 

The TFCE contrasting repeat and all-repeat trials showed significant ERSP mixing effects in theta, alpha 

and beta frequencies. Specifically, two clusters3 of theta activity were detected. A first significant cluster 

with a greater increase in theta activity for all-repeat trials as compared to repeat trials was observed 

from 200 to 400 ms over left fronto-central and bilateral occipito-temporal electrodes. A second 

significant cluster with greater increase in theta power for all-repeat relative to repeat trials was found 

from 900 to 1200 ms over posterior electrodes (Supplementary Figure B, bottom). None of these results, 

however, survived the conservative threshold in the control TFCE analysis.  

Regarding the alpha band, a significant sustained cluster with a stronger decrease in alpha activity for 

repeat compared to all-repeat trials was found from 200 ms to end of the epoch across all the scalp and 

noticeable especially over bilateral fronto-parietal electrodes (Supplementary Figure B, middle). During 

the same time window (200 ms ̶ end of the epoch), there was also a significant cluster with a stronger 

                                                           
3
 A third significant cluster with greater theta suppression for repeat relative to all-repeat trials was also observed 

from 1300 ms to the end of the epoch over right fronto-temporal and left centro-temporal-parietal electrodes. 

Since participants’ RTs were shorter than 1300 ms (M = 945 ms in the repeat condition), this theta cluster was no 

longer considered here as it probably captured a post response process.  
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decrease in beta power for repeat than all-repeat trials involving mainly right central and bilateral 

parietal electrodes (Supplementary Figure B, top). Both results were confirmed in the control analysis (8-

15 Hz: 400 ms-end of the epoch; 16-30 Hz: 400-1600 ms), which clarified the frontal and most 

pronounced right central and bilateral parietal scalp distribution for alpha band (Figure 5A, B), and the 

more posterior distribution for beta band (Figure 5C, D).  

 

--- Figure 5 about here--- 

 

4.2.3 ERSP switch by mixing effect interaction 

The TFCE testing for the interaction between switch and mixing effects revealed significant differences 

in theta, alpha and beta frequencies. As concerns theta band, switch and mixing effects significantly 

differed during two time windows: an earlier one, from 100 to 400 ms, and a later one, from 1100 to 

1800 ms. During the first time bin, theta ERSP switch and mixing effects had opposite sign over central 

and bilateral occipito-temporal electrodes. During the later time bin, a significant cluster was observed 

over fronto-central electrodes, with a stronger theta ERSP switch effect as compared to the mixing one 

(Supplementary Figure C, bottom). None of these theta results, however, survived the control analysis.  

As regards alpha activity, the ERSP mixing effect was stronger than the switch one from 200 ms to the 

end of the epoch over bilateral anterior and posterior electrodes (Supplementary Figure C, middle). 

Likewise, during a similar sustained time bin (200 ms-end of the epoch), there was a greater beta ERSP 

mixing effect relative to the switch effect, which involved right fronto-central and bilateral parieto-

occipital electrodes (Supplementary Figure C, top). Both results were replicated in the control analysis in 

the 600-1100 ms time window. As concerns their scalp-based localization, the control analysis showed a 

significant effect for frequencies mainly included in the alpha range (8-15 Hz) over right frontal and 
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bilateral occipital electrodes (Figure 6A, B), as well as a significant beta effect (16-30 Hz) distributed 

across three separate electrode sites: fronto-central, left parietal and right occipital (Figure 6C, D). 

 

--- Figure 6 about here--- 

 

4.3 Time-frequency – Behavior Correlation Results 

Regarding the switch cost, two clusters showed significant time-frequency – behavior correlations. A 

first cluster involved high theta and low alpha frequencies (7-10 Hz) over parieto-occipital electrodes in 

a time window ranging approximately from 1000 to 1400 ms (Figure 7, top topoplot). This positive 

correlation indicates that participants who had a more negative ERSP switch effect (i.e., greater 

decrease in alpha power for the switch as compared to the repeat condition) exhibited a smaller 

behavioral switch cost (Figure 7, top scatterplot). A second significant cluster concerning high alpha-low 

beta frequencies (11-20 Hz) was observed during 600-1200 ms over mid-frontal and bilateral occipito-

temporal electrodes (Figure 7, bottom topoplot). As for the first cluster, there was a positive correlation 

between the behavioral switch cost and the ERSP switch effect such that a greater decrease in high 

alpha/low beta power in the switch condition was associated with a smaller switch cost (Figure 7, 

middle and bottom scatterplots). Of note, these results were confirmed in a similar analysis performed 

using Spearman’s correlations, which are less sensitive to both deviations from the normal distribution 

and outlier observations. The only difference between the two correlation approaches regarded the 

second cluster, which in the Spearman’s correlation analysis included frequencies in the range from 11 

to 15 Hz. No significant correlations emerged between behavioral and oscillatory activity for the mixing 

cost. 
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--- Figure 7 about here--- 

5. Discussion 

In the present study, we investigated the brain oscillatory dynamics involved in switch and mixing costs 

during a task-switching paradigm emphasizing reactive cognitive control processes. As will be detailed 

below, our results complement previous findings on the switch cost and add to current knowledge on 

the mixing cost and the difference between switch and mixing costs when advance preparation is not 

afforded. Behaviorally, strong switch and mixing costs were observed as expected in this kind of 

paradigm. At the electrophysiological level, the mass univariate approach applied to time-frequency 

data showed the involvement of theta, alpha and beta oscillations in both switch and mixing costs, albeit 

with some significant differences mainly concerning their spatio-temporal dynamics. We discuss these 

time-frequency results in what follows starting with alpha and beta frequencies, as they were 

modulated by switch and mixing costs in a similar manner, and concluding with theta band, which 

behaved differently for switch and mixing costs.  

With regard to frequencies comprised between 8 and 15 Hz, collectively labeled here as alpha band to 

differentiate them from a clear beta cluster spanning from 16 to 30 Hz (see Figure 3), a marked decrease 

was observed during switch relative to repeat trials (the ERSP switch effect), as well as during repeat 

compared to all-repeat trials (the ERSP mixing effect). A further analysis on the interaction between 

switch and mixing effects also showed a greater alpha ERSP mixing effect compared to the ERSP switch 

effect. The robustness of these alpha results is supported by the finding that they were replicated using 

a very conservative p value threshold (p = .00001). The use of a more stringent threshold also improved 

the separation between spatially-distinct clusters associated with switch and mixing effects, thus 

enabling a better scalp-based localization of such effects. In particular, the control analysis helped clarify 

that, although frontal and posterior alpha frequencies were both involved in switch and mixing effects, 
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the alpha ERSP switch effect was stronger over left-lateralized posterior electrode sites. By contrast, the 

ERSP mixing effect had a more widespread distribution with marked frontal, right central and bilateral 

scalp localization. These differences were then reflected in the switch by mixing interaction analysis, 

which showed a greater alpha ERSP mixing effect over right frontal and bilateral occipital electrodes. 

The presence of alpha activity over frontal and posterior electrodes is in line with previous time-

frequency task-switching studies (Foxe et al., 2014; Proskovec et al., 2019). What is interesting to note, 

however, is the fact that while the switch effect appeared to be more related to left-lateralized alpha 

activity, the mixing effect was linked to more bilateral and slightly more right-lateralized activity. With 

the proper caution, as necessary when speculating about scalp-based effects, these findings fit with the 

idea that switch and mixing costs could be mediated by more left-lateralized and right-lateralized brain 

activity, which in the literature has been linked to the operation of transient and more sustained aspects 

of cognitive control, respectively (e.g., Ambrosini & Vallesi, 2016; Braver, Reynolds, & Donaldson, 2003). 

Supporting this argument, the difference between repeat and all-repeat trials occurred earlier and was 

more sustained in time than that concerning switch and repeat trials. A final difference concerning alpha 

oscillations was that high theta/low alpha frequencies (7-10 Hz) over parieto-occipital electrodes were 

positively correlated to the RT switch cost but not the mixing cost.  

In general, the switch-related alpha suppression observed here converges with previous work reporting: 

1) stronger decreases in alpha activity for switch trials (Cunillera et al., 2012; Foxe et al., 2014; Sauseng 

et al., 2006), and 2) positive relationships between suppressed alpha activity and behavioral switch costs 

(Proskovec et al., 2019; Verstraeten & Cluydts, 2002). Interestingly, of the aforementioned studies both 

Proskovec et al. (2019) and Sauseng et al. (2006) employed a task-switching paradigm similar to the one 

used here as cue and target coincided in time, thus specifically stressing reactive control processes. 

Corroborating such previous reports, our findings support the conclusion that switch-related processes 

in reactive control tasks are partly reflected by greater alpha suppression, in contrast to other studies 
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that employing a cue-target interval have found increased, rather than decreased, alpha power for 

switch cues (Cooper et al., 2019; Mansfield et al., 2012). Future studies manipulating the opportunity for 

advance preparation (i.e., presence or absence of a preparatory interval) in the same design will help 

clarify the opposite pattern of alpha increase/decrease associated with switch trials in the context of 

proactive and reactive tasks, respectively. Importantly, extending the work by Proskovec et al. (2019) 

and Sauseng et al. (2006), both of which lacked a single-task condition, we added that alpha activity was 

also sensitive to the mixing cost, being more suppressed during repeat relative to all-repeat trials.  

As regards the functional meaning of alpha band in task-switching, it is generally thought it could index 

the recruitment of a suppressive top-down mechanism, which would divert attention away from the 

task-sets competing with the one to be correctly applied in the task at hand (Cunillera et al., 2012; Foxe 

et al., 2014). Using an overlapping cue-target paradigm as here, Sauseng and colleagues (2006) 

furthered the idea that a greater alpha suppression during switch trials could also reflect an increase in 

the retrieval of relevant information from memory. Both explanations hold for our results, in that they 

showed a gradual modulation of alpha activity from the most demanding switch trials, requiring 

stronger memory and attentional suppression of the previous task-set, to repeat trials, which also 

required the maintenance of two task-sets, to the least difficult all-repeat trials. Of note, the difference 

in alpha suppression between switch and repeat trials was not as great as that between repeat and all-

repeat trials. This result aligns with previous studies showing that, when switch and repeat trials have 

the same probability to be presented within a block, some reconfiguration sub-processes could also take 

place on repeat trials, albeit to a lesser degree than what required on switch trials (e.g., Brass & von 

Cramon, 2004; Capizzi, Fehér, Penolazzi, & Vallesi, 2015; Nicholson, Karayanidis, Poboka, Heathcote, & 

Michie, 2005). In our specific case, the lack of a preparatory interval and the used trial sequence with 

equal probability for switch and repeat trials might have partly encouraged the recruitment of similar 
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attentional suppression and memory processes also during repeat trials to maintain the two very 

demanding task-sets active throughout the mixed block.   

Echoing the alpha results, the same pattern of marked power decrease for switch relative to repeat 

trials and for repeat relative to all-repeat trials was reported in the beta frequency range (16-30 Hz). 

Beta differences as a function of the mixing effect emerged early after stimulus onset (≈200 ms, 400 ms 

in the control analysis), whereas for the switch effect beta modulations occurred later in time, at 

approximately 700 ms (1000 ms in the control analysis). Again, as for the alpha band, the ERSP mixing 

effect observed in the beta frequency range was greater than the ERSP switch effect and beta power 

decreases were related to the behavioral switch cost only. Finally, all the beta results survived a very 

conservative statistical threshold.  

Unlike theta and alpha, beta oscillations in task-switching have been usually neglected or just reported 

but not thoroughly addressed, perhaps because the functional role of the beta band in cognitive 

processes is the least understood of all the frequency bands (e.g., Engel & Fries, 2010). Moreover, beta 

oscillations during task-switching have been primarily related to sensorimotor functions (movement 

execution and/or preparation; e.g., Cooper et al., 2019). With regard to the beta effects observed here, 

our data speak against a strict motor-related interpretation of beta activity. A first argument is that, as 

generally illustrated in Figure 3, the scalp distribution of beta oscillations was not confined to 

sensorimotor scalp regions. Beta activity was also localized to scalp regions not compatible with 

underlying motor areas (e.g., parietal and occipital, besides from frontal) and this is particularly evident 

for the ERSP mixing effect (see Figure 5D). Second, participants with greater high-alpha/low-beta (11-20 

Hz) suppression around the time of response selection/execution (≈600-1200 ms) had smaller switch 

costs, whereas there was no relationship between beta modulations and the behavioral mixing cost. It 

is, thereby, difficult to reconcile this pattern with the idea of beta as a mere correlate of motor 

functions, as responses were given in the same manner in all trial types. In light of these lines of 
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evidence, it is more plausible to conclude that in our task beta oscillations reflected the involvement of 

non-motor processes. This assertion finds support in recent studies showing that beta oscillations across 

non-motor areas are associated with a number of cognitive processes such as working memory, long-

term memory and decision making (see Spitzer & Haegens, 2017, for a review). More germane to the 

current work, our findings of similar alpha and beta modulations by switch costs (i.e., greater 

suppression for switch compared to repeat trials) confirm the results by Proskovec and colleagues 

(2019), who also found greater beta decreases for switch relative to repeat trials during an overlapping 

cue-target task-switching task. Extending this work with the comparison of repeat and all-repeat trials, a 

plausible explanation for the finding of a gradual beta suppression from switch to repeat, and from 

repeat to all-repeat trials, is that beta suppression in demanding reactive control tasks could be linked to 

interference control processes, as found in other cognitive control tasks, such as the Stroop task, where 

a stronger beta suppression has been reported for incongruent trials as compared to congruent ones 

(Tafuro, Ambrosini, Puccioni, & Vallesi, 2019).  

A final key result of this study concerned oscillatory activity in the theta frequency band. Unlike alpha 

and beta oscillations, which were modulated by switch and mixing costs in a quite similar gradual 

fashion, a more puzzling picture arose for the theta band. As concerns the switch cost, we found that a 

significant difference in mid fronto-central and right fronto-temporal theta started to emerge in a late 

time window (900-1800 ms), with increased theta power for switch relative to repeat trials. The 

topographical distribution of this theta effect was basically the same after the stringent control analysis 

applied to our data, which confirmed its fronto-central scalp distribution (see Figure 4B).  

Significant theta effects were also found in the mixing cost analysis, which revealed two clusters of theta 

modulation (see Supplementary Figure B). A first significant cluster, characterized by increased theta 

power over left fronto-central and bilateral occipito-temporal electrodes for all-repeat trials as 

compared to repeat trials, was observed during an early time window (200-400 ms). This early cluster 
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was followed by a later one (900-1200 ms), which showed increased theta for all-repeat relative to 

repeat trials over posterior electrodes. The interaction analysis further clarified this pattern of data by 

showing that, while during the early time window, theta increased for switch relative to repeat trials 

and, conversely, for all-repeat compared to repeat trials, in the late time window theta activity was 

greater for the switch effect as compared to the mixing effect. However, the involvement of theta 

activity in the mixing cost and the interaction between switch and mixing costs did not survive a more 

conservative control analysis threshold. Therefore, these findings will not be discussed further, as they 

probably represent some spurious or at least less robust results, which call for cautiousness with 

respect to a possible role of theta in the mixing cost.  

In contrast to the mixing cost, the increase in theta power during switch trials was a robust finding 

that strongly supports the importance of this frequency band in task-switching abilities. On a general 

level, our theta findings fit well with the recognized role of theta as the frequency band reflecting the 

“need for cognitive control” (Cavanagh & Frank, 2014). In support of this, increased theta power is 

usually observed in those conditions requiring greater cognitive control engagement such as the 

incongruent trials in the Stroop or the Flanker task (e.g., Ergen et al., 2014; Hanslmayr et al., 2008; 

Nigbur, Ivanova, & Stürmer, 2011). Our results bolster this view of theta, since the higher cognitive 

control required on switch trials was reflected in an increase of theta oscillations. On a more specific 

level, as briefly mentioned in the Introduction, mid-frontal oscillations in the theta frequency band have 

been proposed as a crucial neural signature of specific switch-related processes. In particular, it is 

assumed that theta oscillations would index the involvement of goal-directed and updating task-set 

reconfiguration processes. Of importance, a relationship between increased fronto-parietal theta 

(measured as phase connectivity across the scalp) and switch trials has been also established after 

target onset when task-set reconfiguration could not be completed beforehand during the preparatory 

period (Cooper et al., 2015). In this condition, task-set reconfiguration is thought to be postponed until 
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the presentation of the target, whose attributes and corresponding response mappings cannot be 

predicted in advance (e.g., Karayanidis et al., 2009). Joining this prior work, the enhancement of theta 

oscillations found in our study likely reflects the recruitment of poststimulus task-set reconfiguration 

processes, related to the implementation of reactive control in the most demanding switch trials. 

To conclude, taking all the above-mentioned results into account, the present study significantly 

extends previous research by depicting the brain oscillations involved in switch and mixing costs 

during reactive control processes. While alpha and beta frequencies are involved in switch and mixing 

costs, theta oscillations instead seems to play a major role in task-switching abilities.    
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Figure legends 

Figure 1. Trial structure. Schematic representation of events and responses in the task-switching 

blocks. “Sara” is the Italian version of the name “Sarah”, “mago” is the Italian word for “wizard”, and “luca” is the 

Italian version of the name “Luke”. Fix stands for fixed, ITI for inter-stimulus interval, Stim for stimulus. All the 

words, including the proper names (i.e., “sara” and “luca” in the figure), were presented in lowercase letters. 

When the task was spatial and the color of the word was written in red, participants had to classify the word (e.g., 

“sara”) according to roll rotation (counterclockwise in the figure) by pressing a specific left-sided (or right-sided) 

response key (counterbalanced across participants). When the color of the word changed from red to blue, 

participants had to switch to pitch rotation (e.g., upward for “mago” and downward for “luca” in the figure). On 

verbal blocks, participants had to decide whether words like “sara” were a female or a male name. For words 

written in blue, they instead had to decide whether words like “mago” and “luca” referred to either common or 

proper names. 

Figure 2. Behavioral results.  

The boxplots show the distributions of the participants’ log-transformed RTs (A) and arcsine-transformed accuracy 

(B) for the three trial types. The central line of the box represents the median, the edges of the box are the first 

and third quartiles, the whiskers represent 1.5 times the interquantile difference, and the red crosses represent 

outlier data points. 

Figure 3. ERSP results. 

The figure shows the ERSP data for the three trial types (switch, repeat, all-repeat, from top to bottom) over nine 

representative frontal (F3, Fz, F4), central (C3, Cz, C4) and parietal (P3, Pz, P4) electrodes. ERSPs are reported in the 

frequency range between 4 and 45 Hz with a 1-Hz resolution (y axis) during a time window ranging from -960 to 

2960 ms, where 0 marks stimulus onset, and with a temporal resolution of approximately 20 ms. ERSPs are 

expressed in decibel relative to the mean power in the baseline interval (-1000 -500 ms prestimulus) and are 

depicted using a color map where hot and cold colors represent, respectively, event-related increase and decrease 

in power (range: from -5 to 5 dB). 
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Figure 4. ERSP switch effect.  

The figure shows the results of the TFCE analysis for the clusters associated with significant switch effects for the 

frequencies in the theta (4-7 Hz, A-B), alpha (8-15 Hz, C-D), and beta (16-30 Hz, E-F) ranges. The plots in panels A, 

C, and E represent the time courses of the ERSPs in the three trial types (all-repeat, in green; repeat, in orange; 

switch, in red) for the frequencies composing each significant cluster (4-7 Hz, 8-15 Hz, and 16-30 Hz, respectively), 

averaged across the electrodes showing the largest switch effect, as indicated by the black circles in the topoplots 

on the right. The topoplots in panels B, D, and F represent the scalp distribution of the T values averaged across 

both the same frequencies indicated above and the time points within the time windows of statistical significance, 

which are indicated by the horizontal black lines drawn above the x axes in the corresponding plots on the left. 

Figure 5. ERSP mixing effect.  

The figure shows the results of the TFCE analysis for the clusters associated with significant mixing effects for the 

frequencies in the alpha (8-15 Hz, A-B), and beta (16-30 Hz, C-D) ranges. Conventions are as in Figure 4.   

Figure 6. ERSP switch by mixing effect interaction.  

The figure shows the results of the TFCE analysis for the clusters associated with significant interactions between 

switch and mixing effects for the frequencies in the alpha (8-15 Hz, A-B), and beta (16-30 Hz, C-D) ranges. 

Conventions are as in Figure 4. 

 

Figure 7. Brain-behavior correlation results.  

The figure shows the topoplots for the clusters associated with significant time-frequency ─ behavior (i.e., high 

theta-low alpha frequencies, 7-10 Hz, and high alpha-low beta frequencies, 11-20 Hz ─ RT switch cost) correlation 

effects in the TFCE analysis.  

 

 

 



  

 33 

Table 1. Descriptive statistics for behavioral results. 

 

 

 All-repeat  Repeat  Switch 

 

M SD M SD M SD 

       Reaction Times (ms) 715 97 945 131 1180 151 

Reaction Times (log) 2.84 0.06 2.96 0.06 3.07 0.06 

Accuracy (%) 95 4.8 93 3.7 87 6.8 

Accuracy (arcsine) 1.38 0.11 1.32 0.09 1.22 0.10 

 

 

Figure 1. 
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