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ABSTRACT    

Objectives: TYK2 is a common genetic risk factor for several autoimmune diseases. This 

gene encodes a protein kinase involved in interleukin 12 (IL-12) pathway, which is a well-

known player in the pathogenesis of systemic sclerosis (SSc). Therefore, we aimed to assess 

the possible role of this locus in SSc. 

Methods: This study comprised a total of 7,103 SSc patients and 12,220 healthy controls 

of European ancestry from Spain, USA, Germany, The Netherlands, Italy and the United 

Kingdom. Four TYK2 single-nucleotide polymorphisms (SNPs) (V362F [rs2304256], 

P1104A [rs34536443], I684S [rs12720356] and A928V [rs35018800]) were selected for 

follow-up, based on the results of an Immunochip screening phase of the locus. Association 

and dependence analyses were performed by the means of logistic regression and conditional 

logistic regression. Meta-analyses were performed using the inverse variance method. 

Results: Genome-wide significance level was reached for TYK2 V362F common variant in 

our pooled analysis (P = 3.08x10-13, OR = 0.83), while the association of P1104A, A928V and 

I684S rare and low-frequency missense variants remained significant with nominal signals (P = 

2.28x10-3, OR= 0.80; P = 1.27x10-3, OR= 0.59; P = 2.63x10-5, OR= 0.83, respectively). 

Interestingly, dependence and allelic combination analyses showed that the strong association 

observed for V362F with SSc, corresponded to a synthetic association dependent on the effect of 

the three previously mentioned TYK2 missense variants.  

Conclusions: We report for the first time the association of TYK2 with SSc and reinforce 

the relevance of the IL-12 pathway in SSc pathophysiology. 
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INTRODUCTION  

Systemic sclerosis (SSc) is an autoimmune disease that involves extensive fibrosis in 

the skin and different internal organs, abnormalities of the vascular system and immune 

imbalance with autoantibody production, particularly anticentromere autoantibodies (ACA) 

and antitopoisomerase autoantibodies (ATA). The aetiology of the disease is largely 

unknown, although both environmental and genetic factors are thought to be involved in the 

disease development.(1)  

Large genetic studies including genome wide association studies (GWASs) and 

Immunochip analysis have identified several immune-related loci underlying the 

susceptibility to SSc onset.(2-3)  Although great advances have been made over the past 

seven years, our knowledge of SSc genetic background is still limited and the numbers of 

convincingly SSc genetic markers only account for a small proportion of the total genetic 

variance for the disease.(4-5) Thus, further genetic studies will help to better understand the 

pathogenic processes implicated in SSc development.  

A recent fine-mapping genetic study of a common autoimmunity locus, TYK2-ICAM, 

in rheumatoid arthritis (RA) identified three TYK2 protein-coding variants as the most 

likely causal variants responsible for the signal of association in the region. The authors 

also extended the results into other autoimmune phenotypes, such as systemic lupus 

erythematosus (SLE) and observed that the three variants are missense mutations predicted 

to be damaging using functional prediction tools.(6)  

TYK2 encodes a tyrosine kinase member of the JAK-STAT family and mediates 

signaling of different IL-12 family cytokines, such us IL-12 and IL-23. Several 

polymorphisms in this locus have been associated with other autoimmune diseases, such as 

psoriasis, multiple sclerosis, Crohn’s disease and ulcerative colitis.(7)   



Interestingly, SSc Immunochip study (3) found suggestive, but not significant, 

evidence of association in TYK2 region (P-values ranging from 5x10-4 to 5x10-2). Moreover 

different functional and genetic studies highlighted the special relevance of IL-12/STAT4 

pathway in the disease pathophysiology.(3-4, 8-9) Thus, we performed a follow-up study to 

further investigate whether variations within this genomic region, including the three 

variants responsible for the association in RA and other autoimmune phenotypes, are also 

involved in SSc susceptibility. 

  



METHODS 

Study population 

This study comprised a total of 7,103 SSc patients and 12,220 healthy controls of  

European ancestry. The 2,118 SSc patients and 4,742 healthy controls from Spain and USA 

enrolled in the SSc Immunochip screening phase were obtained from the previously 

published SSc Immunochip study (3) and additional Immunochip data for Spanish SSc 

patients and controls.  The validation cohort included 4,985 SSc cases and 7,478 controls 

from independent case-control sets of European ancestry (Germany, The Netherlands, Italy, 

United Kingdom and USA).  

SSc patients fulfilled the 1980 American College of Rheumatology classification 

criteria for this disease or the criteria proposed by LeRoy and Medsger for early-SSc.(10-

11) In addition, patients were classified as having limited cutaneous SSc (lcSSc) or diffuse 

cutaneous SSc (dcSSc) as described in LeRoy et al.(12) Patients were also subdivided by 

autoantibody status according to the presence of ACA or ATA.  

 Approval from the local ethical committees and written informed consent from all 

participants were obtained in accordance with the tenets of the Declaration of Helsinki.    

Study design 

SSc Immunochip screening phase. An initial evaluation of TYK2 region was performed in 

the SSc Immunochip screening phase. We included 30 kpb spanning the complete TYK2 

gene and 10 kpb upstream and downstream from this locus, from base pair 10,450,993 to 

10,504,616 in chromosome 19. The analyzed genetic region comprised the linkage 

disequilibrium (LD) block that completely covers TYK2 (Figure 1). QC filters and principal 

component analysis were applied as described in (3).  We performed single-nucleotide 



polymorphism (SNP) genotype imputation of the TYK2 region as implemented in 

IMPUTE2 with the use of the 1000 Genomes Phase 1 reference panel. (22,23). After 

imputation, genotyping data for 154 SNPs were available.  

Follow-up phase. Four TYK2 missense mutations were selected for validation in 

independent replication cohorts: one common coding variant (V362F [rs2304256]), two 

low-frequency coding variants (P1104A [rs34536443], I684S [rs12720356]) and one rare 

coding variant (A928V [rs35018800]). Finally, we performed meta-analysis for the selected 

SNPs combining the cohorts from both stages.  

Genotyping methods 

The genotyping of the SSc cases included in the validation cohorts was performed with 

both TaqMan SNP genotyping technology and Immunochip platform.  For TaqMan 

genotyping system, we used TaqMan 5’ allele discrimination predesigned assays from 

Applied Biosystems in a LightCycler® 480 Real-Time PCR System (Roche Applied 

Science, Mannheim, Germany). Genotyping call rate was > 95% for all the SNPs. The 

Immunochip genotyping was performed on the Illumina iScan system, as per Illumina 

protocols, in the Centre for Genomics and Oncological Research (GENYO, Granada, 

Spain). Control genotyping data partially overlapped with those from previous Immunochip 

reports.(13-21)  If any of the 4 selected SNPs was missing in a data set, imputation was 

applied. Genotype imputation was performed with IMPUTE2 using the 1000 Genomes 

Phase 1 reference panel.(22-23) The correspondence between Immunochip (including 

imputed data) and TaqMan genotyping data was > 98% for all the SNPs. 

Data analysis  



Associations of the SNPs with SSc were evaluated by logistic regression analysis in all 

the cohorts separately. Meta-analysis was performed with inverse-variance weighting under 

a fixed-effects model as implemented in PLINK V.1.07 software.(24) The combined 

analysis including the two phases of the study was also performed using the inverse 

variance method based on population specific logistic regression analyses.  P-values less 

than 0.05 were considered statistically significant in the association analyses. Heterogeneity 

between the data sets was assessed using Cochran’s Q test.  Q values < 0.05 were 

considered statistically significant. Hardy-Weinberg equilibrium (HWE) was tested for all 

the validation cohorts (HWE P-values < 0.01 were considered to show significant deviation 

from the equilibrium). None of the included control cohorts showed significant deviation 

from HWE for all the genotyped SNPs. 

To test the independence of association between each SNP we performed conditional 

logistic regression analyses as implemented in PLINK. To analyze the possible effect of 

A928V [rs35018800] in conditioning analysis, a generalized null linear model including 

population origin and two variants (P1104A [rs34536443] and I684S [rs12720356]) as 

covariates was compared against an alternative model including the same variables and 

A928V [rs35018800] variant by the means of a likelihood ratio test in R. We also assessed 

the different allelic combinations using PLINK.  Allelic combinations with a frequency 

<0.5% were excluded from the analysis.  

Regional association plot for TYK2 region was performed using LocusZoom V1.1 

software (http://csg.sph.umich.edu/locuszoom/).(25) The HapMap Project Phase I, II and 

III (CEU populations) was used to define the LD pattern across TYK2 region and 

Haploview V4.2 software (http://www.broadinstitute.org/haploview/haploview) was used 

to perform the LD plot. The statistical power of the combined analysis is shown in Supp. 

http://csg.sph.umich.edu/locuszoom/
http://www.broadinstitute.org/haploview/haploview


Table 1 and was calculated according to Power Calculator for Genetic Studies 2006 

software under an additive model.(26)  



 RESULTS  

SSc Immunochip initial screening 

The initial screening of TYK2 region performed in the SSc Immunochip study showed 

several tier two association signals at this locus (Figure 1). A common protein-coding 

missense variant previously associated with SLE showed the strongest association with the 

disease (V362F [rs2304256] P-value = 2.39x10-4, OR = 0.85). (27-29) This variant and the 

three TYK2 protein-coding variants responsible for the association with RA and SLE 

according to Diogo et al. were selected for follow-up in independent validation cohorts to 

confirm the suggestive evidence of association found in this locus with SSc.(6) 

Follow-up phase and meta-analysis 

Pooled analysis including the five validation cohorts revealed significant associations 

for the 4 TYK2 SNPs with SSc at P < 0.05 (Supp. Table 2). The meta-analysis combining 

both steps showed that TYK2 V362F (rs2304256) variant achieved the genome-wide significance 

level (P = 3.08x10-13, OR = 0.83), while P1104A (rs34536443), A928V (rs35018800) and I684S 

(rs12720356) remained with significant nominal P-values (P = 2.28x10-3, OR= 0.80; P = 

1.27x10-3, OR= 0.59; P = 2.63x10-5, OR= 0.83, respectively) (Table 1). No significant 

heterogeneity in the ORs among the seven cohorts was observed. The analyses carried out 

for the main SSc clinical features revealed that the observed association signal rely on the 

whole disease (data not shown).  

Dependence analyses 

We then assessed the independence of associations by conditional logistic regression 

analyses. Although pairwise conditioning results were not conclusive (Table 2), the V362F 

genome-wide significance association was lost when adding the allelic dosage for 



rs3453644, rs35018800 and rs12720356 as covariates (Pcond = 0.270) (Table 3), supporting 

that the TYK2 V362F association was dependent on the 3 missense rare and low-frequency 

variants. Although A928V (rs35018800) seemed not to exert an effect on V362F 

(rs2304256) association, model fitting test showed that the regression model including this 

rare variant as covariate had a significantly better likelihood than the model excluding it (P 

= 1.15x10-4). Allelic combination tests also confirmed that the V362F association was 

driven by the presence of the minor alleles of P1104A, A928V and I684S TYK2 variants, 

since no genome-wide significant P-value was observed for the allelic model carrying only 

the minor allele of V362F (Supp. Table 3). 

  



DISCUSSION  

The overall analysis of our study reported genome-wide significance level of 

association for TYK2 with SSc, providing robust evidence for the implication of this new 

locus in SSc development. 

The meta-analysis showed strong association for V362F common variant, whereas the 

rare and low-frequency variants - P1104A, A928V and I684S - remained with significant 

nominal association signals. Although our study was underpowered to detect associations at 

the genome-wide level of significance for these three missense variants, dependence 

analyses clearly supported that V362F association was a spurious signal driven by P1104A, 

A928V and I684S. This effect is probably due to the high D’ values between V362F and 

the three rare and low-frequency variants.  

Our findings are in accordance with the results reported by Diogo et al,(6) which 

narrowed down TYK2 association to the three missense variants - P1104A, A928V and I684S - 

in RA and other autoimmune diseases through a fine-mapping strategy. The results are also 

consistent with the predictions of Polyphen-2 and SIFT tools, since common TYK2 missense 

variant V362F was predicted to be benign while P1104A, A928V, and I684S were damaging 

mutations.(30-31) In addition, the functional effect of P1104A and I684S variants (located in the 

kinase domains of the protein) has also been addressed by in vitro studies in primary T cells, B cells 

and fibroblasts. These studies showed that P1104A and I684S are catalytically impaired, leading to 

a reduced TYK2 activity and decreasing pro-inflammatory cytokines signaling, such as IL-6 or IL-

12.(32-33)  Nevertheless, since the three TYK2 rare and low-frequency variants included in the 

present study were selected according to the detailed fine-mapping study performed by Diogo et al. 

in a large RA study cohort, the genetic effect of additional independent rare and low-frequency 

TYK2 variants cannot be ruled out in SSc susceptibility.       



Interestingly, several IL-12 pathway-related genes have been reported to be associated with 

SSc: IL12RB1 and IL12RB2 (both interleukin 12-receptor chains), IL12A (p35 subunit of IL-12), 

and STAT4 (the transcription factor of the IL-12 signaling axis).(3-4, 8-9) Thus, the association of 

TYK2 with SSc reported in the present study adds another piece of evidence showing the crucial 

role of this interleukin pathway in SSc pathogenesis.   

IL-12 is a pro-inflammatory cytokine that induces type 1 helper T cells (Th1) and, in 

combination with IFN-γ, antagonizes type 2 helper T cells (Th2) differentiation.(34) Serum 

levels of IL-12 are significantly increased in SSc patients, and this overproduction has been 

associated with renal vascular damage.(35) In addition, functional studies have suggested 

that Th1 responses may be crucial in mediating early inflammatory processes in SSc. As 

stated above, P1104A, A928V and I684S missense variants are damaging TYK2 mutations that 

ultimately lead to an impaired IL-12 signaling. This effect would be consistent with the 

protective effect observed for these variants and a lower SSc susceptibility. Thus, target 

therapies blocking this pathway could be an effective treatment for the disease, such as 

ustekinumab, an anti-IL-12/23 p40 monoclonal antibody currently approved for the 

treatment of psoriatic arthritis.(36-38)   

Remarkably pharmaceutical companies are setting their sight on JAK family as 

therapeutic targets for the treatment of autoimmune diseases, such as RA and type I 

diabetes, given its central role in the signaling pathways of a wide range of cytokines. Drug 

discovery research is focused on the development of specific JAK proteins inhibitors, such 

as the recently approved JAK3 inhibitor, tofacitinib, for the treatment of RA.(39) TYK2 

inhibitors have also been described, although none of these drugs have yet made it to the 

clinical trials.(40)  



In summary, the present study identified TYK2 as a novel susceptibility factor for SSc. 

Our results, together with previous findings, reinforce the crucial involvement of IL-12 

signaling axis in the disease development, thus this pathway might represent an attractive 

therapeutic target for the treatment of SSc.



TABLES   

Table 1. Inverse variance meta-analysis of four TYK2 SNPs in seven different cohorts of SSc patients and healthy controls 

(7,103 SSc patients and 12,220 controls). 

            Inverse variance test 

Chr SNP Minor/Major Comment 

MAF 

Cases 

MAF 

Controls P-value OR [CI 95%]* Q 

19 rs34536443 

(P1104A) 

C/G missense 

Pro > Ala 

0.023 0.026 2.28E-03 0.80 [0.69-0.92] 0.13 

19 rs35018800 

(A928V) 

A/G missense 

Ala > Val 

0.004 0.008 1.27E-03 0.59 [0.42-0.81] 0.34 

19 rs12720356 

(I684S) 

C/A missense 

Ile > Ser 

0.067 0.078 2.63E-05 0.83 [0.78-0.91] 0.27 

19 rs2304256 

(V362F) 

A/C missense 

Val > Phe 

0.246 0.279 3.08E-13 0.83 [0.79-0.87] 0.69 

*Odds ratio for the minor allele.  

Chr, chromosome; CI, confidence interval; MAF, minor allele frequency; OR, odds ratio; Q heterogeneity value; SNP, single nucleotide 

polymorphism; SSc, systemic sclerosis. 

  



Table 2.  Dependence analysis by pairwise conditioning of four TYK2 SNPs in the overall combined cohort (7,103 SSc patients 

and 12,220 controls). 

 

SNP 

MAF 

Cases/Controls 

Unconditioned 

P-value OR 

*P-value: 

add to 

rs2304256 

OR1 add to 

rs2304256 

*P-value: 

add to 

rs34536443 

OR1 add to 

34536443 

*P-value: 

add to 

rs35018800 

OR1 add to 

rs35018800 

*P-value: 

add to 

rs12720356 

OR1 add to 

rs12720356 

rs34536443 0.023/0.026 2.28E-03 0.80 0.02 0.84 NA NA 1.51E-03 0.79 1.04E-03 0.78 

rs35018800 0.004/0.008 1.27E-03 0.59 9.56E-03 0.65 1.11E-03 0.57 NA NA 1.20E-03 0.59 

rs12720356 0.067/0.078 2.63E-05 0.83 0.176 0.94 5.09E-06 0.82 2.22E-05 0.83 NA NA 

rs2304256 0.246/0.279 3.08E-13 0.83 NA NA 1.37E-05 0.89 4.75E-12 0.84 1.63E-07 0.86 
* Single locus test P-value when SNP conditioned on rs2304256/ rs34536443/ rs35018800/ rs12720356. 

1. Single locus test OR when SNP conditioned on rs2304256/ rs34536443/ rs35018800/ rs12720356. 

MAF, minor allele frequency; NA, not applicable ; OR, odds ratio; SNP, single nucleotide polymorphism. 

  



Table 3.  Conditional logistic regression analysis of four TYK2 SNPs in the overall combined cohort (7,103 SSc patients and 

12,220 controls). 

   

Conditioned to 

rs2304256, rs35018800, 

rs12720356 

Conditioned to 

rs2304256, 

rs12720356, 

rs34536443 

Conditioned to 

rs2304256, 

rs35018800, 

rs34536443  

Conditioned to 

rs34536443, 

rs12720356 

Conditioned to rs35018800, 

rs12720356, rs34536443 

SNP 

Unconditioned 

P-value OR 
P-value OR  P-value OR  P-value OR  P-value OR P-value OR 

rs34536443 2.28E-03 0.80 6.94E-04 0.76 NA NA NA NA NA NA NA NA 

rs35018800 1.27E-03 0.59 NA NA 8.60E-04 0.56 NA NA 9.39E-04 0.57 NA NA 

rs12720356 2.63E-05 0.83 NA NA NA NA 4.70E-04 0.84 NA NA NA NA 

rs2304256 3.08E-13 0.83 NA NA NA NA NA NA 0.091 0.94 0.270 0.97 

NA, not applicable ; OR, odds ratio; SNP, single nucleotide polymorphism. 
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FIGURE 

Figure 1. Association result plot for TYK2 region in the Immunochip screening phase. The P 

values for association (−log10 values) of each single-nucleotide polymorphism (SNP) are plotted 

against their physical position on chromosome 19. The lower panel show the linkage disequilibrium 

(LD) pattern at the TYK2 locus (r2 values are indicated by colour gradient).   
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