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Filling holes using a mesh of filled curves
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Abstract

The objective of this work is to fill graphics of surfaces with holes-meeting shape
conditions, i. e., we want to determine values of a surface inside a hole -where it is
not defined- by means of its values outside the hole -where it is properly defined-
in such a way that the final reconstructed surface be fair and smooth enough. The
procedure considered to get this aim is based on a one-dimensional hole-filling
problem, leading to a kind of “wireframe” surface. We develop the theoretical
aspects of the problem and we show some graphical examples to illustrate the
proposed method.
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1. Introduction

The problem of interpolating incomplete meshes (hole-filling) and reconstruct-
ing surfaces from point clouds derived from 3D range scanners arises in computer
graphics and Computer Aided Design (CAD), with applications in e.g. earth
sciences, computer vision in robotics and image reconstruction.

There are quite a lot of practical applications where it is indispensable to
reconstruct and to fill missed data on a hidden surface or volume from scattered
data points. Among these practical applications we can for example highlight, by
its economic importance: the oil and gas reservoir detection, the estimated sizing
of fish banks and other marine reserves, the situation and layering of tectonic
faults or some specific material strata (with high-Z values, like lead, tungsten
or gold), the micro-gravimetric prospection for caves and holes detection, the
isolation of nuclear combustible and other radioactive wastes, etc. We can also
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mention the usual radio-frequency seismic and acoustic or electro-magnetic waves,
or even some modern techniques using special lasers or even muons, or other
cosmic rays, used in some environmental and archaeological tomographies. The
most fundamental cause of holes is occlusion - recesses too deep to be observed
using a particular triangulation angle.

In the existing literature, several works have paid attention to the “recon-
struction” of data (hole-filling), developing methods based on the introduction
of different measures and techniques to optimize -commonly minimize- them.
Among these works, we can distinguish between reconstruction algorithms that
work on connected meshes of range samples and algorithms that operate on clouds
of unorganized 3D points. We can highlight the following ones: In [I], the au-
thors use polyharmonic Radial Basis Functions (RBF’s) to reconstruct smooth
surfaces from point clouds data and to repair incomplete meshes. In [2], the basic
principle is to choose the completing surface as the one minimizing a power of
the mean curvature. The surface is represented in implicit form and an energy
functional for the embedding function is constructed. In [3], the author obtains
curves that can be modeled as the solutions of a system of boundary value prob-
lems of Ordinary Differential Equations (ODE’s). The advantages of the ODE
approaches are the optimal blending curves obtained, with minimum energy and
flexibility, to complicated blending problems. Another method for reconstruct-
ing a polygonal hole based on the minimization of an energy functional, with
applications to resolution of elliptic problems, is developed in [4].

On the other hand, several researchers have already tested some ideas regard-
ing the problem of constructing smooth fillings for holes, which is known as the
n—sided hole problem, from different points of view. Among others, in [5] the
author handles the problem of filling polygonal holes with rectangular patches
meeting at a common vertex and joining them with geometric continuity. A sim-
ilar approach has been taken in [6], where the authors use C! cubic triangular
spline patches for the same proposal. In [7] the authors describe a method that
generates a surface into which a n-sided patch (the hole) is inserted. Such a
surface is required to be bicubic and of locally uniform parametrization, with C?
continuity, rather than a B-spline surface. So, it is only needed to specify the
n-sided hole to be filled and the localization of some points. In [§] we find a
different way of handling this problem: the author builds free-form surfaces with
the help of and CAD program and Bernstein patches in three steps. Finally,
we want to point out that several manuals ([9), 10, 11]) can be consulted for a
thorough treatment of different techniques for the design of surfaces.

The procedure considered in this paper presents a surface reconstruction and
hole-filling scheme, based on a beam of parallel and/or orthogonal curves (here-
after called wireframes), where previously some specific one-dimensional curve
reconstructions have been accomplished inside the hole that we want to fill. Un-
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der this perspective, we face the problem of filling a surface by mixing the models
presented in [3] and [4] in an efficient way. Instead of addressing the problem as a
whole, which yields to a very complicated computational frame, we generate the
reconstructed filled surface through one-dimensional filling curves subsequently
used to generate the global filling smooth surface. It should be clarify that the
method we propose in this paper is developed just for explicit surfaces (i. e., the
graphics of functions f : D — R defined on a domain D C R?). A generalization
of the method with the aim to fill more fgeneral surfaces could be developed
following a frame similar to the one considered in [12].

We propose a four-stage procedure to solve the above-mentioned problem.
These stages have great flexibility, which allows us to modify certain parameters
appearing in the process in order to model some characteristics of the constructed
surface.

The first step consists in determining a set of segments on the surface domain
such that all of them cross the hole. Secondly, we consider the one-dimensional
curves contained in the original surface graphic whose projections onto the do-
main plane are the segments fixed in the previous step. In the next step, we fill
such univariate functions by using different criteria. These criteria are established
taking into account that the curves have certain characteristics that come from
the surface where they are embedded. Certainly, many different one dimensional
reconstruction procedures (using polynomials of different degrees and satisfying
different conditions) could be applied, and all of them would produce different
—more or less appropriate— ways of filling the hole in the reconstructed surface.
In each particular example, this issue is another important subject that can be
explored, i. e., depending on the concrete shape of the surface given outside the
hole or even on the shape we may want the reconstructed surface inside the hole
to have, we could think considering different 1D-filling schemes. In order to pre-
pare the examples considered in the final section of the paper, we have explored
several of them, but we only present two -the quintic one, which reveals to be the
better for the test functions considered, and a mixed fitting-interpolation filling
criteria-. Finally, we construct a bidimensional function approximating all the
univariate filled functions previously obtained. The chosen technique in this final
step is based on the minimization of an energy functional where several parame-
ters, which can be modified attending to the geometric conditions to be fulfilled,
are involved.

It is important to note that the different steps of filling the univariate curves
to later obtain the filling surface from such filled curves enjoy a measure of in-
dependence. Namely, we have the freedom to decide which the 1D-filling criteria
may be to later, independently, obtain the filling surface fitting such filled curves.

The outline of the paper is as follows. In Section 2 we present a brief re-
view of the needed background. Section 3 is devoted to the formulation of the
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problem and the statement and proof of the main theoretical results. Finally, we
present several graphical and numerical examples to show the performance of the
proposed method in the last section.

2. Preliminaries

2.1. Functional spaces

Let D C R? be a polygonal domain (an open, non-empty connected set) in
such a way that D admits a Al-type triangulation (Figure , defined as the ones
induced by integer translates of x = 0,y = 0 and z +y = 0 (see e.g. [13]).

Figure 1: Example of A'-type triangulation.

Let us consider the Sobolev space H?(D), whose elements are (classes of)
functions u defined on D such that their partial derivatives (in the distribution
sense) 0%u belong to L%*(D), with 3 := (81, 82) € N? and |B] := S + B2 < 2. For
any open subset X C D we consider the usual inner semi-products

(U, V), x = Z / OPu(x)dPv(x)de, m=0,1,2;
|Bl=m X
the semi-norms

1/2
U], x = (u,u):fx = Z / OPu(x)dx , m=0,1,2;
|Bl=m X

and the norm

9 1/2
Jullx = (Z u|3n,X> =
m=0

We will denote < - >, the usual Euclidean norm and < -, - >, the Euclidean
inner product in R".

1/2

Z /X Pu(x)?da

18]<2
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Figure 2: Powell-Sabin sub-triangulation.

Figure 3: Powell-Sabin finite element data.

2.2. Powell-Sabin triangulation

Given a Al-triangulation of D, we will consider the associated Powell-Sabin
triangulation 7g of T (see e.g. [14]), which can be obtained by joining an appro-
priate interior point Q7 of each T' € T to the vertices of T and to the interior
points Q7 of the neighbouring triangles 7" € T of T. When T has a side lying
on the boundary of D, the point ()7 is joined to the mid-point of this side, to the
vertices of T' and to the interior points Q7 of the neighbouring triangles 7" € T
of T'. Hence, the six micro-triangles inside any T" € 7 have the point Q7 as a
common vertex. There are several ways to consider appropriate points Qp ([15]),
nevertheless, a good choice ([16]) is considering Q7 to be the incenter of T', for
all T € T (Figure [2)).

Let Z7 denotes the set of all vertices of T .

Remark 1. [t is well known ([15]) that given the values of a function f (defined
on D) and the ones of all its first partial derivatives at all the points of Zr (see
Figure @), there exists a unique S in the spline space

S3(D,Tg) = {S eC'(D): S|r € Po(T") VI' € Ts},

where Py stands for the space of bivariate polynomials of total degree at most two,
such that the values of S and the ones of all its first partial derivatives coincide
with those of f at all the points of Z7.

Finally, let us recall that the diameter of a Al-type triangulation 7 of D is
defined as
diam(T) = max |z — y|| for any T € T.
z,yeT

5



2.3. Data approximation problem

Given a finite set of points P = {p1,...,p;} in D and a vector Z = (21,...,24) €
RY, we are interested in finding a C'-quadratic surface in S3(D, Ts) that approx-
imates the points {(p;, 2;)}%_; C R and minimizes the functional energy defined
on 83(D, Ts) by

J(v) =< p(v) = Z >7 +nlvfi p + i3 p,
where p is the evaluation operator

p: SHD,Ts) — R4

0 e ) = @), v(py), M)

71 > 0and 5 > 0.
Observe that the first term of J measures how well v approximates the values
Z over the set of points P (in the least squares sense), while the second and the
125 third ones represent the minimal energy condition. These last two terms are
included in the functional J in order to dispose of a certain fairness control:
recall that the semi-norms |- |; and |- |2 can be seen as a simplified measure of the
surface area and of the bending energy, respectively. The smoothing parameters
71 and o weight the importance given to each of the two semi-norms. The optimal
130 values of these parameters are discussed in [17].
Hence, given a Al-triangulation 7 of D and its associated Powell-Sabin tri-
angulation Tg, the problem we consider is:

Problem 1. We look for an element
o€ 83(D,Ts)

such that
J(o) < TW) forall veSi(D,Ts).

In Proposition 1 of [18] it is shown that Problem[]has a unique solution which
is also the unique solution of the following variational problem:

Problem 2. Find o € S3(D,Tg) such that
< p(U), P(U) >q +Tl(07 U)I,D + 7—2(05 U)Q,D =< Z? p(’U) >q (2)

135 holds for allv € S3(D,Tg).
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Let N be the dimension of Si(D,7s) -by the existence and uniqueness prop-
erty stated in Remark (1, we know that N = 3#(Z7)- and let {wi,...,wy} be
any basis of the space Si(D,Tg). After some algebraic calculations, it can be
checked (see the details in [I8]) that the solution of the variational problem

1S
N
g = E oWy,
=1

where the coefficients o = (o, ..., an) can be obtained as the unique solution
of the linear system
Aa = b,

where

9 N
A= (< p(wi), p(wj) >q + Z T (W5, wj)m,D> and
m=1 i,j=1

b= (< Z,pw) )

i=1"

3. Formulation of the problem and main results

In this section, firstly we shall give some notations that we need for the
statement of the problem of filling the original surface. Then, we split the problem
into two steps by constructing in each of them a surface by minimizing a certain
variational problem. The existence and uniqueness are proved in both stages.
The last part of the section is devoted to the computation of the coefficients
needed to construct the surface obtained in the second step.

Next we introduce some notation that will be used throughout the work:

> Let H (the hole) be a connected and nonempty subset of D (Figure |4} left)
such that Fr(D) N Fr(H) = @, where Fr(X) stands for the boundary of
the set X. If H were not connected, the techniques given in this work to fill

one connected hole would be applied to each of the connected components
of H.

> Let 7 be a Al-type triangulation of D with associated Powell-Sabin trian-
gulation 7g.

> Let Ty ={T € T:TNH # o} and H* = Upcr, T. It is clear that H* is a
polygonal domain surrounding H (Figure [4] middle). We need to consider
the Al-type triangulation 7 fine enough to have Fr(D) N Fr(H*) = @.

> Let V5 = {t1,...,ts} be the set of all the vertices of T laying on the
boundary of H* (Figure |4} right).
7



> Let
Top-u-={Te€T:TCD-H"}
and

(TD—H*)G = {T c 7-6:TC D—H*}.

o o
It is clear that Tp_p+ is a Al-type triangulation of D— H* with associated
Powell-Sabin subtriangulation (7p_ g+ ).

> Analogously, let

and
(Tu+)e ={T €Ts:T C H*}.

It is clear that Tz« is a Al-type triangulation of H* with associated Powell-
Sabin subtriangulation (7g+)e.

160 > Let f: D — H — R be a function.

Figure 4: Hole H and surrounding H™.

In addition, let us consider the functional vector spaces:
> Wp_p+ = {vlp_p- :v € SH(D,Ts)}
> Wy = {v|g-:v e SHD,Ts)} .
It can be easily shown that
Wp_ = =85 (D — H*, (Tp—r+)6)

and

Wi = S (H*, (Ta+)s) -

8
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We will denote By« the usual Hermite basis of Wy« associated with the knots
of T belonging to H*.

In order to ‘fill’ the hole in the graphic of f over H, and taking into account
that we are interested in working with spline functions defined over triangulations,
in what follows we will extend the hole H to H*, i. e., we will consider the hole
to be the surrounding H* instead of H. Clearly, H* tends to H as diam(7T) — 0.

The problem that we pose is:

Problem 3. We want to ‘fill’ the hole in the graphic of f over H*, that is, we
want to define a global reconstructed function

f:D — R
Sf if xeD—-H*
v {asf if xeH

i such a way that:
i) f: sy be as close as possible to f in D — H*;

i) f: o5, fills the hole of f over H* with a method based on one-dimension
filling in such a way that o5, be a kind of wireframe surface and the global

reconstructed function ]? be of class C".

To get this aim, we will proceed in two steps:

e Step 1: Construction of s;.

In order to define sf, let P = {p;}_, be a subset of points in D— H*.
Then, there exists ([I8], Proposition 1) a unique sy € Wp_py+ minimizing
the functional

T WD—H* — R (3)

defined by
Ji(v) =< p(v — f) >3 +)‘1‘U‘%,D—H* + )‘2‘0‘%,D—H*a

where A1 > 0, A2 > 0 and p is the evaluation operator defined in .

Observe that functions in Wp_p« are splines globally C! defined as the
union of second order polynomial patches over each triangle of the trian-
gulation 7, so that they are globally H2. As shown in Subsection 2.3, the
unique sy can be expressed as

¢
sf= Zﬁz‘%
=1
9
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where {71,...,7¢} is a basis of Wp_pg+ and 3 = (ﬁi)le is the solution of
the linear system AQB = b, where

9 ¢
A= << p(1), p(35) >4 + ) Am(%m)m,pm>

m=1 4,j=1

and
b= (< p(f), p(7) >q)5_; -

Remark 2. The quality of the fitting sy (i. e., the degree of closeness of

[¢]
sy to the original f over D— H*) depends on several aspects among which
we find the cardinal and the density of the points in set P. A wvery precise
and technical result on this topic can be found in Theorem 5 of [18]. In the
examples considered in the final section, P consists of 2500 random points

_ o
in D— H*. Empirical results show that such an amount of points lead to
good-quality fitting surfaces.

Step 2: Construction of os,.

Now, we obtain the filling function o5,. In order to do that, first we consider

in the domain H* a net of curves in two parametric directions. Then, we
map all these planar curves into the space by means of a smooth function
and by taking a set of points of the resulting family we finally construct

Tsp-

Let a = min{z : (z,y) € D} and b = max{z : (z,y) € D} and let us
consider a partition

{fa=2g<21 < <2y, =b} (4)

of [a,b]. Analogously, let ¢ = min{y : (z,y) € D} and d = max{y : (z,y) €
D} and let us consider a partition

{e=yo<y < <ym=d} (5)

of [c,d].

Let us consider the set P, = {X, Zil of all connected components with
non-empty interior of the set

(O{(wl,y) € D}) NH*.

10
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Let ¢p,d,, with ¢ < ¢, < d, < d and for p = 1,...,n,, be such that
Xp= {($l(p)7y) HEVIS [vadp]} with Z(p) € {17 cee, = 1}

Analogously, let us consider the set P, = {Yq}g’il of all connected compo-
nents with non-empty interior of the set

m—1

U () € D} | nH,
j=1

and let ag, by, with a < a4y < by < b and for ¢ = 1,...,n,, be such that
Yq = {(zayj(q)) SRS [a(bbq]} with ](Q) € {17 cee, MM = 1}

Fori=1,...,n—landforj=1,...,m—1,let f;, and f,; be the univariate
functions

fxz(y) = f(ﬂfz,y) for (:pl,y) €D— H*

and

fy; () = f(x,y;) for (z,y;) € D— H".
Forp=1,...,n, and for ¢ =1,...,ny, let
fp:Xp—R and g;:Y, —R
be the univariate functions filling the hole of fz,  and gy, =~ over X; and

over Yy, respectively.

In the examples shown in this paper, we use two different method to fill
univariate functions using low degree interpolation polynomials.

In order to obtain the filling function o5, of Step 2, we will consider an
appropriate subset W C W+, chosen in such a way that the global filling
function f be of class C!, and an appropriate functional J» defined in W
to be minimized:

Let us consider the map

e(v) = (i(v)i2;,  forve Wpy-,

where
SOZ(U) — U(tz)
ov
©sti(v) ai(t’) fori=1,...,s
ov

P2s+i(V) = @(ti)
Then, the functional spline space considered is

W ={veWng-:p)=qp(s)}
11
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That is, we will consider the functions of Wy« such that their values and
the ones of their first partial derivatives coincide in the knots of V7 with
those of the function sy defined in Step 1. In such a way, f will be of class

ch.
On the other hand, the functional J5 considered will be
jQ W — R (6)

defined by

ny Nz
Jo(v) = Z/ (v— 93)2 dm—i—Z/ (v— f;)2 dy+11 ‘U’iH*-f—TQ ]v|§7H* =
q=1 Y, p=1 Xp

Ny by . ) Na dp . )
Z/ (v (2, yj(q) — 94()) dﬂ“rZ/ (v (ziy y) = £y ()" dy+
q=1 Aq p=1 Cp

+ T1 |U‘%,H* + T2 |,U|§,H* ;

where 7, > 0,70 >0

Theorem 4. There exists a unique o5, € W minimizing the functional J2
which is also the solution of the following variational problem:

Find Os; € W such that
2

Ny bq Ng dp
Z/ Osy 'U(m’yj(Q)) d$+2/ Osy 'v(xi(p%y) dy + ZTm(USfa'U)mH*
p=17¢

g=1"9 m=1

"y bg M dp
= Z/ gé(m)'v(ﬂc,yj(q))dWrZ/ fo @) v (i) y) dy

q:l Qaq p:l

for allv e W° = {v € Wy~ : o(v) = 0}.

(7)

PROOF. Let {ki, ko, k3} be a P1-unisolvent subset of V7. It is then easy to
check that the map [[-]]g+ : W+ — R defined by

3 1/2
[l = (Z v(ki)* + Ta\ﬂ%,w)

i=1

defines a semi-norm on Wy«. Besides, if [[v]] g+ = 0, then v is a polynomial
of total degree at most one vanishing at three non colinear points, and thus

v = 0. Then, [[v]]g- defines a norm on the finite dimensional space Wi+
12
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1/2
equivalent to the usual norm |v| g+ = (Z\BIQ s 8ﬁv(m)2da:) and, as
a consequence, the map a : Wi« x Wy« — R defined by

a(u,v) =
"y by e dp
2 > ulki)o(k:) +Z/ v (x,yj(q))derZ/ w-v (i), y) dy
i=1 q=1"1% p=17

2
+ Z Tm (1, v)j,H*>

m=1

is a bilinear, continuous, symmetric and Wp«-elliptic form. On the other
hand, the map ¢ : W+ — R defined by

Ny bq Ny dp
Y(v) =2 Z/ 9o (@) - v (2, y59) dx + Z o) v (2, v) dy
q=1 Aq p=1 Cp

is a linear and continuous form. Hence, by applying the Stampacchia Theo-
rem we find that there exists a unique os; €W such that a(crsf,w — asf) >
Y(w — oy,) for all w € W. Hence, a(os,,v) > 9(v) for all v € WO. But
since —v € WY, then a(os,,v) = 1(v) for all v € WP, from which we obtain

(7.

Moreover, o5, is the minimum in W of the functional

. 3 ny b, Na  nd,
ga(e0) (o) = 2@+ Y sp(h =Y [ gierde- [ gl
i=1 q=1"% p=1"“Cp

and thus o, ; also minimizes J5.

O

Remark 3. In order to compute o5, verifying (@), let us consider the usual Her-
mite basis Bopg = {wi}g’il associated with the knots in Vg, that is, the ones

i)
verifying o(w;) = (0,...,0,1,0,...,0) for all i € {1,...,3s}, and let us extend
Byg+ to the usual Hermite basis
BH* = {wla ce ., W3s, W3s41y - - - 7wn}
of W, in such a way that {wzs 1, ..., wn} is a basis of W°. Then, the fact that
os, € W together with equations (@) lead to the expression

3s n

o5, = Z ©i(sf)w; + Z QU 35Wj = Os; + Oy
i=1 j=3s+1
13



n—3s

=1 18 the solution of the linear equations system

Z+R)z=8S+K+Q,

where the vector (o)

being:
I= (Equg we (,95(0) dz + 30 [ w; - wy (i), ) dy> ;
p=1 jt=3s+1
R = (11(wj, we)1, 5+ + T2(wj, we)2 m+ )?t_gsﬂ;
S = (Z f gi(x) - wy (x,y5(q)) dx + Z f Fi) - we (i), 9) dy) ;
t=3s+1 n
Ny by Na dp
- Z%‘(Sf) 2/ W; - W (x,yj(q)) dx + Z/ Wy - W (xi(p)a y) dy
=1 q=1 Aq p=1 Cp t=3511
3s
Q=-— Z @i(sy) (T1(wi, wi)1 e + T2(Wi, we)2, 1+ )y gy -
i=1

If we rewrite the variational formulation (@) in terms of 05, = 05, — 05, € wo
then we could also reformulate the proof of Theorem 4 in terms of the more well-
known Laz-Milgram lemma instead of the more general Stampacchia theorem.

20 Remark 4. We must note that the two stages of the scheme developed in Step 2
to fill surfaces enjoy a measure of independence. Namely, the way considered in
the first stage to obtain fy and gy can be defined based on the particular f, and
gy, to be fill and/or on the particular shape we may want the fillings fp and g to
have. Later, second stage to obtain s, can be carried out whatever the method to

25 obtawn f, and gy be. Nevertheless, the shape and quality of the final reconstructed
os, of course will strongly depend on the results of f, and gy .

4. Numerical and graphical examples

To illustrate the method developed in this paper, we show in this section

different numerical and graphical tests. Subsection 4.1 is devoted to examples

23 over uniform wireframe meshes, Subsection 4.2 to examples over non-uniform

ones, and in Subsection 4.3 we consider a different 1D-filling scheme from the

one used in Subsections 4.1 and 4.2 to implement first stage of Step 2. In all
cases, we have taken the data:

e The domain D = (0,1) x (0,1).

235 e For different values of n, the Al-type triangulation 7™ of D associated to
the uniform partition of each side of D into n sub-intervals (see Figure 5,

left).
14



e The smoothing parameters \; = 1073; Ao = 10~ in functional J; (see (3))).

The raison to use such values is that in previous works based on the same

240 functional to fit a dataset it has been checked that these are ‘good’ values of
the smoothing parameters to obtain a proper fitting surface. On the other

hand, in order to give the same weights to semi-norms | - |; and | - |2 inside

and outside the hole, we have taken 71 = 1073 and 7 = 107% in functional

Jo (see (6)).

_ o
25 e A subset P of points consisting in 2500 random points in D— H* in order
to consider functional J; .

e The test functions:

— Sinusoidal: f!(z,y) = sin (27% (z — 0.5) (y — 0.5)) ;

— Semisphere:

2 _ ) V0B —(2-05)22—(y—-05)2 if (z—05)2+(y—05)*<05% .
fz.y) = { 0 otherwise ’

— Franke’s function:

_ (9y=2)2+4(92-2)? _y+1?  (9241)
4 49 10

f3(z,y) = 0.75¢ +0.75e +

O.5e’w _0.9¢ (9y=9?+(92-7)%) :

— Nielson’s function: f4(z,y) = %0054 (4(z* +y - 1)).

Figure 5: Triangulation 7%, hole H and polygonal hole H*.

250 As explained in Remark 4, we must note that the final stage of obtaining the
filling function by minimizing the functional J5 is, in some sense, independent
from the way used to obtain the filled f and g;, so that in every example we can
decide which 1D-filling scheme we want to use, although of course different tech-
niques used to calculate f; and g; will give different o5, functions. In this numer-

255 ical and graphical section we will work with two different 1D-filling schemes: an
15
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interpolation scheme, which will be used in Subsections 4.1 and 4.2, and a mixed
interpolation-fitting scheme, that will be explained and used in Subsection 4.3.
The one used in Subsections 4.1 and 4.2 comprises interpolation using polynomi-
als of fifth degree: For every connected component X, = {(;,),¥) : ¥ € [cp, dp]},
we define the fJ function inside X, so that it is C? with the definition given by
fesm) (W) = f(zi(p),y) in D — H*. Namely, we have considered fylx, to be the
fifth degree polynomial verifying

f;’Xp(Cp) = fxi(p)(cp) f;|Xp(dp) = fzz (dp)
folx, () = fr. ) (cp) folx, (dp) = £l (dp), (8)
fp|Xp ( ) f” ( ) f;‘Xp”(dp) - xl(p)( p)

Analogously, for every connected component Y, = {(z,y;q)) : T € [ag,bg]},
we consider gy so that g;|y, is the fifth degree polynomial verifying

9alvy(ag) = fy;(q)(aq) 9aly, (bg) = fyj(q (bg),
Golvy (ag) = £1 o (a0) Gilvy (b0) = £,y (ba), ©)
g;’Yq”<aq) = f;;(q)(aq) g;‘Yq”(bq) f;lj (bq)-

Observe that all these interpolation problems are clearly unisolvent, require
little computational work and, as we will see, lead to good results.

4.1. Exzamples over uniform wireframe meshes

First of all we present several examples constructed over uniform wireframe
meshes, i. e., partitions verifying x; —z;_1 = = for t=1,...,nand y; —y;—1 = %
for j =1,...,m, with the notation 1ntr0duced in and ( .

We have con81dered H to be the hole defined 1mphc1tly (see Figure 5, middle)

by
1\2 1\2
(r=3)" (=3 <1
0.352 0.252 —
and the Al-triangulation 7% of D.

In Figure 6 we show: in the first row, the graphics of the original test functions
f¥ (for k = 1,2, 3); in the second row, the graphics of f* with the hole and of the
functions ffi and g’;j over D — H; in the third row, the graphics of ff;i and g’;j
over D — H* (blue) together with the graphics of the filled fI’f* and glg* inside H*

+

(yellow) and, finally, in the last row, we show the graphics of the reconstructed };
together with the filling functions flf* and gg* used to obtain o . The density

of the wiferame meshes considered to obtain the reconstructed f* have been
n = 5,m = 6 for the test function f'; n = 10,m = 15 for the test function f>

and n = 20, m = 25 for the test function f3.
16



In order to “quantify” the kindness of the filling function, we have estimated

the L2-relative error of the reconstructed f*¥ outside and inside the hole (Eout
and FEj,, respectively) by means of the formulas

1/2 1/2

By = Z?ﬂo(fk(ai) - ka(ai))2 g - Z?i%o(fk(bi) — asfk(bi))2 |
S 1R (a)? ’ S FR(bi)?

. o
where {a;}7% are random points in D— H* and {b;}?%° are random points in

H*. We have also estimated the relative maximum error of f* inside the hole:

max; fk(cl) — Oy (¢)

T T mag | fR(e)]

where {c¢; ?i({o are random points in H*. In Figure 6 we also include these errors

for the test functions considered.

E;n, =8.33-107° E;p, =2.22-1072 E;p =9.56-1072
Eout =2.73-107°  Eout = 5.23-1072 Eout = 2.06-106
Emaz =1.5-1072 Emaz =1.69-1071  Enee =1.14-10"1

Figure 6: Filling surfaces over uniform wireframe meshes.

17
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Next we consider (Figure 7) the test function f* over the very fine wireframe
mesh m =n = 50:

E;, =7.73-1073; Eout = 4.25-1075; Emae =1.91-1071

Figure 7: Filling surfaces over uniform wireframe meshes.

4.2. Examples over non-uniform wireframe meshes
Next we present several examples carried out over non-uniform wireframe
_1)2 _1)2
meshes. First, we fill Franke’s function over the hole H = (xo. 422) + (%lgz) <1
and the triangulation 71 (Figure 8, left). The wireframe mesh considered has

been (Figure 8, middle):

1 0.4 5 1 0.4 5
n—1 .
{xz}l 1= {2 — 0.4+ 72k } l |{2 +04— ?k } ;

k=1 k=1
(10)
{yj}mt = 1 154 2 5 U LT ’
Yiti= =\ g ok [ 12T ok [,

In Figure 8 right we show the segments X, (red) and Y, (green) over which the
functions f, and g,, must be, respectively, filled.

Figure 8: Graphics related to test function f*.

The main reason to have considered such a hole H, such a triangulation 7%
and such a wireframe mesh is to dispose of ‘shorts’ segments inside H* to be
filled in order that the filling of the functions f;, and g,; over the X, and the Y,
respectively, be more precise. In other words, our aim has been to concentrate

most of wireframes near the boundary of the hole, where its ‘width’ is lower. The
18



expected result is to reconstruct the test function with higher degree of accuracy
near the boundary of the hole to later fill in its interior with more accurate
information. The results are quite good (a little bit better inside the hole that
the ones obtained in the uniform wireframe mesh case), as shown in Figure 9:

Eip =1.05-1073; FEout =2.91-107%; Epae = 7.21-1072

Figure 9: Filling surfaces over non-uniform wireframe meshes.

(z-3)

We have also considered Nielson’s function over the hole H = o1t

_1)?2
(v 22) < 1 and the wireframe mesh obtaining by interchanging the sets {x;}

and {y;} in (see Figure 10, left). The results are shown in Figure 10 (middle

s00 and right).

[l
E;, =1.81-1073; Eout = 3.93-1075; Eraz = 6.67-1072

Figure 10: Filling surfaces over non-uniform wireframe meshes.

In the next example we have considered a kind of ‘adaptive’ non-uniform mesh
constructed ad hoc to the surface to be filled: first, we have considered a uniform
mesh with n = 30 and m = 20 (Figure 11, left); the hole defined in Subsection
4.1 and we have computed all the 1D-filling functions f; and g; over the X, and
the Y;, respectively. Let now N be the set of knots of the wireframe lying in H*,
i. e.:

N ={(zi,y;) : (wi,y;) e H5i=1,...,n—1;5=1,...,m —1}.

Then, for all p=1,...,n,, we have considered the quantities

ny

X * * 2
& = Mean { (£; i)+ i) — 94 @i+ ¥it0))) "+ (@itp):Uia)) €N’
19
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and, analogously, for all ¢ = 1,...,n,, we have computed

ez

&y = Mean { (g5 (i), i) — fi @i 036a)” + @iy, B300) € N }pﬂ :

The idea of computing &7 (resp. &£F) is to dispose of a ‘kind of measure’ of how
the behaviour, the consistency of each filled f, (resp. g; ) with all perpendicular
filled g; (vesp. f,) is, in such a way that we can remove from the original uniform
wireframe all those leading to a ‘non-coherent’ behaviour with all the rest. More
precisely, in the example considered, we have removed from functional @ all
wireframes X, and Y, associated to the 50% of highest values of & U &l In
Figure 11 we show the graphics associated to an example carried out with Franke’s
function: in the second graphic we show the wireframes X,, and Y, that we have
not removed -i. e., the ones associated to the 50% of lowest values of £F UE{- (the
interpretation of the third and fourth graphics is as in the previous examples).

:Hﬁn \rﬁA‘ /

Eout = 1.89-1076; Ermaz = 8.93-1072

Figure 11: Filling surfaces over an ‘adaptative’ non-uniform wireframe mesh.

In this last example we can observe that most of the survivor wireframes
are near the boundary of H* -as we considered in the first examples of this
subsection-, and that the error results are quite similar to those obtained in such
non-uniform early examples and better than the ones obtained in the uniform
case. S0, it seems that choosing the wireframes near the boundary of the hole
leads to better results. We find it reasonable since it is just in this region where
the original function can be better reconstructed.

4.8. Example with another 1D-filling scheme

Next we work with another 1D-filling scheme -different from —@D— to fill
univariate functions using low degree polynomials. This second method involves
fitting and interpolation. Again we calculate f;|x, and g;|y, which are fifth
degree polynomial, but every polynomial is imposed four interpolation restrictions
and additional conditions to determine the two remaining coefficients. Namely,

20
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fp is a polynomial that verifies the interpolation conditions

f;‘Xp(CP) = le(p) (Cp)7 f;|Xp (dp) = fa:z(p) (dp)a
f;|Xp/(Cp) = f;i(p) (Cp)v f;|Xp/(dp) = f;;i(p)(dp)a

and also better fits f in eighth non equidistant points outside the interval [c,, dp]
in the sense of least squares. Thus, we obtain a polynomial of degree up to five,
but we don’t need information of the second derivatives of f, contrary to the
other method used. The construction of g; is analogous. In Figure 12 we present
an example with Franke’s function carried out over the same hole and uniform
wireframe mesh described in Subsection 4.1. We see that the results obtained
with filling scheme are worse than the ones obtained with the interpolation 1.D-
filling scheme.

E;n =1.02-1072; Eout =2.14-1076; Epae = 1.27-1071

Figure 12: Filling surfaces over an interpolation-fitting 1D-filling scheme.

Remark 5. Observe that in this work, for sinusoidal and Nielson’s functions we
obtain relative errors inside the hole of order 107 and 1073, respectively, while
with another filling methods (see e. g. [19]) the relative errors for these same
test functions are of order 1073 and 1072, respectively. In general, other filling
methods lead to relative errors inside the hole of order 1072/1073 for different
test functions (see e. g. [20]), so, we can say that this new filling proposal is
competitive.
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