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Abstract

The objective of this work is to fill graphics of surfaces with holes-meeting shape
conditions, i. e., we want to determine values of a surface inside a hole -where it is
not defined- by means of its values outside the hole -where it is properly defined-
in such a way that the final reconstructed surface be fair and smooth enough. The
procedure considered to get this aim is based on a one-dimensional hole-filling
problem, leading to a kind of “wireframe” surface. We develop the theoretical
aspects of the problem and we show some graphical examples to illustrate the
proposed method.
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1. Introduction

The problem of interpolating incomplete meshes (hole-filling) and reconstruct-
ing surfaces from point clouds derived from 3D range scanners arises in computer
graphics and Computer Aided Design (CAD), with applications in e.g. earth
sciences, computer vision in robotics and image reconstruction.5

There are quite a lot of practical applications where it is indispensable to
reconstruct and to fill missed data on a hidden surface or volume from scattered
data points. Among these practical applications we can for example highlight, by
its economic importance: the oil and gas reservoir detection, the estimated sizing
of fish banks and other marine reserves, the situation and layering of tectonic10

faults or some specific material strata (with high-Z values, like lead, tungsten
or gold), the micro-gravimetric prospection for caves and holes detection, the
isolation of nuclear combustible and other radioactive wastes, etc. We can also
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mention the usual radio-frequency seismic and acoustic or electro-magnetic waves,
or even some modern techniques using special lasers or even muons, or other15

cosmic rays, used in some environmental and archaeological tomographies. The
most fundamental cause of holes is occlusion - recesses too deep to be observed
using a particular triangulation angle.

In the existing literature, several works have paid attention to the “recon-
struction” of data (hole-filling), developing methods based on the introduction20

of different measures and techniques to optimize -commonly minimize- them.
Among these works, we can distinguish between reconstruction algorithms that
work on connected meshes of range samples and algorithms that operate on clouds
of unorganized 3D points. We can highlight the following ones: In [1], the au-
thors use polyharmonic Radial Basis Functions (RBF’s) to reconstruct smooth25

surfaces from point clouds data and to repair incomplete meshes. In [2], the basic
principle is to choose the completing surface as the one minimizing a power of
the mean curvature. The surface is represented in implicit form and an energy
functional for the embedding function is constructed. In [3], the author obtains
curves that can be modeled as the solutions of a system of boundary value prob-30

lems of Ordinary Differential Equations (ODE’s). The advantages of the ODE
approaches are the optimal blending curves obtained, with minimum energy and
flexibility, to complicated blending problems. Another method for reconstruct-
ing a polygonal hole based on the minimization of an energy functional, with
applications to resolution of elliptic problems, is developed in [4].35

On the other hand, several researchers have already tested some ideas regard-
ing the problem of constructing smooth fillings for holes, which is known as the
n−sided hole problem, from different points of view. Among others, in [5] the
author handles the problem of filling polygonal holes with rectangular patches
meeting at a common vertex and joining them with geometric continuity. A sim-40

ilar approach has been taken in [6], where the authors use C1 cubic triangular
spline patches for the same proposal. In [7] the authors describe a method that
generates a surface into which a n-sided patch (the hole) is inserted. Such a
surface is required to be bicubic and of locally uniform parametrization, with C1
continuity, rather than a B-spline surface. So, it is only needed to specify the45

n-sided hole to be filled and the localization of some points. In [8] we find a
different way of handling this problem: the author builds free-form surfaces with
the help of and CAD program and Bernstein patches in three steps. Finally,
we want to point out that several manuals ([9, 10, 11]) can be consulted for a
thorough treatment of different techniques for the design of surfaces.50

The procedure considered in this paper presents a surface reconstruction and
hole-filling scheme, based on a beam of parallel and/or orthogonal curves (here-
after called wireframes), where previously some specific one-dimensional curve
reconstructions have been accomplished inside the hole that we want to fill. Un-
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der this perspective, we face the problem of filling a surface by mixing the models55

presented in [3] and [4] in an efficient way. Instead of addressing the problem as a
whole, which yields to a very complicated computational frame, we generate the
reconstructed filled surface through one-dimensional filling curves subsequently
used to generate the global filling smooth surface. It should be clarify that the
method we propose in this paper is developed just for explicit surfaces (i. e., the60

graphics of functions f : D → R defined on a domain D ⊂ R2). A generalization
of the method with the aim to fill more fgeneral surfaces could be developed
following a frame similar to the one considered in [12].

We propose a four-stage procedure to solve the above-mentioned problem.
These stages have great flexibility, which allows us to modify certain parameters65

appearing in the process in order to model some characteristics of the constructed
surface.

The first step consists in determining a set of segments on the surface domain
such that all of them cross the hole. Secondly, we consider the one-dimensional
curves contained in the original surface graphic whose projections onto the do-70

main plane are the segments fixed in the previous step. In the next step, we fill
such univariate functions by using different criteria. These criteria are established
taking into account that the curves have certain characteristics that come from
the surface where they are embedded. Certainly, many different one dimensional
reconstruction procedures (using polynomials of different degrees and satisfying75

different conditions) could be applied, and all of them would produce different
–more or less appropriate– ways of filling the hole in the reconstructed surface.
In each particular example, this issue is another important subject that can be
explored, i. e., depending on the concrete shape of the surface given outside the
hole or even on the shape we may want the reconstructed surface inside the hole80

to have, we could think considering different 1D-filling schemes. In order to pre-
pare the examples considered in the final section of the paper, we have explored
several of them, but we only present two -the quintic one, which reveals to be the
better for the test functions considered, and a mixed fitting-interpolation filling
criteria-. Finally, we construct a bidimensional function approximating all the85

univariate filled functions previously obtained. The chosen technique in this final
step is based on the minimization of an energy functional where several parame-
ters, which can be modified attending to the geometric conditions to be fulfilled,
are involved.

It is important to note that the different steps of filling the univariate curves90

to later obtain the filling surface from such filled curves enjoy a measure of in-
dependence. Namely, we have the freedom to decide which the 1D-filling criteria
may be to later, independently, obtain the filling surface fitting such filled curves.

The outline of the paper is as follows. In Section 2 we present a brief re-
view of the needed background. Section 3 is devoted to the formulation of the95
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problem and the statement and proof of the main theoretical results. Finally, we
present several graphical and numerical examples to show the performance of the
proposed method in the last section.

2. Preliminaries

2.1. Functional spaces100

Let D ⊂ R2 be a polygonal domain (an open, non-empty connected set) in
such a way that D admits a ∆1-type triangulation (Figure 1), defined as the ones
induced by integer translates of x = 0, y = 0 and x+ y = 0 (see e.g. [13]).

Figure 1: Example of ∆1-type triangulation.

Let us consider the Sobolev space H2(D), whose elements are (classes of)
functions u defined on D such that their partial derivatives (in the distribution
sense) ∂βu belong to L2(D), with β := (β1, β2) ∈ N2 and |β| := β1 + β2 ≤ 2. For
any open subset X ⊂ D we consider the usual inner semi-products

(u, v)m,X :=
∑
|β|=m

∫
X
∂βu(x)∂βv(x)dx, m = 0, 1, 2;

the semi-norms

|u|m,X := (u, u)
1/2
m,X =

 ∑
|β|=m

∫
X
∂βu(x)2dx

1/2

, m = 0, 1, 2;

and the norm

‖u‖X =

(
2∑

m=0

|u|2m,X

)1/2

=

∑
|β|≤2

∫
X
∂βu(x)2dx

1/2

.

We will denote < · >n the usual Euclidean norm and < · , · >n the Euclidean
inner product in Rn.105
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Figure 2: Powell-Sabin sub-triangulation.

Figure 3: Powell-Sabin finite element data.

2.2. Powell-Sabin triangulation

Given a ∆1-triangulation of D, we will consider the associated Powell-Sabin
triangulation T6 of T (see e.g. [14]), which can be obtained by joining an appro-
priate interior point ΩT of each T ∈ T to the vertices of T and to the interior
points ΩT ′ of the neighbouring triangles T ′ ∈ T of T . When T has a side lying110

on the boundary of D, the point ΩT is joined to the mid-point of this side, to the
vertices of T and to the interior points ΩT ′ of the neighbouring triangles T ′ ∈ T
of T . Hence, the six micro-triangles inside any T ∈ T have the point ΩT as a
common vertex. There are several ways to consider appropriate points ΩT ([15]),
nevertheless, a good choice ([16]) is considering ΩT to be the incenter of T , for115

all T ∈ T (Figure 2).
Let ZT denotes the set of all vertices of T .

Remark 1. It is well known ([15]) that given the values of a function f (defined
on D) and the ones of all its first partial derivatives at all the points of ZT (see
Figure 3), there exists a unique S in the spline space

S12 (D, T6) =
{
S ∈ C1(D) : S|T ′ ∈ P2(T

′) ∀T ′ ∈ T6
}
,

where P2 stands for the space of bivariate polynomials of total degree at most two,
such that the values of S and the ones of all its first partial derivatives coincide
with those of f at all the points of ZT .120

Finally, let us recall that the diameter of a ∆1-type triangulation T of D is
defined as

diam(T ) = max
x,y∈T

‖x− y‖ for any T ∈ T .
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2.3. Data approximation problem

Given a finite set of points P = {p1, . . . , pq} inD and a vector Z = (z1, . . . , zq) ∈
Rq, we are interested in finding a C1-quadratic surface in S12 (D, T6) that approx-
imates the points {(pi, zi)}qi=1 ⊂ R3 and minimizes the functional energy defined
on S12 (D, T6) by

J (v) =< ρ(v)−Z >2
q +τ1|v|21,D + τ2|v|22,D,

where ρ is the evaluation operator

ρ : S12 (D, T6) → Rq
v 7→ ρ(v) = (v(p1), . . . , v(pq)),

(1)

τ1 ≥ 0 and τ2 > 0.
Observe that the first term of J measures how well v approximates the values

Z over the set of points P (in the least squares sense), while the second and the
third ones represent the minimal energy condition. These last two terms are125

included in the functional J in order to dispose of a certain fairness control:
recall that the semi-norms | · |1 and | · |2 can be seen as a simplified measure of the
surface area and of the bending energy, respectively. The smoothing parameters
τ1 and τ2 weight the importance given to each of the two semi-norms. The optimal
values of these parameters are discussed in [17].130

Hence, given a ∆1-triangulation T of D and its associated Powell-Sabin tri-
angulation T6, the problem we consider is:

Problem 1. We look for an element

σ ∈ S12 (D, T6)

such that
J (σ) ≤ J (v) for all v ∈ S12 (D, T6).

In Proposition 1 of [18] it is shown that Problem 1 has a unique solution which
is also the unique solution of the following variational problem:

Problem 2. Find σ ∈ S12 (D, T6) such that

< ρ(σ), ρ(v) >q +τ1(σ, v)1,D + τ2(σ, v)2,D =< Z, ρ(v) >q (2)

holds for all v ∈ S12 (D, T6).135
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Let N be the dimension of S12 (D, T6) -by the existence and uniqueness prop-
erty stated in Remark 1, we know that N = 3#(ZT )- and let {w1, . . . , wN} be
any basis of the space S12 (D, T6). After some algebraic calculations, it can be
checked (see the details in [18]) that the solution of the variational problem (2)
is

σ =
N∑
i=1

αiwi,

where the coefficients α = (α1, . . . , αN ) can be obtained as the unique solution
of the linear system

Aα = b,

where

A =

(
< ρ(wi), ρ(wj) >q +

2∑
m=1

τm(wi, wj)m,D

)N
i,j=1

and

b = (< Z, ρ(wi) >q)
N
i=1 .

3. Formulation of the problem and main results

In this section, firstly we shall give some notations that we need for the
statement of the problem of filling the original surface. Then, we split the problem
into two steps by constructing in each of them a surface by minimizing a certain
variational problem. The existence and uniqueness are proved in both stages.140

The last part of the section is devoted to the computation of the coefficients
needed to construct the surface obtained in the second step.

Next we introduce some notation that will be used throughout the work:

. Let H (the hole) be a connected and nonempty subset of D (Figure 4, left)
such that Fr(D) ∩ Fr(H) = ∅, where Fr(X) stands for the boundary of145

the set X. If H were not connected, the techniques given in this work to fill
one connected hole would be applied to each of the connected components
of H.

. Let T be a ∆1-type triangulation of D with associated Powell-Sabin trian-
gulation T6.150

. Let TH = {T ∈ T : T ∩H 6= ∅} and H∗ =
⋃
T∈TH T. It is clear that H∗ is a

polygonal domain surrounding H (Figure 4, middle). We need to consider
the ∆1-type triangulation T fine enough to have Fr(D) ∩ Fr(H∗) = ∅.

. Let VT = {t1, . . . , ts} be the set of all the vertices of T laying on the
boundary of H∗ (Figure 4, right).155
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. Let
TD−H∗ = {T ∈ T : T ⊂ D −H∗}

and
(TD−H∗)6 = {T ∈ T6 : T ⊂ D −H∗}.

It is clear that TD−H∗ is a ∆1-type triangulation of D−
◦
H∗ with associated

Powell-Sabin subtriangulation (TD−H∗)6.

. Analogously, let
TH∗ = {T ∈ T : T ⊂ H∗}

and
(TH∗)6 = {T ∈ T6 : T ⊂ H∗}.

It is clear that TH∗ is a ∆1-type triangulation of H∗ with associated Powell-
Sabin subtriangulation (TH∗)6.

. Let f : D −H −→ R be a function.160

•
••

•
•

•
•
• •

•
••

•

•
•

•

Figure 4: Hole H and surrounding H∗.

In addition, let us consider the functional vector spaces:

. WD−H∗ =
{
v|D−H∗ : v ∈ S12 (D, T6)

}
,

. WH∗ =
{
v|H∗ : v ∈ S12 (D, T6)

}
.

It can be easily shown that

WD−H∗ = S12 (D −H∗, (TD−H∗)6)

and
WH∗ = S12 (H∗, (TH∗)6) .
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We will denote BH∗ the usual Hermite basis of WH∗ associated with the knots
of T belonging to H∗.165

In order to ‘fill’ the hole in the graphic of f over H, and taking into account
that we are interested in working with spline functions defined over triangulations,
in what follows we will extend the hole H to H∗, i. e., we will consider the hole
to be the surrounding H∗ instead of H. Clearly, H∗ tends to H as diam(T )→ 0.

The problem that we pose is:170

Problem 3. We want to ‘fill’ the hole in the graphic of f over H∗, that is, we
want to define a global reconstructed function

f̃ : D −→ R

x 7→
{

sf if x ∈ D −H∗
σsf if x ∈ H∗

in such a way that:

i) f̃ = sf be as close as possible to f in D −H∗;

ii) f̃ = σsf fills the hole of f over H∗ with a method based on one-dimension
filling in such a way that σsf be a kind of wireframe surface and the global

reconstructed function f̃ be of class C1.175

To get this aim, we will proceed in two steps:

• Step 1: Construction of sf .

In order to define sf , let P = {pi}qi=1 be a subset of points in D−
◦
H∗.

Then, there exists ([18], Proposition 1) a unique sf ∈ WD−H∗ minimizing
the functional

J1 : WD−H∗ −→ R (3)

defined by

J1(v) =< ρ(v − f) >2
q +λ1|v|21,D−H∗ + λ2|v|22,D−H∗ ,

where λ1 ≥ 0, λ2 > 0 and ρ is the evaluation operator defined in (1).

Observe that functions in WD−H∗ are splines globally C1 defined as the
union of second order polynomial patches over each triangle of the trian-
gulation T6, so that they are globally H2. As shown in Subsection 2.3, the
unique sf can be expressed as

sf =
∑̀
i=1

βiγi,
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where {γ1, . . . , γ`} is a basis of WD−H∗ and β ≡ (βi)
`
i=1 is the solution of

the linear system Aβ = b, where

A =

(
< ρ(γi), ρ(γj) >q +

2∑
m=1

λm(γi, γj)m,D−H∗

)`
i,j=1

and
b = (< ρ(f), ρ(γi) >q)

`
i=1 .

Remark 2. The quality of the fitting sf (i. e., the degree of closeness of

sf to the original f over D−
◦
H∗) depends on several aspects among which180

we find the cardinal and the density of the points in set P. A very precise
and technical result on this topic can be found in Theorem 5 of [18]. In the
examples considered in the final section, P consists of 2500 random points

in D−
◦
H∗. Empirical results show that such an amount of points lead to

good-quality fitting surfaces.185

• Step 2: Construction of σsf .

Now, we obtain the filling function σsf . In order to do that, first we consider

in the domain H̊∗ a net of curves in two parametric directions. Then, we
map all these planar curves into the space by means of a smooth function
and by taking a set of points of the resulting family we finally construct190

σsf .

Let a = min{x : (x, y) ∈ D} and b = max{x : (x, y) ∈ D} and let us
consider a partition

{a = x0 < x1 < · · · < xn = b} (4)

of [a, b]. Analogously, let c = min{y : (x, y) ∈ D} and d = max{y : (x, y) ∈
D} and let us consider a partition

{c = y0 < y1 < · · · < ym = d} (5)

of [c, d].

Let us consider the set Px = {Xp}nx
p=1 of all connected components with

non-empty interior of the set(
n−1⋃
i=1

{(xi, y) ∈ D}

)
∩H∗.
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Let cp, dp, with c < cp < dp < d and for p = 1, . . . , nx, be such that
Xp = {(xi(p), y) : y ∈ [cp, dp]} with i(p) ∈ {1, . . . , n− 1}.

Analogously, let us consider the set Py = {Yq}
ny

q=1 of all connected compo-
nents with non-empty interior of the setm−1⋃

j=1

{(x, yj) ∈ D}

 ∩H∗,
and let aq, bq, with a < aq < bq < b and for q = 1, . . . , ny, be such that195

Yq = {(x, yj(q)) : x ∈ [aq, bq]} with j(q) ∈ {1, . . . ,m− 1}.
For i = 1, . . . , n−1 and for j = 1, . . . ,m−1, let fxi and fyj be the univariate
functions

fxi(y) = f(xi, y) for (xi, y) ∈ D −H∗

and
fyj (x) = f(x, yj) for (x, yj) ∈ D −H∗.

For p = 1, . . . , nx and for q = 1, . . . , ny, let

f∗p : Xp −→ R and g∗q : Yq −→ R

be the univariate functions filling the hole of fxi(p) and gyj(q) over Xp and
over Yq, respectively.

In the examples shown in this paper, we use two different method to fill
univariate functions using low degree interpolation polynomials.200

In order to obtain the filling function σsf of Step 2, we will consider an
appropriate subset W ⊂ WH∗ , chosen in such a way that the global filling
function f̃ be of class C1, and an appropriate functional J2 defined in W
to be minimized:

Let us consider the map

ϕ(v) = (ϕi(v))3si=1 for v ∈WH∗ ,

where 
ϕi(v) = v(ti)

ϕs+i(v) =
∂v

∂x
(ti)

ϕ2s+i(v) =
∂v

∂y
(ti)

for i = 1, . . . , s.

Then, the functional spline space considered is

W = {v ∈WH∗ : ϕ(v) = ϕ(sf )}.
11



That is, we will consider the functions of WH∗ such that their values and205

the ones of their first partial derivatives coincide in the knots of VT with
those of the function sf defined in Step 1. In such a way, f̃ will be of class
C1.
On the other hand, the functional J2 considered will be

J2 :W −→ R (6)

defined by

J2(v) =

ny∑
q=1

∫
Yq

(
v − g∗q

)2
dx+

nx∑
p=1

∫
Xp

(
v − f∗p

)2
dy+τ1 |v|21,H∗+τ2 |v|

2
2,H∗ =

ny∑
q=1

∫ bq

aq

(
v
(
x, yj(q)

)
− g∗q (x)

)2
dx+

nx∑
p=1

∫ dp

cp

(
v
(
xi(p), y

)
− f∗p (y)

)2
dy+

+ τ1 |v|21,H∗ + τ2 |v|22,H∗ ,

where τ1 ≥ 0, τ2 > 0

Theorem 4. There exists a unique σsf ∈ W minimizing the functional J2
which is also the solution of the following variational problem:

Find σsf ∈ W such that
ny∑
q=1

∫ bq

aq

σsf · v
(
x, yj(q)

)
dx+

nx∑
p=1

∫ dp

cp

σsf · v
(
xi(p), y

)
dy +

2∑
m=1

τm(σsf , v)m,H∗

=

ny∑
q=1

∫ bq

aq

g∗q (x) · v
(
x, yj(q)

)
dx+

nx∑
p=1

∫ dp

cp

f∗p (y) · v
(
xi(p), y

)
dy

for all v ∈ W0 = {v ∈WH∗ : ϕ(v) = 0}.
(7)

Proof. Let {k1, k2, k3} be a P1-unisolvent subset of VT . It is then easy to
check that the map [[·]]H∗ : WH∗ −→ R defined by

[[v]]H∗ =

(
3∑
i=1

v(ki)
2 + τ2|v|22,H∗

)1/2

defines a semi-norm on WH∗ . Besides, if [[v]]H∗ = 0, then v is a polynomial
of total degree at most one vanishing at three non colinear points, and thus
v = 0. Then, [[v]]H∗ defines a norm on the finite dimensional space WH∗
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equivalent to the usual norm ‖v‖H∗ =
(∑

|β|≤2
∫
H∗ ∂

βv(x)2dx
)1/2

and, as

a consequence, the map a : WH∗ ×WH∗ −→ R defined by

a(u, v) =

2

 3∑
i=1

u(ki)v(ki) +

ny∑
q=1

∫ bq

aq

u · v
(
x, yj(q)

)
dx+

nx∑
p=1

∫ dp

cp

u · v
(
xi(p), y

)
dy

+
2∑

m=1

τm(u, v)j,H∗

)
is a bilinear, continuous, symmetric and WH∗-elliptic form. On the other
hand, the map ψ : WH∗ −→ R defined by

ψ(v) = 2

 ny∑
q=1

∫ bq

aq

g∗q (x) · v
(
x, yj(q)

)
dx+

nx∑
p=1

∫ dp

cp

f∗p (y) · v
(
xi(p), y

)
dy


is a linear and continuous form. Hence, by applying the Stampacchia Theo-210

rem we find that there exists a unique σsf ∈ W such that a(σsf , w−σsf ) ≥
ψ(w − σsf ) for all w ∈ W. Hence, a(σsf , v) ≥ ψ(v) for all v ∈ W0. But
since −v ∈ W0, then a(σsf , v) = ψ(v) for all v ∈ W0, from which we obtain
(7).

Moreover, σsf is the minimum in W of the functional

1

2
a(v, v)−ψ(v) = J2(v)+

3∑
i=1

sf (ki)
2−

ny∑
q=1

∫ bq

aq

g∗q (x)2dx−
nx∑
p=1

∫ dp

cp

f∗p (y)2dy,

and thus σsf also minimizes J2.215

�

Remark 3. In order to compute σsf verifying (7), let us consider the usual Her-
mite basis B∂H∗ = {wi}3si=1 associated with the knots in VT , that is, the ones

verifying ϕ(wi) = (0, . . . , 0,
i)

1, 0, . . . , 0) for all i ∈ {1, . . . , 3s}, and let us extend
B∂H∗ to the usual Hermite basis

BH∗ = {w1, . . . , w3s, w3s+1, . . . , wn}

of WH∗, in such a way that {w3s+1, . . . , wn} is a basis of W0. Then, the fact that
σsf ∈ W together with equations (7) lead to the expression

σsf =

3s∑
i=1

ϕi(sf )wi +

n∑
j=3s+1

αj−3swj ≡ σ̂sf + σ̂s0 ,
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where the vector (αj)
n−3s
j=1 is the solution of the linear equations system

(I +R)x = S +K +Q,

being:

I =

(
ny∑
q=1

∫ bq
aq
wj · wt

(
x, yj(q)

)
dx+

nx∑
p=1

∫ dp
cp
wj · wt

(
xi(p), y

)
dy

)n
j,t=3s+1

;

R = (τ1(wj , wt)1,H∗ + τ2(wj , wt)2,H∗)
n
j,t=3s+1 ;

S =

(
ny∑
q=1

∫ bq
aq
g∗q (x) · wt

(
x, yj(q)

)
dx+

nx∑
p=1

∫ dp
cp
f∗p (y) · wt

(
xi(p), y

)
dy

)n
t=3s+1

;

K = −
3s∑
i=1

ϕi(sf )

 ny∑
q=1

∫ bq

aq

wi · wt
(
x, yj(q)

)
dx+

nx∑
p=1

∫ dp

cp

wi · wt
(
xi(p), y

)
dy

n

t=3s+1

;

Q = −
3s∑
i=1

ϕi(sf ) (τ1(wi, wt)1,H∗ + τ2(wi, wt)2,H∗)
n
t=3s+1 .

If we rewrite the variational formulation (7) in terms of σ̂s0 = σsf − σ̂sf ∈ W0

then we could also reformulate the proof of Theorem 4 in terms of the more well-
known Lax-Milgram lemma instead of the more general Stampacchia theorem.

Remark 4. We must note that the two stages of the scheme developed in Step 2220

to fill surfaces enjoy a measure of independence. Namely, the way considered in
the first stage to obtain f∗p and g∗q can be defined based on the particular fxi and
gyj to be fill and/or on the particular shape we may want the fillings f∗p and g∗q to
have. Later, second stage to obtain σsf can be carried out whatever the method to
obtain f∗p and g∗q be. Nevertheless, the shape and quality of the final reconstructed225

σsf of course will strongly depend on the results of f∗p and g∗q .

4. Numerical and graphical examples

To illustrate the method developed in this paper, we show in this section
different numerical and graphical tests. Subsection 4.1 is devoted to examples
over uniform wireframe meshes, Subsection 4.2 to examples over non-uniform230

ones, and in Subsection 4.3 we consider a different 1D-filling scheme from the
one used in Subsections 4.1 and 4.2 to implement first stage of Step 2. In all
cases, we have taken the data:

• The domain D = (0, 1)× (0, 1).

• For different values of n, the ∆1-type triangulation T n of D associated to235

the uniform partition of each side of D into n sub-intervals (see Figure 5,
left).
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• The smoothing parameters λ1 = 10−3;λ2 = 10−6 in functional J1 (see (3)).
The raison to use such values is that in previous works based on the same
functional to fit a dataset it has been checked that these are ‘good’ values of240

the smoothing parameters to obtain a proper fitting surface. On the other
hand, in order to give the same weights to semi-norms | · |1 and | · |2 inside
and outside the hole, we have taken τ1 = 10−3 and τ2 = 10−6 in functional
J2 (see (6)).

• A subset P of points consisting in 2500 random points in D−
◦
H∗ in order245

to consider functional J1 (3).

• The test functions:

– Sinusoidal: f1(x, y) = sin
(
2π2 (x− 0.5) (y − 0.5)

)
;

– Semisphere:

f2(x, y) =

{ √
0.52 − (x− 0.5)2 − (y − 0.5)2 if (x− 0.5)2 + (y − 0.5)2 ≤ 0.52

0 otherwise
;

– Franke’s function:

f3(x, y) = 0.75e−
(9y−2)2+(9x−2)2

4 + 0.75e−
(9y+1)2

49 − (9x+1)
10 +

0.5e−
(9y−7)2+(9x−3)2

4 − 0.2e−((9y−4)2+(9x−7)2);

– Nielson’s function: f4(x, y) =
y

2
cos4

(
4(x2 + y − 1)

)
.

•
•
•
• •

•

•
• •
• •
•
•
•
••

••
••

Figure 5: Triangulation T 8, hole H and polygonal hole H∗.

As explained in Remark 4, we must note that the final stage of obtaining the250

filling function by minimizing the functional J2 is, in some sense, independent
from the way used to obtain the filled f∗p and g∗q , so that in every example we can
decide which 1D-filling scheme we want to use, although of course different tech-
niques used to calculate f∗p and g∗q will give different σsf functions. In this numer-
ical and graphical section we will work with two different 1D-filling schemes: an255

15



interpolation scheme, which will be used in Subsections 4.1 and 4.2, and a mixed
interpolation-fitting scheme, that will be explained and used in Subsection 4.3.
The one used in Subsections 4.1 and 4.2 comprises interpolation using polynomi-
als of fifth degree: For every connected component Xp = {(xi(p), y) : y ∈ [cp, dp]},
we define the f∗p function inside Xp so that it is C2 with the definition given by260

fxi(p)(y) ≡ f(xi(p), y) in D − H∗. Namely, we have considered f∗p |Xp to be the
fifth degree polynomial verifying

f∗p |Xp(cp) = fxi(p)(cp) f∗p |Xp(dp) = fxi(p)(dp),

f∗p |Xp

′(cp) = f ′xi(p)(cp) f∗p |Xp

′(dp) = f ′xi(p)(dp),

f∗p |Xp

′′(cp) = f ′′xi(p)(cp) f∗p |Xp

′′(dp) = f ′′xi(p)(dp).

(8)

Analogously, for every connected component Yq = {(x, yj(q)) : x ∈ [aq, bq]},
we consider g∗q so that g∗q |Yq is the fifth degree polynomial verifying

g∗q |Yq(aq) = fyj(q)(aq) g∗q |Yq(bq) = fyj(q)(bq),

g∗q |Yq
′(aq) = f ′yj(q)(aq) g∗q |Yq

′(bq) = f ′yj(q)(bq),

g∗q |Yq
′′(aq) = f ′′yj(q)(aq) g∗q |Yq

′′(bq) = f ′′yj(q)(bq).

(9)

Observe that all these interpolation problems are clearly unisolvent, require265

little computational work and, as we will see, lead to good results.

4.1. Examples over uniform wireframe meshes

First of all we present several examples constructed over uniform wireframe
meshes, i. e., partitions verifying xi−xi−1 = 1

n for i = 1, . . . , n and yj−yj−1 = 1
m

for j = 1, . . . ,m, with the notation introduced in (4) and (5).270

We have considered H to be the hole defined implicitly (see Figure 5, middle)
by (

x− 1
2

)2
0.352

+

(
y − 1

2

)2
0.252

≤ 1

and the ∆1-triangulation T 8 of D.
In Figure 6 we show: in the first row, the graphics of the original test functions

fk (for k = 1, 2, 3); in the second row, the graphics of fk with the hole and of the
functions fkxi and gkyj over D −H; in the third row, the graphics of fkxi and gkyj
over D−H∗ (blue) together with the graphics of the filled fkp

∗
and gkq

∗
inside H∗275

(yellow) and, finally, in the last row, we show the graphics of the reconstructed f̃k

together with the filling functions fkp
∗

and gkq
∗

used to obtain σfk . The density

of the wiferame meshes considered to obtain the reconstructed f̃k have been
n = 5,m = 6 for the test function f1; n = 10,m = 15 for the test function f2

and n = 20,m = 25 for the test function f3.280
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In order to “quantify” the kindness of the filling function, we have estimated

the L2-relative error of the reconstructed f̃k outside and inside the hole (Eout
and Ein, respectively) by means of the formulas

Eout =

(∑2500
i=1 (fk(ai)− sfk(ai))

2∑2500
i=1 f

k(ai)2

)1/2

;Ein =

(∑2500
i=1 (fk(bi)− σs

fk
(bi))

2∑2500
i=1 f

k(bi)2

)1/2

,

where {ai}2500i=1 are random points in D−
◦
H∗ and {bi}2500i=1 are random points in

H∗. We have also estimated the relative maximum error of f̃k inside the hole:

Emax =
maxi

∣∣∣fk(ci)− σs
fk

(ci)
∣∣∣

maxi |fk(ci)|

where {ci}2500i=1 are random points in H∗. In Figure 6 we also include these errors
for the test functions considered.

Ein = 8.33 · 10−5 Ein = 2.22 · 10−2 Ein = 9.56 · 10−3

Eout = 2.73 · 10−5 Eout = 5.23 · 10−2 Eout = 2.06 · 10−6

Emax = 1.5 · 10−2 Emax = 1.69 · 10−1 Emax = 1.14 · 10−1

Figure 6: Filling surfaces over uniform wireframe meshes.
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Next we consider (Figure 7) the test function f4 over the very fine wireframe
mesh m = n = 50:

Ein = 7.73 · 10−3; Eout = 4.25 · 10−5; Emax = 1.91 · 10−1

Figure 7: Filling surfaces over uniform wireframe meshes.

4.2. Examples over non-uniform wireframe meshes285

Next we present several examples carried out over non-uniform wireframe

meshes. First, we fill Franke’s function over the hole H ≡ (x− 1
2)

2

0.42
+

(y− 1
2)

2

0.152
≤ 1

and the triangulation T 15 (Figure 8, left). The wireframe mesh considered has
been (Figure 8, middle):

{xi}n−1i=1 =

{
1

2
− 0.4 +

0.4

2k

}5

k=1

⋃{
1

2
+ 0.4− 0.4

2k

}5

k=1

;

{yj}m−1j=1 =

{
1

2
− 0.15 +

0.15

2k

}5

i=k

⋃{
1

2
+ 0.15− 0.15

2k

}5

k=1

.

(10)

In Figure 8 right we show the segments Xp (red) and Yq (green) over which the
functions fxi and gyj must be, respectively, filled.

Figure 8: Graphics related to test function f4.

The main reason to have considered such a hole H, such a triangulation T 15

and such a wireframe mesh is to dispose of ‘shorts’ segments inside H∗ to be
filled in order that the filling of the functions fxi and gyj over the Xp and the Yq,290

respectively, be more precise. In other words, our aim has been to concentrate
most of wireframes near the boundary of the hole, where its ‘width’ is lower. The
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expected result is to reconstruct the test function with higher degree of accuracy
near the boundary of the hole to later fill in its interior with more accurate
information. The results are quite good (a little bit better inside the hole that295

the ones obtained in the uniform wireframe mesh case), as shown in Figure 9:

Ein = 1.05 · 10−3; Eout = 2.91 · 10−6; Emax = 7.21 · 10−2

Figure 9: Filling surfaces over non-uniform wireframe meshes.

We have also considered Nielson’s function over the hole H ≡ (x− 1
2)

2

0.152
+

(y− 1
2)

2

0.42
≤ 1 and the wireframe mesh obtaining by interchanging the sets {xi}

and {yj} in (10) (see Figure 10, left). The results are shown in Figure 10 (middle
and right).300

Ein = 1.81 · 10−3; Eout = 3.93 · 10−5; Emax = 6.67 · 10−2

Figure 10: Filling surfaces over non-uniform wireframe meshes.

In the next example we have considered a kind of ‘adaptive’ non-uniform mesh
constructed ad hoc to the surface to be filled: first, we have considered a uniform
mesh with n = 30 and m = 20 (Figure 11, left); the hole defined in Subsection
4.1 and we have computed all the 1D-filling functions f∗p and g∗q over the Xp and
the Yq, respectively. Let now N be the set of knots of the wireframe lying in H∗,
i. e.:

N = {(xi, yj) : (xi, yj) ∈ H∗; i = 1, . . . , n− 1; j = 1, . . . ,m− 1}.

Then, for all p = 1, . . . , nx, we have considered the quantities

Exp = Mean
{(
f∗p (xi(p), yj(q))− g∗q (xi(p), yj(q))

)2
: (xi(p), yj(q)) ∈ N

}ny

q=1
19



and, analogously, for all q = 1, . . . , ny, we have computed

Eyq = Mean
{(
g∗q (xi(p), yj(q))− f∗p (xi(p), yj(q))

)2
: (xi(p), yj(q)) ∈ N

}nx

p=1
.

The idea of computing Exp (resp. Eyq ) is to dispose of a ‘kind of measure’ of how
the behaviour, the consistency of each filled f∗p (resp. g∗q ) with all perpendicular
filled g∗q (resp. f∗p ) is, in such a way that we can remove from the original uniform
wireframe all those leading to a ‘non-coherent’ behaviour with all the rest. More
precisely, in the example considered, we have removed from functional (6) all305

wireframes Xp and Yq associated to the 50% of highest values of Exp ∪ E
y
q . In

Figure 11 we show the graphics associated to an example carried out with Franke’s
function: in the second graphic we show the wireframes Xp and Yq that we have
not removed -i. e., the ones associated to the 50% of lowest values of Exp ∪E

y
q - (the

interpretation of the third and fourth graphics is as in the previous examples).310

Ein = 2.15 · 10−3; Eout = 1.89 · 10−6; Emax = 8.93 · 10−2

Figure 11: Filling surfaces over an ‘adaptative’ non-uniform wireframe mesh.

In this last example we can observe that most of the survivor wireframes
are near the boundary of H∗ -as we considered in the first examples of this
subsection-, and that the error results are quite similar to those obtained in such
non-uniform early examples and better than the ones obtained in the uniform
case. So, it seems that choosing the wireframes near the boundary of the hole315

leads to better results. We find it reasonable since it is just in this region where
the original function can be better reconstructed.

4.3. Example with another 1D-filling scheme

Next we work with another 1D-filling scheme -different from (8)-(9)- to fill
univariate functions using low degree polynomials. This second method involves
fitting and interpolation. Again we calculate f∗p |Xp and g∗q |Yq which are fifth
degree polynomial, but every polynomial is imposed four interpolation restrictions
and additional conditions to determine the two remaining coefficients. Namely,
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f∗p is a polynomial that verifies the interpolation conditions

f∗p |Xp(cp) = fxi(p)(cp), f∗p |Xp(dp) = fxi(p)(dp),

f∗p |Xp

′(cp) = f ′xi(p)(cp), f∗p |Xp

′(dp) = f ′xi(p)(dp),

and also better fits f in eighth non equidistant points outside the interval [cp, dp]
in the sense of least squares. Thus, we obtain a polynomial of degree up to five,320

but we don’t need information of the second derivatives of f , contrary to the
other method used. The construction of g∗q is analogous. In Figure 12 we present
an example with Franke’s function carried out over the same hole and uniform
wireframe mesh described in Subsection 4.1. We see that the results obtained
with filling scheme are worse than the ones obtained with the interpolation 1D-325

filling scheme.

Ein = 1.02 · 10−2; Eout = 2.14 · 10−6; Emax = 1.27 · 10−1

Figure 12: Filling surfaces over an interpolation-fitting 1D-filling scheme.

Remark 5. Observe that in this work, for sinusoidal and Nielson’s functions we
obtain relative errors inside the hole of order 10−5 and 10−3, respectively, while
with another filling methods (see e. g. [19]) the relative errors for these same
test functions are of order 10−3 and 10−2, respectively. In general, other filling330

methods lead to relative errors inside the hole of order 10−2/10−3 for different
test functions (see e. g. [20]), so, we can say that this new filling proposal is
competitive.
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