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Abstract

There is a wide range of mathematical models that describe populations of
large numbers of neurons. In this article, we focus on nonlinear noisy leaky in-
tegrate and fire (NNLIF) models that describe neuronal activity at the level of
the membrane potential. We introduce a sequence of novel states, which we call
pseudo-equilibria, and give evidence of their defining role in the behaviour of the
NNLIF system when a significant synaptic delay is considered. The advantage is
that these states are determined solely by the system’s parameters and are de-
rived from a sequence of firing rates that result from solving a recurrence equation.
We propose a new strategy to show convergence to an equilibrium for a weakly
connected system with large transmission delay, based on following the sequence
of pseudo-equilibria. Unlike direct entropy dissipation methods, this technique
allows us to see how a large delay favours convergence. We present a detailed nu-
merical study to support our results. This study helps understand, among other
phenomena, the appearance of periodic solutions in strongly inhibitory networks.
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1 Introduction
Over the past few decades, a diverse range of research has emerged in the realm of
partial differential equation (PDE) systems to model populations of large numbers of
neurons. Depending on the variables taken into account to describe the activity of
neurons, several families of PDE have been studied: Fokker-Planck equations including
voltage and conductance variables [1–4]; Fokker-Planck equations for uncoupled neurons
[5, 6]; population density models of integrate and fire neurons with jumps [7–10]; age
structured equations (time elapsed models) [11–13] which are derived as mean-field
limits of Hawkes processes [14, 15], McKean-Vlasov equations [16, 17], which are the
mean-field equations of a large number of neurons described by the Fitzhugh-Nagumo
equation [18], etc.

This article is devoted to the nonlinear noisy leaky integrate and fire (NNLIF)
neuronal system, which is one of the simplest PDE models [7, 19–23]. We focus on
its mesoscopic/macroscopic description through mean-field Fokker-Planck type equa-
tions [24–32], although it has also been studied at the microscopic level, using stochas-
tic differential equations (SDE) [33–35]. Despite their simplicity, and the extensive
scientific output devoted to them, fundamental questions remain about their long-term
behaviour. The aim of this article is to contribute to the understanding of this issue.
Specifically, we give evidence that the behaviour of the NNLIF model with large delay is
determined by a simple discrete system, which gives us a sequence of novel states, that
we call pseudo-equilibria sequence. The advantage of the discrete system lies in its sim-
plicity: for instance, it allows for quick simulations that provide accurate information
about the NNLIF system. We can rapidly study issues such as the long-term behavior
of the system, the estimated time to approach equilibrium, whether the system tends
toward a steady state, the possible appearance of periodic solutions or plateau states,
etc., all in terms of the system parameters.

We will first give a short introduction to the model, and then give our main results.
We present the microscopic and mesoscopic descriptions of the NNLIF models.
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Stochastic NNLIF neuron models. We are interested in describing the membrane
potential, which is the potential difference Vi across the cell membrane of the i-th neuron
in a group of N interconnected neurons. A widely used model for this is the noisy leaky
integrate-and-fire model, which takes into account a simple mechanism for the neuron
to approach some natural resting potential, VL, and the effect of the inputs from other
neurons. Thus, the evolution on time of the membrane potential for neuron i is given
by

Cm
dVi
dt

= −gL(Vi − VL) + Ii(t), (1.1)

where Cm is the capacitance of the membrane and gL is the leak conductance. Equation
(1.1) is stochastic, since the term Ii is the sum of all synaptic currents produced by the
stochastic spike trains of the Ci neurons connected to neuron i:

Ii(t) :=

Ci∑
j=1

∑
k

Jijδ(t− tkj − d).

The term δ(t − tkj − d) represents a Dirac delta (in time), modelling the contribution
of the k-th spike from the j-th presynaptic neuron. It is modulated by the synaptic
strength of the i-j connection, Jij (which may be positive or negative, depending on
whether the effect is excitatory or inhibitory, respectively). The constant d ≥ 0 is the
synaptic delay—the time it takes for the effect of a spike to be felt by other neurons.

In addition, this model imposes the condition that whenever a neuron’s membrane
potential Vi reaches a certain firing potential (or threshold potential or firing threshold)
VF , it discharges by sending a spike over the network, and then Vi is reset to a reset
potential value VR. It is always assumed that VL < VR < VF .

The following are also common assumptions for this model: networks with sparse
random connectivity, i.e. C/N ≪ 1; strengths |Jij| ≪ VF , i.e., small strengths com-
pared to the threshold potential; and that neurons spike according to stationary, in-
dependent Poisson process, with a constant probability ν of emitting a spike per unit
time. Under these assumptions we can consider the mean-field limit when N → ∞,
see [20, 21, 23, 36]. The synaptic current is then approximated by a continuous-in-time
stochastic process of Ornstein-Uhlenbeck type with the same mean and variance as the
Poissonian spike-train process, so the synaptic current of a typical neuron is

I(t)dt ≈ bν dt+ a dB,

where B is a Brownian process, and a > 0 is the strength of the noise. The parameter
b, called the connectivity parameter, is an average connectivity strength and encodes
how excitatory or inhibitory the network is. The case b = 0 means that neurons are
not connected to each other and the system becomes linear. Otherwise, if b > 0 the
network is average-excitatory, and if b < 0 the network is average-inhibitory.

Therefore, we obtain the stochastic differential equation (SDE) for a typical neuron

Cm dV = −gL(V − VL) dt+ bν dt+ a dB.

By appropriate translation and scaling one can remove the constants Cm, gL and VL
(see [24, 33, 34, 37]), and obtain the SDE, which we write in the notation we will use
throughout the paper:

dV = −(V + bN(t− d)) dt+ a dB,

where N = N(t) is the mean firing rate of the network.
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The NNLIF PDE model. The PDE satisfied by the probability distribution of V
from the above equation is

∂tp(v, t) + ∂v [h (v,N(t− d)) p(v, t)]− a∂2vp(v, t) = δ(v − VR)N(t). (1.2)

It requires a given non-negative, integrable initial condition p(v, 0) = p0(v) ≥ 0, regular
enough for its associated firing rate to exist:

N(t) = −a∂vp0(VF ) for t ∈ [−d, 0].

This is the PDE we address in this paper, previously studied in many references; see for
example [21,33–35] and the references therein. As described, it arises as the mean-field
limit of a large set of N identical neurons which are connected to each other in a network,
when N → +∞. This PDE provides the evolution in time t ≥ 0 of the probability
density p(v, t) ≥ 0 of finding neurons at voltage v ∈ (−∞, VF ]. A neuron spikes when its
membrane voltage reaches the firing threshold value VF , discharges immediately after,
and has its membrane potential set back to the reset value VR (VR < VF ), which is
described by the right hand side of the equation and the boundary condition p(VF , t) =
0. In addition, the model includes the delay d in synaptic transmission. In this paper
we assume the diffusion coefficient a > 0 to be constant, and we always take the drift
coefficient h to be h(v,N) := −v + bN . This makes the system nonlinear since the
firing rate N = N(t) must be computed as

N(t) := −a ∂vp(VF , t) ≥ 0 (1.3)

so that the total number of neurons
∫ VF

−∞ p(v, t) dv is conserved. Due to our definition
of N in (1.3), and assuming p(−∞, t) = 0, the solution to the related Cauchy problem
conserves the total number of neurons:∫ VF

−∞
p(v, t) dv =

∫ VF

−∞
p0(v) dv, for t ∈ [0, T ),

where T > 0 is the maximal time of existence [25,29,31].
In general, NNLIF systems describe the activity of large numbers of neurons in terms

of the distribution of the membrane potential. The PDE-based NNLIF family includes
systems with different complexity depending on the neurophysiological properties that
are taken into account [38]. In this article we always focus on the nonlinear Fokker-
Planck equation (1.2). For the sake of simplicity, we always assume that

∫ VF

−∞ p0(v) dv =
1 and take a diffusion coefficient a = 1.

Stationary states. The probability stationary states, steady states, or equilibria,
p∞(v), of system (1.2) are non negative solutions to{

∂v [(−v + bN∞) p∞(v)]− ∂2vp∞(v) = δ(v − VR)N∞,

N∞ := −∂vp∞(VF ), and
∫ VF

−∞ p∞(v) dv = 1,
(1.4)

and are given by

p∞(v) = N∞e
− (v−bN∞)2

2

∫ VF

max(v,VR)

e
(w−bN∞)2

2 dw. (1.5)
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The stationary firing rate N∞ is implicitly given by the requirement of unit mass
(
∫ VF

−∞ p∞(v) dv = 1), which is translated into the condition N∞I(N∞) = 1, where

I(N) :=

∫ VF

−∞
e−

(v−bN)2

2

∫ VF

max(v,VR)

e
(w−bN)2

2 dw dv. (1.6)

Every stationary state corresponds to a solution of the implicit equation N∞I(N∞) = 1
for N∞. The number of steady states depends on the connectivity parameter b [24]: for
b ≤ 0 (inhibitory case or the case where neurons are not connected to each other) there
is only one, while for b > 0 (excitatory case) there is more variety: there is only one if
b is small; there are no steady states if b is large; and there are two for intermediate
values of b (the existence of at least two can be proved analytically; exactly two are
observed numerically).

Known results on the PDE. For the nonlinear Fokker-Planck Equation (1.2) there
is a global in time solution if either d > 0 [29, 31], or if d = 0 and b ≤ 0 (average-
inhibitory and linear cases) [25]. However, for the average-excitatory case (b > 0),
blow-up of the solution may occur, and in this case the maximal time of existence is
given by the first time at which the firing rate N(t) diverges [24, 25]. This is known
to happen if there is no transmission delay and the initial condition is sufficiently
concentrated around the threshold potential VF , or if the connectivity parameter b is
large enough [31]. The blow-up is avoided if some transmission delay or stochastic
discharge potential are considered [26]. The analogous criteria for existence and blow-
up phenomena were studied in [33], for the associated microscopic system. Moreover,
the notion of physical solutions to the SDE was given in [34] and the authors proved
physical solutions are global on time, solutions continue after system synchronization,
this is after the blow-up phenomenon. Understanding what “physical solution” may
mean for the Fokker-Planck equation is an open problem. It was numerically analysed
in [37], and behaviour after the explosion was studied in [39] by a time change of variable
which dilates the blow-up time.

Let us give a brief review of the existing results on asymptotic behaviour. Most of the
literature on asymptotic behaviour of the model (1.2) is based on the entropy dissipation
method (see [24, 26, 27, 29, 40]), considering a standard relative entropy functional to
estimate the distance between the solution p and the stationary solution p∞. This
strategy has given results only for weakly connected networks (small values of the
connectivity parameter b), that is, almost linear systems. Recently, approaches based
on Doeblin & Harris’s theorems in probability have been used in the study of the
asymptotic behaviour of various equations related to neural networks, for both elapsed
time [41] and integrate-and-fire models [10,42]. Again, both strategies (entropy method
and Harris-type theorems) seem to be suitable only for nearly linear systems. Results
on the long-term behaviour for general connectivity have been recently given in [43] by
using a new strategy based on the spectral gap properties of the linearised equation.
On the other hand, [29, 31] proved that there are no periodic solutions if b is large
enough, VF ≤ 0 and a transmission delay is considered. Recently in [32] it was shown
that periodic solutions can appear in the average-inhibitory case if a large delay is
considered for an approximation of the integrate-and-fire model. Moreover, for the
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more realistic model (considering as different populations the excitatory and inhibitory
neurons, or neurons with refractory periods) and the stochastic discharge potential
model, the results in [26,28,30,44,45] numerically show periodic solutions.

Main ideas and the pseudo-equilibria sequence. Let us describe the main ideas
in the present paper. We wish to examine a discrete sequence determined by the
parameters of the nonlinear system (1.2). For a given N ≥ 0 we define the pseudo-
equilibrium associated to N as

ppseudo(v) := Ñe−
(v−bN)2

2

∫ VF

max(v,VR)

e
(w−bN)2

2 dw, with Ñ =
1

I(N)
. (1.7)

This is just an equilibrium for the linear version of equation (1.2), where the dependence
of h on N(t−d) is “frozen” at a certain value N . The constant Ñ guarantees unit mass:∫ VF

−∞ ppseudo(v) dv = 1. The profile ppseudo is an equilibrium of the NNLIF system (1.2) if
and only if and only if Ñ = N , that is, if and only if NI(N) = 1.

Our guiding idea is that for a large delay d, the NNLIF system (1.2) behaves almost
as a linear system in time intervals of length d. Assume that we start with a constant
initial condition on [−d, 0], which has a firing rate N0,∞. Then the NNLIF system is
exactly linear on [0, d]; d is large, we expect the solution at t = d to be close to the
linear equilibrium associated to a fixed firing rate N0,∞, that is, the pseudo-equilibrium
associated to a certain firing rate N1,∞. This corresponds to taking N = N0,∞ and
Ñ = N1,∞ in (1.7). On the time interval [d, 2d], if on [0, d] the firing rate has remained
close to N1,∞, we expect the solution to again behave linearly, and approach another
pseudo-equilibrium with firing rate N2,∞. Iterating this we define a sequence of pseudo-
equilibria determined solely by the initial value N0,∞ (and the given parameters VR,
VF , b). We are able to rigorously prove that this sequence represents the behaviour of
the system with long delays for the case of small b (see Section 3), but we are unable
to do so for general values of b. However, we present strong numerical evidence that
this sequence does represent the overall behaviour of the system (cf. Section 4). In
particular, this sequence shows periodic behaviour for b negative enough; converges to
the stable equilibrium of (1.2) in the region where solutions (1.2) do the same; and
approaches a plateau state when solutions to (1.2) are expected to do this.

Let us describe this plateau state more closely, since it is also an important evidence
for the usefulness of the pseudo-equilibria sequence. Recently, in [37] we numerically
observed the formation of a new profile, which describes networks with uniformly dis-
tributed membrane potentials between the reset value VR and the threshold value VF .
We called these states “plateau” distributions. These profiles appear in two situations:
1) strongly connected systems (high connectivity parameter b) with synaptic delay
d > 0, and 2) systems with b = VF − VR, without delay (d = 0) or with very small
transmission delay value. Numerically we observe that plateau states appear to be re-
lated to pseudo-equilibria in the following way: Figure 1 shows the comparison of the
plateau distributions found for b = 1.5 (left plot) and b = 2.2 (right plot), with delay
transmission, and several pseudo-equilibria. There is a high coincidence between the
plateau distributions and the profiles (1.7) as N increases. Furthermore, on the way to
the plateau state, the dynamics of the particle system appears to pass through pseudo-
equilibria of the form (1.7) as N increases. For b = 1.5 the system (1.2) has two steady
states, and it can evolve towards a plateau distribution (shown on the left plot) if the
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initial condition is far from the stationary state with lowest firing rate. For b = 2.2
there are no stationary solutions and the system evolves towards a plateau distribution.
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Figure 1: Comparison of “plateau” distributions with profiles (1.7). Graphs
taken from [37]. Left: b = 1.5. Right: b = 2.2.

This behaviour suggests that we may think of the pseudo-equilibria sequence as a
tool to analyse the asymptotic behaviour of the system when a large synaptic delay is
taken into account. The aims of this work are twofold:

1. to analyse the sequence of pseudo-equilibria determined by the associated discrete
system, and

2. to establish a connection between the long-term behaviour of the pseudo-equilibria
sequence and the solutions of the nonlinear system (1.2).

Organisation of the paper. In Section 2 we define and analyse the firing rate and
the pseudo-equilibria sequences. In Section 3 we prove the exponential convergence
to equilibrium for the nonlinear system (1.2) for small connectivity parameter b and
large delay d, by “following” the sequence of pseudo-equilibria, under some technical
assumptions on the linear systems. A similar result was previously established through
the use of the entropy method, and we present here different strategy which considers
the relative entropy to the sequence of pseudo-equilibria. This approach looks promising
to study a broader range of phenomena (such as periodic solutions or the approach of
the plateau state), and served as a catalyst for the main ideas in our paper [43], where
we prove local convergence results depending on the values of the transmission delay
and the connectivity parameter. In Section 4 we provide the numerical evidence to
support the connection between the sequence of pseudo-equilibria studied in Section 2
with the nonlinear system. This numerical work also suggests several conjectures on
the possible extension of the results of Section 3 to cases with an arbitrary value of the
parameter b. Section 5 is devoted to conclusions, discussion and possible extensions of
our work. We also include an appendix with some of the technical results needed to
prove Theorem 2.5.
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2 Firing rate and pseudo-equilibria sequences
This section deals with the study of sequences of firing rates, {Nk,∞}k≥0, and pseudo-
equilibria, {pk,∞}k≥0. Let us first give their definition:

Definition 2.1 (Firing rate sequence). Given b ∈ R, VR < VF ∈ R, and I the function
(1.6), the firing rate sequence {Nk,∞}k≥0 associated to an initial firing rate N0,∞ > 0 is
recursively defined by

Nk+1,∞ :=
1

I(Nk,∞)
k = 0, 1, 2, . . . (2.1)

This sequence is well defined since I(N) > 0 for all N > 0. Associated to a firing rate
sequence {Nk,∞}k≥0 we define the following pseudo-equilibria sequence:

Definition 2.2 (Pseudo-equilibria sequence). Given a firing rate sequence {Nk,∞}k≥0

its associated pseudo-equilibria sequence is the sequence

pk,∞(v) = Nk,∞e
−
(v−bNk−1,∞)

2

2

∫ VF

max(v,VR)

e
(w−bNk−1,∞)

2

2 dw, k = 1, 2, . . . (2.2)

The behaviour of these sequences depends only on the values of the connectivity
parameter b, the diffusion coefficient a (which we consider to be 1), the reset potential
VR and the threshold potential VF . Their definition is completely detached from the
dynamics of the nonlinear system (1.2).

In the following theorems we show the monotonicity of the firing rate sequence
{Nk,∞}k≥0, in terms of the number of solutions to the implicit equation

NI(N) = 1, with 0 ≤ N. (2.3)

We have denoted the unknown in Equation (2.3) by N and hope that it will not cause
any confusion with the firing rate of the nonlinear system (1.2). In this section we never
consider the system (1.2), since we are only concerned with the behaviour of the firing
rate sequence.

The number of solutions to Equation (2.3) was studied in [24]. Analytically it was
shown that for b < 0 or for a small positive value of b there is only one solution, there is
no solution if b > 0 is large, and there are at least two for intermediate positive values of
b. The proof is based on the study of the monotone function 1/I(N) (increasing if b > 0
and decreasing if b < 0). However, rigorously proving the exact number of solutions
in the excitatory case (b > 0) is not easy, due to the complexity of I. Numerically we
observe that for positive b there are a maximum of two solutions, and at the value of
b where the equation switches from having two solutions to none the function 1/I(N)
has slope equal to 1 and positive second derivative (see right plot of Figure 2). These
are the scenarios we consider in the following theorem for the case b > 0:

Theorem 2.3 (Monotonicity of the firing rate sequence {Nk,∞}k≥0 for excitatory net-
works). Let us consider 0 < b and a firing rate sequence {Nk,∞}k≥0 (as given by Defi-
nition 2.1).

1. If Equation (2.3) has a unique solution N∗ then:
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(a) If N 7→ 1/I(N) crosses the diagonal N 7→ N (in the sense that N < 1/I(N)
for N < N∗ and 1/I(N) < N for N∗ < N), then:

• For N0,∞ ≥ N∗, the sequence {Nk,∞}k≥0 is decreasing and tends to N∗.
• For N0,∞ ≤ N∗, the sequence {Nk,∞}k≥0 is increasing and tends to N∗.

(b) If N 7→ 1/I(N) stays on one side of the diagonal N 7→ N (in the sense that
N < 1/I(N) for all N ̸= N∗), then:

• For N0,∞ > N∗, the sequence {Nk,∞}k≥0 diverges.
• For N0,∞ ≤ N∗, the sequence {Nk,∞}k≥0 is increasing and tends to N∗.

2. If Equation (2.3) has no solutions, then {Nk,∞}k≥0 diverges.

3. If Equation (2.3) crosses the diagonal N 7→ N at exactly two points N∗
1 < N∗

2 (in
the sense that 1/I(N) > N for N < N∗

1 , 1/I(N) < N for N∗
1 < N < N∗

2 , and
1/I(N) > N for N > N∗

2 ) then:

• If N0,∞ ≤ N∗
1 then {Nk,∞}k≥0 is an increasing sequence which tends to N∗

1 .

• If N∗
1 ≤ N0,∞ ≤ N∗

2 then {Nk,∞}k≥0 is a decreasing sequence which tends to
N∗

1 .

• If N∗
2 < N0,∞ then {Nk,∞}k≥0 diverges.

Proof. The function I (see (1.6)) is a C∞(0,∞) function, which was studied in the proof
of [24, Theorem 3.1], and can be rewritten as I(N) =

∫∞
0
e−s2/2e−sbN esVF −esVR

s
ds. Its

k-th order derivative is

I(k)(N) = (−b)k
∫ ∞

0

sk−1e−s2/2e−sbN
(
esVF − esVR

)
ds, (2.4)

and for b positive:

• 1
I(N)

is an increasing function.

• 1
I(0)

<∞.

• limN→∞
1

I(N)
= ∞.

The firing rate sequence is a solution to the recursive equation

Nk+1,∞ = f(Nk,∞), f : R+
0 → R+, f(x) :=

1

I(x)
, (2.5)

where R+ := {x ∈ R | x > 0}, R+
0 := {x ∈ R | x ≥ 0}, and we have seen that f is an

increasing function. The behaviour of this type of discrete system is well known: its
solutions are monotonic, and either diverge or converge to an equilibrium of the system.
With the hypotheses of the theorem we have the following possibilities, since f(0) > 0:

• In case 1(a),

– N < f(N) for N < N∗.

– f(N) < N for N∗ < N .
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• In case 1(b), N < f(N) for N ̸= N∗.

• In case 2 we have N < f(N) for all N ≥ 0, since 0 < f(0).

• In case 3,

– N < f(N) for N ∈ [0, N∗
1 ) ∪ (N∗

2 ,+∞).

– f(N) < N for N ∈ (N∗
1 , N

∗
2 ).

– N < f(N) for N ∈ (N∗
2 ,+∞).

In cases 1 and 3, this is just part of the hypotheses of the result; in case 2 this is a
consequence of f(0) > 0, and the facts that f is continuous and (by assumption in case
2) does not touch the diagonal.

1. If the initial condition is taken in an interval in whichN < f(N) then the sequence
is increasing, because Nk,∞ < f(Nk,∞) = Nk+1,∞.

2. If the initial condition is taken in an interval in which f(N) < N then the sequence
is decreasing, because Nk+1,∞ = f(Nk,∞) < Nk,∞.

Whenever the sequence is decreasing, it is bounded below by a constant solution of
Equation (2.5) and therefore converges to it (because there are no more equilibria in
that interval). If the sequence is increasing, it either converges to an equilibrium, if
bounded, or diverges.

Remark 2.4. As a consequence of the convergence of the firing rate sequences, given in
Theorem 2.3, it follows:

1. If N∗ is the only solution to Equation (2.3), then:

(a) In case 1.(a) of Theorem 2.3, d
dN

1
I(N)

|N∗ ≤ 1.

(b) In case 1.(b) of Theorem 2.3, d
dN

1
I(N)

|N∗ = 1.

This behaviour is shown in plot on the right of Figure 2 with b = 0 or b = 0.5 for
the first case and b = 2.1 the second case.

2. If Equation (2.3) has two solutions: N∗
1 and N∗

2 (N∗
1 < N∗

2 ), then:

• 0 ≤ d
dN

1
I(N)

|N∗
1
≤ 1.

• 1 ≤ d
dN

1
I(N)

|N∗
2
.

This behaviour is shown in the plot on the right of Figure 2 with b = 1.5.

We analyse the inhibitory case (b < 0) in the following theorem, where two different
behaviours appear although in this case Equation (2.3) has only one solution.

Theorem 2.5 (Monotonicity of the firing rate sequence {Nk,∞}k≥0 for inhibitory net-
works). Assume b < 0 and consider a firing rate sequence {Nk,∞}k≥0. Then there exists
a value b∗ < 0 of the connectivity parameter b such that:

• If b∗ < b < 0, the unique solution N∗ to Equation (2.3) is asymptotically stable
regarding firing rate sequences.
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• If b < b∗, there exist two values N−, N+, 0 ≤ min(N−, N+) < N∗ < max(N−, N+),
such that the sequence {Nk,∞}k≥0 tends to the 2-cycle {N−, N+}.

Proof. Step 1: The sequence of firing rates is either convergent or asymptot-
ically 2-periodic. The proof, as in Theorem 2.3, is based on the study of the recursive
equation:

Nk+1,∞ = f(Nk,∞), f(x) :=
1

I(x)
, (2.6)

where the function I, defined in (1.6), is a C∞(0,∞) increasing function if b < 0 (see
(2.4) with k = 1). Therefore, for the inhibitory case, f : [0,+∞) →

[
0, 1

I(0)

]
since

the function 1/I is decreasing, and, with the possible exception of the initial datum,
N0,∞, all the other terms in the sequence fall within the interval

[
0, 1

I(0)

]
. Moreover, in

this case, Equation (2.3) has an unique solution, N∗, because 1/I(N) is a decreasing
continuous function which tends towards 0, and 0 < 1/I(0).

The behaviour of this type of discrete system is easy to study, because f is a de-
creasing function and the solutions are bounded; they tend to the unique equilibrium or
towards a 2-cycle. The proof of this result is as follows: denote by N∗ the equilibrium
of (2.6), and assume that N0,∞ ̸= N2,∞ (otherwise, the solution would be exactly a
2 cycle, or constantly equal to N∗ if N0,∞ = N2,∞ = N∗). Thus, using that f is a
decreasing function and F := f ◦ f is increasing:

• If N0,∞ < N2,∞, then N3,∞ = f(N2,∞) ≤ f(N0,∞) = N1,∞ and N2,∞ = F (N0,∞) ≤
F (N2,∞) = N4,∞. Therefore, by induction we prove that {N2k,∞}k≥0 is an increas-
ing sequence and {N2k+1,∞}k≥0 is a decreasing sequence.

• If N0,∞ > N2,∞, then N3,∞ = f(N2,∞) ≥ N1,∞ = f(N0,∞) and N2,∞ = F (N0,∞) ≥
N4,∞ = F (N1,∞). Therefore, by induction we prove that {N2k,∞}k≥0 is a decreas-
ing sequence and {N2k+1,∞}k≥0 is an increasing sequence.

Moreover:

• If N0,∞ ≤ N∗, then N∗ = f(N∗) ≤ f(N0,∞) = N1,∞ and N2,∞ = f(N1,∞) ≤
f(N∗) = N∗. Therefore, by induction we prove that 0 ≤ N2k,∞ ≤ N∗ ≤
N2k+1,∞ ≤ 1

I(0)
for k = 0, 1, 2, . . ..

• If N∗ ≤ N0,∞, then f(N0,∞) = N1,∞ ≤ N∗ = f(N∗) and f(N∗) = N∗ ≤ N2,∞ =
f(N1,∞). Therefore, by induction we prove that 0 ≤ N2k+1,∞ ≤ N∗ ≤ N2k,∞ ≤ 1

I(0)

for k = 0, 1, 2, . . ..

So that in either case, both sequences, {N2k,∞}k≥0 and {N2k+1,∞}k≥0, are monotonic
and bounded, hence convergent. Thus, considering

N− := lim
k→∞

N2k+1,∞ and N+ := lim
k→∞

N2k,∞,

we obtain, since f is a continuous function, that f(N+) = N− and there are two
possibilities:

1. N− = N+ = N∗, so that the system tends towards the equilibrium.
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2. N− ̸= N+, so that the system tends towards the 2-cycle {N−, N+}, where
min(N−, N+) < N∗ < max(N−, N+).

Step 2: Determination of b∗. The remainder of the proof concentrates on deter-
mining b∗, which must be the largest value at which N∗ is asymptotically stable for our
discrete iteration. When we need to emphasize the dependence of I on b we will use the
notation I(b,N) (and f(b,N) := 1/I(b,N)). We note that I is a decreasing function of
b, since

∂bI(b,N) = −N
∫ ∞

0

e−s2/2e−sbN
(
esVF − esVR

)
ds,

and consequently 1/I is increasing as a function of b (see Figure 2). Therefore, if
b1 < b2 < 0, then 1

I(b1,N)
< 1

I(b2,N)
and the solution to Equation (2.3) for b = b1, is less

than the solution for b = b2, that is, N∗
b1
< N∗

b2
, with N∗

b denoting the (unique) solution
to (2.3) for a given b ≤ 0. Alternatively, one can prove that N∗

b is increasing in b by
deriving implicitly in the equation N∗

b I(b,N
∗
b ) = 1 and observing that the derivative is

positive, as follows:
dN∗

b

db
=

−N∗
b ∂bI(b,N

∗
b )

I(b,N∗
b ) +N∗

b ∂NI(b,N
∗
b )

≥ 0.

Consequently, N∗
b is an increasing function bounded from below by 0, so it has a limit

when b tends to −∞. On the other hand, f(N) := limb→−∞ f(b,N) loses continuity at
N = 0, because f(0) > 0, while it vanishes for 0 < N < f(0). Therefore,

N
∗
:= lim

b→−∞
N∗

b = 0.

This is because if the limit was positive, N∗
> 0, then using the explicit expression of

I we get limb→−∞ f(b,N∗
b ) = 0, and therefore

0 = lim
b→−∞

f(b,N∗
b ) = lim

b→−∞
N∗

b = N
∗
> 0,

which is a contradiction.
(This was also proven in [32, Lemma 2.2]). Thus, in a certain sense, the system

“loses” its equilibrium when b tends to −∞, due to the loss of continuity of the function
1/I in the limit.

To determine whether or not the equilibrium of Equation (2.6), N∗
b , is asymptoti-

cally stable, we check whether |f ′(N∗
b )| is less than or greater than 1. With this aim,

we define

g(b) := f ′(N∗
b ) =

d

dN

1

I(N)

∣∣∣
N∗

b

=
−∂NI(b,N∗

b )

I(b,N∗
b )

2
= −N∗

b
2∂NI(b,N

∗
b ),

which is a continuous increasing function in (−∞, 0], due to the positivity of g′(b), as
proved in Lemma A.1. We note that limb→−∞ g(b) = −∞ and g(0) = f ′(N∗

0 ) = 0, thus
there exists b∗ such that g(b∗) = −1. Then, if b < b∗, thus g(b) < −1, which means
that N∗

b is unstable for the discrete iteration, while for b > b∗, g(b) > −1 and N∗
b is

stable. And as we proved above, if the equilibrium is unstable, the system tends to a
2-cycle.
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Remark 2.6. We do not know how to prove analytically some further details in Theorem
2.5, due to the difficulty of working with the function I: the global stability of the
equilibrium in the case b∗ ≤ b < 0, and the uniqueness of the two cycles, in the
case b < b∗. However, we can check both numerically. Figure 3 shows the function
F (N) = f ◦ f(N), for cases with b < b∗. F has only 3 fixed points, i.e., the equilibrium
N∗ and cycle {N−, N+} corresponding to each value of b. Moreover, the 2-cycles appear
as a bifurcation of the equilibrium, which is asymptotically stable for b = b∗, as this
value is the starting point for the formation of 2-cycles. We also note that the 2-cycle
{N−, N+} becomes

{
0, 1

I(0)

}
, approximately {0, 0.12}, when b tends to −∞, as N∗

b

tends to 0. For b > b∗ we observe an unique fixed point for F (N), corresponding with
the equilibrium N∗, so it is globally stable.

Remark 2.7. As a consequence of the convergence of the firing rate sequences, given in
Theorem 2.5, it follows:

1. If b∗ < b < 0, then −1 ≤ d
dN

1
I(N)

|N∗ < 0, for N∗ the only solution to Equation
(2.3).

2. If b < b∗, then d
dN

1
I(N)

|N∗ ≤ −1, for N∗ the only solution to Equation (2.3).

We have numerically estimated b∗ ≈ −9.4 (see Figure 3). The plot on the left of Figure
2 shows the function 1

I(N)
for b < −9.4 and for b > −9.4, where we can observe its slope

at N∗.
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Figure 2: Function 1
I(N)

(see (1.6)) for different values of the connectivity
parameter b.

We recall that the number of solutions to the Equation (2.3) gives us the number
of steady states of the nonlinear system (1.2). This number depends on the value of b
(see [24]). For the excitatory case (b > 0) there is only one steady state if b ≤ VF−VR. If
VF −VR < b there are two possibilities: there are at least two steady states (numerically
no more than two steady states have been observed), or, if b is large enough, there is not
steady states. The case b = VF −VR is very interesting because this is the limit value for
which the notion of physical solutions makes sense. Numerically this case was analysed
in [37] and without delay (d = 0) the particle system evolves to a plateau distribution,
if the initial condition is concentrated enough around VF . In a limit sense, this plateau
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Figure 3: Function F := f ◦ f with f(N) = 1/I(N) (see (1.6)) for different
(negative) values of the connectivity parameter b.

profile is a stationary state of the system for b = VF − VR. However, the system tends
to the unique steady state with bounded firing rate, if a large transmission delay is
considered. For the inhibitory case (b < 0) there is only one steady state. Therefore,
Theorems 2.3 and 2.5 can also be read in terms of the number of the steady states of
the nonlinear system (1.2).

Remark 2.8. Theorem 2.3 does not include the case with more than two equilibria, which
can be easily extended following the same strategy. For instance, if Equation (2.3) has
three solutions (i.e. the nonlinear system (1.2) has three steady states), N∗

1 < N∗
2 < N∗

3 ,
the sequence {Nk,∞}k≥0 tends to N∗

1 , if N0,∞ ∈ (0, N∗
2 ), and to N∗

3 , if N0,∞ ∈ (N∗
2 ,+∞).

In general, the behaviour of the sequence {Nk,∞}k≥0 depends on whether NkI(Nk) < 1
or 1 < NkI(Nk). In the first case the sequence is increasing, while in the second case the
sequence is decreasing. When the sequence is decreasing it converges to some solution
to Equation (2.3), while if the sequence is increasing it converges or diverges depending
on whether it is bounded by a solution to the implicit equation or not.

The following theorem shows that the pseudo-equilibria sequence {pk,∞(v)}k≥0 de-
scribed in (2.2) tends to a stationary solution p∞ of the nonlinear system (1.2) if its
related sequence {Nk,∞}k≥0 (see (2.1)) converges to a finite value N∞, which is the
firing rate of p∞.

Theorem 2.9. Consider any nonnegative sequence {Nk,∞}k≥0, and its related pseudo-
equilibria sequence {pk,∞(v)}k≥0 described in (2.2). Assume limk→∞Nk,∞ = N∞ < +∞.
Then there exists k0 ∈ N such that for all k ≥ k0 and all N ∈ R the following inequalities
hold:

∥pk+1,∞(v)− pk,∞(v)∥∞ ≤ CN∞ |Nk,∞ −Nk−1,∞|, (2.7)
∥∂vpk+1,∞(v)− ∂vpk,∞(v)∥∞ ≤ CN∞|Nk,∞ −Nk−1,∞|, (2.8)
∥pk+1,∞(v)− pk,∞(v)∥L2(φN ) ≤ CN∞|Nk,∞ −Nk−1,∞|, (2.9)

∥∂vpk+1,∞(v)− ∂vpk,∞(v)∥L2(φN ) ≤ CN∞|Nk,∞ −Nk−1,∞|, (2.10)

where CN∞ > 0 is a constant that depends only on N∞, b, VR and VF , and also on N
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in the case of (2.9)–(2.10). Similarly, for all k ≥ k0 and all N ∈ R,

∥pk,∞(v)− p∞(v)∥∞ ≤ CN∞|Nk−1,∞ −N∞|, (2.11)
∥∂vpk,∞(v)− ∂vp∞(v)∥∞ ≤ CN∞|Nk−1,∞ −N∞|, (2.12)
∥pk,∞(v)− p∞(v)∥L2(φN ) ≤ CN∞|Nk−1,∞ −N∞|, (2.13)

∥∂vpk,∞(v)− ∂vp∞(v)∥L2(φN ) ≤ CN∞|Nk−1,∞ −N∞|, (2.14)

with p∞ = p∞(v) the steady state of the nonlinear system (1.2) with firing rate N∞.

Remark 2.10. In other words, this result states that pseudo-equilibrium pk,∞ given in
(2.2), associated to a number Nk−1, depends continuously on Nk−1 in a wide variety
of norms including the Sobolev W 1,∞ norm and weighted L2 and H2 norms. We have
chosen to state it for a sequence, since it is the exact result which will be later used in
Section 3.

Proof. We recall the expression of the pseudo-equilibrium

pk,∞(v) = Nk,∞e
−
(v−bNk−1,∞)

2

2

∫ VF

max(v,VR)

e
(w−bNk−1,∞)

2

2 dw,

where Nk,∞ = I(Nk−1,∞)−1 and I (N) =
∫ VF

−∞ e−
(v−bN)2

2

∫ VF

max(v,VR)
e

(w−bN)2

2 dw dv. We
define

g(v,N) := e−
(v−bN)2

2

∫ VF

max(v,VR)

e
(w−bN)2

2 dw, h(v,N) :=
g(v,N)

I(N)
,

so that h(v,Nk−1,∞) = pk,∞(v) and h(v,N∞) = p∞(v) (since it must hold 1 = N∞I(N∞)).
Through a first-order Taylor expansion in N we can write the difference between two
consecutive elements of the sequence {pk,∞}k≥0 as

pk+1,∞(v)− pk,∞(v) = ∂Nh(v, ξk) (Nk,∞ −Nk−1,∞) ,

where ξk is a value located between Nk−1,∞ and Nk,∞. Due to the convergence of the
sequence Nk,∞, there exists k0 ∈ N such that Nk−1,∞ and Nk,∞ ∈ (N∞/2, 2N∞) for all
k ≥ k0. In particular, ξk ∈ (N∞/2, 2N∞) for all k ≥ k0. Therefore, it is enough to show
that

|∂Nh(v,N)| < CN∞ , (2.15)

uniformly in v ∈ (−∞, VF ] and N ∈ (N∞/2, 2N∞), with some constant CN∞ which
depends only on N∞, b, VR and VF . This would prove inequality (2.7).

By computing ∂Nh(v,N) we obtain

∂Nh(v,N) =
∂Ng(v,N)

I(N)
− I ′(N)

I(N)2
g(v,N). (2.16)

In order to show (2.15) it is enough to study each term: from the expression of g(v,N)

one sees that it is bounded as needed, since e−
(v−bN)2

2 and ve−
(v−bN)2

2 are uniformly
bounded in v ∈ (−∞, VF ] and N ∈ (N∞/2, 2N∞) ; I(N) is uniformly bounded below
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for N ∈ (N∞/2, 2N∞), and |I ′(N)| (which can be explicitly written) is bounded above
in the same interval. Finally, one can explicitly write ∂Ng(v,N),

∂Ng(v,N) = b(v − bN)g(v,N)− be−
(v−bN)2

2

(
e

(VF−bN)2

2 − e
(max(v,VR)−bN)2

2

)
,

and show it is also uniformly bounded in the needed range of v and N . This shows
(2.7). With a completely analogous calculation we prove (2.11), since

pk,∞(v)− p∞(v) = ∂Nh(v, ξk) (Nk−1,∞ −N∞) ,

for some ξk between Nk−1,∞ and N∞. By checking that ∥∂Nh(·,M)∥L2(φN ) is bounded
uniformly for M ∈ (N∞/2, 2N∞) we also prove (2.9), and very similarly (2.13).

For the derivatives with respect to v we write

∂vpk,∞(v) =
1

I(Nk−1,∞)
∂vg(v,Nk−1.∞) =: h̃(v,Nk−1,∞)

and
∂vpk+1,∞(v)− ∂vpk,∞(v) = ∂N h̃(v, ξk)(Nk,∞ −Nk−1,∞).

A similar analysis of ∂N h̃(v,N) proves the remaining points (2.8), (2.10), (2.12) and
(2.14).

In the inhibitory case, the firing rate sequence may converge to a 2-cycle (see Theo-
rem 2.5). We show the long-term behaviour of the pseudo-equilibria sequences in those
cases in the following theorem.

Theorem 2.11. Let us consider the firing rate sequence {Nk,∞}k≥0 given in (2.1),
and its related pseudo-equilibria sequence {pk,∞(v)}k≥0 described in (2.2). Assume the
pseudo-equilibria sequence {Nk,∞}k≥0 tends to the 2-cycle {N−, N+}. Then there exists
k0 ∈ N such that for all k ≥ k0 the following inequalities hold:

∥p2k,∞(v)− p2k−2,∞(v)∥∞ ≤ CN− |N2k−1,∞ −N2k−3,∞|, (2.17)

∥p2k+1,∞(v)− p2k−1,∞(v)∥∞ ≤ CN+|N2k,∞ −N2k−2,∞|, (2.18)

where CN− , CN+ > 0 depend on N− and N+, respectively, and b, VF and VR. Similarly,
for all k ≥ k0

∥p2k,∞(v)− p−(v)∥∞ ≤ CN−|N2k−1,∞ −N−|,

∥p2k+1,∞(v)− p+(v)∥∞ ≤ CN+|N2k,∞ −N+|,

where p−(v), p+(v) are pseudo-equilibria of the nonlinear system (1.2) (see (1.7)), with
p− associated to N+ and p+ associated to N−.

Proof. This is a direct consequence of Theorem 2.9, by considering the sequences
{N2k−1,∞}k≥1 and {N2k,∞}k≥0, which converge to N− and N+, respectively. The as-
sociated pseudo-equilibria sequences are then {p2k,∞} and {p2k+1,∞}, respectively, and
the statement is a consequence of Theorem 2.9 applied to them.

We point out that the behaviour of the pseudo-equilibria sequence is determined
by the limit of the firing rate sequence, in case it exists, for all b ∈ R. And there is a
relation between the nonlinear system (1.2) and that long-term behaviour:
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• In the excitatory case (b > 0) the pseudo-equilibria sequence {pk,∞(v)}k≥0:

– converges to the unique steady state of the nonlinear system (1.2), if b is
small.

– converges to the steady state with lower firing rate of the nonlinear system
(1.2), if the system has two stationary solutions and if {Nk,∞}k≥0 has finite
limit.

• In the inhibitory case (b < 0) the pseudo-equilibria sequence {pk,∞(v)}k≥0 tends
to the unique stationary solution p∞(v) of the nonlinear system (1.2), if b∗ < b.
Otherwise, if b < b∗, it tends to a 2-cycle {p−(v), p+(v)}, which are pseudo-
equilibria of the nonlinear system (1.2).

To prove the convergence of the pseudo-equilibria sequence we use the fact that the
limit of {Nk,∞}k≥0 is finite or is a 2-cycle, so it could not be used in case the sequence
diverges. However, in that case, it could be prove that the sequence of pseudo-equilibria
{pk,∞(v)}k≥0 tends to plateau distribution (point-wise in (−∞, VR) ∪ (VR, VF )).

In the following section we use Theorem 2.9 to prove the convergence to equilibrium
of solutions to the nonlinear system (1.2) in the weakly connected case, by following
the associated pseudo-equilibria sequence. As presented, this technique only works in
weakly connected networks, but it might be possible to use it for a wider range of b.

3 Convergence to equilibrium along the pseudo equi-
libria sequence for weakly connected networks

In this section we study the long-term behaviour of the nonlinear system (1.2), con-
sidering large transmission delay values, by following the pseudo-equilibria (2.2) for
weakly connected networks. To do this, we consider the solution to the Cauchy problem
associated with (1.2) (remember we assume a = 1):

∂tp(v, t) + ∂v [(−v + bN(t− d)) p(v, t)]− ∂2vp(v, t) = δ(v − VR)N(t),
N(t) = −∂vp(VF , t), for t ≥ 0,
p(0, v) = p0(v), and, N(t) = −∂vp0(VF ) t ∈ [−d, 0],

(3.1)

We view this solution as a sequence of functions, considering time intervals of length d.
Our initial condition is always a constant on [−d, 0], and we observe that the system
becomes linear for 0 ≤ t < d, since N(t− d) is constant. Therefore, for 0 ≤ t < d, the
Cauchy problem (3.1) behaves like a linear problem of the form

∂tp(v, t) + ∂v
[(
−v + bN

)
p(v, t)

]
− ∂2vp(v, t) = δ(v − VR)N(t),

N(t) = −∂vp(VF , t), t ≥ 0,
p(0, v) = p0(v), with N = −∂vp0(VF ) ≥ 0.

(3.2)

During that interval of time, [0, d), we obtain N(t), which appears in the drift term
of the following period of time with size d, [d, 2d). Proceeding in the same way for the
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Figure 4: Schematic representation of the solution to the Cauchy problem
(3.1) in time through the sequence pk(v, t) given by (3.3).

following time intervals [kd, (k + 1)d) with k = 2, 3, . . ., the nonlinear problem (3.1) is
equivalent to a sequence of linear problems of the type{

∂tp(v, t) + ∂v
[
h
(
v,N(t)

)
p(v, t)

]
− ∂2vp(v, t) = δ(v − VR)N(t),

N(t) = −∂vp(VF , t), t ≥ 0,

where N(t) is a known function. To better describe the idea consider the following
notation (see Figure 4):

pk+1(v, t) := p(v, t+ kd), with t ∈ [0, d] , v ∈ (−∞, VF ] and k = 0, 1, 2... (3.3)

In other words, pk+1(v, t) ≡ p(v, t̄), with t̄ := t+ kd ∈ [kd, (k + 1)d). Similarly,

Nk(t) := N(t+ kd), t ∈ [−d, 0], k = 0, 1, 2, . . .

Hence we write the nonlinear problem (3.1) in any interval (kd, (k + 1)d), as follows:
for t ∈ (0, d) and k = 1, 2, . . .{

∂tpk(v, t) + ∂v [(−v + bNk−1(t− d)) pk(v, t)]− ∂2vpk(v, t) = δ(v − VR)Nk(t),
Nk(t) = −∂vpk(VF , t), pk(VF ) = 0,

(3.4)

Its related stationary problem is given by{
∂v [(−v + bNk−1,∞) pk,∞(v)]− ∂2vpk,∞(v) = δ(v − VR)Nk,∞,

Nk,∞ = −∂vpk,∞(VF ), and
∫ VF

−∞ pk,∞(v) dv = 1,
(3.5)

whose unique solution is the pseudo-equilibria sequence (see (2.2))

pk,∞(v) = Nk,∞e
−
(v−bNk−1,∞)

2

2

∫ VF

max(v,VR)

e
(w−bNk−1,∞)

2

2 dw, (3.6)

given in terms of the firing rate sequence (2.1), with N0,∞ := −∂vp0(VF ).
Our purpose is to show that one may prove convergence to equilibrium of bounded

solutions p to the nonlinear system by following the sequence of pseudo-equilibria pk,∞.
For this we need to assume several properties of the linear system, which are reasonable
in view of our recent results in [43]. In order to describe these assumptions we consider
the space X given by

X := {u ∈ C(−∞, VF ] ∩ C1(−∞, VR] ∩ C1[VR, VF ] | u(VF ) = 0 and ∥u∥X <∞}, (3.7)

with
∥u∥X := ∥u∥∞ + ∥∂vu∥∞ + ∥u∥L2(φ) + ∥∂vu∥L2(φ) (3.8)
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and
φ(v) := exp

(
v2

2

)
, v ∈ (−∞, VF ].

This is the space of continuous functions on (−∞, VF ] which are C1 except possibly at
v = VR, where they must still have one-sided derivatives; and which are in the space H1

with the Gaussian weight φ (so they are strongly decaying functions for v → −∞). The
main merit of this space is that the firing rate −∂vp(t, VF ) is a continuous operator in
this norm. Our main assumptions on the associated linear equation are the following:

1. (Spectral gap.) The semigroup etL associated to the linear equation (3.2) has
a spectral gap in the space X. That is, there exist constants λ > 0, C ≥ 1 such
that for all initial conditions u0 ∈ X with zero integral, it holds that

∥etLu0∥X ≤ Ce−λt∥u0∥X for all t ≥ 0. (3.9)

We assume this property holds uniformly for any N̄ close to an equilibrium firing
rate N∞ of the nonlinear equation (1.2).

2. (Regularization property.) There exist constants λ > 0, C̃ ≥ 1 such that for
all initial conditions u0 ∈ L2(φ) with zero integral, the following inequality holds:

∥etLu0∥X ≤ C̃t−3/4e−λt∥u0∥L2(φ) for all t > 0. (3.10)

Again, we assume this property holds uniformly for any N̄ close to an equilibrium
firing rate N∞ of the nonlinear equation (1.2). We point out that the exponent
−3/4 here is the same as for the standard Fokker-Planck equation

∂tp = ∂2vp+ ∂v(vp).

Similar results to these assumptions are given in [43]. A proof of them can be given by
using the techniques developed there, but this is not the aim of this paper and we defer
a more detailed study of these spectral properties to a future work.

We will prove the following result:

Theorem 3.1. Take b ∈ R. Let us consider an initial condition p0 ∈ X for the
nonlinear system (1.2) such that the firing rate sequence {Nk,∞}k≥0 with initial condition
N0,∞ = −∂vp0(VF ) converges to a certain value N∞ > 0 (which must then satisfy
N∞I(N∞) = 1). Let p∞ be the stationary solution to (1.2) with firing rate N∞. Assume
the spectral gap and regularisation properties stated before this theorem. Let p = p(v, t)
be the solution to (1.2) with initial data p(v, t) = p0(v) for all v ∈ (−∞, VF ] and all
t ∈ [−d, 0]. Let us assume that there exists K > 0 such that

∥p(., t)∥X ≤ K for all t ≥ 0. (3.11)

Then there exist d0, b0, Q, µ > 0 such that the solution p to the nonlinear system (1.2)
with d > d0, |b| < b0, and initial condition p0 satisfies

∥p(., t)− p∞(.)∥X ≤ Qe−µt∥p0 − p∞∥X for all t ≥ 0. (3.12)

19



Remark 3.2. Assumption (3.11) in Theorem 3.1 merits an explanation. Our result
only gives the behaviour of solutions which are uniformly bounded in time (which is
consistent with convergence to equilibrium). It is known that solutions may blow up
if the delay d = 0, and when d > 0 we do not know whether there may be solutions
with diverging values of N(t) as t → +∞. Our result applies only to solutions whose
firing rate N(t) is uniformly bounded for all times. Once we know the firing rate N(t) is
bounded it may be possible to carry out regularisation estimates to show that ∥p(t, ·)∥X
is uniformly bounded for all times, but we assume the latter stronger condition to avoid
these technical details.

The proof of Theorem 3.1 is based on: 1) our spectral hypotheses on etL, 2) the
uniform boundedness hypothesis on ∥p(t, ·)∥X and 3) Theorem 2.9, which shows that

∥pk+1,∞ − pk,∞∥X ≤ CN∞|Nk,∞ −Nk−1,∞|, (3.13)

and, therefore ∥pk+1,∞ − pk,∞∥X → 0 as limk→∞Nk,∞ = N∞. We will also need the
following two elementary lemmas. The first one is a discrete version of the variation
of constants technique, which can be checked in a straightforward way and we give
without proof:

Lemma 3.3 (Discrete variation of constants). Let M be a linear operator on a certain
vector space E, and {bk}k≥0 any sequence in E. Then, given a0 ∈ E, the sequence

ak :=Mka0 +
k−1∑
i=0

Mk−i−1bi, k = 1, 2, . . .

is the (unique) solution to the linear equation

ak =Mak−1 + bk−1, k = 1, 2, . . . . (3.14)

The second lemma needed for the proof of Theorem 3.1 is a discrete version of
Gronwall’s Lemma.

Lemma 3.4 (Discrete Gronwall’s Lemma). If ϕk is a positive sequence and W ∈ R,
V ≥ 0 are constants such that ϕk ≤ W + V

∑k−1
i=0 ϕi for k ≥ 0, then ϕk ≤ WekV for all

k ≥ 0.

Proof. To prove the result we define the sequence ψk := W + V
∑k−1

i=0 ϕi for k ≥ 1 and
ψ0 := W . We compute de difference between two consecutive elements of that sequence
and then we write it down in terms of the sequence ϕk:

ψk − ψk−1 = V ϕk−1 ≤ V

(
W + V

k−2∑
i=0

ϕi

)
= V ψk−1,

which leads to
ϕk−1 ≤ ψk−1,

and
ψk ≤ (1 + V )ψk−1 =⇒ ψk ≤ (1 + V )k ψ0 = (1 + V )kW.

Then we have the result, since (1 + V ) ≤ eV :

ϕk ≤ (1 + V )kW < WekV .
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Proof of Theorem 3.1. The proof is based on the study of the nonlinear system (1.2) in
time intervals of size d, in which the system becomes linear. To do that we start with
the nonlinear system (3.4) for t ∈ (0, d) and k = 1, 2, . . ., and define

uk(v, t) := pk(v, t)− pk,∞(v),

the differences to the pseudo-equilibria pk,∞(v). With this notation we rewrite the
nonlinear system (3.4), splitting the equation in a linear part plus a nonlinear part:

∂tuk(v, t) = Lk−1uk(v, t) + b(Nk−1,∞ −Nk−1)∂vpk(v, t),

with the same Dirichlet boundary condition as before and defining the linear operator
Lk−1, associated to the firing rate Nk−1,∞, acting on u = u(v), by

Lk−1u := ∂v(v − bNk−1,∞u) + ∂2vu+ δ(v − VR)Nu,

where Nu := −∂vu(VF ) emphasises that Nu is the firing rate associated to u. By
Duhamel’s formula we get

uk(v, t) = etLk−1uk(v, 0) + b

∫ t

0

(Nk−1,∞ −Nk−1(s))e
(t−s)Lk−1∂vpk(v, s) ds.

Taking theX norm we note that |Nk−1,∞−Nk−1(t)| ≤ ∥uk(., t)∥X , and using the spectral
gap of Lk−1 in X:

∥etLk−1u0∥X ≤ Ce−λt∥u0∥X , 1 ≤ C,

we have, for all t ≥ 0:

∥uk(., t)∥X ≤ Ce−λt∥uk(., 0)∥X + |b|
∫ t

0

|Nk−1,∞ −Nk−1(s)| ∥e(t−s)Lk−1∂vpk(., s)∥X ds

≤ Ce−λt∥uk(., 0)∥X + |b|
∫ t

0

∥uk−1(., s)∥X ∥e(t−s)Lk−1∂vpk(., s)∥X ds

≤ Ce−λt∥uk(., 0)∥X + C̃|b|
∫ t

0

e−λ(t−s)(t− s)−3/4∥uk−1(., s)∥X∥∂vpk(., s)∥L2(φ)ds,

where in the last inequality we used third hypothesis of the theorem, written in this
particular case as

∥e(t−s)Lk−1∂vpk(., s)∥X ≤ C̃(t− s)−3/4e−λ(t−s)∥∂vpk(., s)∥L2(φ).

Remark 3.5. We are considering the same value of λ for all the spectral gaps of the
operators Lk with k = 1, 2, ..., because these values come from the Poincare’s like
inequality used to prove the spectral gap of the linear equation in the space L2

(p−1
∞ )

(see [24, Appendix]). These values depend only on the tails of the pseudo-equilibria
pk,∞ and, considering that they convergence to p∞ (see Theorem 2.9)), we may take a
value λ valid for all k.

After this we can bound the L2(φ) norm of the derivative of pk as

∥∂vpk(., t)∥L2(φ) ≤ ∥∂vuk(., t)∥L2(φ) + ∥∂vpk,∞(.)∥L2(φ) ≤ ∥uk(., t)∥X + C̄,
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with C̄ > 0, and, using (3.11), and denoting the new constant again by K, we have
∥uk(., s)∥X ≤ K < ∞ ∀s ∈ [0, t] ⊆ [0, d]. Thus, with the constant out of the integral
and renaming it as Cb := C̃|b|

(
K + C̄

)
, we get

∥uk(., t)∥X ≤ Ce−λt∥uk(., 0)∥X + Cb

∫ t

0

e−λ(t−s)(t− s)−3/4∥uk−1(., s)∥X ds. (3.15)

Taking into account that pk(v, 0) = pk−1(v, d), uk−1(v, d) := pk−1(v, d)− pk−1,∞(v), and
uk(v, 0) := pk(v, 0)−pk,∞(v), we can write uk(v, 0) = uk−1(v, d)+(pk−1,∞(v)− pk,∞(v)),
which, taking the X norm in v, leads to

∥uk(., 0)∥X ≤ ∥uk−1(., d)∥X + δk

with δk := ∥pk−1,∞ − pk,∞∥X . By using the definitions fk(t) := eλt∥uk(., t)∥X and
ϵ(t) := e−λt, we rewrite the previous inequality as fk(0) ≤ e−λdfk−1(d) + δk, and (3.15)
as

fk(t) ≤ Cϵ(d)fk−1(d) + Cδk + Cb

∫ t

0

fk−1(s)(t− s)−3/4 ds, (3.16)

which can be rewritten, in terms of the linear operators

Afk(t) := Cfk(d), Bfk := Cb

∫ t

0

fk(s)(t− s)−3/4 ds and hfk−1 := ϵ(d)Afk−1,

in the following way:

fk ≤ (ϵ(d)A+B) fk−1 + Cδk = hk−1 +Bfk−1 + Cδk, (3.17)

To prove the decay of ∥uk(., t)∥X we shall proceed in two steps: first we study the
solution to fk ≤ hk−1 + Bfk−1 and prove its convergence. Secondly we extend the
converge to the complete sequence fk, using that δk → 0 (see Theorem 2.9 and previous
comments before the proof).

First step: Study of the recurrence fk ≤ hk−1 +Bfk−1.
We note that if fk satisfies the inequality fk ≤ hk−1 +Bfk−1, then fk ≤ xk, where xk is
the solution to the recursive equation xk = hk−1+Bxk−1 with initial condition xk = f0.
Then, using the Lemma 3.3 to xk we obtain

fk ≤ Bkf0 +
k−1∑
i=0

Bk−i−1hi.

Therefore we need to estimate Bkf0 for k = 1, 2, . . .. After some computations we
obtain

Bk(f0) ≤ ∥f0∥∞t
k
4

(
CbΓ

(
1
4

))k
Γ(1 + k

4
)
, 0 < t < d,

by using ∫ t

0

sn(t− s)−3/4 ds = tn+
1
4β(n+ 1,

1

4
), n = 1, 2, . . .
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and properties of the Gamma, Γ, and Beta, β, functions, as

Bk(f0) ≤ (Cb)
k∥f0∥∞t

k
4

k−1∏
i=0

β

(
1 +

k

4
,
1

4

)
= (Cb)

k∥f0∥∞t
k
4

k−1∏
i=0

Γ(1 + k
4
)Γ(1

4
)

Γ(1 + k+1
4
)
.

Then we use the ∥.∥∞ norm in t ∈ [0, d] so that the following inequality holds:

∥fk∥∞ ≤
(
d1/4CbΓ

(
1
4

))k
Γ(1 + k

4
)

∥f0∥∞ +
k−1∑
i=0

(
d1/4CbΓ

(
1
4

))k−i−1

Γ
(
1 + k−i−1

4

) ∥hi∥∞,

or, equivalently

∥fk∥∞ ≤
(
d1/4CbΓ

(
1
4

))k
Γ(1 + k

4
)

∥f0∥∞ + Cϵ(d)
k−1∑
i=0

(
d1/4CbΓ

(
1
4

))k−i−1

Γ
(
1 + k−i−1

4

) ∥fi∥∞. (3.18)

Bearing in mind that C > 1, we consider C (d1/4CbΓ(1/4))
k

Γ(1+ k
4
)

≤ ηb,de
−k for an appropriate

ηb,d, which can be computed by finding the maximum of the function

g(k) :=

(
d1/4CbeΓ(1/4)

)k
Γ(1 + k

4
)

=
Mk

Γ(1 + k
4
)

with M := d1/4CbeΓ(1/4).

We take the logarithm of g(k) and then we find a quantity that bounds the maximum
of function g(k) by approximating the gamma function using the Stirling’s formula

Γ

(
1 +

k

4

)
≥
(
k

4

) k
4

e−
k
4 ,

such that
log g(k) ≤ k logM +

k

4
− k

4
log

k

4
=: ĝ(k).

Studying the first derivative of function ĝ(k) we compute the maximum, given by
ĝ(4M4) and then bounding the function g(k) as g(k) ≤ eM

4 . This procedure allows us
to define the quantity ηb,d as

ηb,d := CeM
4

= Ced(|b|C̃(C̄+K)eΓ(1/4))
4

= Ced|b|
4Ĉ ,

having unified all constants in the exponential as Ĉ := C̃(C̄ +K)eΓ(1/4).

Now we can rewrite expression (3.18) through the following inequality:

∥fk∥∞ ≤ ηb,de
−k∥f0∥∞ + ηb,dϵ(d)

k−1∑
i=0

e−(k−i−1)∥fi∥∞.

Finally, if we define ϕk := ek∥fk∥∞, W := ηb,d∥f0∥∞ and V := ηb,dϵ(d)e, we can write
the previous inequality as

ϕk ≤ W + V

k−1∑
i=0

ϕi. (3.19)
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Now we use the discrete Gronwall’s Lemma 3.4 to turn the equation (3.19) into the
following ϕk ≤ WekV , which leads to

∥fk∥∞ ≤ Wek(V−1). (3.20)

Equation (3.20) implies that V must be less than 1 in order to obtain convergence to 0
of the sequence ∥uk(t)∥X , so that the condition over the delay is the following:

d >
1 + log (ηb,d)

λ
=

1 + logC + Ĉdb4

λ
,

or, equivalently

d >
1 + logC

λ− Ĉb4
(3.21)

This inequality requires a smallness condition on b, since λ− Ĉb4 needs to be positive.
That is: we can take d satisfying (3.21), only if |b|4 < λ/Ĉ.

Second step: Study of fk ≤ hk−1 +Bfk−1 + Cδk.
We write inequality (3.17) in terms of linear operator M := (ϵ(d)A+B) as

fk ≤ Mfk−1 + Cδk.

Using the Lemma 3.3 as before, we get to

fk ≤ Mkf0 +
k∑

i=0

Mk−iCδi. (3.22)

We already know from equation (3.20) that ∥Mkf0∥∞ ≤ C∥f0∥∞ek(V−1), so that we
can take norm infinity in equation (3.22) and then write it as

∥fk∥∞ ≤ Cek(V−1)∥f0∥∞ + C2

k∑
i=0

e(k−i)(V−1)∥δi∥∞. (3.23)

Then, the condition to obtain convergence to 0 of fk as k → ∞ is given by two different
requirements. First, as before, condition (3.21) should be satisfied. Secondly, ∥δk∥∞
has to converge to 0 as k → ∞, as proven in Theorem 2.9.

Remark 3.6. Convergence to the equilibrium was also proven using the entropy method
in [29, Theorem 5.3] in weakly connected networks. In particular, the required smallness
of the connectivity parameter was 8b2eλd ≤ ϵ/N∞, for ϵ a small constant, depending on
N∞ and constants of Sobolev injection of H1(I) in L∞(I) (I is a small neighbourhood
of VR). Our bound is b4 < λ/Ĉ. With this strategy we obtain the convergence for any
large d if the smallness of b is satisfied. This could also be compared to a similar result
in [43, Theorem 4.1].
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4 Numerical results: Global perspective on the long-
time behaviour of the delayed NNLIF model

In this section we illustrate numerically the relationship between the discrete pseudo
equilibrium model (2.2) and the highly delayed NNLIF model (1.2). We give numerical
evidence that the long-time behaviours of the two models are closely related. In partic-
ular, in the long run, we can predict the behaviour of the nonlinear system by knowing
the behaviour of the discrete system, which was studied in Section 2.

The numerical approximation of equation (1.2) has been carried out by means of
a fifth order finite difference flux-splitting WENO scheme [46] for the advection term,
a standard second order finite differences for the diffusion term, and an explicit third
order TVD Runge-Kutta method for the time evolution. This scheme has been used
previously to simulate NNLIF models [28] and a detailed explanation of the scheme
can be found in [2]. Other numerical schemes, such as those based on a Scharfetter-
Gummel reformulation, have also been used to carry out numerical simulations of this
model [30, 32].

Our discretisation is composed of a mesh in voltage with vi = vmin + i∆v, i =
0, 1, 2, ..., nv with a suitable minimum value vmin, which ensures the mass is approx-
imately 0 to the left of vmin; and a threshold value VF as the maximum mesh value
vnv . The mesh in time is given by tj = j∆t, j = 0, 1, 2, ...., nt where the value of ∆t is
chosen so that it complies with the CFL condition imposed for a correct approximation
of the drift and diffusion terms

∆t < min

(
a(∆v)2

2
,

CCFL∆v

max |bN(t− d)− v|

)
.

The reset value VR is one of the nodes of the mesh in voltage, and the delta function
in the right term of (1.2) is approximated by a very sharp Maxwellian centered in VR,
of the form:

m(x) =
1√
2πσ

e−
(x−VR)2

2σ2 , (4.1)

with σ = 10−6, which is normalized by integrating it in our mesh and setting the integral
to 1. The boundary conditions are impose at every time step by setting p(v0) = 0 and
p(vnv) = 0. Furthermore, we ensure that the values of the probability distribution
near v0 are numerically 0, so that there are no issues arising from forcing the boundary
condition with the size of the mesh.

The initial conditions we have considered for these simulations are approximations
of:

• The pseudo-equilibria profiles (see (2.2))

p(v) = Ne−
(v,bN)2

2

∫ VF

max(v,VR)

e
(w−bN)2

2 dw, (4.2)

fulfilling the condition
∫ VF

−∞ p(v) dv = 1, with the particular cases

p−(v) = N−e−
(v−bN+)

2

2

∫ VF

max(v,VR)

e
(w−bN+)

2

2 dw, N− =
1

I(N+)
(4.3)

25



and

p+(v) = N+e−
(v−bN−)

2

2

∫ VF

max(v,VR)

e
(w−bN−)

2

2 dw, N+ =
1

I(N−)
, (4.4)

the 2-cycle of pseudo-equilibria sequence, given by the 2-cycle {N−, N+} of the
firing rate sequence.

• Double Maxwellians:

1√
8πσ

(e
−(v−µ)2

2σ2 + e
−(v+µ+2)2

2σ2 ) µ ∈ R, σ > 0. (4.5)

Three system parameters are fixed: a = 1, VR = 1 and VF = 2. The connectivity pa-
rameter b and the delay d will change depending on the simulation, displaying different
phenomena for this model.

We analyse in detail three different aspects: bi-stability between the lower equi-
librium and the plateau distribution for excitatory networks with two equilibria; the
emergence of periodic solutions for highly inhibitory systems; and the influence of the
delay value on the evolution in time of the nonlinear system, in relation with the be-
haviour of the pseudo-equilibria sequence. The rest of the system behaviour is well
represented by the above study, as we shall explain below.

The case with two equilibria: Bi-stability between the lower equilibrium and
the plateau distribution

We consider in this case the regime in which the implicit equation NI(N) = 1 has
two solutions (N∗

1 < N∗
2 ), which determine the stationary firing rates of the nonlinear

system (1.2). This regime corresponds to values of the connectivity parameter b between
VF − VR = 1 and approximately 2.3. Specifically, we take b = 1.5 for which N∗

1 ≈ 0.194
and N∗

2 ≈ 2.294, but we emphasise that other values of b in that range appear to show
an equivalent behaviour. For this connectivity value, Figure 5 shows the firing rate
sequence Nk,∞ (see (2.1)) for different initial conditions N0,∞. The behaviour of the
sequence was analysed in Theorem 2.3. Thus, we know that in that case (with two
equilibria) the firing rate sequence tends to N∗

1 or diverges, as we can see in Figure 5.

In Figure 6 we show that the behaviour of the discrete system is reproduced for the
nonlinear system. It is determined by the value of the initial firing rate

N0 := −∂vp0(VF ),

depending on the position with respect to N∗
1 and N∗

2 . The threshold value between
both regimes is N∗

2 ≈ 2.294: for a lower value of N0 the nonlinear system is seen to
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converge to N∗
1 , while for N0 > N∗

2 , the firing rate seems to diverge.
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Figure 5: Firing rate sequence Nk,∞ (2.1) with b = 1.5 and different values of
initial condition N0,∞. Solid and dashed straight horizontal lines represent equilibria
N∗

1 and N∗
2 respectively.
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In Figure 6 we consider two different initial conditions of the type (4.2), with the
respective values of N0 = 2.233348 and N0 = 2.365824, which serve as representatives of
two different regimes for the delayed nonlinear system: convergence to the low steady
state or formation of the plateau distribution, when considering transmission delay
d = 10. This illustrates bi-stability between the low steady state and the plateau
distribution, depending only on the initial condition (see [37] for a better understanding
of the plateau distribution). As we also mention in [37], no matter what the size of
the delay is, we shall find that the nonlinear system seems to behave according to the
pseudo-equilibria sequence. This appears to indicate that the long-term behavior of the
system can be decided only on the basis of the value of N0. In the upper graphs, we see
the time evolution of the firing rates and on the bottom, we see the shape of the voltage
distributions at the end of the two simulations (t = 220). When the system starts with
an initial condition whose N0 is less than N∗

2 , the firing rate convergences to N∗
1 (left

plot). However, if the system starts with N∗
2 < N0, then N(t) increases in time (right

plot). This behaviour is consistent with that of the firing rate and pseudo-equilibria
sequences described in Theorem 2.3; if N0,∞ = N0 is below the high stationary firing
rate N∗

2 then {Nk,∞}k≥0 converges to the lower one N∗
1 , and, if N0,∞ = N0 is higher

than N∗
2 then {Nk,∞}k≥0 diverges.
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Figure 6: Nonlinear system (1.2) with b = 1.5 and d = 10.
Top: Evolution on time of the firing rate, N(t), with initial conditions given by equation
(4.2) with N = 2.25, N = 2.233348, chosen to be smaller than N∗

2 (left) and N = 2.35,
N = 2.365824, greater than N∗

2 (right).
Bottom: Comparison of distributions p(v, t) at the end of the simulations (t = 220).
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We have compared the discrete and the nonlinear systems in Figure 7. Here we
have used the same simulations shown in Figure 6 for the nonlinear system, and we
have calculated the sequences {Nk,∞}k and {pk,∞}k by starting with the same initial
condition as for the simulations, N0,∞ = N0 = 2.233348 in the left plots and N0,∞ =
N0 = 2.365824 in the right ones. In the top plots we observe the comparison between
N(t) and {Nk,∞}k until t = 200, while in the bottom plots we show the comparison
between p(v, t = 20), p(v, t = 120) and the pseudo-equilibria p(v, t = 200) with p2,∞(v),
p12,∞(v) and p20,∞(v) respectively. We can observe that the delay d = 10 is large enough
so that the simulation results, both p(v, t) and N(t), almost completely coincide with
the elements of the pseudo equilibrium and firing rate sequences starting from the same
initial condition.

In [29] a global existence theory was developed for the nonlinear system (1.2) with
a transmission delay d > 0, by extending the results of [25]. So the sequence of pseudo-
equilibria suggests that the firing rate of the nonlinear system should diverge and the
theory tells us that this cannot happen in finite time. The only possibility is then that
N(t) diverges in infinite time, giving rise to the plateau distribution as N(t) grows.
This is precisely the behaviour seen in our simulations.

So that in cases where the firing rate sequence diverges, we expect the following to
be true: Let us consider 0 < b, an initial condition p0 ∈ X (and N(t) = −∂vp0(VF )
for t ∈ [−d, 0]) and p its related solution to the nonlinear system (1.2). Assuming that
the firing rate sequence {Nk,∞}k≥0, with initial value N0,∞ := −∂vp0(VF ) (see (2.1))
diverges, then the solution, p, to the nonlinear system (1.2) with transmission delay
d > 0 and initial condition p0 evolves to a plateau distribution, i.e, the membrane
potential of the system tends to be uniformly distributed between VR and VF .

The numerical results in Figures 5 and 6 and numerical experiments in the literature
also illustrate the behaviour of the nonlinear system when the firing rate sequence
converges. Theorems 2.3 and 2.5 give conditions on the initial value of the firing rate
sequence to converge to an equilibrium of the system (in both cases, excitatory and
inhibitory). In Figures 6 and 7 we see that the nonlinear system tends to an equilibrium
when the discrete system also tends to equilibrium. In the following experiments below
we shall see it for the inhibitory case and in [24, 28, 30, 37] it can also be seen for the
excitatory case with only one equilibrium.

So that in case where firing rate sequence converges, we expect the following to be
true: Let us consider b ∈ R, an initial condition p0 ∈ X (and N(t) = −∂vp(VF ) for
t ∈ [−d, 0]) and p its related solution to the nonlinear system (1.2). Assuming that
the firing rate sequence {Nk,∞}k≥0, with initial value N0,∞ := −∂vp0(VF ) (see (2.1))
converges to N∞ > 0, then there exists d0 > 0 large enough and Q, µ > 0, such that
the solution, p, to the nonlinear system (1.2) with transmission delay d > d0 and initial
condition p0 fulfills

∥p(., t)− p∞(.)∥X ≤ Qe−µt∥p0 − p∞∥X ∀t ≥ 0, (4.6)

where p∞ is the stationary solution to the nonlinear system (1.2) with firing rate N∞.
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Figure 7: Comparison between the nonlinear system (1.2) and the discrete
system with b = 1.5 and d = 10. Top: Comparison between the firing rate of
the approximated solution to the nonlinear equation, N(t) and the sequence of firing
rates Nk,∞. Bottom: Solutions of the nonlinear problem, p(v, t) at different times,
compared with the pseudo-equilibria pk,∞(v) which correspond to those times. Left:
initial condition given by equation (4.2) with N = 2.25, N = 2.233348, chosen to
be smaller than N∗

2 . Right: initial condition given by equation (4.2) with N = 2.35,
N = 2.365824, greater than N∗

2 .

Influence of the delay value on the excitatory nonlinear system behavior:
cases with one equilibrium and without equilibria

In this subsection we show results concerning the influence of the delay value on the
behavior of the nonlinear system. As we said before, the nonlinear system must follow
the behavior of the pseudo-equilibrium sequence when the delay is sufficiently large.
Although deciding when the delay is large enough depends on the parameters of each
simulation (especially depends on b and the initial condition of the firing rate N0). To
evaluate the influence of the delay on the nonlinear system we will use two situations
where at least numerically the behavior of the nonlinear system is well known. The first
is the case with b = 0.5 and therefore a single equilibrium, where we know that, if we
consider any delay d > 0 the system converges to its unique equilibrium. The second is
the case b = 2.2, where there are no equilibria and we know that any system with delay
tends to a plateau distribution, i.e., its firing rate grows in time but does not diverge
in finite time.
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Therefore we will see how the use of different values for the delay d does not change
the fundamental long-term behavior of the system, but makes the system in each delay
interval converges to the corresponding pseudo-equilibrium or not. Considering that
there is only one possible long-term behavior for each case, we will consider a single
initial condition in each case and different values for the delay.

First, in Figure 8 we observe the sequence of firing rates for both values of b, which
behave as mentioned before for the nonlinear system with delay: for b = 0.5, it converges
to the unique equilibrium regardless of the initial condition; for b = 2.2, it increases
in time. In Figure 9 we show the evolution on time of the firing rate of the nonlinear
system, N(t), with three different values of the delay. In the left plot, considering
b = 0.5, we note the need for a large delay (at least greater than 2) for the nonlinear
system to pass one by one through the pseudo-equilibria and even remain close to them
for some time. However we note from the right plot of Figure 9 the lower requirement
of high delay values to observe the nonlinear system stabilizing for a certain time in the
pseudo-equilibria, the necessary value being somewhere between 0.1 and 1.

If we consider these results together with those shown in the previous subsection
for b = 1.5, we notice an influence of the value of b on the value of d necessary for the
system to pass through its associated pseudo-equilibria. So that the smaller the value
of b is, the greater the value of d should be. This consideration is in accordance with
the stated in the proof of Theorem 3.1 (see (3.21)).
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Figure 8: Firing rate sequence Nk,∞ (2.1) with b = 0.5 and b = 2.2.
Left: b = 0.5 and different values of initial condition N0,∞ below and above the unique
equilibrium (gray dashed line). Right: b = 2.2. This is a case without equilibria.

31



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  5  10  15  20

d = 2
d = 4
d = 8

N
(t

)

t

 0

 5

 10

 15

 20

 25

 0  2  4  6  8  10  12

d = 1
d = 2
d = 4

N
(t

)

t

Figure 9: Time evolution of the firing rate, N(t), for the nonlinear system
(1.2) with different values of the delay and the connectivity parameter.
Left: b = 0.5 and different values of delay. Initial conditions are given by equation (4.2)
with N = 6. In this case there is unique equilibrium. Right: b = 2.2 and different
value of the delay. Initial conditions are given by equation (4.2) with N = 2. For
each delay value d, the plot shows the firing rate in a time range [0, 3d]. This is a
case without equilibria. In both plots dashed lines correspond with values of the firing
rate sequence (2.1) with b and N0,∞ (initial condition) given by the parameters of the
nonlinear system.

Periodic states in the highly inhibitory case with large delay

In this second experiment we discover conditions under which periodic solutions appear
in an inhibitory system. This phenomenon was observed numerically in [32]. We have
determined the value of parameter b for which the periodic states appear for large
delay, in the light of the behaviour of the sequence of pseudo-equilibria. Here we find
an important difference with the excitatory case, where the size of the delay is not
essential to determine whether the long-term behavior of the system conforms to that
described by the pseudo equilibrium sequence. For highly inhibitory systems the size
of the transmission delay is key. We recall that for the inhibitory case the nonlinear
system has only one steady state p∞, with its associated stationary firing rate N∞,
and the behaviour of the firing rate sequence Nk,∞ (the discrete system) is given by
Theorem 2.5: Nk,∞ tends to the equilibrium or to 2-cycle.
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Our first aim is to find appropriate values of the parameters for which periodic
states emerge. Then we shall focus on the study of periodic solutions. Figure 10
suggests which values we should choose for b in order to find periodic states. We see
that the bifurcation value b∗ is around the value b∗ ≈ −9.4 (in the sense of Theorem
2.5). Thus, the firing rate sequence Nk,∞ converges to N∞ if b∗ < b and tends towards a
2-cycle {N−, N+}, if b < b∗. This tells us that a sufficiently large delay will allow us to
observe the same behavior when simulating the nonlinear system. We must emphasize
that for all cases with b ≤ 0, the choice of initial condition N0,∞ does not appear to
change the long-term values of the firing rate sequence Nk,∞.
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Figure 10: Firing rate sequence Nk,∞ (2.1) for different values of b < 0 with
N0,∞ = 0.004. For b < −9, 4 the sequence tends towards a 2-cycle.

Due to the numerical study of the firing rate sequence, we have a good guess for
the values of b needed to find periodic states. Let us test different values of b and d
and observe the behavior of the nonlinear system. The following simulations have been
performed using as initial condition the profile given by Equation (4.2), with N = 0,
letting the system evolve up to t = 300. In the left plot of Figure 11 we show the
firing rate N(t) of the nonlinear system, with delay d = 10, testing three different
values of b to find stable oscillations. For b not sufficiently negative, the amplitude of
the oscillations is observed to be damped in time, suggesting a tendency towards the
single steady state of the system, as we showed earlier in the study of the sequence of
pseudo-equilibria (see Theorem 2.5). For a sufficiently negative value of b, as shown for
b = −12, we observe fairly stable oscillations in time. Thus, to be sure of the stability
of the solutions without the need for an excessively large delay, we will choose b = −14
for the following experiments. In the right plot of Figure 11 we can see, for b = −14,
how the choice of a large enough delay permits the system to evolve towards a periodic
state. This picture shows the evolution in time of the firing rate N(t) with different
delay values d. If d is small (d = 2) the firing rates tends to a stationary value, while if
d is large (d = 10, d = 25), its behaviour tends to be periodic. We must emphasize that,
when we do not set a sufficiently high delay, even if the value of b is very negative and
therefore the pseudo-equilibria sequence in Theorem 2.5 points to periodic behavior,
we shall observe convergence to the steady state, as it is shown with solid line in the
right graph, for d = 2. This is a strong difference between the inhibitory case with
periodic state and the excitatory case with plateau state, where the size of the delay
was irrelevant.
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Figure 11: Nonlinear system (1.2) Time evolution of the firing rate, N(t). The initial
condition is given by equation (4.2) with N = 0.
Left: Different values of the connectivity parameter b with delay d = 10. Right: Con-
nectivity parameter b = −14 with different values of the delay.

To study the periodic solutions of the highly inhibitory nonlinear system, we shall
set b = −14 and d = 25 for the rest of the simulations.

For these parameters, the steady state of the nonlinear system p∞(v) has firing rate
N∞ = 0.0396. When we study numerically the firing rate sequence Nk,∞ we find a
tendency towards the values N− = 0.0022 and N+ = 0.1136 in the sense of Theorem
2.5, as shown above in Figure 10 for b = −14.

In Figure 12 we compare the solution to the nonlinear system (1.2) with the 2-cycle,
{p−(v), p+(v)}, found in Theorems 2.5 and 2.11 for the succession of pseudo-equilibria
{pk,∞}k≥0. In the left graph we observe the comparison between the lower state p−(v)
and the approximated solution to the Fokker-Planck equation, starting with an initial
condition given by an approximation of p−(v). The times shown in the graphs have
been selected so that the distribution should coincide with p−(v), since they are even
multiples of the delay. In the graph on the right we see a similar comparison between
p+(v) and the approximated p(v), starting now with an approximation of p+(v), also
in the times they should overlap. We can see that in the left graph there is a small
difference between the values of p(v, t) for the different times represented with respect
to p−(v), but in the right graph the difference is practically negligible. This may be
due to the fact that the observed period for the periodic state is not exactly 2d, as can
be seen in the bottom plot, where we show the firing rate of the system, computed for
a simulation with initial condition given by Equation (4.2) with N = 0.
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Figure 12: Nonlinear system (1.2) with b = −14 and delay value d = 25.
Top left: Initial condition given by the pseudo equilibrium p−(v), from equation (4.3).
Approximated solution to the nonlinear system, p(v, t), at different times, compared
with p−(v). Top right: Initial condition given by the pseudo equilibrium p+(v), from
equation (4.4). Approximated p(v, t) at different times, compared with p+(v). Bottom:
Initial condition given by (4.2) with N = 0. Time evolution of the firing rate N(t).

Finally, in Figure 13, we analyse how the initial condition influences the evolution
of the nonlinear system. We consider four different initial conditions shown in the
top left graph: p−(v), p+(v) and two double Maxwellians distributions, as (4.5), with
µlow = −1, µhigh = 0.4 and σ = 0.5 in both cases. Our purpose is to provide evidence
that regardless of the initial condition, with these values of b and d, the system will
end up in a periodic state between the pseudo-equilibria p−(v) and p+(v), with pseudo-
stationary firing rates N− and N+. Nevertheless, it is worth noting how the initial
condition determines which pseudo equilibrium is going to be reached first, determining
the times at which the distribution p(v, t) will be close to p−(v) and p+(v).

In top right plot of Figure 13, we can see the evolution on time of the four firing
rates of the different simulations. We note that for t > 150 the firing rates of the
simulations starting with the low state and the double Maxwellians low (µlow = −1)
are synchronised, and the same is true for the firing rates of the simulations starting
with the high state and the double Maxwellians high (µhigh = 0.4). We also see, in the
bottom graphs, these synchronies of the corresponding distributions p(v, t), “passing”
through p−(v) and p+(v) at the same times (t = 250 left and t = 264 right), and
describing, in this way, a periodic behaviour.
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Figure 13: Nonlinear system (1.2) with b = −14 and d = 25 using four different
initial conditions. Top left: Initial conditions: we consider the low pseudo equilibrium
given by equation (4.3), the high pseudo equilibrium given by equation (4.4) and two
configurations of double Maxwellians given by equation (4.5), with µlow = −1, µhigh =
0.4 and σ = 0.5 in both cases. Top right: Comparison between the time evolution of the
firing rate N(t) depending on the initial condition. Bottom left and right: Distribution
p(v) at times t = 250 and t = 264 respectively, for both initial conditions.

The behaviours shown in Figures 11 and 12 agree with that of the firing rate and
pseudo-equilibria sequences described in Theorems 2.5 and 2.11; if b∗ ≈ 9.5 < b < 0 we
find convergence to the steady state, no matter what the initial condition is. If b < b∗

then d should be sufficiently large to find a periodic state. Otherwise, there will be
convergence to equilibrium. Finally, Figure 13 helps us to understand which are the
different options for the possible periodic states to which the nonlinear system tends,
as well as their dependence on the initial condition.

The periodic states seem to be determined by the solutions starting from one of
the two pseudo-equilibria. These solutions, when the delay is large, approach the other
pseudo equilibrium at the end of each delay period. In the next delay period they return
to the initial pseudo equilibrium, and so continue in the following periods of length d.
And they tends to a periodic state, which we can call p−∞(v, t) and p+∞(v, t), depending if
the initial condition is p−(v) or p+(v), respectively. Simulations lead us to suspect that
the period is 2d+ ϵ, because of the time it takes to move from one pseudo equilibrium
to another, and p−∞(v, t) = p+∞(v, t+ d+ ϵ/2).

To be more precise what we would expect to be demonstrated in the nonlinear
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system, in cases where the firing rate sequence tends to 2-cycle, i.e b < b∗, can be stated
as follows: Let us consider b < 0, an initial condition p0 ∈ X (and N(t) = −∂vp(VF ) for
t ∈ [−d, 0]) and p its related solution to the nonlinear system (1.2). Assuming that the
firing rate sequence {Nk,∞}k≥0, with initial value N0,∞ := −∂vp0(VF ) (see (2.1)) tends
to a 2-cycle, {N−, N+}, then there exist d0 > 0 large enough, such that the solution, p,
to the nonlinear system (1.2) with transmission delay d > d0 and initial condition p0
has the following behaviour:

1. If the initial datum, p0, is p−, the pseudo-equilibrium of the nonlinear system
(1.2) associated to N+ (see (4.3)), thus, the solution tends to a periodic function,
p−∞(v, t).

2. If the initial datum, p0, is p+, the pseudo-equilibrium of the nonlinear system
(1.2) associated to N− (see (4.4)), thus, the solution tends to a periodic function,
p+∞(v, t).

3. For a general initial condition N0 := −∂vp0(VF ):

(a) If N0 < N∞, thus, the system tends to p−∞(v, t+ δN0).

(b) If N∞ < N0, thus, the system tends to p+∞(v, t+ δN0),

with fixed δN0 ∈ R for each initial condition N0.

5 Conclusions
In this article we have introduced a discrete system which helps to better understand
the nonlinear leaky integrate and fire (NNLIF) model when large transmission delay
is considered. This discrete system is defined only in terms of the system parameters.
It allows us to build a firing rate and pseudo-equilibria sequences, that determine the
long-time behaviour of the nonlinear system (1.2). The advantage of the discrete model
lies in its simplicity. It allows for quick simulations that provide accurate information
about the NNLIF system, such as the estimated time to approach equilibrium, whether
the system tends toward a steady state, the possible appearance of periodic solutions
or plateau states, etc.

We have analytically studied the related discrete system. Our results give a global
view of the asymptotic behaviour of the discrete system for all possible values of the
connectivity parameter b. Analytically, the link with the nonlinear system (1.2) has
been proved in Theorem 3.1, but it only works if b is small enough, in which case
the system converges to its unique equilibrium. The long-term behaviour for weakly
connected networks was already known using the entropy dissipation method [27,29,40].
However, our strategy is different and new, as it describes the behaviour in relation to
the pseudo-equilibria sequence (2.2).

In addition to our analytical results we show a numerical study, that leads us to
think that the nonlinear system should behave as shown by the sequence of pseudo-
equilibria in all cases with high delay. The motivation for that conjecture is clear:
large delay means that the nonlinear system is piecewise linear and with enough time
to reach linear equilibria. The numerical results of this work describe the existence of
periodic states for the nonlinear system, in the case of large delay and very negative
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connectivity parameter, as has been observed previously by other authors [32]. We
offer range of values for the parameters b and d from which this phenomenon should
occur. Moreover, we can link the numerical part with our study of the sequence of
pseudo-stationary states, giving a plausible theoretical explanation for the existence of
these oscillations, and shedding some light on the subsequent analytical test of them,
which will be carried out in future work. We can also relate the study of the sequence of
pseudo-equilibria to the behaviour of the system for b positive. Finding here a possible
explanation for the emergence of the plateau state, observed in the previous work [37].

To conclude, we summarise the observed global behaviour of systems with large
delay in terms of its initial firing rate, N0 = −∂vp0(VF ):

1. Excitatory networks (0 < b) show two possibilities: they can evolve to:

(a) a stationary distribution, the single steady state or the steady profile with
lower firing rate, in case of two equilibria.

(b) the uniform distribution between VR and VF (plateau state). This case could
occur even with small transmission delay value, d, if there is no steady state
(b large), and in cases with two equilibria.

2. Inhibitory networks (b < 0) also show two possibilities: they can evolve towards:

(a) the stationary distribution, if b∗ < b.

(b) a periodic solution between the 2-cycle {p−, p+}, if b < b∗.
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A Appendix: Auxiliary calculations

We study the monotonicity of the function g(b) =
−∂N I(b,N∗

b )

I(b,N∗
b )

2 , used in the proof of
Theorem 2.5.

Lemma A.1. Let us consider b ∈ (−∞, 0] and N(b) the solution to the equation
NI(b,N) = 1, then, g(b) := −∂N I(b,N(b))

I(b,N(b))2
is an increasing function, defined in (−∞, 0].

Proof. We consider v(s) :=s−1e−s2/2e−sbN(b)
(
esVF−esVR

)
, w(s) :=e−s2/2e−sbN(b)

(
esVF−esVR

)
and u(s) := se−s2/2e−sbN(b)

(
esVF − esVR

)
, and rewrite the function I(b,N(b)) and some

of its useful derivatives as follows:

I(b,N(b)) =

∫ ∞

0

v(s)ds > 0,

∂NI(b,N(b)) = −b
∫ ∞

0

w(s)ds > 0, ∂bI(b,N(b)) = −N(b)

∫ ∞

0

w(s) < 0,

∂2NI(b,N(b)) = b2
∫ ∞

0

u(s)ds > 0, and ∂b∂NI(b,N(b)) = bN(b)

∫ ∞

0

u(s)ds−
∫ ∞

0

w(s)ds < 0,

In the following, to shorten the notation we write I instead of I(b,N(b)), N instead of
N(b) and N ′ instead of dN

db
(b). Thus

g′(b) =
−I∂b∂NI −N ′I∂2NI + 2∂NI∂bI + 2N ′ (∂NI)

2

I3
. (A.1)

We derive implicitly in I(b,N(b))N(b) = 1, and obtain N ′ = −∂bI
I2+∂N I

. Using it in (A.1)

g′(b) =
−I2∂b∂NI − ∂NI∂b∂NI + ∂bI∂

2
NI + 2I∂bI∂NI

I2(I2 + ∂NI)
.

The denominator is positive, so we conclude the proof if we prove that the numerator
is also positive.

g′(b)I2(I2 + ∂NI) = −
(∫ ∞

0

v(s)ds

)2(
bN

∫ ∞

0

u(s)ds−
∫ ∞

0

w(s)ds

)
+ b

∫ ∞

0

w(s)ds

(
bN

∫ ∞

0

u(s)ds−
∫ ∞

0

w(s)ds

)
−Nb2

∫ ∞

0

w(s)ds

∫ ∞

0

u(s)ds+ 2Nb

∫ ∞

0

v(s)ds

(∫ ∞

0

w(s)ds

)2

= −b
∫ ∞

0

v(s)ds

∫ ∞

0

u(s)ds+

(∫ ∞

0

v(s)ds

)2 ∫ ∞

0

w(s)ds+ b

(∫ ∞

0

w(s)ds

)2

,

where in the first and last terms we have used the equality N = I−1 =
(∫∞

0
v(s)ds

)−1.
It can be easily seen by observing the sign of the different parameters, the only negative
term is the last one, so that though the following Cauchy-Schwarz inequality∫ ∞

0

v(s)ds

∫ ∞

0

u(s)ds ≥
(∫ ∞

0

w(s)ds

)2

, as w(s) =
√
v(s)u(s),

we cancel the last term with the first one and show that d
db
∂Nf(b,N(b)) > 0 ∀ b < 0.
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