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Abstract

The Nonlinear Noisy Leaky Integrate and Fire (NNLIF) model is widely used to describe the dynamics

of neural networks after a diffusive approximation of the mean-field limit of a stochastic differential equation

system. When the total activity of the network has an instantaneous effect on the network, in the average-

excitatory case, a blow-up phenomenon occurs. This article is devoted to the theoretical study of the NNLIF

model in the case where a delay in the effect of the total activity on the neurons is added. We first prove

global-in-time existence and uniqueness of ”strong” solutions, independently of the sign of the connectivity

parameter, that is, for both cases: excitatory and inhibitory. Secondly, we prove some qualitative properties

of solutions: asymptotic convergence to the stationary state for weak interconnections and a non-existence

result for periodic solutions if the connectivity parameter is large enough. The proofs are mainly based on

an appropriate change of variables to rewrite the NNLIF equation as a Stefan-like free boundary problem,

constructions of universal super-solutions, the entropy dissipation method and Poincaré’s inequality.
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1 Introduction

Different scientific disciplines study the complex dynamics of neural networks. Over the last decades, mathe-

maticians have been particularly interested in providing specific models to understand the behavior of neurons.

One popular approach is to tackle qualitative properties of networks via partial differential equations by deriving

mean fields models from stochastic differential equations. Depending on the choice of the intrinsic dynamics

of neurons and on the type of synaptic coupling one may obtain different models: Fokker-Planck equations

for uncoupled neurons [21], population density models of IF neurons with jumps [17, 15] and Fokker-Planck

equations including conductance variables [25, 24], which are mean-field limits of integrate and fire networks

assuming Poisson approximations [26, 14, 13]; time elapsed models [22, 23, 20], recently derived as mean-field

limits of Hawkes processes [12, 11]; the mean-field McKean-Vlasov equations [19] related to the behaviour of

Fitzhugh-Nagumo neurons [18], etc.

In this article we assume that the neurons are described via their membrane potential and that when the

membrane potential reaches a critical or threshold value VF , the neurons emit an action potential, also called

spike, as a result of depolarization of their membrane, and their voltage values return to a reset value VR

(VR < VF ). More precisely, we consider the following PDE model (see [1, 2, 3] for its derivation):

∂ρ

∂t
(v, t) +

∂

∂v
[(−v + µ(t−D))ρ(v, t)]− a∂

2ρ

∂v2
(v, t) = N(t)δ(v − VR), v ≤ VF , (1.1)

where the function ρ(·, t) is the probability density of the electric potential of a randomly chosen neuron at time

t, D ≥ 0 is the delay between emission and reception of the spikes (synaptic delay), VR is the reset potential

after firing, and VF ∈ R is the threshold potential. The drift term µ and the firing rate N of the network are

given by

µ(t) = b̄+ bN(t) with N(t) = −a∂ρ
∂v

(VF , t) ≥ 0, (1.2)

where a > 0 is the diffusion coefficient, the parameter b̄ controls the strength of the external stimuli and can

be either zero, positive or negative, and b is the connectivity parameter. The neurons of the network can be

either excitatory or inhibitory. This property is reflected in the NNLIF equation through the sign of b: b > 0

for average-excitatory networks and b < 0 for average-inhibitory ones. The PDE (1.1) is completed with initial

and boundary conditions

N(t) = N0(t) ≥ 0, ∀ t ∈ [−D, 0], ρ(v, 0) = ρ0(v) ≥ 0, and ρ(VF , t) = ρ(−∞, t) = 0. (1.3)
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These boundary conditions imply that the following constraint is satisfied N0(0) = −a∂ρ
0

∂v
(VF ). In addition,

for any strong solution ρ, the total mass is conserved: if ρ0 is a probability density, then that is also true of ρ

at any positive time:
∫ VF
−∞ ρ(v, t) dv =

∫ VF
−∞ ρ0(v) dv = 1. The behaviour of the network, and, of course, of the

solutions of the NNLIF equation depends strongly on the type of network considered, in terms of the sign of

b. In fact, in [4] (among others) it was shown that there are some situations in the case D = 0, depending on

the initial data and the size of b, where the solutions for the average-excitatory case cannot be global-in-time.

The simulations therein suggest that the blow-up phenomenon is reflected in a divergence in finite time of the

firing rate. Following these observations, in [9] a criterion for the maximal time of existence for strong solutions

was derived (they are called ”classical solutions” in this article despite the singularity at point v = VR; we used

here the less confusing appellation ”strong solutions”). Essentially, it ensures that the solutions exist while the

firing rate is finite. In addition, it was obtained that strong solutions for the average-inhibitory case are always

global-in-time. In [8], some qualitative properties were proved in the case D = 0: uniforms bounds in L∞ for the

average-inhibitory case and asymptotic convergence towards steady states for small connectivity parameters.

Nevertheless, all of these previous works analyze a version of the NNLIF equation with no synaptic delay.

The synaptic delay D is the short period of time that passes since a nerve impulse is sent from a presynaptic

neuron until it finally reaches the postsynaptic neuron. The numerics done in [7] suggest that the synaptic

delay in the NNLIF equation prevents the blow-up of the firing rate. Instead, the firing rate is seen to converge

to a stationary state, oscillate or increase. In fact, at the microscopic level, it has already been proved that

the solutions are global-in-time for the delayed NNLIF model [13]. Moreover, for the population density model

of IF neuron with jumps, which arises from the same microscopic approximation as the NNLIF model, it was

shown in [17] that the firing rate blows up in finite time in some situations, but in [16] it was proved that this

blow-up disappears if a synaptic delay is considered.

In the present paper we deal with the delayed NNLIF equation, which is a modification of the NNLIF model

presented in [4] and [9] at the level of the drift term, which includes a synaptic delay D > 0. We prove the

global-in-time existence of strong solutions for both the average-inhibitory and the average-excitatory cases.

Moreover, we analyse the long time behaviour of these solutions for a small connectivity parameter, and we

provide a non-existence result of periodic-in-time solutions for a large enough connectivity parameter.

For simplicity of computations, we will suppose that a = 1 and VF = 0 during the construction of local-in-

time solutions. Nevertheless, these hypotheses are not really a constraint, since we can transform the general
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equation into one satisfying the restriction by defining a new density ρ̄ as follows:

ρ̄(v, t) =
√
aρ(
√
av + VF , v). (1.4)

For clarity of the following proofs and theorems, we will assume that b̄ = 0 in the remainder of this paper. We

point out that it can also be done without loss of generality using (1.4), since we can pass from the general

equation for b̄ 6= 0 to an equation with b̄ = 0 by translating the voltage variable v by the factor b̄.

The structure of the paper is as follows: the second and third sections are devoted to the study of the

Cauchy problem of Equation (1.1). Taking into account the presence of the delay, we adapt the strategy of

[9] in the second section, and rewrite the system (1.1)-(1.2)-(1.3) as a free boundary Stefan-like problem with

a nonstandard right hand side consisting of a Dirac Delta source term. We also provide a definition of strong

solutions for the new problem, and give some a priori properties for them. The third section is devoted to the

proof of local existence and uniqueness of strong solutions for the Stefan-like problem. This is done through a

fixed point argument for an integral formulation of the Stefan-like equation. In addition, it is shown how this

result can be extended to the Fokker-Planck Equation (1.1). The fourth section contains one of the main results.

There we prove the global existence and uniqueness of strong solutions for both the average-inhibitory and the

average-excitatory case when D > 0. First, we extend to the case at hand the characterization of the maximal

time of existence of the solutions in terms of the size of the firing rate, provided in [9] for the case without delay

(D = 0). Mainly, this ensures that local solutions exist and are unique as long as the firing rate is finite. As

in the case D = 0, the global existence for the average-inhibitory case is derived, showing that every solution

defined until a certain time t0 can be extended up to a short (but uniform) time ε, since the firing rate up to

this additional time t0 + ε is uniformly bounded. However, for the average-excitatory case, this uniform bound

for the firing rate is not arrived at easily, even with delay (see [7] for numerical results). We overcome this

difficulty with a super-solution for the delayed NNLIF equation. We do not prove a uniform bound of the firing

rate, but we show that for every maximal time of existence the firing rate of the solution is bounded. Therefore,

the criterion of maximal time of existence gives us a contraction and consequently we prove global existence of

the solution. The fifth section is devoted to studying the long time behaviour of the system (1.1)-(1.2)-(1.3).

We show exponentially fast convergence to the steady state of the solutions if the connectivity parameter b

is small, extending the results of [4] and [8]. This result is achieved, for both the average-excitatory and the

average-inhibitory case, by means of the entropy method, a Poincaré inequality and suitable L2 estimates of

the firing rate. We also study restrictions on the existence of time-periodic solutions, although it is still an
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open question whether they exist or not in other situations. Finally, the appendix contains technical tools used

extensively in the paper: the Poincaré-like inequality and the entropy equality.

2 The equivalent free boundary Stefan problem

In this section we rewrite Equation (1.1) as a free boundary Stefan problem with a nonstandard right hand

side as in [9] was done without delay. With that purpose we perform the three changes of variables presented

below. Afterwards, we write the final expression of the equivalent equation, we introduce the notion of strong

solution for it and remember some basic a priori properties for this kind of solutions. In all this section, we

assume D > 0, a = 1 and VF = 0, which implies VR < 0.

1. A first change of variables. We introduce the following change of variables, which has been widely

studied in [10]:

y = etv, τ =
1

2
(e2t − 1). (2.1)

Therefore, denoting by α(τ) = (
√

2τ + 1)−1,

t = − log(α(τ)), v = yα(τ), (2.2)

and we define

w(y, τ) = α(τ)ρ
(
yα(τ),− log(α(τ))

)
. (2.3)

Differentiating w with respect to τ , and using that ρ is a solution of (1.1), yields

∂w

∂τ
(y, τ) = α′(τ)ρ(yα(τ),− log(α(τ)))

+yα′(τ)α(τ)
∂ρ

∂v
(yα(τ),− log(α(τ)))− α′(τ)ρt(yα(τ),− log(α(τ)))

= −α′(τ)
∂2ρ

∂v2
(yα(τ),− log(α(τ))) (2.4)

+α′(τ)µ(− log(α(τ))−D)
∂ρ

∂v
(yα(τ),− log(α(τ)))

−α′(τ)N(−log(α(τ)))δ(yα(τ)− VR).

5



Finally, taking into account that −α′(τ) = α3(τ) and

∂w

∂y
(y, τ) = α2(τ)

∂ρ

∂v
(yα(τ),− log(α(τ))),

∂2w

∂y2
(y, τ) = α3(τ)

∂2ρ

∂v2
(yα(τ),− log(α(τ))),

we obtain

∂w

∂τ
(y, τ) =

∂2w

∂y2
(y, τ)− α(τ)µ(t−D)

∂w

∂y
(y, τ) +M(τ)δ

(
y − VR

α(τ)

)
, (2.5)

where M(τ) = −∂w
∂y

(0, τ) = α2(τ)N(t), and we use that µ(t − D) = µ(− log(α(τ)) − D) due to (2.2).

Therefore, w satisfies the equation



∂w

∂τ
(y, τ) =

∂2w

∂y2
(y, τ)− α(τ)µ(t−D)

∂w

∂y
(y, τ) +M(τ)δ VR

α(τ)

(y) y ∈]−∞, 0], τ ∈ R+,

M(τ) = −∂w
∂y

(0, τ) τ ∈ R+,

w(−∞, τ) = w(0, τ) = 0 τ ∈ R+,

w(y, 0) = wI(y) y ∈ (−∞, 0].

2. A second change of variables. With the change of variable (denoting tω = − log(α(ω))),

x = y −
∫ τ

0

µ (tω −D)α(ω)dω = y −
∫ τ

0

µ (− log(α(ω))−D)α(ω)dω, (2.6)

and defining s(τ) := −
∫ τ

0
µ (− log(α(ω))−D)α(ω) dω, for τ ∈ R+, the function u given by u(x, τ) =

w(y, τ) satisfies



∂u

∂τ
(x, τ) =

∂2u

∂x2
(x, τ) +M(τ)δ

s(τ)+
VR
α(τ)

(x) x ∈]−∞, s(τ)], τ ∈ R+,

M(τ) = −∂u
∂x

(s(τ), τ) τ ∈ R+,

u(−∞, τ) = u(s(τ), τ) = 0 τ ∈ R+,

u(x, 0) = uI(x) x ∈ (−∞, 0].

(2.7)

3. A third change of variables. In the system (2.7) the boundary s(τ) depends on µ (t−D) = b̄ +

bN (t−D), and it, in turn, on M . Therefore, we have to remove the explicit t dependency in the term

N(t − D). In the case D = 0 (see [9]) it is easy since µ (t−D) = b̄ + bN (t−D) = b̄ + bM(τ)α−2(τ).
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However, if D > 0 the relation is more involved, because t = 1
2 log(2τ + 1) and τ = 1

2

(
e2t − 1

)
, and

thus, if we consider the time t−D, there is a related τD: τD = 1
2 (e2(t−D) − 1), which makes complicated

the handling of D. We overcome this difficulty considering D̄ = (1 − e−2D) > 0. With this choice

τD = τ
(
1− D̄

)
− D̄

2 and we obtain:

N(t−D) = α−2(τD)M(τD) = α−2

(
(1− D̄)τ − 1

2
D̄

)
M

(
(1− D̄)τ − 1

2
D̄

)
, (2.8)

which depends only on τ . Thus, the initial synaptic delay D is translated into the delay D̄, which is scaled

between 0 and 1, being D̄ = 0 if D = 0 and D̄ = 1 if D =∞. In this way, using (2.8) we can rewrite s(τ)

in terms of M(τ), avoiding the dependence in t

s(τ) = −b̄(
√

2τ + 1− 1)− b
∫ τ

0

N(tω −D)α(ω) dω (2.9)

= −b̄(
√

2τ + 1− 1)− b
∫ τ

0

α−2

(
(1− D̄)ω − 1

2
D̄

)
M

(
(1− D̄)ω − 1

2
D̄

)
α(ω) dω.

The change of variables z = (1− D̄)ω − 1
2D̄ yields

s(τ) = −b̄(
√

2τ + 1− 1)− b√
1− D̄

∫ (1−D̄)τ− 1
2 D̄

− 1
2 D̄

M(z)α−1(z) dz. (2.10)

Taking into account that M0(τ) = α2(τ)N0
(

1
2 log(2τ + 1)

)
, finally leads to the following equivalent

Stefan-like equation



∂u

∂τ
(x, τ) =

∂2u

∂x2
(x, τ) +M(τ)δ

s(τ)+
VR
α(τ)

(x), x < s(τ), τ > 0,

s(τ) = −b̄(
√

2τ + 1− 1)− b√
1−D̄

∫ (1−D̄)τ− 1
2 D̄

− 1
2 D̄

M(z)α−1(z) dz, τ > 0,

M(τ) = −∂u
∂x

(s(τ), τ), τ > 0,

M(τ) = M0(τ) > 0, τ ∈ (− D̄2 , 0],

u(−∞, τ) = u(s(τ), τ) = 0, τ > 0,

u(x, 0) = uI(x), x < 0.

(2.11)

where D̄ ∈ [0, 1) and α(τ) = 1√
2τ+1

. Let us remark that this problem is well defined since α(τ) ∈

R+, ∀ τ > − 1
2 . Also, we note that if D̄ = 0, the system (2.11) reduces to the system studied in [9].

We conclude this section with the notion of strong solutions for this kind of system and with some a priori

properties, that will be useful for the rest of the computations of the present work.
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Definition 2.1 (Strong solutions for the Stefan-like problem) Let u0(x) be a non-negative C0((−∞, 0])∩

C1((−∞, VR)∪ (VR, 0])∩L1((−∞, 0)) function such that u0(0) = 0. Suppose that du0

dx vanish at −∞ and admits

finite left and right limits at VR. We say that u is a strong solution of (2.11) (equivalently (2.7)) with initial

datum u0 on the interval J = [0, T ) or J = [0, T ], for a given T > 0 if:

1. M(τ) is a continuous function for all τ ∈ J .

2. u is continuous in the region {(x, τ) : −∞ < x ≤ s(τ), τ ∈ J} and for all τ ∈ J , u(τ) ∈ L1((−∞, s(τ))).

3. If we denote s1(τ) := s(τ) +
VR
α(τ)

, then ∂xxu and ∂τu are continuous in the region {(x, τ) : x ∈

(−∞, s(τ))\{s1(τ)}, τ ∈ J\{0}}.

4. ∂xu(s1(τ)−, τ), ∂xu(s1(τ)+, τ), ∂xu(s(τ)−, t) are well defined.

5. ∂xu vanishes at −∞.

6. Equations (2.11) (equivalently (2.7)) are satisfied in the sense of distributions in the region {(x, τ) :

−∞ < x ≤ s(τ), τ ∈ J} and pointwise (in the classical sense of a function’s derivative) in {(x, τ) : x ∈

(−∞, s(τ))\{s1(τ)}, τ ∈ J\{0}}.

By ”satisfied in the sense of distributions”, we mean that the time-depending distribution associated to u (by

canonical injection of L1
loc(Ω) into D′(Ω) for any open set Ω) satisfies the equality in the space of distributions

(the time derivative of u has to be taken in the sense of distributions too). This definition includes the notion

of solution given in [9] for the case without transmission delay (D = D̄ = 0). We call these solutions ”strong”

because they are C1 in time and C2 in space regularity away from the singularity begotten by the delta Dirac

mass in the equation. As we can see in the following lemma, the solution u has a jump of size M(τ) at the point

x = s1(τ); it is another – equivalent – way of defining ”satisfied in the sense of distributions” for this particular

case, as one can prove by standard – tedious – computations with suitable test functions.

We gather in the following lemma some a priori properties of these solutions.

Lemma 2.2 (A priori properties) Let u be a solution to (2.11) (equivalently (2.7)) in the sense of the pre-

vious definition. Then:

1. The mass is conserved:
∫ s(τ)

−∞ u(x, τ)dx =
∫ 0

−∞ u0(x)dx, ∀ t > 0.

2. The flux across the moving point s1(τ) := s(τ) +
VR
α(τ)

is exactly the strength of the source term:

M(τ) := −∂xu(s(τ), τ) = ∂xu(s1(τ)−, τ)− ∂xu(s1(τ)+, τ).
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3. If b̄ ≤ 0 and b < 0 (respectively, b̄ ≥ 0 and b > 0), the free boundary s(τ) is a monotone increasing

(respectively, decreasing) function of time.

Proof. The proof of properties 1. and 2. is exactly the same as in [9][Lemma 2.3], because it does not take into

account the expression of s(t). Property 3. is obvious with the form of s.

3 Local existence and uniqueness

In this section we introduce an implicit integral equation for M . Then, thanks to the form of that equation, it

will be possible to solve it for local time using a fixed point argument. In addition, since we will be able to prove

that the fixed point function is a contraction, we will also get the local uniqueness of M . This is useful, since

once M is known, (2.11) (equivalently (2.7)) decouples, and u can be calculated easily by a Duhamel formula.

The inclusion of the transmission delay, D > 0, in the model produces that the NNLIF equation (1.1) becomes

linear for t < D, since the drift and the diffusion terms depend on the initial condition, instead of the firing rate

N(t). This fact is translated to the system (2.11) (equivalently (2.7)) when τ ≤ 1
2 (e2D − 1) = D̄

2(1−D̄)
, which

means t ≤ D in the original time variable. Thus, the boundary is free with a delay but it is constrained on any

short period of time, since on every time interval of size less than 1
2 (e2D−1) = D̄

2(1−D̄)
, systems (2.7) and (2.11)

are equivalent to a linear system with non-standard right-hand side. To be more precise, we can solve them by

studying the following equivalent linear system:



∂u

∂τ
(x, τ) =

∂2u

∂x2
(x, τ) +M(τ)δ

s(τ)+
VR
α(τ)

(x) x ∈]−∞, s(τ)], τ ∈ R+,

s(τ) = −
∫ τ

0

I(ω)dω τ ∈ R+,

u(−∞, τ) = u(s(τ), τ) = 0 τ ∈ R+,

M(τ) = −∂u
∂x

(s(τ), τ) τ ∈ R+,

u(x, 0) = uI(x), x < 0.

(3.1)

where I ∈ C 0([0,+∞)) is an abstract input function. In our case, the system (2.7) (equivalently (2.11))

can be written as System (3.1) with I(ω) = µ (− log(α(ω))−D)α(ω), on every time interval of size less than

1
2 (e2D−1) = D̄

2(1−D̄)
, since I does not depend on u on this time, but on the values on the previous time intervals.

Therefore, System (2.7) (equivalently (2.11)) can be considered as a linear system on every time interval of size

less than 1
2 (e2D − 1) = D̄

2(1−D̄)
.

The notion of solution of definition 2.1 and the a priori properties still apply for equation (3.1) if we assume

I such that the free bondary s(τ) is a monotone function on time.
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Denoting G(x, τ, ξ, η) =
1√

4π(τ − η)
e
−

(x− ξ)2

4(τ − η) , we prove the following theorems.

Theorem 3.1 If the function u is solution of (3.1) in the sense of definition (2.1), then the continuous function

M satisfies

M(τ) = −2

∫ 0

−∞
G(s(τ), τ, ξ, 0)

du0

dx
(ξ)dξ

+ 2

∫ τ

0

M(η)
∂

∂x
G(s(τ), τ, s(η), η)dη

− 2

∫ τ

0

M(η)
∂

∂x
G(s(τ), τ, s(η) +

VR
α(η)

, η)dη (3.2)

Proof. The proof is exacly the same as in [9]. Therefore, we only sketch it. The main idea is to use the

following Green’s identity:
∂

∂ξ

(
G
∂u

∂ξ
− u∂G

∂ξ

)
− ∂

∂τ

(
Gu
)

= 0. The result is obtained by integration of this

identity in the regions {ξ ∈ (−∞, s(η) + VRα(η)
−1

), η ∈ (0, τ)} and {ξ ∈ (s(τ) + VRα(τ)
−1
, s(τ)), η ∈ (0, τ)}

and addition of the results. Computations are then done on the different terms to express them in function of

M , G, ∂xG and u0 under integrals.

Theorem 3.2 Let u0(x) be a non-negative C0((−∞, 0])∩C1 ((−∞, VR) ∪ (VR, 0])∩L1((−∞, 0)) function such

that u0(0) = 0, and suppose that
du0

dx
vanishes at −∞ and admits finite left and right limits at VR. Then, there

exists T ∈ R+ and a unique function M ∈ C 0([0, T ]) that satisfies (3.2) on [0, T ].

Proof. Let σ ∈ R+, m := 1 + 2 supx∈(−∞,VR) ∪ (VR,0]

∣∣∣∣du0

dx
(x)

∣∣∣∣ and consider the space

Cσ,m = {M ∈ C 0([0, σ]) | ‖M‖∞ := sup
τ∈[0,σ]

|M(τ)| 6 m}.

We define in this space the functional

T (M)(τ) := −2

∫ 0

−∞
G(s(τ), τ, ξ, 0)

du0

dx
(ξ)dξ + 2

∫ τ

0

M(η)
∂G

∂x
(s(τ), τ, s(η), η)dη

− 2

∫ τ

0

M(η)
∂G

∂x
(s(τ), τ, s(η) +

VR
α(η)

, η)dη. (3.3)

The proof of the theorem is obtained if we show that this functional has a unique fixed point. To do so, we

start proving that for σ small enough T : Cσ,m → Cσ,m.
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On the one hand,

∥∥∥∥2

∫ 0

−∞
G(s(·), ·, ξ, 0)

du0

dx
(ξ)dξ

∥∥∥∥
∞

= 2 sup
x∈]−∞,VR[ ∪ ]VR,0]

∣∣∣∣du0

dx
(x)

∣∣∣∣ ∥∥∥∥∫ 0

−∞
G(s(·), ·, ξ, 0)dξ

∥∥∥∥
∞

= 2 sup
x∈]−∞,VR[ ∪ ]VR,0]

∣∣∣∣du0

dx
(x)

∣∣∣∣ .
On the other hand, the positive valued applications

φ1 : τ 7→ 2m

∫ τ

0

∣∣∣∣∂G∂x (s(τ), τ, s(η), η)

∣∣∣∣ dη,
and

φ2 : τ 7→ 2m

∫ τ

0

∣∣∣∣∂G∂x (s(τ), τ, s(η) +
VR
α(η)

, η)

∣∣∣∣ dη,
are continuous on (0, σ]. A direct computation gives

∣∣∣∣∂G∂x (s(τ), τ, s(η), η)

∣∣∣∣ =
1

2
√

4π

|s(τ)− s(η)|
|τ − η| 32

e
−

(
s(τ)− s(η)

)2
4(τ − η)

Since the function I is bounded on every compact set (because it is continuous), we can denote Iσ = supω∈[0,σ] |I(ω)|,

and we have |s(τ)− s(η)| =
∣∣∣∫ τη I(ω)dω

∣∣∣ 6 Iσ |τ − η|. Substituting in the previous expression and putting back

the integral, we get φ1(τ) 6
mIσ√

4π

∫ τ

0

1√
τ − η

dη =
mIσ√

4π

√
τ . We directly get limτ→0 φ1(τ) = 0 and φ1 is

continuous on [0, σ], with φ1(0) = 0. Similarly, we have

|s(τ)− s(η)− VR
α(τ)

| > |VR| − Iσ|τ − η| > |VR| − Iστ,

and using the inequality ze−z
2

6 e−z
2/2, we can write

φ2(τ) =
1

2
√

4π

∫ τ

0

|s(τ)− s(η)− VR
α(η) |

|τ − η| 32
e
−

(
s(τ)− s(η)− VR

α(τ)

)2
4(τ − η) dη,

and then

φ2(τ) 6
1√
4π

∫ τ

0

1

τ − η
e
−

(
s(τ)− s(η)− VR

α(τ)

)2
8(τ − η) dη 6

1√
4π

∫ τ

0

1

τ − η
e
−

(
|VR| − Iστ

)2
8(τ − η) dη.
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When τ is small enough, |VR| − Iστ > 1
2 |VR| and we have, making the change of variable z = |VR|

2
√

8(τ−η)
,

φ2(τ) 6
1√
4π

∫ τ

0

1

τ − η
e
−

(
|VR| − Iστ

)2
8(τ − η) dη 6

1√
4π

∫ τ

0

1

τ − η
e
−

V 2
R

32(τ − η) dη

=
1√
π

∫ +∞

|VR|
2
√

8τ

1

z
e−z

2

dz.

we also get limτ→0 φ2(τ) = 0 and φ2 is continuous on [0, σ], with φ2(0) = 0.

Thus, there exists an interval [0, ζ] ⊂ [0, σ] such that

sup
τ∈[0,ζ]

|φ1(τ)| < 1

2
and sup

τ∈[0,ζ]

|φ2(τ)| < 1

2
.

Hence, we have, for this ζ ∈ R+ and for all M ∈ Cζ,m,

∥∥∥∥2

∫ ·
0

M(η)
∂G

∂x
(s(·), ·, s(η), η)dη

∥∥∥∥
∞

6 sup
τ∈[0,ζ]

2m

∫ τ

0

∣∣∣∣∂G∂x (s(τ), τ, s(η), η)

∣∣∣∣ dη < 1

2
,

and also ∥∥∥∥2

∫ ·
0

M(η)
∂G

∂x
(s(·), ·, s(η) +

VR
α(η)

, η)dη

∥∥∥∥
∞
<

1

2
.

Collecting the previous bounds, we obtain, for σ small enough and depending only on m and I, thus depending

only on
du0

dx
and g, that the map T is defined as a function from Cσ,m into Cσ,m.

Finally, we prove that for this choice of σ the functional T is a contraction. We have for all M,N ∈ Cσ,m,

for all τ ∈ [0, σ],

|T (M)(τ)− T (N)(τ)| 6 1

m
‖M −N‖∞

(
2m

∫ τ

0

∣∣∣∣ ∂∂xG(s(τ), τ, s(η), η)

∣∣∣∣ dη
+ 2m

∫ τ

0

∣∣∣∣ ∂∂xG(s(τ), τ, s(η) +
VR
α(η)

, η)dη

∣∣∣∣ )
6

1

m

(
sup

τ∈[0,σ]

|φ1(τ)|+ sup
τ∈[0,σ]

|φ2(τ)|
)
‖M −N‖∞ . (3.4)

As m > 1, we have

1

m

(
sup

τ∈[0,σ]

|φ1(τ)|+ 2 sup
τ∈[0,σ]

|φ2(τ)|
)
<

1

2m
+

1

2m
=

1

m
6 1.

Thus T is a contraction on the complete metric space Cσ,m. It admits a unique fixed point M in that space.
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Theorem 3.3 (Local existence of the linear problem) Let u0(x) be a non-negative function in C0((−∞, 0])

∩C1 ((−∞, VR) ∪ (VR, 0])∩L1((−∞, 0)), such that u0(0) = 0 and suppose that du0

dx vanishes at −∞ and admits

finite left and right limits at VR. Then, there exists a unique strong solution u for the problem (3.1).

Proof. The proof is omitted, since it is performed as in [9] [Corollary 3.3]. Let us only point out that, once M

is known the equation for u decouples, and u can be calculated via Duhamel’s formula

u(x, τ) =

∫ 0

−∞
G(x, τ, ξ, 0)u0(ξ) dξ −

∫ τ

0

M(η)G(x, τ, s(η), η) dη +

∫ τ

0

M(η)G(x, τ, s1(η), η) dη,

where s1(τ) = s(τ) +
VR
α(τ)

. This formula provides the smoothness and decay of u to prove that this mild

solution (or solution in the integral sense) is a strong solution in the sense of Definition 2.1.

Theorem 3.4 (Local existence of the non-linear Stefan-problem) Let u0(x) be a non-negative function

in C0((−∞, 0]) ∩C1 ((−∞, VR) ∪ (VR, 0]) ∩ L1((−∞, 0)), such that u0(0) = 0 and suppose that du0

dx vanishes at

−∞ and admits finite left and right limits at VR. Then, there exists a unique strong solution u for the problem

(2.7) (equivalently (2.11)) in the sense of definition 2.1.

Proof. The system (2.7) (equivalently (2.11)) can be written as System (3.1) considering the function I(ω) =

µ (− log(α(ω))−D)α(ω), on every time interval of size less than 1
2 (e2D − 1) = D̄

2(1−D̄)
. Then, for time τ ∈

[0, 1
2 (e2D − 1)] (equivalently τ ∈ [0, D̄

2(1−D̄)
]), there is a unique local solution defined on [0, T1] for System (2.7)

(equivalently (2.11)), which is the solution for I associated with the initial datum M0.

If T1 = 1
2 (e2D − 1), then we use u(·, T1) and the values of M in the interval [0, 1

2 (e2D − 1)] as initial values for

System (3.1) in order to have a solution on [0, T2], T2 ≤ e2D − 1.

We repeat this procedure until we find the maximal time of existence for the solution of (2.7) (equivalently

(2.11)).

The existence and uniqueness proved in Theorem 3.4 can be translated into our initial system (1.1)-(1.2)-(1.3)

recovering ρ and N by undoing the changes of variables (2.1) and (2.6).

Corollary 3.5 Let ρ0 be a non-negative C0((−∞, VF ]) ∩ C1((−∞, VR) ∪ (VR, VF ]) ∩ L1((−∞, VF )) function

such that ρ0(VF ) = 0 and
dρ0

dv
decays at −∞ and admits finite left and right limits at VR. Then there exists a

maximal T ∗ ∈ (0,+∞] and there exists a unique strong solution to the problem (1.1)-(1.2)-(1.3) with D > 0 on

the time interval [0, T ∗).

Remark 3.6 Using Duhamel’s formula for u and going back to ρ, we can see that as long as ρ0 is fast decaying
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at −∞ (for any polynomial function f , the quantities f(v)ρ(v) and f(v) ddvρ
0(v) go to 0 as v goes to −∞), then

ρ(·, t) is fast decaying at −∞ too for every positive t. This property will be implicitly used in other sections.

Remark 3.7 The same proof gives strong solutions for the coupled excitatory-inhibitory system with positive

delay studied in [7]: for a short time, the two equations decouple.

4 Global existence of solutions for the delayed model

In this section we derive the main result of the work: the global existence of solutions for the delayed model

(1.1). The result is obtained directly for the average-inhibitory case (as in the case without transmission delay

[9]), while for the average-excitatory case, it has to be derived through some of the properties of super-solutions.

4.1 A criterion for the maximal time of existence

The key step to obtain the main results of the paper is a criterion for the maximal time of existence of solutions,

summarized in Theorem 4.2. It ensures that solutions exists while the firing rate is finite. With that purpose,

first we show an auxiliary proposition, Proposition 4.1, which provides the tool to prove Theorem 4.2. Then

using Theorem 4.2 we derive Proposition 4.4 which will allows to obtain the global existence of solutions for

the inhibitory case. Their proofs are all omitted or sketched, since they are the same as in [9][Proposition 4.1,

Theorem 4.2, Proposition 4.3], because they are all consequences of the local existence result of Theorem 3.4.

Proposition 4.1 Suppose that the hypotheses of Theorem 3.4 hold and that u is a solution to (2.7) (equivalently

(2.11)) in the time interval [0, T ]. Assume in addition, that

U0 := sup
x∈(−∞,s(t0−ε)]

|∂xu(x, t0 − ε)| <∞ and that M∗ = sup
t∈(t0−ε,t0)

M(t) <∞,

for some 0 < ε < t0 ≤ T . Then, sup{|∂xu(x, t)| : x ∈ (−∞, s(t)], t ∈ [t0−ε, t0)} <∞, with a bound depending

only on the quantities M∗ and U0.

Using this proposition we obtain the same criterion as in the case without synaptic delay [9]:

Theorem 4.2 Suppose that the hypotheses of Theorem 3.4 hold. Then the solution u can be extended up to a

maximal time 0 < T̄ ≤ ∞ given by

T̄ = sup{t ∈ (0,+∞] : M(t) <∞}.
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In terms of the original system (1.1)-(1.2)-(1.3), we have the following maximal time of existence result:

Theorem 4.3 (Maximal time of existence) Let ρ0 be a non-negative function in C0((−∞, VF ])∩C1((−∞, VR)

∪(VR, VF ])∩L1((−∞, VF )) such that ρ0(VF ) = 0 and dρ0

dv decays at −∞ and admits finite left and right limits at

VR. Then there exists a unique strong solution to the problem (1.1)-(1.2)-(1.3) with D ≥ 0 on the time interval

[0, T ∗) where T ∗ > 0 can be characterized by

T ∗ = sup{t > 0 : N(t) <∞}.

Proof. The case D = 0 is proved in the article [9]. In the case D > 0, we use theorem 4.2 and get the result

directly.

Using Theorem 4.2 we derive the key result for the global existence in the inhibitory case:

Proposition 4.4 Suppose that the hypotheses of Theorem 3.4 hold and that u is a solution to (2.11) (equiva-

lently (2.7)) in the time interval [0, t0) for b ≤ 0. Then there exists ε > 0 small enough and independent of t0,

such that, if

Ū := sup
x∈(−∞,s(t0−ε)]

|∂xu(x, t0 − ε)| <∞ (4.1)

then supt0−ε<t<t0 M(t) <∞, for 0 < ε < t0.

The proof follows as in [9][Proposition 4.3]. The non-positivity of the connectivity parameter b is crucial,

because, in that case, s(t) is a monotone non-decreasing function, which implies a uniform bound for M .

Finally, combining Theorem 4.2 with the previous result we obtain the global existence and uniqueness of

strong solutions for the inhibitory case with synaptic delay for equivalent systems (2.7) and (2.11).

Proposition 4.5 Suppose that the hypotheses of Theorem 3.4 hold and that b ≤ 0. Then there exists a unique

global-in-time strong solution u for system (2.11) (equivalently (2.7)) in the sense of Definition 2.1 with initial

datum u0. In addition, if both b and b̄ are negative, s(t) is a monotone increasing function.

This proposition, translated to the initial delayed Fokker-Planck equation (1.1) provides the global existence

for the inhibitory case, as follows:

Theorem 4.6 (Global existence - inhibitory case) Let ρ0 be a non-negative function in C0((−∞, VF ]) ∩

C1((−∞, VR) ∪ (VR, VF ]) ∩ L1((−∞, VF )), such that ρ0(VF ) = 0 and ∂vρ
0 admits finite left and right limits at

VR. Suppose that ∂vρ
0 decay at −∞, then there exists a unique strong solution to the problem (1.1)-(1.2)-(1.3)

with b ≤ 0 and D ≥ 0 on the time interval [0, T ∗) with T ∗ = +∞.
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4.2 Super-solutions and control over the firing rate

We are not able to obtain the global existence of solutions for the average-excitatory case as it is done before

for the average-inhibitory. The difficulty is the extension of the proposition 4.4 for the case b > 0, which implies

a uniform bound for M is the same in the average-excitatory case. Thus we have to proceed with a different

strategy, by means of a super-solution, to prove that the firing rate of any local solution cannot diverge in finite

time. Then, applying the criterion of Theorem 4.3 the result is reached. We start introducing the notion of

super-solution.

Definition 4.7 Let T ∈ R+, D ≥ 0 and b̄ = 0, (ρ̄,N̄) is said to be a (strong) super-solution to (1.1)-(1.2)-(1.3)

on (−∞, VF ]× [0, T ] if for all t ∈ [0, T ] we have ρ̄(VF , t) = 0 and

∂tρ̄+ ∂v[(−v + bN̄(t−D))ρ̄]− a∂vvρ̄ ≥ δv=VRN̄(t), N̄(t) = −a∂vρ̄(VF , t), (4.2)

on (−∞, VF ] × [0, T ] in the distributional sense and on ((−∞, VF ] \ VR) × [0, T ] in the classical sense, with

arbitrary values for N̄ on [−D, 0).

We choose b̄ = 0 just for convenience as we can do it without loss of generality (as said in the introduction).

Notice that for a solution in C2,1((−∞, VR) ∪ (VR, VF ]× [0, T ]) ∩ C0((−∞, VR]× [0, T ]), the condition reduces

to satisfy the property in the classical sense in (−∞, VR) ∪ (VR, VF ] × [0, T ] and having a decreasing jump

discontinuity for the derivative on VR of size at least N̄/a.

Notice also that when T < D, N̄(t−D) is an arbitrary initial datum, and thus if we find such a super-solution

ρ̄, then for every constant α > 0, the function αρ̄ is also a super-solution.

We start proving the following comparison property between strong solutions and super-solutions of (1.1)-

(1.2)-(1.3).

Theorem 4.8 Let D > 0, 0 < T < D and b̄ = 0. Let (ρ,N) be a strong solution of (1.1)-(1.2)-(1.3) on

(−∞, VF ]× [0, T ] for the initial condition (ρ0, N0) and let (ρ̄, N̄) be a strong super-solution of (1.1)-(1.2)-(1.3)

on (−∞, VF ]× [0, T ]. Assume that

∀ v ∈ (−∞, VF ], ρ̄(v, 0) ≥ ρ0(v) and ∀ t ∈ [−D, 0), N̄(t) = N0(t).

Then,

∀ (v, t) ∈ (−∞, VF ]× [0, T ], ρ̄(v, t) ≥ ρ(v, t) and ∀ t ∈ [0, T ], N̄(t) ≥ N(t).
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Proof. First, we prove that if ρ̄(v, t) ≥ ρ(v, t) then N̄(t) > N(t). Due to the Dirichlet boundary condition for

ρ and the definition of super-solution we have ρ(VF , t) = ρ̄(VF , t) = 0 on [0, T ]. Thus, as long as ρ̄(v, t) ≥ ρ(v, t)

holds, we have

−a ρ̄(VF , t)− ρ̄(v, t)

VF − v
≥ −aρ(VF , t)− ρ(v, t)

VF − v
.

And taking the limit v → VF we get N̄(t) > N(t).

Then, denoting w = ρ̄− ρ, we have for all (v, t) ∈ (−∞, VF ]× [0, T ],

∂tw + ∂v(−vw) + bN̄(t−D)∂vρ̄− bN(t−D)∂vρ− a∂vvw ≥ δv=VR(N̄(t)−N(t)).

As we assume T < D we have by hypothesis N̄(t −D) = N0(t −D) for all t ∈ [0, T ]. Thus, as long as w ≥ 0

holds, since N̄(t) > N(t),

∂tw + ∂v[(−v + bN0(t))w]− a∂vvw ≥ 0.

As w(·, 0) ≥ 0, by a standard maximum principle theorem, we have ∀t ∈ [0, T ], w(·, t) ≥ 0, and we conclude

the proof.

Now, for fixed continuous (thus bounded) N0 and the choice N̄(t) = N0(t) in [−D, 0], we look for a super-

solution on [0, D] of the form

ρ̄(v, t) = eξtf(v), (4.3)

where ξ is large enough and f is a carefully selected function, such that, the function ρ̄ satisfies (4.2), which

means

(ξ − 1)f + (−v + bN0(t))f ′ − af ′′ ≥ δv=VRN̂(t), N̂(t) = −af ′(VF ). (4.4)

We show that f defined as follow

f : (−∞, VF ] → R+

v 7→

 1 on (−∞, VR]

eVR−vψ(v) + 1
δ (1− ψ(v))(1− eδ(v−VF )) on (VR, VF ]

verifies (4.4). To complete the definition of f we explain which are ψ and δ:

1. For ε > 0 small enough, such that VF+VR
2 + ε < VF , we consider ψ ∈ C∞b (R) satisfying 0 ≤ ψ ≤ 1 and

ψ ≡ 1 on

(
−∞, VF + VR

2

)
and ψ ≡ 0 on

(
VF + VR

2
+ ε,+∞

)
.
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2. For B > 0, such that
∣∣−v + bN0(t)

∣∣ ≤ B, ∀ t ∈ [−D, 0), ∀ v ∈ (VR, VF ), we take δ > 0 such that aδ−B ≥ 0.

Notice that f being the sum of two continuous non-negative functions that never vanish at the same point, we

have

inf
v∈
(
VR,

VF+VR
2 +ε

) f(v) > 0.

With these choices, ρ̄(v, t) is a super-solution on [0, D] for ξ large enough, because:

• On (−∞, VR), ρ̄ is independent of v, thus the definition is satisfied if and only if ξ ≥ 1.

• Around the VR point the inequality (4.4) has to hold in the sense of distribution, that is in our case

f ′(V +
R )− f ′(V −R ) 6 f ′(VF )

This inequality is satisfied because f ′(V −R ) = 0, f ′(V +
R ) = −1 and f ′(VF ) = −1.

• On
(
VR,

VF+VR
2 + ε

)
, we choose ξ such that

(ξ − 1) inf
v∈
(
VR,

VF+VR
2 +ε

) f(v) ≥ sup
v∈
(
VR,

VF+VR
2 +ε

) (B|f ′(v)|+ a|f ′′(v)|) ,

which is possible because inf
v∈
(
VR,

VF+VR
2 +ε

) f(v) > 0. Then the super-solution inequality (4.4) holds.

• On
(
VF+VR

2 + ε, VF
)
, the desired inequality (4.4) holds since

(−v + bN0(t))f ′ − af ′′ = eδ(VF−v)
[
aδ − (−v + bN0(t))

]
≥ eδ(VF−v) [aδ −B] ≥ 0.

Given this super-solution on [0, D] for any fixed continuous N0(t), we can prove global existence for local

solutions.

Theorem 4.9 (Global existence - excitatory and inhibitory cases) Let ρ0 be a non-negative function in

C0((−∞, VF ]) ∩ C1((−∞, VR) ∪ (VR, VF ]) ∩ L1((−∞, VF )), such that ρ0(VF ) = 0 and dρ0

dv decays at −∞ and

admits finite left and right limits at VR; let N0 ∈ C0([−D, 0]) with D > 0. Let (ρ,N) be the corresponding

strong solution of (1.1)-(1.2)-(1.3) on the maximal interval of existence [0, T ∗). Then T ∗ = +∞.

Proof. Assume the maximal time of existence T ∗ is finite, this means, using Theorem 4.3, that the firing

rate N diverges when t → T ∗. We prove that this is a contradiction with the fact that ρ̄ given by (4.3) is a

super-solution.
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As the solution was showed previously to be unique, we assume without loss of generality that T ∗ = D
2 < D

by using the new initial conditions

ρ̃0(v) = ρ(v, T ∗ − D

2
) ∀ v ∈ (−∞, VF ] and Ñ0(t̃) = N

(
T ∗ − D

2
+ t̃

)
, t̃ ∈ [−D, 0).

As ρ̃0 is continuous and vanish at VF and −∞, it belongs to L∞((−∞, VF ]) and therefore there exists α ∈ R∗+

such that the super-solution ρ̄ we constructed satisfies αρ̄(v, 0) ≥ ρ̃0(v), for all v ∈ (−∞, VF ], where we use the

fact that ρ̄ never vanish on (−∞, VF ). Then, by Theorem 4.8, we have

N

(
T ∗ − D

2
+ t̃

)
= Ñ(t̃) ≤ N̄(t̃) = aeξt̃ ∀ t̃ ∈

[
0,
D

2

)
.

Thus, N(t) ≤ aeξ(t−T∗+D
2 ) for all t ∈

[
T ∗ − D

2 , T
∗). Therefore, by continuity, there is no divergence of the firing

rate N when t→ T ∗, and thus by Theorem 4.3 we reach a contradiction.

Remark 4.10 As we remark for the local existence, the result about global existence works for the coupled

excitatory-inhibitory system with positive delay studied in [7].

5 Qualitative properties and long time behaviour of solutions

The aim of this part is to extend the results about long time behaviour obtained in [4] and [8] for the case

without delay to the case where a synaptic delay is considered. All the results can be extended, assuming that

the delay is small enough with respect to the other parameters of the model, in particular in comparison with

the connectivity b.

In all this section, we use two standard technical results fully stated in Appendix A (entropy method and

Poincaré’s inequality). We also recall here that a steady state of the system (1.1)-(1.2)-(1.3) is defined as a

solution of the problem

∂

∂v
[(−v + bN∞)ρ∞]− a∂

2ρ∞
∂v2

= δv=VRN∞,

N∞ = −a∂ρ∞
∂v

(VF ), ρ∞(VF ) = 0, ρ∞(−∞) = 0,

ρ∞(v) > 0,

∫ VF

−∞
ρ∞(v)dv = 1.

Such steady states are exactly the same for the case without transmission delay (D = 0) and for the case with
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synaptic delay (D > 0). They are studied in [4] and a form is given:

ρ∞(v) =
N∞
a
e−

(v−bN∞)2

2a

∫ VF

max(v,VR)

e
(w−bN∞)2

2a dw.

We point out that this formula is not explicit, since N∞ depends on ρ∞. However, using that ρ∞ is a probability

density we can obtain an implicit equation for N∞ [4].

Moreover, it is proved in [4] that for small enough positive b or every negative b, there is an unique steady

state (ρ∞, N∞). For b > 0 large enough, there are no steady states.

Using the results of [4], it is also possible to directly deduce for small enough values of b (via the continuous

dependence in b and the value at 0) that

lim
b→0

N b
∞ > 0, (5.1)

where we denote by N b
∞ the stationary firing rate for the system (1.1)-(1.2)-(1.3) with connectivity parameter

b.

5.1 Uniform estimates on the firing rate

We separate the average-inhibitory and the average-excitatory cases. Indeed, in the average-inhibitory case

(b < 0), all the results are uniform with respect to the initial data, which is not the case when b > 0 (average-

excitatory case), in accordance with the blow-up structure of Equation (1.1) in the case without delay. In the

previous section we proved the global existence of the solution when synaptic delay is considered. However,

in the proofs, the structure of Equation (1.1), in the average-excitatory case, leads to results which strongly

depends on the initial data.

The following theorem, which is similar to Theorem 3.1 of [8], provides some L2 control over the firing rates,

and thus, supplies the main tool to prove the long time behaviour result of Theorem 5.3.

Theorem 5.1 Let b1 > 0 a connectivity parameter such that there exists a stationary state of System (1.1)-

(1.2)-(1.3) and let ρb1∞ be the corresponding stationary state. Let VM with VF > VM > VR and define S(b1, VM ) :=∫ VF
VM

(ρ0)
2

ρ
b1
∞

dv, with an initial datum chosen such that S(b1, VM ) < +∞. Then:

i) For all b ≤ 0 there exists a constant C independent of S(b1, VM ) and there exists a time T > 0 depending

20



only on VM and S(b1, VM ), such that for all intervals J ⊂ (T,+∞):

∫
J

N(t)2 dt ≤ C(1 + |J |). (5.2)

ii) Assume b > 0 is small enough depending on S(b1, VM ), the delay D and VM , then there exists a constant

C such that for all t ≥ 0: ∫ t

0

N(t)2 dt ≤ C(1 + t). (5.3)

Remark 5.2 Let us mention that the condition on the delay only appear in the average-excitatory case in

Theorem 5.1.

Proof. The main idea of the proof is to use entropy type inequalities and to compare the solution of Equation

(1.1) with a kind of super-solution which is a stationary state of Equation (1.1) with a strictly positive connec-

tivity parameter in a similar manner as in [8] [Theorem 3.1], with the difficulty that now there is a synaptic

delay in the equation.

Let us assume VR positive without loss of generality, by translating the voltage variable, and introduce some

notations and a useful function. We set the function γ as in [8] and defined by

∀ v ∈ (−∞, VF ], γ(v) = 1v>αe
−1

β−(VF−v)2 ,

where β = (VF −α)2 and VF > α > VR > 0. Given a steady state (ρb1∞, N
b1
∞) associated to the parameter b1 and

a solution (ρ,N) associated to the parameter b and the initial condition (ρ0, N0), we denote in the following

H(v, t) =
ρ(v, t)

ρb1∞(v)
and W (v, t) = ρb1∞(v)(H(v, t))2 =

ρ(v, t)2

ρb1∞(v)

Let us first prove Theorem 5.1 in the inhibitory case (b ≤ 0). Let I(t) =
∫ VF
−∞W (v, t)γ(v) dv. Following the

computations made in [8][Section 3.1.1], where the fact that the support of γ ⊂ (α, VF ] with VF > α > VR > 0

was used, we find that, for all α close enough to VF , there exist C1, C2, C3 ∈ R∗+ independent of b such that

d

dt
I(t) ≤ −C1N(t)2 + C2 + (bN(t−D)− C3)I(t). (5.4)

We have, due to I(0) < +∞ (because S(b1, VM ) < +∞) and b ≤ 0,

d

dt
I(t) ≤ C2 − C3I(t).
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Thus, there exists a time T > 0 depending on I(0), such that, for t > T : I(t) ≤ 2C2

C3
. This conclude the proof

of Theorem 5.1 i) by integrating the differential inequality (5.4) on every interval J ⊂ [T,+∞[.

Let us now assume that b > 0. Let us again consider I(t) =
∫ VF
−∞W (v, t)γ(v) dv. Following again the

computations made in [8][Section 3.1.2], we obtain that there exist C1, C2, C3, C4 and C5 = γ(VF )

N
b1
∞

depending

only on γ and ρb1∞ such that for all t > 0,

d

dt
I(t) ≤

(
− C4 + C2b

2N(t−D)2
)
I(t) + C1b

2N(t−D)2 − C5N(t)2 + C3. (5.5)

Let M̄ = max(I(0), C3

C4
). As I(0) is strictly bounded by 2M̄ , by continuity of I, there exists a closed interval

[0, η] on which I is bounded by 2M̄ . Thus, let [0, B̄] ([0, B̄) if B̄ = +∞) the largest closed interval on which I

is bounded by 2M̄ . Assume B̄ is finite. On this interval [0, B̄], we have

d

dt
I(t) ≤ −C4I(t) +

(
C1 + 2C2M̄

)
b2N(t−D)2 − C5N(t)2 + C3.

Let C6 = C1 + 2C2M̄ . As C3 − C4M̄ ≤ 0, we have

d

dt
(I(t)− M̄) ≤ −C4(I(t)− M̄) + C6b

2N(t−D)2 − C5N(t)2.

Gronwall’s Lemma implies that, for all t ∈ [0, η[,

I(t)− M̄ ≤ e−C4t(I(0)− M̄) + e−C4t

∫ t

0

(
C6b

2N(s−D)2 − C5N(s)2
)
eC4s ds. (5.6)

Therefore, assuming b2 ≤ C5

C6eC4D
, we can write

∫ t

0

(
C6b

2N(s−D)2 − C5N(s)2
)
eC4s ds = C6b

2

∫ t

0

N(s−D)2eC4s ds− C5

∫ t

0

N(s)2eC4s ds

≤ C6b
2

∫ 0

−D
N(s)2eC4s+C4D ds

= C6e
C4Db2

∫ 0

−D
N(s)2eC4s ds

≤ C6e
C4Db2

∫ 0

−D
N0(s)2 ds.
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Hence, I(t) ≤ M̄ + e−C4tC6e
C4Db2

∫ 0

−DN
0(s)2 ds. For b small enough,

M̄ + e−C4tC6e
C4Db2

∫ 0

−D
N0(s)2 ds < 2M̄,

which implies I(B̄) < 2M̄ and by continuity of I there exists ε ∈ R∗+ such that I is stricly bounded by 2M̄ on

[B̄, B̄ + ε]. This is a contradiction to the maximality of B̄. Thus, B̄ = +∞ and I(t) ≤ 2M̄ , for all t ∈ R+.

Hence, integrating (5.5) between 0 and t we obtain

−I(0) ≤
(
C1 + 2C2M̄

)
b2
∫ t−D

−D
N(s)2 ds− C5

∫ t

0

N(s)2 ds+ C3t,

that gives, for b small enough,

C5

2

∫ t

0

N(s)2 ds ≤ I(0) +
(
C1 + 2C2M̄

)
b2
∫ 0

−D
N0(s)2 ds+ C3t,

which finishes the proof of Theorem 5.1.

5.2 Convergence towards steady states for small connectivities

Now, we can prove our main result of this section, that ensures that even with delay, the solutions converge

exponentially fast to the steady state, when the connectivity parameter is small, and with an appropriate initial

condition. We do not include the linear case (b = 0), which was proved in [4] with better hypotheses and better

results.

Theorem 5.3 Let b1 such that there exists a steady state (ρb1∞, N
b1
∞) for (1.1)-(1.2)-(1.3) with b̄ = 0. Let

VM ∈ (VR, VF ), (ρ0, N0) an initial condition and S(b1, VM ) :=
∫ VF
VM

ρ0(v)2

ρ
b1
∞(v)

dv. If there exists C0 such that

ρ0(·) ≤ C0ρ
b1
∞(·) (consequently S(b1, VM ) < +∞), then:

• If b > 0, there exists η ∈ R∗+ depending only on ρ0, N0, S(b1, VM ), D and VM such that if 0 < b < η,

then there exist A0, µ, γ ∈ R∗+ depending only on (ρ0, N0) such that

∫ VF

−∞
ρ∞

(
ρ− ρ∞
ρ∞

)2

(v, t) dv ≤A0e
−µt

[∫ VF

−∞
ρ∞

(
ρ0 − ρ∞
ρ∞

)2

(v) dv

+
8b2

a

∫ 0

−D

(
N0(s)−N∞

)2
eγ(s+D)−

∫ 0
−D(N0(u)−N∞)2 du ds

]
.

• If b < 0, there exists η ∈ R∗+, independent of S(b1, VM ) such that if −η < b < 0, there exist T, µ, γ ∈ R∗+
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depending only on the initial condition, and A0 ∈ R∗+ depending only on the values of N on [0, T ], such

that for all t ∈ (T,+∞),

∫ VF

−∞
ρ∞

(
ρ− ρ∞
ρ∞

)2

(v, t) dv ≤A0e
−µt

[∫ VF

−∞
ρ∞

(
ρ0 − ρ∞
ρ∞

)2

(v) dv

+
8b2

a

∫ 0

−D

(
N0(s)−N∞

)2
eγ(s+D)−

∫ 0
−D(N(u)−N∞)2 du ds

]
.

Proof. Let G : R+ → R be a convex function of class C2. As ρ0 ≤ C0ρ
b1
∞ and because the rate of decay for ρb∞

is asymptotically the same for every b at −∞, we have for every b such that a stationary state exists another

constant C̃0 such that ρ0(·) ≤ C̃0ρ
b
∞(·). Then, the following entropy equality holds, applying theorem A.2.

d

dt

∫ VF

−∞
ρ∞G

(
ρ

ρ∞

)
dv = − a

∫ VF

−∞
ρ∞

[
∂

∂v

(
ρ

ρ∞

)]2

G′′(
ρ

ρ∞
) dv

−N∞
[
G

(
N

N∞

)
−G

(
ρ

ρ∞

)
−
( N

N∞
− ρ

ρ∞

)
G′
(
ρ

ρ∞

)] ∣∣∣∣
v=VR

+ b(N(t−D)−N∞)

∫ VF

−∞

∂ρ∞
∂v

[
G

(
ρ

ρ∞

)
− ρ

ρ∞
G′
(
ρ

ρ∞

)]
dv.

Now, denote q(v, t) = ρ(v,t)
ρ∞(v) and F (t) = N(t)

N∞
. We choose G(x) = (x − 1)2. Hence, for all ε ∈ (0, 1

2 ), using the

inequality (a+ b)2 ≥ ε(a2 − 2b2)), yields

G(F (t))−G(q(VR, t))−
(
F (t)− q(VR, t)

)
G′(q(VR, t)) = (F (t)− q(VR, t))2 ≥ ε(F (t)− 1)2 − 2ε(q(VR, t)− 1)2.

Then, according to the expression of ρ∞, the Poincaré-like inequality (see Appendix A, Theorem A.1) and the

Sobolev injection of H1(I) in L∞(I)for a sufficiently small neighborhood I of VR, there exists C ∈ R∗+ such that

|q(VR, t)− 1|2 ≤ C
∫ VF

−∞
ρ∞(v)

(
∂q

∂v

)2

(v, t) dv.

Thus, for ε satisfying 2CN∞ε ≤ a
2 , we have

−N∞
[
G

(
N

N∞

)
−G

(
ρ

ρ∞

)
−
( N

N∞
− ρ

ρ∞

)
G′
(
ρ

ρ∞

)] ∣∣∣∣
v=VR

≤ −N∞εG
(
N(t)

N∞

)
+
a

2

∫ VF

−∞
ρ∞

(
∂q

∂v

)2

(v, t) dv. (5.7)
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On the other hand, as G(x)− xG′(x) = 1− x2, we have by integration by parts,

b(N(t−D)−N∞)

∫ VF

−∞

∂ρ∞
∂v

[
G(q)− qG′(q)

]
dv = 2b(N(t−D)−N∞)

∫ VF

−∞
ρ∞q

∂q

∂v
dv.

Using the inequality cd ≤ ε̄c2 + 1
ε̄d

2 with ε̄ = a
2 , c =

√
ρ∞

∂q
∂v and d = 2b(N(t−D)−N∞)

√
ρ∞q, we obtain

b(N(t−D)−N∞)

∫ VF

−∞

∂ρ∞
∂v

[
G(q)− qG′(q)

]
dv

≤ a

2

∫ VF

−∞
ρ∞

(
∂q

∂v

)2

dv +
8(b(N(t−D)−N∞))2

a

∫ VF

−∞
ρ∞q

2 dv

≤ a

2

∫ VF

−∞
ρ∞

(
∂q

∂v

)2

dv +
8(b(N(t−D)−N∞))2

a

∫ VF

−∞
ρ∞(q − 1)2 dv (5.8)

+
8(b(N(t−D)−N∞))2

a
.

Collecting the previous bounds (5.7) and (5.8), we have

d

dt

∫ VF

−∞
ρ∞(v)G(q(v, t)) dv ≤ −N∞εG

(
N(t)

N∞

)
+

8(b(N(t−D)−N∞))2

a

∫ VF

−∞
ρ∞(v)G(q(v, t)) dv

− a
∫ VF

−∞
ρ∞

(
∂q

∂v

)2

dv +
8(b(N(t−D)−N∞))2

a
.

Using Poincaré’s inequality (Theorem A.1) and the specific form of G we chose, we obtain

d

dt

∫ VF

−∞
ρ∞(v)G(q(v, t)) dv ≤ − ε

N∞

(
N(t)−N∞

)2

+
8b2

a

(
N(t−D)−N∞

)2

+

(
−νa+

8(b(N(t−D)−N∞))2

a

)∫ VF

−∞
ρ∞(v)G(q(v, t)) dv,

where ν is the Poincaré constant of Theorem A.1. Theorem A.1 holds for b ∈ [−η, η], for some small enough

η > 0; henceforth, we assume this is the case.

Then, denoting

E(t) =

∫ VF

−∞
ρ∞(v)G(q(v, t)) dv,

and φ(t) = −νat+ 8b2

a

∫ t
0
(N(s−D)−N∞)2 ds, and using Gronwall’s lemma, the previous inequality becomes
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E(t) ≤ eφ(t)E(0) +
8b2

a
eφ(t)

∫ t

0

(N(s−D)−N∞)2e−φ(s) ds

− ε

N∞
eφ(t)

∫ t

0

(N(s)−N∞)2e−φ(s) ds

≤ eφ(t)E(0) +
8b2

a
eφ(t)

∫ t−D

−D
(N(s)−N∞)2e−φ(s+D) ds

− ε

N∞
eφ(t)

∫ t

0

(N(s)−N∞)2e−φ(s) ds.

But, for s > 0,

−φ(s+D) = νas+ νaD − 8b2

a

∫ s+D

0

(N(u−D)−N∞)2 du ≤ −φ(s) + νaD.

Using (5.1) and the fact that in Theorem A.1 the Poincaré’s constant ν is independent of b, we can choose b

such that

8b2eνaD

a
≤ ε

N b
∞
.

With this choice, we can write

E(t) ≤ eφ(t)E(0) +
8b2

a
eφ(t)

∫ 0

−D
(N(s)−N∞)2e−φ(s+D) ds

− ε

N∞
eφ(t)

∫ t

t−D
(N(s)−N∞)2e−φ(s) ds

≤ eφ(t)

(
E(0) +

8b2

a

∫ 0

−D
(N0(s)−N∞)2e−φ(s+D) ds

)
.

• If b > 0 : By Theorem 5.1, in the average-excitatory case, there exist constants β1, β2 ∈ R+ such that

φ(t) ≤ −νat+
8b2

a
(β1 + β2t).

Thus, for b small enough (β1(b) and β2(b) do not grow when b goes to 0), eφ(t) ≤ A0e
−µt, with A0, µ

positive real numbers.

• If b ≤ 0: By Theorem 5.1, in the inhibitory case, there exists T ∈ R+ and there exist constants β1, β2 ∈ R+

such that φ(t) ≤ −νat+ 8b2

a (β1 + β2(t− T )), for t ≥ T . Thus, for b small enough (these β1 and β2 don’t

depend on b) and t large enough, eφ(t) ≤ A0e
−µt, with A0, µ positive real numbers and A0 depending on
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the values of N between 0 and T .

5.3 Non-existence of periodic solutions for a large connectivity parameter

Numerical results for the NNLIF models have been presented in [7]. On one hand, we observe how the blow-up

is avoided if we include a synaptic delay. For this case, we have a small value of b combined with a concentrated

initial condition, which produces the blow-up of the solution without delay [4]. For this value of b there is

a unique steady state [4], and the solution tends to it, after avoiding the blow-up due to the delay, which is

consistent with Theorem 5.3.

On the other hand, also it is known that a blow-up situation happens for large value of b [4]. If we include

the delay, the solutions avoid the blow-up, but they do not tend to an equilibrium, since for large values of b

there is no steady state [4]. Numerically, no periodic solutions are observed and the firing rates seem to grow

slowly all the time with limit +∞, but without diverging in finite time [7].

Here we clarify a bit the situation by proving analytically that it is impossible for periodic solutions to exist

when b is greater than VF − VR in the case VF ≤ 0 and b̄ = 0.

Theorem 5.4 If b > VF − VR, b̄ = 0 and VF ≤ 0, then for any D ≥ 0 there are no strong periodic solutions to

equation (1.1)-(1.2)-(1.3) such that
∫ VF
−∞ |v|ρ

0(v)dv < +∞.

Proof. Assume there exists a T−periodic solution (ρ,N) of equation

∂tρ+ ∂v
[
(−v + bN(t−D))ρ

]
− a∂vvρ = δVR(v)N(t)

such that vρ0 ∈ L1((−∞, VF )). Then, as we said before, v 7→ vρ(v, t) ∈ L1((−∞, VF )) for all time since the

decay assumption propagates. Denoting Φ(v) := 1
T

∫ T
0
ρ(v, t)dt, we have

∫ VF
−∞ Φ(v)dv = 1 and, Φ satisfies

∂v
(
− vΦ + b

1

T

∫ T

0

N(t−D)ρ(v, t)dt
)
− a∂vvΦ = δv=VRN, (5.9)

where N := 1
T

∫ T
0
N(t)dt = 1

T

∫ T
0
N(t−D)dt. Now, we multiply equation (5.9) by v and we integrate:

∫ VF

−∞
vΦdv − bN + (VF − VR)N = 0.

Hence,
∫ VF
−∞ vΦdv =

(
b − (VF − VR)

)
N . As VF ≤ 0, the integral is negative, leading to (b − (VF − VR)) < 0,

which is a contradiction.
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Corollary 5.5 If b > VF − VR, VF ≤ 0 and b̄ = 0, there is no steady state to equation (1.1)-(1.2)-(1.3).

Remark 5.6 This corollary upgrade a result of [4] that classifies the number of steady states. Indeed, the

theorem 3.1 of [4] tell us (in the case b̄ = 0) that there is no steady state when

b > max

 2(VF − VR) , 2VF

∫ +∞

0

e−
s2

2
e
sVF√
a0 − e

sVR√
a0

s
ds

 ,

and that there are at least two steady states when b > VF − VR and 0 < 2a0b < (VF − VR)2VR. The case

b > VF − VR and VF ≤ 0 was not covered by the result.

6 Conclusions and open problems

This paper focuses on the NNLIF system with a synaptic delay. For the average-excitatory case without trans-

mission delay, solutions can blow-up in finite time [4] due to the divergence of the firing rate [9]. Nevertheless,

at microscopic level, it has been proved that if the synaptic delay is taken into account, solutions are always

global-in-time [13]. Moreover, for delayed NNLIF system numerical results show that the blow-up phenomenon

is avoided [7]. In this work we prove the global-in-time existence for the delayed NNLIF model, confirming the

previous numerical observations. The techniques developed in [9], for the case without synaptic delay, are not

enough for the average-excitatory delayed system, since it is not possible to find a uniform bound for the firing

rate. We reach the proof by combining these techniques with the construction of super-solutions [8], which

provide a control of the firing rate. Moreover, we show qualitative properties of the solutions: a priori estimates

on the firing rate, exponential convergence of the solutions to the steady state when the connectivity parameter

is small enough, and some obstructions to the existence of time-periodic solutions in order to have insights in

their potential domain of existence in terms of the model parameters.

In conclusion, we complete the mathematical analysis of the NNLIF system proving global-in-time existence

for the delayed NNLIF model and making progress in the study of its long time behaviour. In this way we

contribute to a better understanding of the NNLIF model, with a rich variety of phenomena, able to reproduce

biological facts. In the light of these and earlier results we can conclude that the blow-up phenomenon, observed

when the synaptic delay is neglected, appears due to this simplification. However, when the transmission delay

is included in the model, solutions tend to the unique steady state when the connectivity parameter b is small

enough. For b large enough so that no steady states exist, we also prove that there are no periodic solutions and

it seems that the firing rate increases in time, as it was observed numerically in [7]. The methods developed in
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this article could also be used to prove similar results for the NNLIF model with delay and refractory state for

both one [5] and two populations [6, 7].

Several questions regarding the NNLIF model remain open: what happens with the solutions of the non-

delayed NNLIF model after a blow-up phenomenon, the convergence towards the stationary state for average-

inhibitory case (when entropy methods break), the existence and stability of periodic solutions and the analysis

of possible multistability phenomena.

A Technical results from the literature

For completeness we include in this appendix two theorems often used in the study of NNLIF models: a

Poincaré-like inequality and an entropy equality.

Theorem A.1 (Poincaré-like inequality) There exist η > 0 and ν > 0 depending on η such that for all

b ∈ [−η, η], for any measurable function h satisfying
∫ VF
−∞ ρ∞(v)h(v)dv = 1, the following inequality holds:

ν
∫ VF
−∞ ρ∞(v)(h(v)− 1)2dv 6

∫ VF
−∞ ρ∞(v)

[
∂h

∂v

]2

(v)dv, where ρ∞ is the steady state associated with b.

The proof of this result was done in [4] for b = 0, and it is easily extended for small enough b, because it only

uses the behaviour of ρ∞ around VF and −∞, which does not depend on b, as it was explained in [8]. That

behaviour does not change asymptotically when b goes from 0 to a small value, and therefore ν is independent

of b for small enough b.

In the rest of the appendix we prove the following entropy equality, where we assume b̄ = 0, without loss of

generality.

Theorem A.2 (Entropy equality) For all convex function G : R+ → R of class C2 and any initial condition

(ρ0, N0) satisfying the hypotheses of Theorem 4.9, if there exists C0 > 0 such that ρ0(v) ≤ C0ρ∞(v), for all

v ∈ (−∞, VF ], then for all t > 0, there exists C(t) such that for all v ∈ (−∞, VF ], ρ(v, t) ≤ C(t)ρ∞(v) and the

corresponding strong solution ρ of (1.1)-(1.2)-(1.3) satisfies

d

dt

∫ VF

−∞
ρ∞G

(
ρ

ρ∞

)
dv = −a

∫ VF

−∞
ρ∞

[
∂

∂v

(
ρ

ρ∞

)]2

G′′
(
ρ

ρ∞

)
dv

−N∞
[
G

(
N

N∞

)
−G

(
ρ

ρ∞

)
−
( N

N∞
− ρ

ρ∞

)
G′
(
ρ

ρ∞

)]∣∣∣∣
v=VR

+ b(N(t−D)−N∞)

∫ VF

−∞

∂ρ∞
∂v

[
G

(
ρ

ρ∞

)
− ρ

ρ∞
G′
(
ρ

ρ∞

)]
dv. (A.1)

29



Proof. According to Section 3, for a = 1, VF = 0 and t < D, if we denote

G(x, τ, ξ, η) =
1√

4π(τ − η)
e
−

(x− ξ)2

4(τ − η)

the heat kernel, the solution ρ satisfies

ρ(v, t) = e2t

∫ 0

−∞
G

(
etv −

∫ 1
2 (e2t−1)

0

e−sµ(s−D)ds,
1

2
(e2t − 1), ξ, 0

)
ρ0(etξ) dξ

− et
∫ 1

2 (e2t−1)

0

M(η)G

(
etv −

∫ 1
2 (e2t−1)

0

e−sµ(s−D)ds,
1

2
(e2t − 1), s(η), η

)
dη

+ et
∫ 1

2 (e2t−1)

0

M(η)G

(
etv −

∫ 1
2 (e2t−1)

0

e−sµ(s−D)ds,
1

2
(e2t − 1), s1(η), η

)
dη, (A.2)

where M only depends on N0 as long as t < D.

Due to the forms of G and ρ∞, the last two terms decrease at least as fast as ρ∞ at −∞. The first term satisfies

e2t

∫ 0

−∞
G
(
etv −

∫ 1
2 (e2t−1)

0

e−sµ(s−D)ds,
1

2
(e2t − 1), ξ, 0

)
ρ0(etξ) dξ

≤ e2tC0

∫ 0

−∞
G
(
etv −

∫ 1
2 (e2t−1)

0

e−sµ(s−D)ds,
1

2
(e2t − 1), ξ, 0

)
ρ∞(etξ) dξ,

= etC0

∫ 0

−∞
G
(
etv −

∫ 1
2 (e2t−1)

0

e−sµ(s−D)ds,
1

2
(e2t − 1), e−tξ, 0

)
ρ∞(ξ) dξ. (A.3)

Hence, there exists C(t) such that ρ(v, t) 6 C(t)ρ∞(v), ∀v ∈ (−∞, VF ]. As we said previously, it is then true

for all a, VF , t using changes of variables and successive time intervals of length less than D.

To conclude we prove the entropy equality A.1. First, we calculate
∂

∂v

(
ρ

ρ∞

)
:

∂

∂v

(
ρ

ρ∞

)
=

1

ρ∞

∂ρ

∂v
− ρ

ρ2
∞

∂ρ∞
∂v

and thus

∂ρ

∂v
= ρ∞

∂

∂v

(
ρ

ρ∞

)
+

ρ

ρ∞

∂ρ∞
∂v

,

and

∂2ρ

∂v2
= ρ∞

∂2

∂v2

(
ρ

ρ∞

)
+ 2

∂ρ∞
∂v

∂

∂v

(
ρ

ρ∞

)
+

ρ

ρ∞

∂2ρ∞
∂v2

.
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These expressions allow us to do the following computations

∂

∂t

[
ρ∞G

(
ρ

ρ∞

)]
=

∂ρ

∂t
G′
(
ρ

ρ∞

)
=

(
∂

∂v

[(
v − bN(t−D)

)
ρ
]

+ a
∂2ρ

∂v2
+ δVRN

)
G′
(
ρ

ρ∞

)
=

(
vρ∞

∂

∂v

(
ρ

ρ∞

)
+ v

ρ

ρ∞

∂ρ∞
∂v

+ ρ

−bN(t−D)ρ∞
∂

∂v

(
ρ

ρ∞

)
− bN(t−D)

ρ

ρ∞

∂ρ∞
∂v

+ δVRN

+aρ∞
∂2

∂v2

(
ρ

ρ∞

)
+ 2a

∂ρ∞
∂v

∂

∂v

(
ρ

ρ∞

)
+ a

ρ

ρ∞

∂2ρ∞
∂v2

)
G′
(
ρ

ρ∞

)
=

((
vρ∞ + 2a

∂ρ∞
∂v

)
∂

∂v

(
ρ

ρ∞

)
+ aρ∞

∂2

∂v2

(
ρ

ρ∞

)
+

ρ

ρ∞

[
v
∂ρ∞
∂v

+ ρ∞ + a
∂2ρ∞
∂v2

]
− bN(t−D)

ρ

ρ∞

∂ρ∞
∂v

−bN(t−D)ρ∞
∂

∂v

(
ρ

ρ∞

)
+ δVRN

)
G′
(
ρ

ρ∞

)
.

As ρ∞ is a steady state, we have

ρ

ρ∞

[
v
∂ρ∞
∂v

+ ρ∞ + a
∂2ρ∞
∂v2

]
− bN(t−D)

ρ

ρ∞

∂ρ∞
∂v

=
ρ

ρ∞

[
bN∞

∂ρ∞
∂v
− δVRN∞

]
− bN(t−D)

ρ

ρ∞

∂ρ∞
∂v

= b(N∞ −N(t−D))
ρ

ρ∞

∂ρ∞
∂v
− δVRN∞

ρ

ρ∞
, (A.4)

and combining the two previous computations

∂

∂t

[
ρ∞G

(
ρ

ρ∞

)]
=

((
vρ∞ + 2a

∂ρ∞
∂v

)
∂

∂v

(
ρ

ρ∞

)
+ aρ∞

∂2

∂v2

(
ρ

ρ∞

)
+δVRN∞

( N

N∞
− ρ

ρ∞

)
+ b(N∞ −N(t−D))

ρ

ρ∞

∂ρ∞
∂v

−bN(t−D)ρ∞
∂

∂v

(
ρ

ρ∞

))
G′
(
ρ

ρ∞

)
.

On the other hand, since
∂

∂v
G
(

ρ
ρ∞

)
=

∂

∂v

(
ρ

ρ∞

)
G′
(

ρ
ρ∞

)
and

∂2

∂v2
G

(
ρ

ρ∞

)
=

[
∂

∂v

(
ρ

ρ∞

)]2

G′′
(
ρ

ρ∞

)
+

∂2

∂v2

(
ρ

ρ∞

)
G′
(
ρ

ρ∞

)
,
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we obtain

∂

∂t

[
ρ∞G

(
ρ

ρ∞

)]
=

(
vρ∞ + 2a

∂ρ∞
∂v

)
∂

∂v
G

(
ρ

ρ∞

)
+ aρ∞

∂2

∂v2
G

(
ρ

ρ∞

)
−aρ∞

[
∂

∂v

(
ρ

ρ∞

)]2

G′′
(
ρ

ρ∞

)
+ δVRN∞

( N

N∞
− ρ

ρ∞

)
G′
(
ρ

ρ∞

)
+b(N∞ −N(t−D))

∂ρ∞
∂v

ρ

ρ∞
G′
(
ρ

ρ∞

)
− bN(t−D)ρ∞

∂

∂v
G

(
ρ

ρ∞

)
.

Then, using the equation for ρ∞, we write

∂

∂t

[
ρ∞G

(
ρ

ρ∞

)]
=

∂

∂v

(
vρ∞G

(
ρ

ρ∞

))
+ a

∂2

∂v2

(
ρ∞G

(
ρ

ρ∞

))
+δVRN∞

[( N

N∞
− ρ

ρ∞

)
G′
(
ρ

ρ∞

)
+G

(
ρ

ρ∞

)]
−aρ∞

[
∂

∂v

(
ρ

ρ∞

)]2

G′′
(
ρ

ρ∞

)
− bN(t−D)ρ∞

∂

∂v
G

(
ρ

ρ∞

)
−bN∞

∂ρ∞
∂v

G

(
ρ

ρ∞

)
+ b(N∞ −N(t−D))

∂ρ∞
∂v

ρ

ρ∞
G′
(
ρ

ρ∞

)
.

Finally, as ρ(VF , t) = ρ∞(VF ) = 0 and ∂ρ∞
∂v (VF ) = −aN∞ 6= 0, we can apply l’Hôpital’s rule :

∀t ∈ R+, lim
v→VF

p(v, t)

ρ∞(v)
= lim
v→VF

∂ρ
∂v (v, t)
∂ρ∞
∂v (v)

=
N(t)

N∞
,

and integrating we obtain
∫ VF
−∞

∂

∂v

(
vρ∞G

(
ρ
ρ∞

))
dv =

[
vρ∞G

(
ρ
ρ∞

) ]VF
−∞

= 0 and

∫ VF

−∞
a
∂2

∂v2

(
ρ∞G

(
ρ

ρ∞

))
dv =

[
a
∂

∂v

(
ρ∞G

(
ρ

ρ∞

))]VF
−∞

=

[
a

(
∂ρ

∂v
− ρ

ρ∞

∂ρ∞
∂v

)
G′
(
ρ

ρ∞

)
+ a

∂ρ∞
∂v

G

(
ρ

ρ∞

)]VF
−∞

=
(
−N +

N

N∞
N∞

)
G′
(
N

N∞

)
−N∞G

(
N

N∞

)
= −N∞G

(
N

N∞

)
,

where every integral is defined and finite thanks to the inequality ρ(v, t) ≤ C(t)ρ∞(v).

Eventually, we have, by integration by parts and using boundary conditions,

∫ VF

−∞
bN(t−D)ρ∞

∂

∂v
G

(
ρ

ρ∞

)
dv = −bN(t−D)

∫ VF

−∞

∂ρ∞
∂v

G

(
ρ

ρ∞

)
dv

and the result comes from this integral and the previous computations.
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