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including external electromagnetic fields. The computation is performed at first and second
order in the hydrodynamical expansion. We use a 5-dim holographic model with pure gauge
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in other transport coefficients is discussed.
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1 Introduction

Standard thermodynamics assumes thermodynamical equilibrium, implying that the in-
tensive parameters (pressure, temperature and chemical potential) are constant along the
volume of the system. Furthermore it is always possible to find a frame in which the total
momentum of the system vanishes. In order to study systems in more interesting regimes
one can allow the thermodynamical parameters to vary in space and time taking the sys-
tem out of equilibrium. However, we assume local thermodynamical equilibrium which
means that the variables vary slowly in space and time. This approximation, also called
hydrodynamical approach, makes sense when the mean free path of the particles is much
shorter than the characteristic size or length of the system I, s, < L [1].

The modern understanding of hydrodynamics is based on the effective field theory
formalism. The hydrodynamical systems should obey the (anomalous) conservation laws
of the spin one currents and the energy-momentum tensor, which are supplemented by
expressions of the current and the energy-momentum tensor in terms of the quantities in
the fluid, the so-called constitutive relations. These relations can be written as

<TW/> = (E + p) utu” + pg,uu + <T'wj>diss & anom (11)
<J'u> = nut + <J'u>diss & anom - (1.2)

Here € is the energy density, p the pressure, n the charge density and u* the local fluid
velocity. In addition to the equilibrium contributions, there are extra terms in the consti-
tutive relations which lead to dissipative and anomalous effects. These terms are usually
computed in the long wavelength approximation, so that they are organized in a derivative
expansion, also called hydrodynamical expansion. Some examples of dissipative coefficients
are the shear viscosity 7, bulk viscosity ¢ and electric conductivity o (see e.g. [1-3] and
references therein).

During the past few years a new set of transport coefficients has been discovered
as a consequence of chiral anomalies. The axial anomaly of QED is responsible for two
particularly interesting effects of strong magnetic fields in dense strongly interacting matter.
At large quark chemical potential u, chirally restored quark matter gives rise to an axial
current parallel to the magnetic field [4-6]

eN,
= B
o2 BB,

Js (1.3)

which may indeed lead to observable effects in strongly magnetized neutron stars and heavy
ion collisions [7, 8]. This phenomena is known as chiral separation effect (CSE).

In the context of heavy ion collisions it was argued in [9, 10] that the excitation of
topologically non-trivial gluon field configurations in the early non-equilibrium stages of
a heavy ion collision might lead to an imbalance in the number of left- and right-handed
quarks. This situation can be modelled by an axial chemical potential.! During the collision
one expects the generation of magnetic fields that momentarily exceed even those found

1As soon as thermal equilibrium is reached, this imbalance is frozen and it is modelled by a chiral
chemical potential, at least as long as the electric field is zero.



in magnetars. It has been proposed by Kharzeev et al. [9-13] that the analogous effect,
so-called chiral magnetic effect (CME) [14]

e2N,

J p—
272

ps B, (1.4)

where J is the electromagnetic current and us the axial chemical potential, could render
observable event-by-event P and CP violations. Indeed, there is recent experimental evi-
dence for the CME in the form of charge separation in heavy ion collisions with respect to
the reaction plane [15, 16], and more recently from LHC data [17] (see however [18, 19]).
For lattice studies of this effect, see for example [20, 21]. In the context of holography the
CME was under an intense discussion to confirm its presence at strong coupling [22-26].

The fluid/gravity correspondence [27] is a very powerful tool to understand the hy-
drodynamic regime of quantum field theories with holographic dual. This technique has
contributed to the understanding of the positivity of the entropy production using tech-
niques of black hole thermodynamics [28-30]. It is also very useful for the computation
of transport coefficients. The application of the fluid/gravity correspondence to theories
including chiral anomalies [31, 32] lead to another surprise: it was found that not only a
magnetic field induces a current but that also a vortex in the fluid leads to an induced
current, the latter is called chiral vortical effect (CVE).2 Again it is a consequence of the
presence of chiral anomalies. It was later realized that the chiral magnetic and vortical
conductivities are almost completely fixed in the hydrodynamic framework by demanding
the existence of an entropy current with positive definite divergence [34]. That this cri-
terion did not fix completely the anomalous transport coefficients was noted in [35], and
various terms depending on the temperature instead of the chemical potentials were shown
to be allowed as undetermined integration constants. The contributions from pure gauge
anomalies is fixed uniquely by this method and provides therefore a non-renormalization
theorem (see however [36] for a discussion on radiative corrections to the CSE).

Using a Kubo formula for the chiral vortical conductivity in a system of fermions at
the weakly coupled regime, a purely temperature dependent contribution was found. This
contribution was consistent with the integration constants found in [35] and it was shown
to arise if and only if the system of chiral fermions features a mixed gauge-gravitational
anomaly [37]. The gravitational anomaly contribution to the chiral vortical effect was also
established in a strongly coupled AdS/CFT approach and precisely the same result as at
weak coupling was found [38]. Some evidence of this effect has been found recently also
from lattice studies [39).

Some very recent attempts to establish a non-renormalization theorem for anomalous
conductivities lead to the fact that the chiral vortical conductivity indeed renormalizes due
to gluon fluctuations [40, 41]. On the other hand it has been studied in [42, 43] the ultravi-
olet cutoff dependence of the anomalous transport coefficients and their holographic flow.

In [44] the authors claim that the gravitational anomaly produces a Casimir momen-
tum in the cone formed by the space-time with imaginary time, which breaks the deriva-

2 A generalization of the model of [31, 32] to a Maxwell-Gauss-Bonnet gravity has been done in [33], where
some corrections of the transport coefficients induced by the Gauss-Bonnet coupling have been computed.



tive counting and it is the responsible that first order transport coefficients being fixed
by the mixed gravitational anomaly. The gravitational anomaly contribution was con-
firmed also in a fluid/gravity context [30], in a weakly coupled gas of Weyl fermions in
arbitrary dimensions [45], and it was found in [46] that the anomalous conductivities can
be obtained directly from the anomaly polynomial substituting the field strength with the
chemical potential and the first Pontryagin density by the negative of the temperature
squared. Recently the anomalous conductivities have also been obtained in effective action
approaches [47-56] and using group theory techniques [57].

Stability and causality issues of the hydrodynamic equations demand the knowledge of
second order hydrodynamics [58-60]. A classification of the terms contributing to this order
was presented in [61]. In this work we compute within the fluid/gravity correspondence
the transport coefficients at first and second order in the hydrodynamical expansion, using
an holographic model which includes both gauge and mixed gauge-gravitational anomalies
and external electromagnetic fields.

The manuscript is organized as follow. In section 2 we define our holographic model
and present the renormalized action and the equations of motion. In section 3 we perform
a formal derivation of the one point functions for a general Lagrangian, either in consistent
and in covariant form. We review in section 4 the first and second order hydrodynamical
Weyl covariant formalism, and present our main results.

In section 5 we explain the method to compute the transport coefficients within the
fluid /gravity formalism. We present our result of the transport coefficients to first and
second order in sections 6 and 7 respectively. Finally we conclude with a discussion of our
results and an outlook towards possible future directions in section 8. The full expressions
for the sources and transport coefficients at second order are collected in the appendices.

2 Holographic model

The model we will use here was presented in [38]. We will fix first our conventions. We
choose the five dimensional metric to be of signature (—,+,+,+,+). The epsilon tensor
has to be distinguished from the epsilon symbol, the latter being defined by e(rtxyz) = +1
whereas the former is defined by eapcpr = vV—9€(ABCDE). Five dimensional indices
are denoted with upper case latin letters. We define an outward pointing normal vector

na o g8 ai'jg to the holographic boundary of an asymptotically AdS space with unit norm

nan? = 1. The action is given by

1 5 1 MN
= — V- 12 - -FynF
S 16”G/dm g[R—l— 1imMN
K
+eMNPRR 4, (gFNPFQR + AR gnpRE AQR) ] + Seu + Scsk,  (2.1)
1
Sen = —— | d*av-hK 2.2
GH 16 /85 €T ) ( )
1

Scsk = “onC g d*zv/—h )\nMEMNPQRANKpLDQKé, (2.3)



where Sgyr is the usual Gibbons-Hawking boundary term and D 4 is the induced covariant
derivative on the four dimensional cut-off surface. The second boundary term Scogr was
motivated in [38] (see also [43]). Notice that the action is diffeomorphism invariant, the
Chern Simons terms are well formed volume forms and as such they are diffeomorphism
invariant. They do depend however explicitly on the gauge connection Ap;. Under gauge
transformations § Apy = V&€ they are therefore invariant only up to a boundary term. This
model needs a counterterm in order to make the on-shell boundary action well defined?

Sct:_

1 4 v 2 1. i 0%
e /86 d*zv—h [6 + 3P — (PﬁP# — P — ZFWF“ > log e] , (2.4)
where
11~

L Pr=3 [Rg - Péﬁ} . (2.5)
Quantities with hat (13' , R, ... ) refer to their induced four dimensional objects at the cut-off
surface, which is located at the radius r ~ 1/e. So taking the limit € — 0, one takes the
surface to the AdS boundary.

The bulk equations of motion Ey;ny = 0 and M D — 0 are

0, (2.6)

1 1
Gun + <8F2 - 6) gun = S FuLEN " =22 eLpqrou Vs (FTERY ) 9F)

VNFNP 4 PNPRE (kFypFor + AR pnpRP aqr) = 0, (2.7)

and they are gauge and diffeomorphism covariant.

3 One point functions and Ward identities

After an ADM decomposition it is possible to realize that the action (2.1) is second order
in 7 derivatives (see ref. [38]), so in order to get the correct one point functions we have
to take into account this fact and the assumption that the bulk space is asymptotically
anti-de Sitter. Asymptotically AdS is enough to get a well defined boundary value problem
just in terms of the field boundary theory sources. Let us analyze now what this implies
for a general Lagrange density.

3.1 The holographic dictionary with higher derivatives

Let us assume a general renormalized Lagrangian for an arbitrary set of fields that we will
call ¢. After the four dimensional ADM decomposition one has,

S:/d4$d7’£(¢, (ZB, D,¢, Du¢7 ¢)7

where dot indicates derivative with respect to the radial coordinate. A general variation
of the action leads now to

dtwar |2 505 PLss 4 OF OL _sp i+ 255
55-/dmdr [8¢5¢+aé‘swa(Dm)d(DmHa(Dm)é(D“ma{z;&ﬁ . (3.1)

3Tt has been proved in [38] that the gravitational Chern-Simons term does not introduce new divergences
in the system if the space is asymptoticaly AdS.



Through a series of partial integrations we can bring this into the following form,

9L _p, (25 ) - <3§>' 56+ L6
9¢ (Do) 99 99

(3.2)

The bulk terms are the equations of motion. For a generic boundary, the form of the

5S:/d4a:drE.O.M.5¢+/ d*z

variation shows that Dirichlet boundary conditions can not be imposed. Vanishing of the
action rather imposes a relation between d¢ and §¢.

If we have applications of holography in mind, there is however another way of dealing
with the boundary term. We suppose now that we are working in an asymptotically anti-de
Sitter space. The field ¢ has therefore a boundary expansion

¢ = 29730 4 subleading

here A is the dimension (conformal weight) of the operator that is sourced by #©) . Since
this is a generic property of holography in asymptotically AdS spaces, we can relate the
derivative of the variation to the variation itself,

8¢ = (A— 4)6(A_4)r5¢(0) + subleading .

Using this and the fact that the one point function of the consistent operator Oy is defined
as the variation of the on-shell action with respect to the source ¢(¥), we find

V=h©0, = lim A" [M - D, (ac) _d <8£> +(A—4) <‘;§)] . (3.3)

r—o0 09 a(D,$)) dr \o¢

Without loss of generality we can evaluate this in Gaussian normal coordinates where the
metric takes the form ds?> = dr? + huvdxtdz”, and in the gauge A, = 0. The gauge
variation of the action depends only on the intrinsic four dimensional curvature of the
boundary. From this we can compute the “bare” consistent U(1) current and energy-
momentum tensor, and the result is

V—h 4 .
167TGJ(‘2) = — _h(o) |:FTM + SHE#VP)\AVFp)\] ) (34)
V=h 1. - .
8rGT( = —5 {K‘“’ — KyH 4 4)\e(nebp <2FaﬂR;> + Ds(A R ﬂp))] . (3.5)

Now taking the divergence of these expressions and using the equations of motion, we
get the anomalous charge conservation and the energy-momentum conservation relations

respectively,
vor (B A £ Ao 2
Dutlty = =3 (5 Euon + AR 5 B o) (3.6)
D“T(’lél)/ = —J(C)HFMV + AVD/LJ(HC) . (37)

These are precisely the consistent Ward identities for a theory invariant under diffeomor-
fisms with a mixed gauge gravitational anomaly. A good general reference for anomalies



is Bertlmann’s book [62] where the consistent form of the anomaly for chiral fermions
transforming under a U(1)7, symmetry group is quoted as

1 VpA VPA D >
Dyullyy = 5o 56" Fur Fox + =o€ R g RY (3.8)

We use this to fix k and A to the anomaly coeflicients for a single chiral fermion transforming
under a U(1)y symmetry, therefore

ko 1 A _ 1
487G 9672’ 167G 76872

(3.9)

3.2 Covariant form of the current and energy-momentum tensor

We have computed the currents as the derivative of the field theory quantum action, and
the anomaly is therefore in the form of the consistent anomaly. Since we are dealing only
with a single U(1) symmetry, the (gauge) anomaly is automatically expressed in terms of
the field strength. However it is always possible to add a Chern-Simons current and to
redefine the charge current J* — JH + cet” p’\AVFp)\, and the energy-momentum tensor
" — TH + ¢ ea(”pADig (AQRBV) pA). These redefined quantities can not be expressed as
the variation of a local functional of the fields with respect to the gauge and metric fields
respectively. In particular the so-called covariant form of the anomaly differs precisely in
such a redefinition of the current.*

Adding such a terms to the consistent current and energy-momentum tensor (3.4)—
(3.5), we can write the covariant expressions for these quantities which are the ones we will
use to construct the hydrodynamical constitutive relations in the fluid/gravity approach,

V—h
167GJH = —————F"™"|, (3.10)
—h(0)
STGTH = —— ”_}(LO) [KW — Kh*™ + 2Ae<wﬁﬂﬁa51%g)] : (3.11)
—h €

4 Constitutive relations, derivative expansion and Weyl covariance

Some notions on conformal/Weyl covariant formalism are needed to construct the consti-
tutive relations up to second order (for a detailed explanation see [29]). A conformal fluid
has to be invariant under the change

uv — 6_2¢(m)guv ) (4'1)

where ¢(x) is an arbitrary function. We will say that a tensor is Weyl convariant with
weight w if it transforms as

Qg G (42

The consequences of conformal symmetry on hydrodynamics is that the energy momen-

tum tensor and (non)-conserved currents have to be covariant under Weyl transformations

4Note that the approaches used in [34, 35] and in subsequent works, typically make use of the covariant
form of the anomaly.



Field weight

w, Ty ut 1
v -2
P 4

n, EX,Bh | 3

Table 1. Weyl weights for the chemical potential, temperature, fluid velocity, metric, pressure,
charge density, electric field and magnetic field.

and the energy momentum has to be traceless modulo contributions from Weyl anomaly.
To construct Weyl covariant quantities it is necessary to introduce the Weyl connection

1
-Dyu”, (4.3)

= Dy, —
A, =u"Dyu 3

and the Weyl covariant derivative

DA\Qy = D\QY —wA\QY " +
+ [gradt — Ay — SEA] QS ..
— (gAY — 08 A, — S AN QP . (4.4)

We show in table 1 the Weyl weights of some of the hydrodynamical variables. It is
possible to reduce in a systematic way the number of independent sources contributing to
the constitutive relations by imposing Weyl covariance and the hydrodynamical equations
of motion (Ward identities). A classification in the so called Landau frame of all the
possible terms that can appear in the energy-momentum tensor and U(1) current has been
done up to second order in [31, 32, 61]. The Ward identities in four dimensions in presence
of quantum anomalies are shown in (3.6) and (3.7). The curvature part has been usually
neglected in the literature as it is fourth order in derivatives and the expansion is usually
done up to second order. But it was shown in [37, 38] that the gravitational anomaly indeed
fixes part of the transport coefficients at first order. Actually in [44] it was understood
why the derivative expansion breaks down in presence of the gravitational anomaly.

With these ingredients we can write down the constitutive relations in the Landau
frame

v v

T = pduu” +1") + 74 + T(ane T 7o) T 7o) (45)

)ano ’
T = i+ V) Vyane T V2) T V(2)an0

where we have split the expressions in the equilibrium, first order and second order (anoma-
lous + non anomalous) parts. Weyl invariance implies the equation of state e = 3p and the
vanishing of the bulk viscosity ¢ = 0.° The subindex in parenthesis indicates the order in

®As it has been discussed in [61] the anomalous terms in the constitutive relations are those whose
transport coefficients have (C, P) = (£1,—1), and they correspond to the ones containing odd powers in
the anomaly coefficients x and A. See this reference for a systematic classification of anomalous and non
anomalous terms.



the derivative expansion. The ambiguity in the definition of temperature, chemical poten-
tial and fluid velocity which appears when the system is slightly out of equilibrium is fixed

by using the Landau frame, in which it is demanded that u/7(,),, = 0 and uv(,), = 0. Up

72
to first order, the most general contributions to the conformal energy momentum tensor

and U(1) current are

7'(“1'; = —2not” | T("l';ano =0, (4.7)
Vﬁ) = —o(TP"D,u— E") , yé‘l)am = {ywh + Ep B, (4.8)

where we have defined the Weyl invariant quantity i = u/T. In these expressions 7, o, {y
and &g are the shear viscosity, electrical conductivity, chiral vortical and chiral magnetic
conductivities respectively, while ", w*’, w#, E* and B* are the shear and vorticity
tensors, vorticity, electric and magnetic fields respectively, defined as

T = 5 (Dyt + D) (1.9
Wy = Dyuy — Dyuy, , (4.10)
wh = %e“”aﬂu,,wag, (4.11)
BV = Py, (4.12)
BF = %ewaﬁuyFaﬁ. (4.13)

Finally P* = h* + utu” is the projector in the space orthogonal to the velocity field.
From previous definitions one can easily prove that the strength tensor decomposes in the
following way:

Fog = uqEg —ugEy — €appuu’ B" . (4.14)
The second order contributions to the constitutive relations are
Thy = aff AT, T o = af AT (4.15)
o -
oy = 3 8T oy = T (4.16)
with the second order tensors defined as
T — yop ot ’ TR — 5 {u A/UVM , T — 5 {n Wuw ’
TS — e Wuw ’ 7O — pleprly 7O — plegpiy
T — plepgr) TR — pleprly T — plegr)
T — glupgy) TADpr Ev5n(uu7350V> - T2 — epyr
T3 _ C“O‘”ﬁuaug ’ T _ e“"‘me”‘W‘C’aﬁ(snuwu,\ ’ TAB)ur e<’”‘57’075 ”>’\u7,u,\ ,
(4.17)
FWuv _ plag) ’ F@ur _ w<uDV>ﬁ’ T @ — yon(uzv) yurDsfi
TS — plupr) 7 TG — B<“D”>/], T — plupgr) ’ (4.18)

T — von(u v) U Es T®wr — gy ,



where CF#  is  the conformal Weyl curvature tensor, I g =
%(Péng +Pa”P5 —%P’“’Pag> is a transverse traceless projector and we use the

notation X ) = [I# apX a8 The second order vectors are

JWm — oDy ji T@m — W'Dy i, Tk — prrpes :
TWh — PPD%0 TOm — o E, TOm — W E,
j(7)u = u’D,E", j(S)# — e“"o"gu,,BaD/gﬂ, j(9)u — e“”aﬂu,,EaBg , (4.19)
g0 — e“”aﬂu,,DaB@ ’
j(l)u =", , j(2)u =" B,, j(3)u = wB,
(4.20)

j(4),u _ e’“’aﬁu,,EaDg/fL, j(5),u — G'U‘VO‘BUVDOCEQ .

This classification of independent possible terms has been previously presented in [61]. We
consider in this work a flat background metric, so we are neglecting those terms proportional
to the conformal Weyl tensor.

Here we write for completeness the first order transport coefficients for the anomalous
holographic plasma computed in the literature,

3 7 T2
s m
€p— _\/gq (m + 37’1) K n V3rqgT? A £y — — 3¢%k n 27 (2q2 - ri) T2\ (4.92)
B 8rGmri Gm v 41Gm Gmr? ’ '

where m, ¢ and ry are the mass, charge and radius of the outer horizon of the black
hole, which we will define in more detail in section 5. We write also here our main results
corresponding to the second order transport coefficients that are completely new. We
express some of them as an expansion in the parameter i assuming that g < 1,

A (5w
S S 4.2
TE 27’] 4p2 (’l“++6 T4+ ’ ( 3)
n 1 1
Ag = ——L 14log2 — 1 4.24
=~ (5~ g (tdlos2 = 1 + O(a) ) (4.21)
Ao =Ty Dogo 17 102 + 0(aY) (4.25)
0= 15 (5 T alB2t g2)[i i) :
ni (T  16sT3p% 128 256 5
App =~ KA — 1210g2) + —22X2(29 + 601og 2) + O 26
= = (= g+ A~ 121082) + 0020 + 010g2) + O) 420
g A4 1 ,uz
Ip=—-2 BT 4.2
b= 5t = 5 (W +AGTR) (1.27)
X Anp
A5:_7T27“+( k(1 —2log2) + 2A\(1 + 2log 2) + O(i?)) , (4.28)
8
Ag = Z“( klog2 + A(5 + 2log 2) + O(1%)) (4.29)
mri
. 2
Ry = 220y, (4.30)
i

~10 -



4 =2 4 -2
3 no_TH o, I
Re = 1|20 p 431

8= 2 [64(7@)2 ( ) )” (4.31)

6
riA 5 —4 -6
A —log2+ — log 2 199 — 726 log 2
i (10824 g5+ Blog) + o199 - 261052) + O ) |
1 (1 1, _4
& = e <2 log 2 + 22" (11 —241log2) + O(p )) , (4.32)
€ = — I s N A7 log2 | pPlog2 o (145677 167° log2
07 T16rG  19273G | mG  64nG | 487G 15mG ™a
4 130% 8log2 2072log?2 4
M — - - O 4.33
t <7TG oG T G seq ) (i) (433)
B 1 4 +log?2 1 5 4
& = o (g + a1 - 81082)) + O, (431)
g o7 9 4kX(14 —27log2)  4)X%(31 — 601log 2) 5
= ———(— —2x%(2 — 3log?2 -
& = ——h= (155 — 2#%(2 — 3log2) + . - )+ 06,
(4.35)
3 I A1+ 2log2) + 3902 ) i + O(i*) (4.36)
9= 22y, \q0a 72N lo8 K g I £, :
L1 @ 2, 2
= — (= L2 (—1+42log2) + == —12log 2 4.
S0 =13 <16+647r2+ o2 (714 210g2) + 5k (5 — 12log 2) (4.37)
2 19 2 o (116 Tha
_ﬁ)\ (97r - (15 + 16log 2>>> +0("), (4.38)
e [3/@(2473 log 2 + i%(33 — 681log 2)) — 8A(1872(1 + log 2) + i®(5 — 51log 2))
14474G
+O(ir°) (4.39)
2
r Ho H 2
= [k + AT 4.4
o = L (g + AT (4.40)
- 1 311%(2 — 5log 2) 72 (5 + 901og 2)
& = e </<; <2log2—|— 3 —4A ({14 2log2 — 62
+O(i") (4.41)
lo = 5 = _ O l0g 2 — 901 + 210g2)) + O(7) . (4.42)
ag r4

As we shall see most of the coefficients computed receive A—corrections. Indeed not only
the anomalous transport coefficients are sensitive to the presence of the anomaly, but also
the non-anomalous ones get corrected as well. The latter had been computed in the past
without including the mixed gravitational anomaly, so these corrections were neglected.

5 Fluid/gravity computation

The system of bulk equations of motion (2.6) and (2.7) admits an AdS Reissner-Nordstrom
black-brane solution of the form

dr?

r2f(r)
A = ¢(r)dt, (5.2)

ds® = —r2f(r)dt* + + r?dz'dx’ (5.1)

- 11 -



with f(r) = 1—m/r*+¢*/r® and ¢(r) = —/3¢q/r? . The real and positive zeros of f(r) are

7T 2
T+:2<1+V1+37T2M2) ) (5:3)

1 8
2 =_ri -1+ |9- ) (5.4)

2 L1+ 1+ 522)

where 71 is the outer horizon and r_ the inner one. The mass of the black hole can be

written in terms of hydrodynamical variables as

3
44
7+ 2 2
= 1 14+ — 2 -1 14+ —u? . .
m 5 < + +37T2u) ( + 34/ +37r2,u> (5.5)

The boosted version of this blackhole in Eddington-Finkelstein coordinates looks like

ds* = —r?f(r)u,u,datda” + r? Py,datds” — 2u,dztdr, (5.6)
A = —o(r)u,da",
with the normalization condition u,u* = —1. (5.6) and (5.7) is a solution of the equations

of motion as long as m, ¢ and u, are independent of the space-time coordinates x#. The
fluid/gravity approach tells us that we have to promote all the parameters to slow varying
functions of the space time coordinates, and include corrections to the metric in order to
make it a solution of the equations of motion again.

5.1 Weyl covariant ansatz

In order to follow the fluid/gravity techniques [27, 31, 32, 63] we will use a Weyl invariant
formalism [64] in which the identification of the transport coefficients is direct. We start
with the ansatz

ds®> = —2W, (p)uydx (dr2 + T.A,,d:c”) + 72 [Wg(p)mw + W3(p)uuu, + 2W4:7(’0) P,
+
W5“”( )] datda” (5.8)
i
A= (ag) +av(p) P + ric(p)u )dx (5.9)

where now r; is an unknown function of the space-time coordinates, r, (z#), and coincides
with the radius of the outer horizon of the black hole (5.3) only when the z* dependence is
gone. a&b) = aEL)(:v“) is a boundary background gauge field satisfying aftb) (zf) = 0. Notice
that 7, is the Minkowski metric, so we will look for metric solutions with flat boundary.
The r-coordinate has Weyl weight +1, and in consequence ry has the same property. By
construction the W functions are Weyl invariant, so that they will depend on r only in
a Weyl invariant way, i.e, W(r) = W(p) with p = r/ry. Ws,,(r) obeys the traceless
and transversality conditions Wé‘u(r) = 0, u*Wsp,(r) = 0. All these scalars, vectors and
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tensors will be understood in terms of a derivative expansion in the transverse coordinates,
ie. F(p) = FO(p) + eFMD(p) + 2F@(p) + O(e?) for a generic function F, with ¢ a
parameter counting the number of boundary space-time derivatives. This solution leads
to the current and energy momentum tensor after using the AdS/CFT dictionary (see (3.10)
and (3.11))

L 3 (2, 2 (2 ct
T = e I (”C( g+ rhadd) + Ju) : (5.10)
1 3 4,e 4,e 4,€) po c
T = Torc 1 <T1(WQ + Wa) A ey, + n) + 43 Wa) + 83 WO P, + Tui) :
(5.11)

where F(™€) denotes the coefficient of the term (p~' — €)™ in an expansion around the
regularized boundary, and e determines the position of the cut-off surface p = 1/e. The
counterterms in the current Jﬁt and energy momentum tensor 7 ﬁ,t/ are needed to make the
expressions finite, and they follow from the counterterm of the action (2.4). They write

C 1 v v 1
It = 5 loge [(DZ,E = 2w, By, + I = S T = I + 700 (5.12)
1 1
TS, = loge [ - E(B,BBB +EgE”) Py — 5 (BB + Ba B )uu, + T+ 750
~(u, + TP, | (5.13)

We are considering a flat background metric, and so the divergences appear only
through terms involving electromagnetic fields, in addition to the cosmological constant
contribution which was already taken into account in (5.11).

The functions at zeroth order in the derivative expansion correspond to the boosted
charged blackhole, i.e.”

(O () = 20 (5.14)
T+

W) = 1=w"(p), (5.15)

Wi (p) = 1- f(p), (5.16)

Wi (p) = 0 =W (p), (5.17)

a?(p) =0 (5.18)

Then the charge current and energy momentum tensor at this order read

S0 _ V3q 7(0)

m
uo= %Uu, uv = m (4UMUV + 77}“/) . (519)

m \/gq
167G 887G *

. . . . . . _ 3
For computational reasons it is convenient to define a Weyl invariant charge @ = ¢/r7

From this we obtain the equilibrium pressure and charge density p = and n =

5This expansion of F (p) is basically a Taylor expansion around the point zf.
"Following the notation in [31], barred superscripts () should not be confused with superscripts (n),
where the latter refers to the order in the hydrodynamical expansion.
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and mass M = m/ri =1+ Q2. In terms of these redefined parameters, the black hole
temperature and chemical potential read

T_2ﬂ(2—Q), w=3r.Q. (5.20)

We also define the inner horizon in the p-coordinate, po = r_/r, .

5.2 Einstein-Maxwell equations of motion and Ward identities

Inserting the ansatz (5.8)—(5.9) into the Einstein-Maxwell system of equations we find a set
of (2 x1+2x 3+ 5) differential equations and (2 x 1+ 3) constraints relating the allowed
Q(xH), ro(zt), u”(xH) and a,(,b)(:n“) [32].%8 We need to solve the equations of motion around
a certain point zfj that we choose to be xf)‘ = 0. At such point we sit in a frame in which
w(0) = (1,0,0,0) and o (0) = 0.

The scalar sector is obtained from the rr, rv and vv components of the Einstein
equations, and the r and v components of the Maxwell equations. One finds two constraints

EM 4+ 2f(E™ =0 = (D,TF = Fyod®)" Y (5.21)
MM 4+ 2fyM™ =0 = (D, J" = clF AR (5.22)

which, as indicated, correspond to the energy-momentum and current non-conservation
relations at order n — 1. The combinations E,, = 0, E., + r2f(r)E.. = 0 and M, = 0
lead respectively to the set of differential equations

WL 3 . :
30,0 () = 50710, (P0,W1"()) = S(p), (5.23)

9, (p'W3") +8p"W" —7@% + (1= 4pH9, W3 — 4p*Wi" = K (p), (5.24)

9, (,f”apc ">) — 2v3Q0, W™ (p) + 3v3Qa, W™ = C™(p). (5.25)

At this stage there is still some gauge freedom in the metric. There are three (metric) scalar
fields (W7, Wy and W3) but the Einstein’s equations give two differential equations, (5.23)
and (5.24). We choose the gauge Ws(p) = 1 in which the system partially decouples and
can be solved as

1
n,e 1 E n
W) = — / de S (x), (5.26)
p

W) = G- L / x(K @) - 8w ) + 2o, 00w | 62

) (p) = co (1= €2p /p dr ™ / (C(”) (y) + ﬁg(”) (y)> . (5.28)

81, 8 and 5 denote the SO(3) scalars, vectors and tensors in which the fields are decomposed.
“Notice that there are no curvature terms in (5.21) and (5.22) because we are working with a flat

boundary.
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These solutions have been constructed by requiring Dirichlet boundary conditions at the
cut-off surface and demanding regularity at the interior of the bulk. The remaining in-
tegration constants Cy and ¢y are associated to the freedom of choosing a frame in the
hydrodynamic set up.

In a similar way, the vector sector is constructed with the components of the equations
of motion E,;, F,; and M;. They lead to a constraint equation,

EW 402f(E™ =0 = (D,TV = FieJ*)" ™V, (5.29)

v

implying the energy conservation equation, and the two dynamical equations

0, (P, Wi" +2v3Qa"(p)) = 1" (), (5.30)
9y (0*F()00 (p) +2v3Q0,W (" (p)) = A (1), (5.31)

corresponding to F,; = 0 and M; = 0 respectively. The general solution of this system in
the Landau frame has been found in [31] with neither background fields at the boundary
nor gravitational anomaly. It is straightforward to generalize the solution to the case in
which electromagnetic sources are included. In this case new divergences arise that need
to be regulated with the cut-off 1/¢, and then to be substracted with the corresponding
counterterms (5.12)—(5.13). Having found in [31] the general solution of the system, the
contribution to the current coming from the vector sector writes (cf. (5.10))

a(i’e) = 1 (1AI/ (1/6) - /1E daiA,,(l‘)) - @Cu) - \i;\fD (5'32)

where the integration constants Cﬁe) and D,(f) are determined by fixing the Landau frame
(Wﬁ’e) = 0), and demanding regularity at the outer horizon respectively. These constants

write
mamﬂy(l/e) :
(6) - _ . (9)
4CU Z €m+1 m+ ) +/1 deV(‘r) \71/ 10g67 (533)
1
DY) = —\fQ/ 2 M/ +Q2/ J—”(?. (5.34)
T T

Finally the tensor equations are the combination E;; — %51-]- tr (Eg) = 0, which leads
to the dynamical equation

9 (P F(P)O, W) (p)) = B (0) . (5.35)
The solution of this equation that satisfies the Dirichlet boundary and regularity conditions
writes
1 T (n)
(n.0) < oy dy P (y)
W, =— de =——F—F————. 5.36
Suv (p) /p €L ZL'5f(IE) ( )
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After doing an asymptotic expansion of this solution around the regularized boundary
surface, one can extract the tensor contribution to the energy momentum tensor (cf. (5.11)),

1

_ 2 _1\ymAam € 1
4w(4,6) _ Z (1) 6p P,uu(l/ ) _/ de [P)M,,(l‘). (5.37)
1

Suv el (m + 1)1

m=0

Note that the form of the homogeneous part in the dynamical equations in the scalar,

vector and tensor sectors is the same at any order in the derivative expansion. Fach order n

is then characterized by the specific form of the sources. In the next two sections we will

compute the sources, and integrate them according to the formulae presented above to get
the transport coefficients at first and second order.

6 First order transport coefficients

The technology presented in section 5 can be used to construct the solutions of the system
at any order in a derivative expansion. As it has been already explained, the solution at
zeroth order trivially leads to the charged blackhole with constant parameters (5.6)—(5.7).
In this section we will solve the system up to first order. The transport coefficients at this
order have been obtained previously in the literature using different methods in field theory
and holography. In particular, they have been computed within the fluid/gravity approach,
but not including external electric fields in this formalism, see eg. [30-32, 34, 65, 66].

6.1 Scalar sector

In the scalar sector, the first order sources look like

S (p) = KW (p) = CV(p) = 0. (6.1)
This very simple situation leads to the solution
Wit (p) =0, (6.2)
€ (1 — 62/)2)
) (p) = COT7 (6.3)

Co n 2Qco (1 - *p?)
ot V3 b

The integration constants ¢y and Cy can be fixed to zero because they just redefine the

Wit (e) =

(6.4)

charge and mass of the black hole respectively.

6.2 Vector and tensor sector

The first order sources are given by

2 1 2 320M
1P = 28 (56’2 - M> f@A( OOSQ s >w,“ (6.5)
p3\ p? T4 P p
A V3T Po,0- (14 9Q*> \ B, 16vV3kQ B,  48kQ*
e Mr p2 wv 2M p? p3 . PP H
48X\ (15Q* — 16 M Q?p? + 4M2p*

B ( p11 )wuv (6-6)

P/(}l,) = —6rp’opu (6.7)
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27T
V3ri (1+M)
tions (5.10), (5.11), (5.32), (5.33) and (5.34) it is straightforward to find the first order

transport coefficients shown at the end of section 4. We write the result again for com-

where D, is the Weyl covariant derivative and D, = Dyfi. Using equa-

pleteness,
3 7 T2
1 =T6xG 7= 5 ©8)
£ = — V3¢ (m + STi) K n V3rqgT?* A = — 3¢°k 27 (2q2 - r?r) T2\ (6.9)
B 8Gmmri am Y 4Gmm Gmr? ' ’

Chiral magnetic £ and vortical &, conductivities have been computed at first order in
holography within the Kubo formulae formalism in [38, 67-70], including chiral and gauge
gravitational anomalies. Here we reproduce the same result within the fluid/gravity ap-
proach.'?

~ Note that to compute the first order transport coefficients one needs only the terms
a,(f’e) and W% in the near boundary expansion. However, in order to go to the next order
in the derivative expansion, we need to know the exact solutions, which can be written in
terms of the sources as

1 v FE,(x B, (x
Wi (o) = RIAPID.QL) + Falpley(e) + B ES + mg P2 (a0)
1
Wi (p) = Fslpl 4 o (), (6.11)
y E,(x B, (z
fp) = RAIPID.QLE) + Flplen(o) + AT 4 R P (12)
We show in appendix A the expressions for the F’s functions. F5 writes
] — 2log[l+p]  (L+p2+p3)loglp—pa]  2(1+p3)loglp+ po]
’ —1+M (1+p2) (1 +203) —2—2p3 + 4p}
log[1+p2+p3]  2(1+03)"°
o8 | 2/) /)42] ( 2'02) 1 ArcCot - (6.13)

7 Second order transport coefficients

The second order coefficients are much more computationally demanding than the first
order ones. The parameter 29 in (5.10) can always be chosen to be zero, as it just
redefines the charge and mass of the black hole. On the other hand, because we are
working in the Landau frame, there is no contribution coming from the scalar sector to the
energy-momentum tensor and (Ws + W3)(21’6) is set to zero. We have checked that this is
in fact what happens by using the sources for the scalar sector. So, we will focus in this
section on the vector and tensor contributions.

0The gauge gravitational anomaly contribution to the chiral vortical conductivity was also computed
recently within an holographic setup in [30, 71].
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7.1 Vector sector

The second order sources in the vector sector are shown in appendix B.1. Again using
these expressions and egs. (5.10), (5.32), (5.33) and (5.34), we can extract the second

order transport coefficients. We show first the new non anomalous coefficients

& = &50(p2),

& = &6,0(p2) +

&7 = &r0(p2)
(9 +12M + TM*)7n QT3

3 (3 + M?) Q%2
ATGM3

+ HAfG,/@A(f)Q) + /\256)\2 (p2) )

= — + 2 K + )\ K + )\2 ’
= T svAGMA(1 + My " (P2 RS 2] X G 0]
Q (88+480Q°M+169Q°) 1 , , 9
— +— . +RAEg 4 +A )
% 512v/37G M7, ry (% Gaua(p2) Mo, () 3% 50 22)
4+ 7Q?
€10 = ( ) + k%10 52 (p2) + KAE10,00 (p2) + A2E10 02 (p2) -

64rGM

(7.5)

(7.6)

These coefficients had not been computed previously in the literature. The rest of the non
anomalous coefficients were obtained in the past without the gravitational anomaly. In

this work we have found the A—corrected results, which write

T3 5 M? 2+ pg}
= 1 ,
S = SEBr ) (Q T [1 — 2

(3+M)(M(3+ M) —6)T? 3TQ*T3 kK>

(7.7)

= Ao A2
&2 128GM3(M + s GAMB(M 1 )2 + 74 (kA& en(p2) + A& 2 (p2))
(7.8)
3\/3 3y
& = Lﬁ (7.9)
647GM
3\/§Q3r K2
§4 = W + 7 R a(p2) + Ty A2 (p2) - (7.10)
In the anomalous sector, the new coefficients (not computed previously) write
2 2+p3
- svEQUa Ak | VITOTwlog[FR]
62 = ) + 3 + )‘52,)\0&)) (711)
167 GM? (1 + 2p3) 2GMr?% (14 2p3)
= ABrQT? [, 8mPT?A
= — 7.12
53 87“<2FM3G <Q K+ ’I"%r > 3 ( )
€1 = w€ak(p2) + Aan(p2), 7.13)
& = K&5k(p2) + A&s.2(p2) » 7.14)
while the already known coefficient with the new A contribution writes
~ 3Q%r K ~
= A . 1
S IV r+&1a(p2) (7.15)

The & (0,x2,01,22)(p2) and éi,(m ») (p2) functions are defined in appendix C. These coefficients

enter in the constitutive relation for the current through (4.6) and (4.16).
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7.2 Tensor sector

The second order sources in the tensor sector are shown in appendix B.2, and again we can

extract the transport coefficients at this order after pluging these expressions into egs. (5.11)

and (5.37). Due to the length of the expressions, some of them will be shown exactly and

the rest are expressed in terms of some functions A; (g .2 .1 22)(p2) and _/N\Z-’(,,h ») (p2) which are

presented in the appendix C. Again we split our results in those non anomalous coefficients

which are new,

V3(—34+5M)Qry

M= —""%nanr (7.16)
Ag = riAs0(p2) (7.17)
Ag = Ag’o(pg), (718)
11
Ao = gt K2 A10,e2 (p2) + KAA10,50 (P2) + N A1 32 (p2) (7.19)
8v3 A
A = _m’ (720)
™G
V3Qr 3v3Q3r k2
Apg = — 167rG+ 7rGM+ + kAL 12 ea(p2) + NN g e (p2) (7.21)
and the rest of the non anomalous ones
2 M —VAM —
A = = <2+ log [3 3]) : (7.22)
167G AM — 3 3+ +v4M -3
2
r
Ay = — 7.23
27 3G (7.23)
2 2 2
M 2 4(3M — 5)nTA
Az = = o |22 ] 4 1gaqren - BMBM ZTTATY o)
8GT \2(1+2p3) 1—p3 g
i 3Q%iR? | 18Q7 (5+ Q7 (9Q° — 16)) rikA
Ay = BUAL + R + Chre e i + AP A x2 (p2) s
167G TGM S5tGM '
(7.25)
T3
As = — @ , (7.26)
16v/3GM2(M + 1)ry
Ag = 17 Ago(p2) .- (7.27)
For the anomalous coefficients we get the new ones
~ 3Q%*r. .k  wT?\
Ay = — — 2
4 stGM ~ GMry ' (7.28)
1~\5 = IQT‘+/~\5,,€(p2) + )\T‘+/~\57)\(p2) R (7.29)
Aﬁ = KA&,@(,OQ) + )\]\6,)\(/)2) , (7.30)
~ 27’+A
A = — 7.31
7 T['G ) ( )
~ 3Q? (Q2 — 1) Lk ~
= A . 2
8 G2 + AryAga(p2) (7.32)
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and the rest of the anomalous ones

oo V@ VBQr@Bry +(Q° - 4rT)

A .
) ! ArGM TGM As (7.33)
A2 = )\7"_2‘_/\27/\(p2), (734)
272\
3 —_— m . (7-35)

These coefficients enter in the constitutive relation for the energy-momentum tensor
through (4.5) and (4.15).

The transport coefficients Aq,...,Ag, A1,..., A3 and &,... &, §~1 have been com-
puted in the past in [31, 32] without gravitational anomaly. It is interesting to remark
that A1, Ao, As, Ag, A7, Ag, Mg, &1, &3, &5 and €7 do not receive A—corrections, actually these
coefficients do not depend on  either. It is also remarkable that As and As in the presence
of gravitational anomaly are not vanishing. The rest of the transport coefficients we have
computed are new.

7.3 Discussion of second order results

It would be interesting to compare our results with the predictions done in [61]. Basically
the authors tried to fix the anomalous second order transport coefficients using a generalized
version of the method developed by Son & Surowka [34]. The only issue is that they didn’t
consider the mixed gauge-gravitational anomaly and neglected all the integration constants
as the previous authors. Nowadays we know that at least at first order these integration
constants might be related to the anomalous parameter A. The authors presented a set of
algebraic and differential constraints. The algebraic ones are

A = %’7 (éy —TDpg) , (7.36)
Ra= 2 (&5 —rn) (7.37)
& = 2 (e ~TDp) . (7.38)
& =0, (7.39)

where Dp = % % is the coefficient multiplying the magnetic field in the entropy current
K

computed in [34, 35, 61] with only pure gauge anomaly, and & = 57 is the anomalous
parameter used by the authors of [61]. Eqgs. (7.36) and (7.38) are satisfied by our solu-
tions (7.33) and (7.12) as long as one fixes the anomaly parameter A\ to zero. However
eq. (7.37) is satisfied with the gravitational anomaly switched on. So far these constraints
are satisfied except eq. (7.39), as §~5 is not vanishing in our model even though we fix the
anomalous parameter to vanish.

To check the value we get for 55 (4.42), we may proceed by using the Kubo formula
formalism. The Kubo formula for & will relate this coefficient to a two point function at
second order in a frequency and momentum expansion. Actually it will appear in the same

correlator as the chiral magnetic conductivity. To do so we can switch on a gauge field
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in the y direction A, = A,(t,2). In such a situation the Fourier transformed source .7,55)

reduces to
TJO — wk. A, | (7.40)

so that using the constitutive relation we can read the two point function
(T*TY) = —itpk. + olpwk. , (7.41)

where we have redefined [, E= 55 /o for the reason we will explain below. We have checked
that this Kubo formula leads to our result (4.42) for [z by using the model of section 2
considered in the probe limit. This is a non trivial check of the non vanishing of §~5. We
leave a detailed analysis of this and other Kubo formulae for a forthcoming paper [72].

In order to understand the discrepancy between this result and the prediction done
by the authors of [61], we can analyze the properties under time reversal of the source
associated to §~5, which reads in the constitutive relations as

JH = &P u, D,Ey + ... . (7.42)

This equation in the local rest frame u* = (1,0, 0, 0) looks like

Lo , - 9B

The electric field and the operator Vx are even under time reversal while the current is
odd, in consequence the conductivity 55 is T—odd. The fact that this transport coefficient
is T—odd tells us that such a source might contribute to the entropy production. For
this reason demanding a non contribution to the production of entropy might not be well
motivated. The situation would be similar as demanding a vanishing contribution from
the usual electric conductivity. One can see also the odd property of 55 from eq. (7.41), as
(J*JY) is T—even and inverting the time is the same as changing w — —w.

We have noticed that the anomalous coefficients associated to sources constructed with
the second derivative of the fields can be naturally factorized as

Ay = —2nl,, (7.44)
/~\4 = —27][3, (745)
55 = UZE. (7.46)

These expressions make their dissipative nature clear, and they suggest the existence of
anomalous relaxation lengths in analogy to the relaxation time 7. These new T —even

quantities write

~ 2r ([ wud 9 5  mTu?

Iy = — 64N (3r2 —2u? — =2 ) ), 7.47
Gp <487r2 o < "+ : T+ ( )

- 1 R oo

lp = T\ 4

B 27er< g T ’ (748)

lp = —%(HIOgQ —2X(1 4 21og2)) + O(53) . (7.49)

T
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A last interesting observation comes from the result on the dispersion relation of shear
waves in [61], where they have found that

w —z%k? FiCK 4., (7.50)

with C' = —A;/(8p). It would be interesting to generalize the computation of [73] to the
case including the mixed gauge-gravitational anomaly to verify whether the result for C is

c=1],. (7.51)

4p
8 Discussion and conclusions

We have studied the transport properties of a relativistic fluid affected by gauge and mixed
gauge-gravitational anomalies. We have used a holographic bottom up model in 5 dim that
implements both anomalies via gauge and mixed gauge-gravitational Chern-Simons terms.
This model was used in [38] to compute the first order transport coefficients in holography
from Kubo formulae. Within the fluid/gravity approach, in this work we have reproduced
previous results at first order, and extended the computation up to second order in the
hydrodynamical expansion. The computation has been performed in a Weyl covariant
formalism, which allows us for a clear classification of terms contributing to second order.

We have found all the anomalous and non-anomalous transport coefficients of the
model up to second order, except the ones associated to curvature sources. Most of the
non-anomalous coefficients receive non trivial contributions coming from the anomaly sector
through terms quadratic in the anomaly coefficients x and A. There is a set of coeflicients
which are not affected by the presence of the anomalies. These are

TH = Mu®Dac + Ago'™ 6" + AsDWDY) i + AgDH DV i + Ay DWE) |
+ASEMDY) i+ AgEEY) + ., (8.1)
JH = &0" Dy + 3P D0y + E50"V B, + Eru" DyEF + ... (8.2)

In particular A; is usually redefined in terms of the relaxation time 7, in analogy with the
the Israel and Stewart theory, A1 = —2n7;.

On the other hand, we computed the anomalous coefficients which are (C, P) = (£, —),
i.e. these contributions are linear in x or A. These second order transport coefficients are
dissipative unlike the first order ones, and in consequence some of them could contribute
to entropy production. One example of that is the non vanishing value of &5 (7.49). This
coefficient was previously predicted to be zero by using non production of entropy argu-
ments [61]. It would be interesting to compute within the present model the holographic
entropy current and its divergence to study the contributions of such coefficients to the
entropy production.

We have defined the T —even quantities } B, l B and l~w in analogy with the definition
of 7. A generalization of the Israel and Stewart theory to hydrodynamics with anomalies
would give us a better physical intuition on these parameters. In particular the authors
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of [61] have noticed that the chiral coefficient C' (7.50) in the dispersion relation of shear
waves is related to A;, and in consequence to I,

w A —i%/# (1 + Zwk) . (8.3)

The role played by the gravitational anomaly in the chiral vortical effect has shown up
for the first time in the calculations of Kubo formulae involving the two point functions
firstly derived in [74]. It is possible to write new Kubo formulae in terms of two point
functions in order to compute the second order transport coefficients associated to second
derivatives of the background fields. The rest of the transport coefficients at second order
would demand the knowledge of three point functions. The advantage of Kubo formulae
is that they can be used in either field theory or holographic computations. This would
allow to compare the weak and strong coupling regimes of second order coefficients [72].

A First order solutions

Here we show the exact form of the F;[p] functions defined in Egs. (6.10) and (6.12)
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B Second order sources

In this appendix we show the second order sources in the vector and tensor sector. They
are splitted in terms of the anomalous and non anomalous ones.
B.1 Second order vector sources
In the vector sector the sources are organized as follow
10 5 . 10 5 )
Ju=> rBg@+ 3w Bgle o, =3 Mg 13 g (B.1)
a=1 a=1 a=1 a=1

where the tildes refer to the anomalous sector. The sources write:

B.1.1 Non-anomalous vector sources
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T Folp] —
YY; 3 9(p] P v;

B.2 Second order tensorial sources

In the tensor sector the sources are also split in terms of the anomalous and non anomalous
ones, the tildes refer to the anomalous sector

12 8
Pu=> PTW +> BT (B.32)
a=1 a=1

B.2.1 Non-anomalous tensorial sources

P1 = 2p—302F5[0]l — 20> Fi 0], (B.33)
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B.2.2
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~ 2
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644352M 396288 549504 3072 3072 2Q2 M
A2t (/= — +Q% (- - =
15 11 17 11 11

+7
p p p p 5 p3
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P P P
112v3QAf[p] F§
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V3(1+ M) V3(1 4+ M) (14 M)p2 M1+ M)p V3(1 4+ M) ’ '
2 2
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TP = P8 flp] - Mpb
32x (-3Q2 + 2Mp?) (@ — 20°) Filp) L= (4% + Q% (=5 +40%) +4Q%0? (1+ p* — p9)) FL'[0]
p10f[p] M p5
ax (-3Q2 + 2Mp?) (—18Q2p2 —aMpt + (@2 — Mp? + %) Fé”[p]) B.51
- MpOf[p] ’ (B.51)
Py = 73“@;:& Pl 5 (~96v3QAFIe] + 6° Flo1) Fyl] - (o (272 + 401,7) + ”7”[0]345;3@2 +2M0? + 2MpH L FEle])
(B.52)

C Transport coefficients at second order

In this appendix we will write the expressions for transport coefficients up to second order.

C.1 Vector sector

The solutions for the non anomalous coefficients & , ... , &0 as written in (7.1)—(7.10), are
given in terms of functions §; (g .2 .x,12) Whose expressions are
Ea.0n(p2) = 2n 2430 — 14121 M + 32625M° — 36279M°> + 17151 M*
22 = SEMB(M + 1)QM1 + 202)r%

10M3(1 + 2p3)*

+286M° — 2648M° + 656M7> + o

(94 6M — TM> + 2M?) log[1 — p3]

10M2pS(2 + p3) 2 2 2 2 3 2
o PR T2 (9(1 — p3) + 3M (5 + 13p3) — 6M>(13 — Tp3) + 8M>(17 — 14
01 32 (91— 93) + BM(5 + 1303) — 6M*(13 = Toh) + 8M°(17 — 1453
2
—32M* (4 — p3) +48M5) log B +Z§] > : (C.1)
P2
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52,)\2 (p2) =

Ea,mn(p2) =

f4,>\2(92) =

&0(p2) =

6,0(p2) =

Eo,mr(p2) =

T3 1
-1 1 1M
210G M3 (M + 1)p5(1 + 2p3)*r3 (M2 + Q2+ p3(2M —1) ( 837080 + 1508957

—54047817M? + 109739475M° — 136610865M* + 102222345 M° — 35693475M°

2

71552(1 2/%2)) (8101 +203)
—M (351 4 783p3) + M>(540 4+ 1674p3) + M> (225 — 1719p3) — M* (1497 — 672p3)
1680M2p8(2 + p3)
(1+p3)5(1 +2p3)

X (81(1 +2p3) — 27TM (16 + 29p3) + 54M>(21 + 31p3) — 9M> (216 + 191p3)

—7547847TM" + 12206741 M° — 3911944M° + 427856M10) +

FMP(1332 — 12p2) — M®(340 — 32p2) + 32M7) log[1 — p3] —

+3M*(723 + 224p3) — 12M° (112 + p3) + 4M°(93 + 8p3) — 32M7) log [2 + p3] ) ., (C.2)

Y
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2
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2 2 213 2+ P%
+M? (90 — 168M + 82M° + 4M (1 +2p3)°) log | | 2| ) (C.9)
— P2
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NEY 2 2 3 4
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2 2 3 2 4 2 5 2 6 2 2+ p3
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2
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2M
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2
—392M° 4 32M7 4 p3 M (3 — 4M)*(—18 4+ 9M + M3)) log {2 + pz} ) , (C.14)

+ ( — 972 + 5103M — 10881 M2 + 12069M° — 7383M™ + 2424 M°

1—p3

_ \/§p§ 2 2
Eox2(p2) = 3 (=14 2M + p3) (102060 — 496935M + 963855 M

140mrGM3Q7(1 + 2p3)
—954012M3 + 518949 M* — 159036 M° + 27094M° — 2411 M7 + 16M8)

2 2
+w (243 — 1269M + 2673M? — 2919M° + 1779M* — 610M°

P2
+110M° — 8M7) log[1 — p3] +
420M
= (243 —243M (6 — p2) + 27TM>(134 — 47p2) — IM® (529 — 297p2)
+M*(3513 — 2919p3) — 3M° (456 — 593p3) + M®(181 — 610p3) + 10M" (5 + 11p3)
2 2
,4M8(5+2p§)+2M9) log Lf?g] > (C.15)
B 92 ) o 2M%(1+2p3)° 2
2 24 p3
—7M2(3+6p§+M(5+p§)> 10g[ +p§} ) (C.16)
3 I—p3
— 3 _ _ 2 3 4
&10,m1(p2) = 2 GIE(1 1 2007 (( 108 + 333M — 372M° + 163M° — 16 M ™) (C.17)
2 9, 6MZ*(6 —5M — M? + (3 — 4M)p3) 24 p3
+6(3 — 4M)M? log[1 — p3] + T3 52 log | {— il
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31 _ 2\3 214
—421824M° +126626M° — 223690 + 1874M° ) + 420M7(1 = p3) (1 + p3)
p3(1+2p3)
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—27M (1 + 4p3) + 3M> (=7 + 16p3) + M>(6 — 12p5) — M*(1 — p3)) log [2 + p3] ) )
and for the anomalous coefficients & , ... ,&s, (7.11)—(7.15), one has functions §~Z»7(,£7)\) that
write
~ 2rT? 2 3 2M° 2 2
= — 24M + 14M* + 3M 1+ 2p3) log[1 —
&1,2(p2) GAPQ2 (1 + 202))r2 <(9 + +3 )+ o (14 2p3)log[1 — p3]
M?p3 2 2 2 {2+P§}
- 3ps —3M(1+2 2M°) 1 , C.19
(4 a1+ agge (00~ MU 202 4200 low | 1 (C19)
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~ _ \/§7rT2 9 2M
Eax(p2) = 2CAEQU + 278 (=6+7M+M°) + o

2M p5 2 2 2 2+ p3
,M(M —3Q"p3) log [1 pg} ) , (C.20)

(1+2p3)* log[1 — p3]

anlps) = 3Q° 1" (5M — 3)(15 — 14M + 4M?)
LeiP2) = G (M + 1)(1 + 202) 4%

B 2M?(M — 3)

3Q2(1+203)
T3

AGM*(M + 1)Q?(1 + 2p3)*r3

1—p3

(3 — 16M + 12M?) log {Q“Lp%} ) (C.21)

Eaxr(pe) = ((1215 — 6075M + 11880M? — 11367M?> + 5355M*

2r M3 (M — 3)(2M + 1)(1 + 2p2)*
QZ

. 2 2
(9(1 + p3) + BM (L + 6p3) — 14M?(1 + 2p5) + 4M°) log { + pZ] > ,

~1096M° + 100M°) log[1 — p3] (C.22)

2m(M — 3)M3p3
Q*(1+2p3)

:  =3V3BrQRT? 2M*? 2+ p3
SolP2) = 1GAA(L 1 2037 (1 EECECEST R {1 - p%] ’ (C23)

1—p3

V3rT?
2GM3Q(1 + 2p§)2r2

2M34M 3)(Q? 2M3p3(Mp2 — 3Q? 24 p3
( = M@= 15) 1o — 2 - 52E1f2p§)Q)lo [1_23}) (C.24)

& (p2) = <(27 — T2M + 54M* — TM?)

C.2 Tensor sector

In this sector the non anomalous coefficients Aj ..., A1y written in (7.16)—(7.27) and the
anomalous ones A , ..., Ag (7.28)-(7.35), are given in terms of functions Aj (0,02, k1,02) and
A; (s, respectively. The expressions for these functions are in general very complicated,
and we present here the result as an expansion in ps up to order O(p3), which is equivalent
to order O(z°) . For the non anomalous coefficients we get

Agxz(p2) = % ((—4 +15log?2) — %6(557 + 8401log 2)p3 — %(2789 — 9660 log 2)p3 + O(pg)) ,

(C.25)
Aeo(p2) = W (2047 — 66108 2)03 — 4(1 — Blog2) — 3(89 — 101 log2)p + O(s5) ) , (C.26)
Asolpe) = — 1357 (4 +2(1 — 14log 2)p2 — (137 — 22410g 2) i + O(pS)) , (C.27)
Noolpe) = = (8(11 +3log2) + 12(7 — 8log 2)p3 — 3(91 — 226log 2)p5 + O(pg)) , (C.28)
Avonz (p2) = % (= 1201~ 210g2)p3 + 3(25 — 36108 2)pk + O(65)) (C.29)
Atoer(p2) = ( (5 — 121og 2)p2 — 3(91 — 144log 2)p% + O(pg)) (C.30)
Aoz (p2) = ( 90 + 4(29 + 60log 2)p3 + (617 — 1080 log 2)p’ + O(p2)> (C.31)
A1z ex(p2) = 5f7rG ( 0(-5-+121og 2)p2 +5(71—192log 2) p3 — (2713 — 3930 log 2)p3+(’)(p§)) ., (C.32)

Aoz (p2) = Wﬁ( — 56(29 + 60log 2)p2 + 840(1 + 16 log 2)p3 + (37403 — 51660 log 2)p3 + O(pQ))

(C.33)
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and for the anomalous coefficients
1

Ron(e2) = 53 ( — 24(1 — log 2) + 4(26 — 45log 2)p2 — (527 — 822log 2)pl + O(pg)) , (C.34)
As.n(p2) = 32*§G( 8(1 — 2log 2)p2 + 16(5 — 4log 2)pd — (389 — 566 log 2)p3 + O(pg)) . (C.35)
Asa(p2) = 48\/%( 24(1 + 21log 2)p2 — 8(17 — 481og 2) p3 + 3(379 — 550 log 2)p5 + O(pg)) , (C.36)
Ao n(p2) = ( 8(log 2)p2 — 12(2 — 5log 2)p5 4 (174 — 257 log 2)p5 + O(pg)) , (C.37)
Roa(p2) = 487r ( (5 + 21og 2)p2 — 4(23 + 90log 2)p3 — (991 — 1494 log 2)p5 + O(pg)) . (C.38)
Rsa(p2) = — 241og 2 + 4(25 + 42log 2)p2 + (199 — 750 log 2) 4 + (’)(pg)) (C.39)

Note that in some cases the order O(pg) vanishes, so that the corresponding expressions
are valid modulo O(pl) corrections.
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