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entropy increase rate satisfies the same bound as in the ‘entanglement tsunami’ setups.

For small temperatures of the two baths, we derive an analytical formula for the time

dependence of the entanglement entropy. This replaces the entanglement tsunami-like
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this time-dependent system, as well as further more general entanglement inequalities for

five or more regions recently derived for the static case.
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1 Introduction

In recent years, the application of holography to the study of far-from-equilibrium physics

has been successfully implemented (see [1–4] for early work and [5–7] for reviews). The

usefulness of this approach lies in the fact that real-time dynamics of strongly correlated

systems are directly computable, and its collective responses can easily be found. This

provides a new approach to studying quantum quenches in strongly coupled systems. Such

quenches can be roughly divided into global quenches and local quenches. In quantum field

theory, ‘global’ refers to changes of the Lagrangian and ‘local’ to changes of the ground

state. In holography however, ‘global’ quenches refer to the evolution of the entire gravity

dual from an initial configuration, while ‘local’ holographic quenches involve a sudden

change of the geometry at a region localized in space.

Following [8, 9], important results on holographic global quenches have been obtained

using the AdS-Vaidya metric, see for example [10–16]. Quenches of a local type can be

holographically studied in a variety of manners. These include investigating sudden lo-

cal excitations of bulk fields [17–22], specific bulk spacetimes describing a massive point

particle dropping from the boundary into the bulk [23, 24], or the sudden joining of two

previously separated boundary CFTs (BCFTs) [25]. Local quenches can also be naturally

studied in holographic models of defect or interface CFTs [26]. Formulae for the evolution

of holographic entanglement entropy were recently used in [27] to obtain an explicit de-

scription for different regimes of a holographic heating process. Analytic progress in this

direction was made in [28], where the late-time behavior of two-point functions, Wilson

loops and entanglement entropy was studied perturbatively in a boost-invariant system.

For calculating these correlations, a useful approach is to consider two-point functions

given by lengths of spatial geodesics anchored at the boundary. In particular, [10] gives an

early comprehensive study of correlations in the geodesic approximation, and [29] contains

a study in a background of colliding shockwaves.

An important conclusion [30–33] is the fact that a transition to a hydrodynamic regime

can take place very early in the time evolution, before reaching thermodynamic equilibrium.

This is also the case in non-conformal systems [34]. In some cases, equilibrium is never

reached, and instead a steady state is obtained at late times. Such a state involves a

constant flow of energy or charge between two reservoirs [35–40]. The study of steady states

is particularly interesting in the presence of emergent collective behavior, since it provides

insight into the interplay between quantum effects and out-of-equilibrium physics. As an

example for the formation of a thermal steady state, we consider in this paper, following

the work given above, the time evolution of a 1+1-dimensional field theory system which

is initially separated into two space regions. These are initially independently prepared

in thermal equilibrium at temperatures TL and TR, respectively. At time t = 0, we bring

the two space regions into contact at x = 0, which gives rise to an initial state with

temperature profile

T (t = 0, x) = TL θ(−x) + TR θ(x) , (1.1)

and let the system evolve. Around x = 0, a growing region with a constant energy flow
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Figure 1. At t = 0, both systems are isolated and independently at equilibrium. Evolving forward

in time from t = 0, a spatially homogeneous non-equilibrium steady state develops in the middle

region, carrying an energy current JE .

〈JE〉 6= 0, the steady state, develops. Within field theory, this was discussed by Bernard

and Doyon in [35, 36, 38]. In their work, they showed that for late times, the steady-state

region can asymptotically be described by a thermal distribution at shifted temperature.

Such a local quench-like system can be modeled for example as in [25, 40], where two

independently thermalised BCFTs are joined at t = 0. In this work, in contrast, we will

follow [41] and utilise a different setup where equation (1.1) holds at t = 0, and a steady

state forms when evolving the state both forwards and backwards in time. However, we

will only consider the regime t ≥ 0 as physically interesting.

In principle, the time-dependent system described above can be set up and studied

in arbitrary dimensions. However, in 1+1 dimensions the numerical analysis can be sup-

plemented with analytical results, due to the fact that in this case conformal field theory

techniques can be applied. From the holographic perspective, it is relevant that 2+1-

dimensional gravity is non-dynamical. We study the 1+1-dimensional case and its gravity

dual in the present paper. An important difference between the 1+1-dimensional and the

higher-dimensional case is given by the following: in 1+1 dimensions, the shock waves with

which the steady state region expands are dissipation-free. Both in the field theory and in

the gravity dual, for all times the transition between the heat baths and the steady-state

region is described by a step function. On the other hand, in the higher-dimensional case

the shock waves experience diffusion and the temperature profile is no longer described by

a step function. This may be referred to as a rarefaction wave.

A main focus of the present paper is the study of the time dependence of entangle-

ment entropy and of mutual information in the steady-state system described above. In

particular, our analysis describes how these quantities change as the shock wave moves

through the chosen entangling region, for instance a spacelike interval of length ` located

away from x = 0.

To our knowledge, the time evolution of the entanglement entropy in this setup has

not been studied yet. For our analysis we take the holographic perspective, which allows

us to make use of the prescriptions proposed in [42–44]. The original Ryu-Takayanagi

prescription states that in a d-dimensional CFT the entanglement entropy of any region A
is proportional to the area of the minimal codimension-two surface in the d+1-dimensional

dual static geometry anchored at the boundary of A. Later this prescription was generalized

to the time-dependent case, in which the entanglement entropy of A is proportional to the

extremised spacelike codimension-two surface in the time-dependent bulk geometry. For

our 1+1-dimensional boundary setup, the extremal surfaces we are looking for are geodesics.

– 3 –
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AdS/CFT relates thermal states to stationary AdS black holes. Away from equilib-

rium, the time evolution of the field-theory system corresponds to the evolution of the

spacetime dynamics subject to appropriate boundary conditions at the asymptotic AdS

boundary. The holographic dual of the initial state with the temperature profile (1.1) is

thus given by a geometry consisting of two AdS black holes at two different temperatures

both cut at x = 0, and a half of each glued together at t = 0. For this particular scenario,

the asymptotic late-time geometry is known and the steady-state region was shown to be

equivalent to a boosted AdS Schwarzschild black hole at temperature
√
TLTR [41]. This

result is in agreement with the earlier CFT result.

Taking the holographic approach, according to [41], the steady-state region in the

late-time limit can be described by a boosted thermal state in the higher-dimensional case

as well if the system shows time-independent asymptotic behaviour. The corresponding

argument is based on black hole uniqueness theorems. A numerical analysis of the 2+1

dimensional boundary CFT [45] shows very good agreement with the conjecture. However,

while in [41] the two wavefronts in the higher-dimensional case are both shockwaves, it was

later shown in [46] and [47] that the solution with one shockwave and one rarefaction wave

is preferred.

Hydrodynamics provides another fruitful approach to study the time evolution of sys-

tems subject to a local quench like (1.1). Studying the hydrodynamic expansion to first

order, the authors of [37] conjectured the universality of the steady state regime in a sense

that its emergence at late times is universal and irrespective of the dynamical details of

the system or details of the initial state configuration and that the heat current can be

described with a universal formula. The assumptions on which the conjecture is based

are similar to the ones in [41] namely that at late times the system can be described by

three regions, the two heat reservoirs and a steady state regime growing in time as two

shockwaves move towards spatial infinity.

A free field analysis within Klein-Gordon theory in [48] showed that in contrast to the

1+1-dimensional case in more dimensions the emerging steady state is different from its

strongly coupled analogue. A recent review [49] on quantum quenches in 1+1 dimensional

conformal theories discussed global quenches at finite temperature and local quenches at

zero temperature.

Much interest has also been directed towards the holographic study of the time-

dependent behaviour of entanglement entropy after global quenches. For example, in [8–

14, 16, 50] it was found that after a global quench, an initial quadratic growth of entangle-

ment with time is followed by a universal linear growth regime. The special case where the

final state is an AdS-Schwarzschild black hole is referred to as entanglement tsunami [12–

14]. Noteworthy, in [14] the linear growth is found to be independent of the choice of

entangling regions. It is also interesting to note that the cases studied in [51, 52] display

a linear growth independent of the equation of state, showing more evidence that points

towards a universal behavior. Related work on the evolution of entanglement entropy after

a local quench also include [17–25]. In most of these references the authors complemented

the holographic analysis with results from a CFT analysis. In particular in [21], the authors

consider a local quench with a small time width ε and find universal features of the time

evolution of the entanglement entropy.
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A related, but distinct line of research involves the deformation of strongly coupled

matter by time dependent perturbations of a relevant scalar operator. Numerical investiga-

tions into this situation [53] involve an uncharged black brane solution which is perturbed

by varying the non-normalizable boundary mode of a massive bulk scalar in time. One

of the most interesting results to emerge from such a study has been the appearance of

a “universal fast quench regime” in which the change in energy density after the quench

scaled as a power law in the quench width.

The first focus of this paper (section 2) is to investigate the time evolution of the

steady state itself. We analyze the causal structure of the dual geometry and find that the

hypersurfaces that, in the chosen coordinate system, extend the boundary shockwaves into

the bulk are spacelike. Therefore they appear to be superluminal. However, as we explain,

causality is not violated.

In sections 3 and 4, we then numerically compute the time evolution of the entan-

glement entropy for a spacelike interval which at t = 0 is entirely enclosed in one of the

heat baths, say the left one. As we work with a 1+1 dimensional boundary the interval

is one-dimensional. The entanglement entropy of such an interval quantifies the quantum

entanglement between the interval and its complement. Let us describe what happens

when the shockwave passes the interval. Before the shockwave propagating outwards en-

ters the interval on its right edge, the entanglement entropy is constant in time. The same

is true once the shockwave has left the left edge of the interval behind. While the shock-

wave is passing through the interval, we observe a universal time evolution: the functional

dependence on the interval length and the two temperatures TL,R is the same for a wide

range of temperatures and intervals, as long as the temperatures and their difference are

small compared to the inverse of the interval length considered. In section 5, we present

an analytic proof for the universal behaviour. For larger temperatures and temperature

differences there are deviations from this universality which we see both in our numerical

result and our analytical computation. For the latter we give an estimate.

In section 3, we also study the time dependence of the mutual information for which

we consider equal length intervals at equal distance from x = 0. The mutual informa-

tion quantifies the amount of information obtained about the degrees of freedom in the

one interval from the degrees of freedom in the other. We find that mutual information

for the geometry described above grows monotonically in time. Furthermore, we look at

an interval initially located within the smaller temperature heat bath. Its entanglement

entropy increases with time. In section 5 we show analytically that its average increase

rate is bounded. This is similar to what is observed for the entanglement tsunami. A

further analytically tractable case is when one of the temperatures is zero and the other

temperature is large compared to the inverse of the interval length. For this case we show

that the entanglement entropy grows linearly in time.

Our second main focus, considered in section 6, concerns entanglement inequalities for

n disconnected intervals. A famous example is the strong subadditivity for n = 3 inter-

vals. In this paper we numerically study generalized entanglement inequalities introduced

in [54] for n = 5 intervals. These authors proved these inequalities in the static case. We

numerically verify by considering a large number of examples that these inequalities also
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hold in the time dependent geometry considered here. For obtaining this result we have

developed a new algorithm counting the number of physical ways to link the boundary

intervals by curves in the bulk. Details of this algorithm are given in the supplementary

material joined to the hep-th submission of this paper.

In this work we use two complementary numerical methods for evaluating the entan-

glement entropy. They are described in sections 3 and 4, respectively. Their results are

consistent and allow us to support the assumptions we make in each of the two numerical

approaches. For the first method we explicitly solve the geodesic equation numerically and

employ a shooting method to handle the boundary conditions. This approach requires

a smooth geometry which we realize with a hyperbolic tangent ansatz. We refer to this

method as the shooting method. The second method uses analytic expressions for the

geodesic length, available for the pure AdS Schwarzschild or boosted AdS Schwarzschild

geometries. From these we can write down the geodesic length of a piecewise defined

geodesic parametrized by the point in spacetime where the two pieces meet on a specific

hypersurface. Extremising the expression with respect to the meeting point gives the en-

tanglement entropy of the interval. We refer to this method as the matching method. A

corresponding Mathematica code is provided in a supplementary file together with this

paper. In contrast to the first method, the second method does not require the knowledge

of the geodesics themselves nor does it resort to a smoothened version of the geometry.

The advantage of the matching method is that it allows us to study a wider spectrum of

temperatures compared to the shooting method. Note that in this paper we only consider

intervals that experience at most two of the three regions, the two heat baths and the

steady state region.

This paper is organised as follows. In section 2 we describe the holographic ansatz

we work with and discuss the causal structure of the geometry considered. In section 3

and 4 we explain the two complementary numerical methods, shooting and matching, in

detail and present the consistent results on the time evolution of the entanglement entropy

and the mutual information. Analytical results are presented in section 5. In 5.2 we

analytically prove the universal behaviour of the time dependence of the entanglement

entropy. We present analytical results for the special case in which one of the heat baths

is at zero temperature and discuss bounds on the entropy increase rate in sections 5.3

and 5.4. Section 6 is devoted to the study the entanglement entropy of setups with many

disconnected intervals. An algorithm for dealing with the large number of configurations

is introduced and subsequently used to explore entanglement inequalities. In section 7

we present some analytical results on the higher dimensional case and comment on the

challenges of the numerical approach in this case. We conclude in section 8.

2 Holographic setup

We are interested in studying a strongly coupled CFT in d − 1 = 1 spatial dimensions.

The energy flow in such a system can be qualitatively captured by pure gravity alone in

holography, so the bulk action that we will consider is simply

S =
1

16πG

∫
d3x
√
−g (R− 2Λ) , (2.1)

– 6 –
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where Λ = −1/L2 is the cosmological constant of AdS. A static CFT configuration at

finite temperature T is dual to the BTZ black hole [55, 56],

ds2
T =

L2

z2

[
−
(
1− (2πTz)2

)
dt2 +

dz2

1− (2πTz)2
+ dx2

]
, (2.2)

where L is the radius of AdS spacetime, which we will set to L = 1 later, and the temper-

ature is related to the horizon’s position zH via 1/T = 2πzH . We will always assume the

spatial coordinate x to be decompactified, such that −∞ < x < +∞. In this geometry,

the calculation for the entanglement entropy can be easily derived from the fact that the

BTZ black hole is obtained from a quotient of pure AdS3 [44]. Given a spatial interval

with separation ` in the CFT, the holographic result for the entropy of the entanglement

between this region and its complement is given by [42]

SBTZ =
L

4G
log

(
1

π2ε2T 2
sinh2(π`T )

)
, (2.3)

where ε is a UV cut-off. Using minimal subtraction, this result may be regularized to read

Sren
BTZ =

L

4G
log

(
1

π2T 2
sinh2(π`T )

)
. (2.4)

In this paper we study the particular dynamical configuration investigated in [41].

We consider two thermal reservoirs, each of them initially at equilibrium but at different

temperatures, TL and TR. After bringing the two systems into thermal contact at t = 0,

a spatially homogeneous steady state develops, carrying a heat flow JE which transfers

energy from the heat bath at higher temperature to the other. This physical situation

is presented in figure 1. The steady state configuration in the CFT is described by a

Lorentz-boosted stress-energy tensor, which is dual to a boosted black hole geometry,

ds2
boost =

L2

z2

[
−
(

1− z2

z2
H

)
(dt cosh θ − dx sinh θ)2

+
dz2

1− z2/z2
H

+ (dx cosh θ − dt sinh θ)2

]
. (2.5)

This is dual to a boosted thermal state with boost parameter θ, temperature T and velocity

β, which are determined by

T =
√
TLTR , χ =

TL
TR

, β =
χ− 1

χ+ 1
, θ = arctanh β . (2.6)

This is a particular case of equations (7.5) for d = 2. Its associated entanglement entropy

is given by1

Sboost =
L

4G
log

(
1

π2TRTLε2
sinh(π`TL) sinh(π`TR)

)
. (2.7)

1By carrying out the boost, this can be obtained from the entanglement entropy for a static black hole

for boundary intervals with endpoints at different (boundary) times t1 6= t2.
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This result also gives the late-time limit of our case, since the central region expands

progressively as the shockwaves advance towards the heat reservoirs located at spatial

infinity. As with (2.3), it must be renormalized by subtracting (L/4G) log ε−2, according

to our scheme of minimal subtraction.

For the case d = 2, the shockwaves move with the same speed u = 1 in both directions,

so generically, at a time t > 0, the geometry is divided into three regions. Schematically,

ds2 =


ds2
TL

if x < −t

ds2
boost if − t < x < t

ds2
TR

if x > t

(2.8)

Such a dynamical solution corresponds to the idealized limit in which the initial tempera-

ture profile of the system includes a step function of zero width, leading to sharp shockwaves

in the CFT. In this limit, there are three different regions, the central one corresponding

to the steady state, which is formed by the propagating shockwaves. Note that this simple

solution only applies to the (1+1)-dimensional case. In a generic number of dimensions,

the dynamics is non-linear and the nature of the right and left shockwaves is very different.

See section 7 and [41] for a discussion of the higher-dimensional case.

Given a generic smooth temperature profile of finite width, it is convenient to work in

Fefferman-Graham coordinates (z̃, t̃, x̃). The dynamical solution in these coordinates can

be found in references [41, 57]. It may be written as

ds2 =
L2

z̃2

(
dz̃2 + gµν(z̃, x̃, t̃)dx̃µdx̃ν

)
, (2.9)

where

gtt(z, x, t) = −
[
1− z2

L2
(fR(x− t) + fL(x+ t))

]2

+

[
z2

L2
(fR(x− t)− fL(x+ t))

]2

,

(2.10a)

gtx(z, x, t) = −2
z2

L2
(fR(x− t)− fL(x+ t)) , (2.10b)

gxx(z, x, t) =

[
1 +

z2

L2
(fR(x− t) + fL(x+ t))

]2

−
[
z2

L2
(fR(x− t)− fL(x+ t))

]2

.

(2.10c)

The functions fL(x+t) and fR(x−t) are to be determined by the boundary conditions. The

way to do this is to calculate the boundary stress-energy tensor. Its vacuum expectation

value is given by2

〈T tt〉 = 〈T xx〉 =
c

6π2L2
(fR(x− t) + fL(x+ t)) , (2.11a)

〈T tx〉 =
c

6π2L2
(fR(x− t)− fL(x+ t)) , (2.11b)

2These are expectation values of the boundary stress-energy tensor. The gravitational solution in the

bulk is a vacuum solution.
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where c is the central charge of the CFT. The initial condition 〈T tx〉 = 0 (i.e. the absence

of a heat current at t = 0) demands that fL(v) = fR(v). In the following we will consider

a profile

fL(v) = fR(v) =
π2L2

4

(
(T 2
L + T 2

R) + (T 2
R − T 2

L) tanh(αv)
)
, (2.12)

which corresponds to a step of width w ≈ 1/(2α). In the limit α→∞, it asymptotes to a

sharp step function,

fL/R(v)→ π2L2

2

(
T 2
L +

(
T 2
R − T 2

L

)
θ(v)

)
. (2.13)

The discontinuous metric in this case is given by

gtt = −
(

1− π2z2T 2
L/R

)2
, gtx = 0 , gxx =

(
1 + π2z2T 2

L/R

)2
(2.14)

on the left (L) and right (R) sides respectively, and

gtt = −1 + π2
(
T 2
R + T 2

L

)
z2 − π4T 2

LT
2
Rz

4 , (2.15a)

gtx = π2
(
T 2
R − T 2

L

)
z2 , (2.15b)

gxx = 1 + π2
(
T 2
R + T 2

L

)
z2 + π4T 2

LT
2
Rz

4 (2.15c)

in the central region.3 The relation between this solution and the equivalent in

Schwarzschild-type coordinates is discussed in section 4.

It is now worth to point out that this discontinuous geometry is formed by gluing

different spacetimes together along co-dimension one hypersurfaces which represent the

extension of the shockwaves from the boundary into the bulk. The procedure by which

spacetimes are matched to one another in GR involves the use of Israel junction condi-

tions [58]. Generically, each chunk of spacetime ends in a codimension one hypersurface,

and when two of these hypersurfaces Σ1,Σ2 are identified, they must have the same topol-

ogy and induced metric γij . The identification is generally only possible provided that the

energy-momentum tensor Sij , defined on the hypersurface Σ1 ≡ Σ2 which glues regions of

spacetime together, satisfies(
K+
ij − γijK

+
)
−
(
K−ij − γijK

−
)

= −κSij . (2.16)

Note, however, that Sij vanishes for our case, as the bulk solution is supposed to be a

vacuum solution everywhere. In these equations, K+,K− are extrinsic curvatures of the

hypersurface, computed from the induced metric on the right and left sides respectively.

They correspond to different embeddings, since this hypersurface is embedded from both

sides. We checked that this condition is satisfied for the present geometry. There is,

however, a non-trivial conceptual question, since the spacetimes that are being glued in-

clude a horizon which, apparently, is cut into three pieces. In order to visualize this, it

3This shows that when setting TL = TR, the bulk metric will just be a static BTZ black hole, and there

will be no non-trivial time evolution of entanglement entropy. This distinguishes our setup from the one

studied in [25, 40], where two BCFTs are joined at t = 0, and non-trivial time evolution takes place even

when the temperatures of both sides where equal.
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is useful to employ a causal Kruskal diagram of the spacetime [56]. This will also allow

us to understand and interpret the fact that in the bulk, the “shockwaves” form spacelike

hypersurfaces. Of course, this means that while on the bounday, via the AdS/CFT cor-

respondence, we describe actual shockwaves in the CFT, the spacelike hypersurfaces that

extend these shockwaves from the boundary into the bulk in our dual AdS picture should

not be referred to as genuine shockwaves from a bulk perspective. Nevertheless, for the

sake of brevity we will from now on leave away inverted commas and also refer to the bulk

hypersurfaces as shockwaves.

The bulk spacetime has two spatial coordinates z, x. In order to obtain a Kruskal

diagram,4 we compactify z and the time t for each slice of the x direction, thus obtaining

the Kruskal coordinates (R, T ), defined by

T =

∣∣∣∣z − zHz + zH

∣∣∣∣1/2 sinh

(
t

zH

)
, R =

∣∣∣∣z − zHz + zH

∣∣∣∣1/2 cosh

(
t

zH

)
. (2.17)

Let us now analyze the resulting diagram of figure 2, in order to understand how the space-

like bulk shockwaves are still in agreement with causality of the bulk. A two-dimensional

Kruskal diagram is included in the bottom left corner, it shows a two-dimensional space-

time divided into four quadrants: the external universe is captured by the right quadrant,

the interior of the black hole by the quadrant at the top, and the other two correspond to

the respective analytical continuations. The lines of constant z correspond to hyperbolae,

which get closer to the horizon with increasing value of z, to the extreme that the line

corresponding to z = zH degenerates to the diagonals that separate the interior and the

exterior of the black hole. The lines of constant t correspond to straight lines emanating

from the center, which at t = 0 appear as horizontal in the right quadrant and as vertical

in the top quadrant. They get closer to the future horizon with increasing value of t.

Focusing on the exterior of the black hole in figure 2, the shockwaves leave the central

point x = 0 at t = 0. Therefore the initial location of the shockwave is marked by the

horizontal ray t = x = 0, 0 ≤ z ≤ zH . Any other boundary point x = x0 experiences

the shockwave crossing at t = |x0| (and this extends radially all along z), so the location

of the shockwave is marked by a straight line that increasingly separates from the initial

horizontal line as |x0| increases. Gathering the locations corresponding to a shockwave for

all values of x, we obtain the green surface in figure 2. This figure displays that in this

causal diagram, the shockwave worldvolume does not touch the horizon surface, except at

the line corresponding to T = R = 0, which is the bifurcation surface. Consequently, the

only part of the event horizon of the static regions on the left and on the right that is

retained in this construction is a half of the bifurcation surface for each side. Apart from

that, only the event horizon of the steady-state region appears, it remains untouched by

the shockwaves on which the gluing of spacetimes takes place.

As mentioned above, the analysis of the causal diagram in figure 2 reveals another

important aspect of the shockwaves: their spacelike nature, i.e. the fact that their induced

metric will have positive determinant. Intuitively, this means that in the bulk, they would

4The global extensions of metrics of the form (2.9) have been studied in [59] in more generality.
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Figure 2. Kruskal diagram of the bulk spacetime. The black diagonal sheets correspond to the

location of the black hole’s horizon. The red surfaces show the location of the singularity, and the

orange surfaces show the location of the boundary at z = 0. The green surface is the worldvolume

of the bulk shockwaves along which the three regions of spacetime are glued together. A steady

state region forms both for t > 0 and for t < 0. However, note that the physically relevant part of

this spacetime for our investigation is assumed to be t ≥ 0 only.

be perceived as being superluminal. Of course, this raises puzzling questions concerning

whether this system should be considered to be physical or not. However, we note that

the present geometry is a solution of vacuum in three dimensions, in which general rela-

tivity does not have propagating degrees of freedom. Therefore, these shockwaves do not

transport information in the bulk, and every bulk observer will locally observe AdS space

everywhere. However as we will see from the time dependence of entanglement entropy

later on, from the dual CFT perspective the shockwaves, which travel at the speed of light

on the boundary, do transport information. Considerations of energy conditions in the bulk

are also unnecessary, given that it is a vacuum solution (including the fact that Sij = 0

in (2.16)), so most common energy conditions are trivially satisfied.

The intuitive picture of why information is not transported by these shockwaves in the

bulk can be understood by taking into account that apparent faster than light propagation

is present in many physical situations. In order to illustrate this point, we look at the

example of two rulers, as in figure 3. The red dot corresponds to their point of intersec-

tion. As the rulers move in diverging directions (at speeds slower than light), as indicated

by the arrows of the figure, their point of intersection moves forward at a higher speed.

The velocity of this point depends on the angle between the two rulers, and it can move
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Figure 3. Two rulers moving at an angle. The red dot to the right indicates the point of intersection

of the rulers. As the rulers move away in diverging directions, their point of intersection may move

at superluminal speed, but without transport of information.

superluminally if the initial conditions conspire accordingly.

However, this point of intersection is an emergent object and not a physical one, so it

does not carry information. As a consequence, causality is not violated. In other words,

consecutive positions of that point are not causally related, even though the information

about these events is encoded in the initial conditions. Similarly, the shockwaves of our

system have dynamics encoded in the initial conditions and can develop apparent superlu-

minal speeds, but since they do not carry information, causality is preserved.

Another particular feature present in the 2 + 1-dimensional case is that spacetime is

always locally AdS, even at the matching surface. This means that a local observer traveling

with the shockwave still sees AdS everywhere. This is why the velocity and features of the

shockwave cannot be physically relevant in the bulk.

In the following we holographically study the evolution of entanglement entropy in this

setup. We find that it has physical behaviour in agreement with field-theory expectations.

For instance, there is a well-defined velocity of propagation for entanglement entropy. This

is in agreement with arguments using a quasiparticle picture [60], according to which the

initial condition acts as a source of pairs of quasiparticle excitations. As they propagate

causally throughout the system, larger regions get entangled. In this picture, if a maximum

quasiparticle velocity exists, then the entanglement entropy grows linearly in time for cer-

tain boundary regions. We will see that also holographically, there is a velocity associated

to entanglement, independently of the gluing of the spacetimes. In fact, in the following

section we will see that entanglement entropy does evolve in a causal manner, and obeys

the velocity bound known from the study of entanglement tsunamis.

3 Numerical results I: shooting method

We now turn to the numerical computation of entanglement entropy in the background

introduced in the preceding section. For this purpose, we study minimal surfaces whose

boundary at z = 0 is in x = xL and x = xR, and consider space-like intervals with
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t(xL) = t(xR).5 By the HRT prescription in 2 + 1 dimensions [44], the minimal surface

compatible with these boundary conditions corresponds to a geodesic in the bulk. This

follows from a solution of the geodesic equations, which read

d2xP

ds2
+ ΓPMN

dxM

ds

dxN

ds
= 0 , P = t, x, z . (3.1)

We assume an affine parametrization of the geodesic, which implies

∂xM

∂s

∂xN

∂s
gMN = 1 . (3.2)

The induced metric on the minimal surface reads

hab =
∂xM

∂xa
∂xN

∂xb
gMN = hss , (3.3)

where s is the coordinate of the surface. The entanglement entropy then follows from the

area of the manifold γA, which can be computed from the induced metric as

SA =
1

4G

∫ s(xR)

s(xL)
dsL , with L =

√
hss . (3.4)

From (3.2) and (3.3) we find that the entanglement entropy of (3.4) reduces to the trivial

integral SA = 1
4G

∫ s(xR)
s(xL) ds. The solution of the geodesic equations leads to the behavior

z ∼ e−|s| in the regime s→ ±∞. Consequently, the entanglement entropy is divergent. In

the present case the divergence behaves as Area(γdivA ) ∼ −2L log ε + · · · , and a renormal-

ization scheme is required. We use a minimal subtraction scheme, so that the renormalized

entanglement entropy is defined as

Sren
A =

1

4G

(
Area(γA)−Area(γdivA )

)
with Area(γdivA ) = −2L log ε . (3.5)

In the following we will compute renormalized entropies according to this formula.

3.1 Numerical solution of the geodesic equations

The geodesic equations of (3.1) consist of three coupled differential equations of second

order, whose solution can be expressed in the parametric form

t = t(s) , x = x(s) , z = z(s) . (3.6)

These equations can be solved by imposing six boundary conditions, which are
t(sL) = t(sR) = t0

x(sL) = xL , x(sR) = xR

z(sL) = z(sR) = ε .

(3.7)

We use the shooting method for the numerical computation of the geodesic equations:

We shoot from s = 0 with given values of {t(0), x(0), z(0)} and {t′(0), x′(0), z′(0)}, and

5In this section we are working in Fefferman-Graham coordinates, and we denote them by (z, t, x).
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Figure 4. Contour plot of energy density 〈T tt(t, x)〉 with the model in d = 2, see section 2. Dashed

lines show the time evolution of the endpoints of the intervals A and B, in the positive and negative

semiplane respectively. We consider the intervals xA ∈ [0.175, 1.35] (blue) and xB ∈ [−1.35,−0.175]

(red), temperatures TL = 0.2, TR = 0.195 and α = 25 (in equation (2.9)), in units in which L = 1.
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Figure 5. Parametric dependence of the geodesic as a function of the affine parameter s. We show

t = t(s) (left) and x = x(s) (right). We have considered the interval xA ∈ [0.175, 1.35] as shown in

figure 4, and t0 = 0.75, see equation (3.7).

then find the values of these initial conditions that lead to the desired boundary values at

s→ sL,R given in (3.7).6

We introduce a cutoff ε� 1 for regularization. This also induces a cutoff in the affine

parameter, i.e. sL ∼ −| log ε| and sR ∼ | log ε|. In the following we will consider space-like

intervals A and B as shown in figure 4. Figures 5 and 6 display a typical solution of the

geodesic equations, which satisfies the boundary conditions of (3.7). Once the geodesics are

obtained, the next step is to compute the area of these curves and then the entanglement

entropy from (3.5). We now present results for the time evolution of the entanglement

entropy in the system of section 2.

6There are in the literature other numerical methods for the solution of this two-point boundary value

problem. An example is given by the relaxation methods, in which the solution is determined by starting

with an initial guess and improving it iteratively, see e.g. [61].
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Figure 6. Parametric dependence of the geodesic. (Left) We show z = z(s). (Right) Geodesic in

the space (t, x, z). See figure 5 for further details.

3.2 Entanglement entropy and universal time evolution

For the moment we consider a single interval x ∈ [xL, xR] denoted by A, placed in the

positive semiplane, i.e. xL,R > 0. Let us study the time evolution of the entanglement

entropy SA during the formation of the steady state. We are considering the model in

d = 2, so that the shockwaves are at t = |x|. This means that the shockwaves touch the

two ends of the interval at times t = |xL| and t = |xR|, see figure 4. We will denote these

values by t1 and t2, respectively. In the limit α →∞ in (2.12), the entanglement entropy

turns out to be constant in the regimes 0 ≤ t ≤ t1 and t2 ≤ t, and there is a non-trivial

time evolution only in the interval t1 ≤ t ≤ t2, i.e.

SA(t) =


SA(t = 0) 0 ≤ t ≤ t1
SA(t) t1 ≤ t ≤ t2
SA(t =∞) t2 ≤ t

. (3.8)

We display in figure 7 (left) the time evolution of the entanglement entropy of interval A of

figure 4, from a numerical computation of the geodesic equations. In this and subsequent

figures we display the entanglement entropy renormalized as shown in equation (3.5). Let

us focus on the regime t1 ≤ t ≤ t2. It is convenient to define the normalized entanglement

entropy fA(ρ) as

fA(ρ) ≡ SA(t)− SA(t = 0)

SA(t =∞)− SA(t = 0)
with ρ ≡ (t− t1)/∆t , (3.9)

where ∆t = ` = |xR − xL|. This corresponds to the function SA(t) normalized to the

interval [0,1] in both horizontal and vertical axes for t1 ≤ t ≤ t2. It is clear from equa-

tions (3.8) and (3.9) that fA(ρ) has the values fA(0) = 0 and fA(1) = 1. We have computed

numerically the entanglement entropy SA(t) in number of configurations with different tem-

peratures TL, TR and lengths `, and find that for a large range of temperature differences,
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Figure 7. (Left) Renormalized entanglement entropies of intervals A and B as a function of

time, see figure 4. The intervals correspond to xA ∈ [0.175, 1.35] and xB ∈ [−1.35,−0.175], and

temperatures TL = 0.2 and TR = 0.195. The (dashed) horizontal lines correspond to the results by

using the analytical formulae (3.16) and (3.17). We have set G = 1 and L = 1. (Right) Renormalized

entanglement entropy SA as a function of time, normalized to [0, 1] in both horizontal and vertical

axes, see (3.9). The dots correspond to the numerical result with the interval A in figure 4, while

the continuous line is the universal behavior fA(ρ) = 3ρ2 − 2ρ3.

the behavior of fA(ρ) may be approximated by

fA(ρ) ' 3ρ2 − 2ρ3 , 0 ≤ ρ ≤ 1 . (3.10)

Specifically, this function fits extremely well the numerical results of the entanglement

entropies as long as `TL < 1 and `TR < 1. This is illustrated in figure 7 (right) for a

particular case. The result of equation (3.10) is independent of the values of the parameters

TL, TR and `, and so it implies the existence of an ’almost’ universal time-evolution of

entanglement entropy in the theory with d = 2 at small temperatures. Eq. (3.10) will be

proven analytically in section 5.2 within a small temperature expansion.

The analysis presented above applies also to intervals in the negative semiplane. We

show in figure 7 (left) the entanglement entropy of interval B of figure 4. Note that both

functions, SA(t) and SB(t), tend to the same value when the intervals reach the steady-

state regime.

3.3 Time evolution of mutual information

A quantity of interest related to the entanglement entropy is the mutual information. It

measures which information of subsystem A is contained in subsystem B, or in other words

the amount of information that can be obtained from one of the subsystems by looking at

the other one. An advantage of this quantity is that it is finite, so that it does not need to

be regularized. It is defined as

I(A,B) = SA + SB − S(A ∪B) , (3.11)

where, holographically,

S(A ∪B) = min

{
SA + SB, S1 + S2

}
, (3.12)
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Figure 8. (Left) Renormalized entanglement entropy of A ∪B as a function of time, see figure 4.

(Right) Mutual information of A andB as a function of time. In these figures the (dashed) horizontal

lines correspond to the results by using the analytical formulas, equations (3.15), (3.16) and (3.17).

The intervals correspond to x1 ∈ [−0.175, 0.175] and x2 ∈ [−1.35, 1.35], and temperatures TL = 0.2

and TR = 0.195. We have set G = 1 and L = 1.

and S1 and S2 are defined as the entanglement entropy of the intervals [xBR, x
A
L ] and [xBL , x

A
R]

respectively, see figure 4. Note that the mutual information satisfies I(A,B) ≥ 0. This

corresponds to the simplest example of inequalities of entanglement entropies in a system

involving a number of subsystems. See also section 6 for a further discussion.

We have numerically studied the time evolution of S(A∪B) and the mutual information

I(A,B). The results are shown in figure 8. An important property that we can infer from

this result is that, contrary to the entanglement entropy SA or SB, the mutual information

always grows with time, i.e.

∂tI(A,B) ≥ 0 . (3.13)

We have checked this property for a large number of configurations, with different tempera-

tures and intervals, and it always remains valid.7 This seems to imply that in the boundary

picture, the shockwaves transport information about the presence of the other heat bath

throughout the system. Note that while the hypersurfaces describing the shockwave in the

bulk are spacelike and can hence not carry information in the bulk picture (as explained

in section 2), the shockwaves are null on the boundary, and hence they can be interpreted

to transport information from the boundary perspective.

3.4 Conservation of entanglement entropy

Let us consider the two extreme regimes t = 0 and t→∞. It is possible to obtain analytical

results for the entanglement entropies in these cases for the model with d = 2 presented

in section 2. On the spacelike slice defined by t = 0, the metric corresponds to two black

holes of different temperature located to the left and right of x = 0 each, i.e.

ds2 = ds2
Lθ(−x) + ds2

Rθ(x) , (3.14)

7An analytical guess for the time evolution of the mutual information in analogy with the universal

formula of equation (3.10) turns out to be more complicated than in previous section, due to the structure

of the term S(A ∪B).
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and in this case the entanglement entropy for an interval [xL, xR] with xL < 0 and xR > 0

becomes, using minimal subtraction,

S(TL, xL;TR, xR) (3.15)

=
L

2G
log

[
TL cosh (πTLxL) sinh (πTRxR)− TR sinh (πTLxL) cosh (πTRxR)

πTLTR

]
.

To obtain this expression we considered the length of a curve piecewise defined in the two

heat baths, consisting of two pieces at x < 0 and x > 0 glued together at x = 0. They

are parts of two geodesics, defined in a geometry with a black hole at temperature TL and

TR, respectively. The curve is chosen such that its length is minimal with respect to the

value of the radial coordinate at which the two geodesics meet at x = 0. For a similar

matching-based method see section 4.

If we place the interval in just one semiplane, i.e. xL,R > 0 (or xL,R < 0), the entangle-

ment entropy at t = 0 corresponds to the one for a stationary black hole at temperature T ,

which reads

S(T, `; t = 0) =
L

2G
log

(
1

πT
sinh(π`T )

)
, ` := |xR − xL| . (3.16)

In this equation T = TL (or TR) when xL,R < 0 (or xL,R > 0). In the other extreme,

t→∞, the system is in the steady-state regime, and the entanglement entropy is the one

for a boosted black hole,8

S(TL, TR, `; t =∞) =
L

4G
log

(
1

π2TLTR
sinh (π`TL) sinh (π`TR)

)
. (3.17)

These analytical results, equations (3.16) and (3.17), correspond to SA(t = 0) and SA(t =

∞) in equation (3.8), respectively. From these formulae we easily obtain the property

SA(t = 0) + SB(t = 0) = SA(t =∞) + SB(t =∞) , (3.18)

where we consider intervals A with xAL,R > 0, and B with xBL,R < 0, and lengths ` =

`A = `B. This property is non-trivial, as in the left-hand side of equation (3.18) there

is the contribution of stationary black hole solutions at temperatures TL and TR, while

in the right-hand side there is a boosted black hole and the corresponding energy flow

contributes as well to the entanglement entropy. This relation is significant as it implies

the ’conservation’ of entanglement entropies between t = 0 and t =∞. However, there is a

non-trivial time evolution at intermediate times, as we discuss below. Interestingly, (3.18)

has also been obtained in a slightly different setup in [40].

In figure 9 (left), the time evolution of SA+B ≡ SA + SB is displayed. We see that

our numerics confirm the conservation law of equation (3.18). In the next subsection we

will study this system in the quenching regime, i.e. t1 ≤ t ≤ t2 in equation (3.8), and

characterize the violations of the entanglement entropy conservation in this case.

8Note that equation (3.17) is valid when t ≥ max(|xL|, |xR|) if the initial profile F (v) in equation (2.12)

is a stepwise function, i.e. in the limit α → ∞. When F (v) is a smooth function, the right-hand side of

equation (3.17) corresponds to the asymptotic value of the entanglement entropy at very late times, i.e. for

t� max(|xL|, |xR|).
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Figure 9. (Left) Renormalized entanglement entropy SA + SB as a function of time, see figure 4.

The (dashed) horizontal line corresponds to the result by using the analytical formulae (3.16)

and (3.17). We have set G = 1 and L = 1. (Right) Renormalized entanglement entropy SA+B as

a function of time, normalized to [0, 1] in both horizontal and vertical axes, see (3.19). The dots

correspond to the numerical result with intervals A and B, placed symmetrically with respect to

x = 0 as shown in figure 4, in different configurations: Set 1 is (TL = 0.2, TR = 0.195, `A = `B =

1.175), Set 2 is (TL = 0.2, TR = 0.175, `A = `B = 1.175) and Set 3 is (TL = 0.2, TR = 0.175, `A =

`B = 1.475). The continuous line is the universal behavior fA+B(ρ) = [4ρ(1− ρ)]
3
.

3.5 Non-universal effects in time evolution

As it is shown in figure 9 (left), we find from our numerics that SA+B(t) 6= const in the

quenching regime. This implies that the entanglement entropy is not conserved at inter-

mediate times. A straightforward computation shows that these non-conservation effects

are only possible if there are non-universal contributions in equation (3.10), otherwise this

equation would predict SA+B(t) = const.

In the following we restrict to intervals A and B with the same length and placed

symmetrically with respect to x = 0, i.e. `A = `B and xAL,R = −xBR,L. While the function

SA+B(t) has the same value at t = 0 and t = ∞ (see (3.18)), we find from our numerics

that it has a maximum at tmax ≈ (t1 + t2)/2. In order to characterize the time evolution

of SA+B(t), let us define the normalized entanglement entropy

fA+B(ρ) ≡ SA+B (t)− SA+B(t = 0)

SA+B(tmax)− SA+B(t = 0)
with ρ ≡ (t− t1)/∆t , (3.19)

where t1 and ∆t are defined as in equation (3.9). Finally, from a numerical computation

of fA+B(ρ) in a variety of intervals, we find that its behaviour is well-approximated by

fA+B(ρ) ' [4ρ(1− ρ)]3 , 0 ≤ ρ ≤ 1 . (3.20)

This is illustrated in figure 9 (right) for several configurations. From a combination of

the results in (3.10) and (3.20), we conclude that for small temperatures, the normalized

entanglement entropy defined in equation (3.9) can be approximated by

fA(ρ) = 3ρ2 − 2ρ3 + ∆A(ρ) , with ∆A(ρ) ' C(TL, TR, `) · [4ρ(1− ρ)]3 . (3.21)

The factor C(TL, TR, `) has a non-universal dependence on the parameters of the interval,

so that ∆A(ρ) is a non-universal contribution to fA(ρ). Note, however, that C(TL, TR, `)
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does not appear to affect the universal behavior of fA+B(ρ), see (3.20). Some remarks

deserve to be mentioned: on the one hand, ∆A(ρ) is a correction of order O(ρ3), so that it

does not jeopardize the early-time behavior SA(t) ∼ t2 which is present in a wide variety of

systems, see e.g. [9–14, 16, 50, 62, 63]. On the other hand, the effect of ∆A(ρ) is extremely

small in the configurations we studied numerically.9 The range of validity of equation (3.10)

will be further discussed in sections 4 and 5.

4 Numerical results II: matching of geodesics

This section is devoted to an approach complementary to solving the geodesic equation as

above — a method that we refer to as the matching approach. The idea is rather simple

and based on the same principle as the variational derivation of the light refraction law.

In short: we take the discontinuous shockwave geometry, where the metric is piecewise

constant and coincides either with the standard or the boosted Schwarzschild metric. We

calculate geodesics in each of these two spacetime regions and parametrize them by the

positions of two points: one of these is located where the geodesic meets the conformal

boundary of AdS, and the other where the geodesic meets the shockwave. We take two

geodesics that reach the shockwave at the same point, each of them being located in one

of the two regions of spacetime. We add their (renormalised) lengths and extremise the

sum with respect to the position of the ‘meeting point’ at the shockwave. The value of

the length at the extremum yields the desired entanglement entropy of an interval enclosed

by the ‘boundary’ endpoints of our geodesics. Having painted the procedure by a broad

brush, we shall now describe some technical details and assumptions made to carry out

this procedure.

4.1 Setup and assumptions

Let us take the metric in its piecewise form (2.14), (2.15). The metric is a piecewise

smooth function of Fefferman-Graham coordinates, denoted by z̃, t̃, x̃ in this section. We

use the name region to refer to the whole subset of our space on which the metric coef-

ficients are smooth, e.g steady state region (denoted Sß) is given by t̃ > 0, |x̃| < t̃, z̃ ∈(
0, (π
√
TLTR)−1

)
. In the same manner, the left and right thermal regions will be denoted

by L and R, respectively. The dimension two surface along which the metric is discontin-

uous will be referred to as the shockwave. Our aim is to calculate (regularised) geodesics

length between two points lying on the conformal boundary of the space-time. If both

endpoints belong to the same region, the answer is already known to be (2.4) in a thermal

region and (2.7) in the steady state region. If, however, the boundary points belong to

9One can see from figure 9 (left) that in this case the peak in SA+B(tmax) is a correction of order

O(10−6) with respect to SA+B(0), so that the order of magnitude of the non-universal contribution in

equation (3.21) is

C(TL, TR, `) ' ∆A

(
ρ =

1

2

)
' 1

2

SA+B(tmax)− SA+B(0)

SA(∞)− SA(0)
∼ O(10−4) . (3.22)
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Figure 10. A cartoon of a curve used in our procedure, projected onto a t̃, x hypersurface. Sß

and R denote regions of spacetime, the steady state and right thermal region, respectively. The

red line is a piecewise geodesic (it is a geodesic in any of both regions) connecting boundary

endpoints and a point on a shockwave (x̃ = t̃ in our coordinates). Then the (renormalised) length

of that geodesic is extremised with respect to the coordinates of the joining point, which yields the

entanglement entropy.

different regions, finding the solution is a more complicated task. We therefore make some

assumptions about the spacetime.

Most importantly, we assume that the coordinates z̃, t̃, x̃ cover all the regions in a

smooth way, and it is actually the metric components as functions of z̃, t̃, x̃ that are discon-

tinuous.10 This assumption can be motivated by the fact that our metric (2.14), (2.15) can

be obtained as a limit of a continuous metric (2.10), (2.12) where the shockwave width (w)

tends to zero (α goes to infinity). It is reasonable to assume that taking the limit described

does not influence the domain of our coordinates. The agreement between numerical re-

sults from the continuous model at large α and the results of this section shall confirm that

the assumption made yields correct results. From the assumption follows in particular that

curves which are continuous in our coordinates are also continuous on the manifold itself.

This will be essential in our calculation, since it is based on joining two smooth curves in

a way that it is still continuous.

4.2 Geodesics and distance

Given our setup, we need to calculate a spacelike distance between a given point on the

boundary and an arbitrary point on the shockwave.11 To achieve this, we shall follow the

logic of [64] and utilise the fact that every three-dimensional asymptotically AdS manifold

that is a solution to Einstein’s equations is locally isometric to AdS3. So, if we identify

10Note, however, that as the Israel junction conditions (2.16) are satisfied, the metric is continuous in a

strict mathematical sense. Especially, the induced metrics on the shockwave both from the static side and

from the steady state side agree.
11Of course on a Lorentzian manifold, not every point on the shockwave will be spatially separated from

a fixed point on the boundary, as we shall directly see later. It is enough that there will always be a set of

points that satisfy this condition — a situation that indeed occurs in our case.

– 21 –



J
H
E
P
1
0
(
2
0
1
7
)
0
3
4

the isometry, we may use the ready formulæ for geodesic distance in AdS3 space. It is

worth noting that thanks to this property special to three dimensions, we do not need to

calculate the geodesics explicitly, we just express their length as a function of coordinates

of the two points. This considerably simplifies the calculation. However, we still have to

find formulæ for the geodesic distance in our problem. The metric (2.14), (2.15) is given

in Fefferman-Graham (FG) coordinates. To use the results of [64], we need to change

to Schwarzschild-type coordinates. There is a technical difficulty in that step: in every

region the change of coordinates takes a different form. We denote FG-type coordinates

as (z̃, t̃, x̃) and the Schwarzschild coordinates as (z, t, x). In Schwarzschild coordinates,

the metric takes the form (2.2)

ds2 =
L2

z2

[
−
(
1− (2πTz)2

)
dt2 +

dz2

1− (2πTz)2
+ dx2

]
, (4.1)

where T is a real, positive constant — an (effective) temperature. Then, the coordinate

transformations are obtained as follows. For the steady state they read

z =
z̃

1 + π2TLTRz̃2
, (4.2)

z̃ =
1−

√
1− 4π2TLTRz2

2π2TLTRz
, (4.3)(

t

x

)
=

(
cosh [θ] − sinh [θ]

− sinh [θ] cosh [θ]

)(
t̃

x̃

)
, (4.4)

sinh [θ] =
TL − TR
2
√
TLTR

, cosh [θ] =
TL + TR

2
√
TLTR

.

Eq. (4.2) is the inverse relation to (4.3). We quote both since there is a sign to be fixed.

From (4.4) it follows that the effective temperature from equation (4.1) for the steady state

can be expressed in terms of the reservoirs’ temperatures as

T =
√
TLTR. (4.5)

For the thermal regions it is sufficient to take (4.2) and set TL = TR, θ = 0 to obtain

z̃ =
1−

√
1− 4π2z2T 2

L/R

2π2T 2
L/Rz

. (4.6)

The distance can be expressed, following [64], as12

cosh

[
d

L

]
= T1T

′
1 + T2T

′
2 −X1X

′
1 −X2X

′
2 (4.7)

12Note that, on contrary to the setup therein, we do not use an analytical continuation of coefficients

since we are interested in a single-sided black hole, not a double sided one which is the situation there.
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with d the geodesic distance. In terms of the Schwarzschild coordinates, the functions

X1, X2, T1, and T2 read

T1 =
zH
√

1− z2

z2
H

sinh
(

t
zH

)
z

, (4.8)

T2 =
zH cosh

(
x
zH

)
z

, (4.9)

X1 =
zH
√

1− z2

z2
H

cosh
(

t
zH

)
z

, (4.10)

X2 =
zH sinh

(
x
zH

)
z

, (4.11)

with Schwarzschild horizon radius zH = (2πT )−1. From the formulae above it is clear that

if one of the points is taken to the boundary (z = 0) while the other is being kept fixed, the

distance must diverge. Therefore, a regularisation is needed for small z. Since from (4.2)

and (4.6) it follows that in every region

z = z̃ +O(z̃3),

there is no difference in which coordinates we regularise. For concreteness, let us sketch the

procedure of computing the regularised length for a case in which one end of the geodesic

reaches the boundary in the steady state region and the other in the right thermal region

with temperature TR (that is the case of figure (10)). So, we are interested in two lengths:

one for the curve connecting the ‘starting point’ on the boundary (t̃b, x̃min, z = ε) with a

point on the shockwave x̃j , x̃j , z̃j and another joining the same point on a shockwave with

the endpoint on a boundary on another side (t̃b, x̃max, z = ε), and then take a ‘regularised

limit’ ε→ 0 (i.e. subtracting the divergent part and then taking the limit). To apply (4.7),

we need to connect these to the Schwarzschild coordinates of the respective patches. Let

us note that the condition for the position of the shockwave is identical in any of the used

coordinates,

xj = tj ⇔ x̃j = t̃j .

For simplicity, we regularise in Schwarzschild coordinates. Using the asymptotic approxi-

mation of hyperbolic cosine by an exponential, we arrive at the conclusion that the minimal

counter-term used in (3.5) is indeed the proper one to regularise our length. At this point

it is convenient to set the AdS3 radius to unity, L = 1.

Now, we are ready to write the full, renormalised distance as a function of the joining

point on the shockwave,

dR(zj , x) = log
[(

1 + π2T 2
Rz̃

2
j

)
cosh (2πTR(x− `))− (1− (πTRz̃j)

2) cosh (2πTR(t− x))
]

+ log
[ (

1 + π2TLTRz̃
2
j

)
cosh (π(tTL − tTR + 2TRx)) (4.12)

+
(
π2TLTRz̃

2
j − 1

)
cosh (π(t(TL + TR)− 2TRx))

]
− 1

2
log
(
16π8T 2

LT
6
Rz̃

4
j

)
.
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In the above, we used a shortened notation: ` = x̃max − x̃min, x = x̃j − x̃min, t = t̃b − x̃min

— the time that has passed since the shockwave entered the boundary interval. Now, this

quantity is to be extremised with respect to, z̃j and x (which is the same as extremising

w.r.t. x̃j). Extremal points are solutions to

∂z̃jdR = 0 , ∂xdR = 0 . (4.13)

These equations turn out to be fourth order polynomial equations in zj and non-

polynomial13 equations in x. Therefore, we turn to numerical methods for solving non-

linear algebraic equations. Note however that the above-mentioned system can be solved

analytically in certain simplifying cases, see section 5. Upon solving the system (4.13),

we obtain the coordinates of the extremum of dR, namely (z0, x0). Then the desired

entanglement entropy is given by14

S =
1

4
dR(z0, x0). (4.14)

4.3 Numerical algorithm

To solve the non-linear algebraic system (4.13), we need to involve numerical analysis.

Our solution was developed in Wolfram Mathematica. All the codes used in this section

are available online as supplementary material to the arXiv submission of the paper. The

algorithm consists of two steps: first, following the idea of [65] in a slightly modified form

(see [66]), we find a rough approximation of the solution by plotting curves satisfying each

of the two equations in (4.13). Then we use coordinates of crossing points of those as

a starting point for standard Newton’s solver built-in Mathematica’s FindRoot function.

To understand why such a two-step procedure is necessary, let us briefly discuss the func-

tion (4.12) and equations (4.13). As figure 11 shows, the domain of the distance function

and the full domain of our coordinates are not the same. This is in agreement with the

fact that on a Lorentzian manifold, not every point is spacelike-separated from a given

point. Then, the function going to zero and ceasing to be real signals that one of the

boundary endpoints becomes null or time-like separated from the joining point. However,

since dR = log(. . .), both equations (4.13) have the form ∂ log(f(. . .)) = 0, so looking for

their solution is equivalent to solving ∂f(. . .) = 0 if f does not vanish on the solution. This

equivalent form is strongly preferable, given the nature of the numerical computations, in

which unnecessary divisions decrease numerical precision. On the other hand, the modified

system of equations consists of two functions that are well-defined for the whole domain of

our coordinates. Therefore, we begin our numerical approach with an algorithm capable of

finding rough approximations of all solutions to the system of equations in a given domain.

From those solutions we choose the ones satisfying our requirement that the length evalu-

ated on solution is positive. Then, these solutions are refined by using Newton’s method

that yields the solution with the desired accuracy, in our case fifteen digits. If more than

one solution is regular in the sense that the length is positive, the final answer is taken to

13Even upon expressing hyperbolic functions in terms of exponentials and changing variable from x to

ξ = exp(Ax), the exponents of new the variable are non-integer for any choice of A.
14In that place we have already set Newton’s constant of supergravity theory to 1.
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Figure 11. The distance function dR(zj , xj) for parameters: tb = 0.7, xmin = 0.5, xmax =

1.5, TL = 2, TR = 1 in units where L = 1. The function turns imaginary outside of some region

(where the argument of the logarithm in (4.12) turns negative).

be the one for which the value of length is smallest, according to the HRT proposal. The

domain in which we search for solutions is (in terms of variables defined in (4.12))

x ∈ [0;L], z̃j ∈ [0; 1.0001 ∗ (π
√
TLTR)−1] (4.15)

on the left side, or

x ∈ [0;L], z̃j ∈ [0; 1.0001 ∗ (πTL)−1] (4.16)

on the right,15 which ensures that solutions lying far below the horizon are excluded. This

however allows the algorithm to look for the solution arbitrarily close to the horizon, and

to boost the data generation.

To justify the exclusion of solutions with z̃j > z̃H , we have numerically tested that

the solutions lying below the horizon, should they appear, are not the physical ones. The

argument behind this is based on the analysis of the Kruskal diagram of our space-time

(see figure 2). In short, we see that the shockwave does not cross the horizon except for

the bifurcation surface — it stays entirely in the outer region of the black hole. This means

that the point where the geodesic crosses the shockwave will generically be outside of the

horizon (z̃ < z̃H), and since this is a causality argument, this occurs both from the point

of view of the static region and from the point of view of the steady state region. Indeed,

we find that a solution to our matching equations with these properties always seems to

exist. Therefore, the fact that we can find a solution beneath the horizon (z̃j > z̃H) is only

an artefact of our choice of coordinates. On the numerical side we allow, for test purposes,

z̃j to exceed the above mentioned bounds by large values (2 − 3 times larger), and the

solutions found in those regions were never chosen by the algorithm. With the restricted

domain of interest and given accuracy, our algorithm has an acceptable speed: computing

the entanglement entropy for a given interval and a given boundary time takes roughly

0.2 seconds.

15Note that we always assumed TL > TR.
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Figure 12. Comparison of entanglement entropies for intervals A and B at temperatures TL = 0.2

TR = 0.195 (left panel), and entanglement entropies for the interval A in different temperatures —

with TR = 0.195 and TL ranging from 0.2 (blue curve) to 1. (orange) as functions of boundary time t.

The left panel shows exact matching with previous results from figure 7, which is a consistency check.

The right panel shows how the evolution changes when one gradually increases the temperature

of one of the heat baths. All lengths in units of AdS3 radius (L = 1).

4.4 Results

In this way we obtain entanglement entropy for a wide range of temperatures. To compare

with results of the previous section, we consider properties of entanglement entropy of the

same boundary regions, namely

A = [0.175, 1.35], B = [−1.35,−0.175]. (4.17)

All our data is generated using AdS3 radius as unit, L = 1. We are also going to take

various temperature differences. In that subsection by t we denote the boundary time,

to stick to the conventions of the previous section. The first result, shown in figure 12,

indicates that both our methods (of this and the preceding section) yield the same results for

the same initial data. That ensures us about the correctness of our results, as numerical

techniques used in both approaches are substantially different. Now, let us analyse the

universal formula for normalised entanglement entropy (3.9). Using the joining method we

are not only able to prove the universal formula (see section 5), but also find in what range

it is broken. The results on the universal formula for fA can be seen on figure 13. Finally,

we reconsider the question of non-conservation of the sum SA + SB with the alternative

numerical approach of ths section. The results of figure 9 pass convergence tests, however

the peak is tiny compared to the value of entropy (difference in 6-th decimal). Here we

confirm the observed behaviour of SA + SB in the alternative numerical approach. Our

findings are presented on figure 14. An interesting fact is that we numerically find that the

normalised sum
SA(t) + SB(t)

2SA(∞)
(4.18)

is bounded from above by a value of approximately 1.025. So, the maximal deviation from

a constant appears to be at most 2.5% of the value of entropy –which is however too much

to attribute it to a numerical error.
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Figure 13. Normalised entanglement entropy fA for the interval A in temperatures TL = 0.4 and

TL = 10. compared to the universal formula 3ρ2 − 2ρ3 (left panel) and deviations from universal

formula for TL = 0.2, 0.4, 10. (right panel) The TL = 0.2 case was already shown on figure 13. In

that case the deviation is approximately 0.002. Upon increasing the temperature of the left bath,

the deviation from the universal formula grows and the time evolution resembles more a straight line

— however the difference fA(t)− t still reaches values around 0.04 for TL = 10.. See section 5.4 for

a discussion of the high temperature linear behaviour. All lengths in units of AdS3 radius (L = 1).
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Figure 14. Top left : sum of SA and SB for two different, yet close, values of TL, shifted by the

asymptotic (t =∞) value of that sum. The blue plot is the case studied in section 3, as previously

the deviation from constancy is of order 10−7 while the sum is of order 10−1. The yellow plot

shows a similar quantity for temperature TL = 0.21, just slightly higher. The deviation is now

order of magnitude bigger. Top right : normalised deviation fA+B for different temperatures TL.

The blue curve has been already shown in figure 9 to follow the universal behaviour [4ρ(1 − ρ)]3.

For much bigger temperature TL = 10, the shape of the curve changes considerably. Bottom: ratio

of sum SA + SB and asymptotic value of that sum as a function of boundary time. The deviation

of the sum from its asymptotic value reaches around 2.5%, but seems to be bounded even when

one increases the temperature — compare left and right figures which are in the same scale. The

bigger the temperature difference, the more the curve resembles a semi-circle. All lengths in units

of AdS3 radius (L = 1).
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5 Analytical results

Some of the numerical results presented in the two preceding sections may actually be

obtained analytically, at least in some limits. This applies in particular to the result (3.10)

for the time evolution of the entanglement entropy. Moreover, we derive a bound on the

increase rate for the entanglement entropy. We begin this section in 5.1 by a review of

velocity bounds previously obtained for global quenches. We then obtain analytical results

for the time evolution of the entanglement entropy for the limit of both heat bath temper-

atures small in section 5.2 , and of one of the two temperatures vanishing in section 5.3.

Finally we obtain a velocity bound on entanglement growth in section 5.4.

5.1 Review of universal velocity bounds

In the past, much interest has been directed towards the holographic study of the time

dependent behaviour of entanglement entropy after global quenches. For example, in a

series of papers [8–14, 50],16 it was found that after a global quench, the entanglement

entropy of a sufficiently large boundary region would exhibit an initial quadratic growth

of entanglement with time,

∆S(t) ∝ t2 + . . . , (5.1)

followed by a universal linear growth regime where

∆S(t) = vEseqAΣt+ . . . . (5.2)

In this formula, t is the time after the quench, ∆S is the change in entanglement entropy,

seq is the entropy density of the (late time) equilibrium thermal state, AΣ is the surface

area of the boundary region Σ of which the entanglement entropy is computed17 and vE is

a velocity that depends on the final equilibrium state. In the case of an AdS-Schwarzschild

black hole as final state, it was found that [8, 12–14]

vE =

√
d(d− 2)

1
2
− 1
d

(2(d− 1))1− 1
d

, (5.3)

which is referred to as the entanglement velocity or tsunami velocity. The reason for this

nomenclature is that the behaviour (5.2) can be understood in terms of a heuristic picture

in which the entanglement growth is caused by entangled quasi-particles that were created

by the global quench and are propagating at the speed (5.3), forming the entanglement

tsunami. See also [67–74] for further work on this topic. A related concept is the so-called

butterfly velocity [64, 75]

vB =

√
d

2(d− 1)
(5.4)

16See also [15] for the case of a background geometry with a hyperscaling violating factor.
17Σ is assumed to be large compared to the inverse temperature of the final equilibrium state. In the case

d = 2 where Σ only consists of two endpoints of an interval (for a connected region), one sets AΣ = 2 [14, 60].
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for the spatial propagation of chaotic behaviour in the boundary theory. This speed is also

connected to the growth of operators in a thermal state [64, 75]. From (5.3) and (5.4), it

is obvious that

1 ≥ vB ≥ vE , (5.5)

and the case d = 2 is the special case where 1 = vB = vE . Interestingly, the velocities seem

to play an important role in the description of entanglement spreading not only for global

quenches, but also for local quenches [20, 22, 25].

5.2 Time evolution of entanglement entropy: both temperatures small

Based on the matching procedure outlined in section 4, it is easy to prove the universal

formula (3.10) for the time evolution of entanglement entropy as an approximation for

small TL and TR. In order to do so, we simply replace TL → δ ·TL, TR → δ ·TR and expand

the expressions for ∂zjdR and ∂xdR in (4.13) in the small quantity δ.18 Similarly, we expand

the analogous function dL and its derivative when xmax ≤ 0. To lowest non-trivial order in

δ, we find

∂xdR ∝ ∂zjdL ∝ (`− t)(`+ 2t− 4x)t− (`− 2t)z2
j , (5.6)

∂zjdR ∝ ∂xdL ∝ (`− t)(t− 2x)(`+ t− 2x)t+ z4
j . (5.7)

The condition ∂zjdR = ∂xdR = 0 (respectively ∂zjdL = ∂xdL = 0) has then the simple

solution

x = t, zj =
√

(`− t)t. (5.8)

This may be inserted into dR in equation (4.12) and the similar expression for dL, giving

the entanglement entropy S(t), and this in turn can be inserted into (3.9). Expanding

again in small δ as above, we then find for both the left- and right-side the analytic result

f(ρ) = 3ρ2 − 2ρ3 (5.9)

at order δ0. Here, ρ is again the rescaled time defined in (3.9). It is interesting to note

that the small TL, TR expansions leading to (5.9) loose their analytic validity at an order of

magnitude of TL, TR at which our numerics are still well approximated by (5.9). It might

hence be interesting to do the TL, TR expansions in a more systematic way and to study

the higher orders in more detail. This might also help to understand the range of validity

of equation (3.21).

It is worth stressing that the universal dynamics of entanglement entropy is not only

of purely academic interest. It is known that the low-energy spectrum of excitations of

some models (i.e systems with ballistic conductance, possessing quasiparticle description,

see [39]) are governed by effectively conformal theories. The regime in which this approxi-

mation is valid for thermal states is indeed when both of the temperatures are low, so the

18This means that in this section, we assume that TL and TR are both small (compared to the interval

length `), but of the same order of magnitude.
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highest lying parts of spectrum are not largely populated in the thermal state — which is

also the range of validity of our universal formula (3.10). This means that in the limit of

small temperatures our universal evolution of entanglement entropy should be also valid

in ballistic regimes of real, i.e electronic systems. It is therefore an interesting possible

direction of investigation to compute other quantities, as correlation functions, in this low-

temperature limit and compare them against expectations from other theories (i.e. lattice

models).

5.3 Entanglement entropy: limit of zero temperature for one of the heat baths

In addition to the case where both temperatures TL and TR are small (studied in section 5.2),

there is another situation where the matching equations derived in section 4 can be solved

analytically: the case where TR = 0 with arbitrary TL (or the analogous case TL = 0 with

arbitrary TR, which we will not consider separately).

First of all, let us reassure ourselves that this case is actually physical. Setting TR → 0

in equations (7.1)–(7.5) has the consequences

T → 0 (5.10)

χ→ +∞ (5.11)

β → +1 (5.12)

θ → +∞. (5.13)

Despite the divergence of the rapidity θ, we see that for d = 2, the line element (2.5) of

the boosted black hole has a well-defined limit

ds2 → L2

z2

(
dz2 + (−1 + π2T 2

Lz
2)dt2 + (1 + π2T 2

Lz
2)dx2 − 2π2T 2

Lz
2dtdx

)
. (5.14)

Similarly, instead of (4.12), we find the expression

dR(zj , x) = log
[
4π3

(
`2 − 2`x− t2 + 2tx+ z2

j

)
×
(
πTLz

2
j cosh (πtTL)− (t− 2x) sinh (πtTL)

) ]
(5.15)

− 1

2
log
(
16π8T 2

Lz
4
j

)
which can be shown to be extremised for

x =
πtTL(`− t) coth (πtTL) + `+ t

2 + 2πTL(`− t) coth (πtTL)
, zj =

√
`(`− t)

1 + πTL(`− t) coth (πtTL)
. (5.16)

This yields the analytic solution

S(`) ∝ log (` sinh (πtTL)) + log (1 + πTL(`− t) coth (πtTL))− log(πTL). (5.17)

Expanding around TL = 0 yields to lowest order the universal formula (3.10) again, how-

ever (5.17) is an analytical result for the entanglement entropy which is valid for any TL.

For large TL, we obtain

S(`) ≈ L

4G
πtTL = seqt, (5.18)
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where we have used (5.21) with TR ≡ 0. This result shows that for large TL, the entan-

glement entropy will increase in an approximately linear way, saturating the bound to be

discussed in section 5.4. Note the discrepancy of a factor AΣ = 2 between (5.18) and

equation (5.2) for d = 2, where vE = 1. This may be because in a global quench, the

entanglement tsunami enters the interval of interest from both sides, while in our local

quench like setup, the shockwave enters the interval only from one side. However, we

should stress that in contrast to the entanglement tsunamis studied in global quenches

in [8, 12–14, 50, 67–74], we do not have a heuristic quasi-particle like picture explaining

the entropy increase and decrease experienced by different intervals in our inhomogeneous

setup even qualitatively. We will discuss the possible bounds on the entropy increase or

decrease rate of different intervals in our system for general TL, TR in section 5.4.

5.4 Bounds on entropy increase rate

As shown in section 3, for the full time-dependent background (2.9) we expect that for

an interval of length `, the time dependent entanglement entropy S(`, t) will be constant

before the shockwave enters the interval, evolve with time t while the shockwave passes

through the interval, and be constant again after the shockwave has left the interval. This

is precisely the behaviour seen in figure 7, for example. Furthermore, normalising the

entropy such as to obtain a dimensionless quantity, we have observed in section 3 that

for small temperatures TL, TR, the time dependence of the entanglement entropy can be

approximated by the formula (3.10), which we analytically proved in section 5.2. In this

section, we will have a closer look at the rates of entropy increase that we observe in the

time dependent entanglement entropies S(`, t).

We begin by analytically deriving some useful expressions. For a sharp shockwave

moving at the speed of light, the change in the entanglement entropy of an interval with

length19 ` will occur over a time period ∆t = `. From (2.7) and (2.4) (with T → TL for

example, as appropriate when the interval is entirely on the left) we then easily find the

average entropy increase rate

vav ≡
∆S

∆t
=

L

4G`
log

(
TL sinh(π`TR)

TR sinh(π`TL)

)
. (5.19)

In particular, we find

0 ≤ |vav| ≤
L

4G
π|TR − TL| (5.20)

with lim`→0 vav = 0 and lim`→∞ vav = L
4Gπ|TR−TL|. This is interesting, because it implies

that for fixed TL and TR, vav is bounded. By choosing TL and TR, however, we can make

vav as large as we want.

In (5.2), the rate of entropy increase was normalised by the entropy density seq of the

final state. Taking the limit `→∞ in (2.7), we find that

seq =
L

4G
π(TL + TR). (5.21)

19Again, in this section we assume that the interval is completely to the left or to the right of the origin

x = 0.
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Hence, motivated by the comparison with the literature on entanglement tsunamis [8, 12–

14, 50, 67–74], we can define the normalised average entanglement entropy increase rate

ṽav ≡
vav
seq

, (5.22)

and hence we find the bound

|ṽav| ≤
∣∣∣∣TR − TLTR + TL

∣∣∣∣ ≤ 1. (5.23)

We consequently see that, when normalising in a specific physical way, both the average

increase and decrease rate of entanglement entropy in the formation of the steady state will

be bounded by a similar bound as observed for two dimensional entanglement tsunamis or

the local quenches of [20].

It should be noted however that the bound (5.23) is only a bound on the averaged

increase rate of entanglement entropy. If the universal formula (3.10) would hold for any

choice of TL, TR, `, then the momentary entanglement entropy increase rate could violate

the bound (5.23) by up to 50% at the moment when the shockwave is in the middle of

the interval. But as discussed earlier the formula (3.10) is not valid for any choice of

TL,TR and `, and numerically we find that the momentary normalised entropy increase (or

decrease) rate

ṽ ≡ 1

seq

dS(`, t)

dt
(5.24)

still satisfies the bound

|ṽ| ≤ 1 (5.25)

in all examples that we have explicitly checked. See, for example, figure 15. Further-

more, using the analytical result (5.17) of section 5.3, we can compute the momentary

increase rate

ṽ(TR = 0) =
1

1
π`TL−πtTL + coth(πtTL)

. (5.26)

For this result, it can be analytically shown that for any parameters TL, ` and t the

bound (5.25) is satisfied. This is in contrast to the results of [16], where it was explic-

itly found in a different setup that the momentary increase rate for small regions, far away

from the tsunami regime, can indeed violate the velocity bound (5.25). See also [62, 63] for

further discussions of entanglement entropy growth for small subsystems in different setups.

A bound of the type (5.23) is especially interesting when compared to other velocities

that are related to the spread of entanglement or other disturbances on the boundary

of AdSd+1, such as the entanglement velocity (5.3) and the butterfly effect velocity (5.4).

As said before, the case d = 2 is the special case where 1 = vB = vE , and hence the

bound (5.23) can be expressed in terms of vE and/or vB. As we will see in section 7.2, this

may however not be the case for higher dimensions any more.
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Figure 15. Entropy increase rates (5.24) for an interval from xmin = 0.1 to xmax = 0.9 as a function

of time t. We have chosen a fixed TR = 1 and TL = 1 + 10α with α = −1,−0.8,−0.6, . . . , 2, where

α increases from the lowest solid curve in the figure to the highest one. The dotted (orange) line

represents the curve expected from the universal low temperature formula (3.10) for TR = 1, TL =

1.1. The dashed (red) line signifies the bound (5.25).

Nevertheless, we can attempt to interpret our findings for 2+1 bulk dimensions in terms

of the intuition provided by the study of the entanglement tsunami phenomenon. As noted

in section 5.3 in discussing the result (5.18), in the limit where the entanglement entropy

increases linearly (`� T−1
L ) with a rate saturating the bound (5.25), the shockwave seems

to take the role that the entanglement tsunami had for a global quench. As the shockwave

enters the interval only from one side instead of from both sides, the increase rate in (5.18)

is only half of the one calculated in a global quench according to (5.2), where AΣ = 2

and vE = 1. As pointed out in section 5.1, the linear increase (5.2) is only valid when

looking at large enough boundary regions (compared to the inverse of the temperature).

Our analytical results (5.18) and especially (3.10) then show how this linear behaviour is

modified when moving away from this limit: the linear increase of entropy characteristic

of the entanglement tsunami is replaced by a much smoother S-shaped curve. This might,

in analogy with the tsunami picture, be called an entanglement tide. It should be pointed

out that in our matching procedure of section 4, the shockwave is always assumed to be

infinitely thin, hence this modification is not a result of a finite shockwave size. Also, other

works where the evolution of entanglement entropy away from the tsunami regime was

studied are [16, 62, 63], with somewhat contrasting results, as explained above.

6 Entanglement entropies of systems with many disconnected compo-

nents

When working in 1 + 1-dimensional CFTs, the subsystems for which entanglement entropy

may be calculated are either isolated intervals or unions of n intervals. It is known that
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Figure 16. For the union of the two intervals A (from 1 to 2) and B (from 3 to 4), there are

two possible ways how to calculate the entanglement entropy S(A ∪ B). One is by adding the

entanglement entropies of the two intervals A and B (given by the solid red curves), the other is

by adding the two curves AB1 and AB2, depicted as dashed blue curves.

for example in the case two intervals A and B, there are two possible (physical, see sec-

tion 6.1) configurations for calculating the entanglement entropy for the union of these two

intervals, S(AB) ≡ S(A∪B), as shown in figure 16 [76–78]. By the HRT proposal [44], the

entanglement entropy is given by the minimal possible configuration of extremal curves,

S(AB) = min {S(A) + S(B), SAB1 + SAB2} . (6.1)

As the parameters defining A and B are varied, there may be phase transitions between

these two configurations, and we will consequently refer to these configurations as phases.

Interestingly, the entanglement entropies of the subsystem A ∪B and its (sub)subsystems

may be required to satisfy certain inequalities, which in the n = 2 case discussed here are

only the subadditivity (SA) [79]

S(AB) ≤ S(A) + S(B), (6.2)

following immediately from the holographic prescription (6.1), and the triangle or Araki-

Lieb inequality [79]

S(AB) ≥ |S(A)− S(B)|. (6.3)

While this is well-known and straightforward for the n = 2 case just discussed, some

interest has recently emerged [54, 80–83] for similar concepts for situations involving n >

2 disconnected intervals. Here we present our study of this case, and apply it to the

steady-state spacetime in subsection 6.4. The Wolfram Mathematica code that we use for

this analysis is uploaded to the arXiv as an ancillary file together with this paper and

with a sample of the numerical results that is obtained from the matching procedure of

section 4.20 There is some overlap between the issues addressed in this section (especially

subsection 6.1) and the ones investigated in [83], which was published after most of this

section was completed. Although we are working in a covariant (time-dependent) setting,

the findings of [83] suggest that the code used in our ancillary file may still be optimized.

However, it nevertheless produces the desired results.

20Please note that this file can be opened with the free CDF Player software [84].
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6.1 The phases of the union of n intervals

As shown in figure 16, for two intervals (n = 2) there are two possible phases or configura-

tions describing the entanglement entropy of the union of these intervals. Suppose we are

given n ∈ N intervals, how many possible phases are there, and how do they look like? For

a simplified situation where the lengths of all intervals are equal, as well as the distances

between them, this has already been studied in [80]. We are however interested in the

general case here. Of course, for any given n, the above question can simply be answered

by drawing all possible configurations by hand. However, in this subsection we provide an

algorithm that for any n enumerates the possible phases in a consistent manner, without

omitting any solution or counting it twice, and which can easily be implemented (see the

corresponding ancillary file). We do not assume a translation invariant spacetime, however

we will assume a spacetime with simple topology, such as Poincaré AdS or a flat black

brane, excluding possible phenomena such as entanglement plateaux [85], see also [83].

Our task then essentially boils down to finding the noncrossing partitions of a set with n

elements, a well known combinatorial problem related to the Catalan numbers Cn [86]. We

will, however, still present our solution to this problem in detail, as this exposition also

serves to explain our notation and the inner workings of our ancillary file.

In a 1 + 1 dimensional CFT, the n intervals under consideration (which we assume to

be all part of a specified equal time slice on the boundary) are all lined up one after the

other, and we can enumerate their start- and end-points from 1 to 2n, as was already done

in figure 16. Note that this is only an enumeration, and not meant to indicate the lengths

of the different intervals or the coordinates of the boundary points for example.

Naively, in the n = 2 case, we could have also drawn a configuration as the one depicted

in figure 17, with two curves crossing each other [78]. Such a configuration is, however,

considered to be unphysical for various reasons. First, in the static case where the RT

prescription holds, it can easily be shown that this type of configuration can never yield the

lowest values for the entanglement entropy, hence can be ignored in (6.1) [76, 78]. Second,

in a time dependent (HRT) case the two curves may not actually cross any more. However,

the co-dimension one surface spanned between them and the boundary intervals would then

become null or timelike at some point. As pointed out in [85], the co-dimension one surface

required by the homology condition has to be restricted to be spacelike everywhere in the

HRT prescription. Hence the configuration of figure 17 is also excluded in the dynamic

case. Third, it has been discussed in [78] that configurations of this intersecting type do

not play a role when the (regularised) entanglement entropy of an interval is monotonously

increasing with the interval length.

When enumerating the possible phases of the entanglement entropy of the union of

n intervals, we therefore aim at excluding phases with curves intersecting when projected

into the same plane, as shown in figure 17. Due to our labeling of the boundary points, it

is clear that each interval begins at a point labeled by an odd number and ends at an even

one. In figure 16, for n = 2 we find one phase where bulk curves connect the points 1 to 2

and 3 to 4, and one phase where the bulk curves connect the points 1 to 4 and 2 to 3. In

the unphysical case shown in figure 17 however, the points 1 to 3 and 2 to 4 are connected
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Figure 17. An unphysical configuration for S(A ∪B).

by bulk curves. We hence realize that in order to avoid intersections as the one shown

in 17, each odd label has to be connected to an even label by a bulk curve. This means

that each viable configuration for any n has to be a mapping of the set of odd numbers

{1, 3, . . . , 2n− 1} to the set of even numbers {2, 4, . . . , 2n}. The number of these possible

mappings is given by n!, the number of possible permutations of the set {2, 4, . . . , 2n},

phase 1:


1→ 2

3→ 4

5→ 6

. . .

2n− 1→ 2n

 , . . . , phase i:


1→ σi(2)

3→ σi(4)

5→ σi(6)

. . .

2n− 1→ σi(2n)

 , . . . (6.4)

Here, σi is the i-th out of the n! possible permutations of the set {2, 4, . . . , 2n}. Returning

to the specific example of n = 2, we hence obtain the two phases

S(AB) = S(A) + S(B) ⇔

(
1→ 2

3→ 4

)
“disconnected phase” , (6.5)

S(AB) = S(AB1) + S(AB2) ⇔

(
1→ 4

2→ 3

)
“connected phase” , (6.6)

where e.g. 1→ 2 stands for the curve connecting the points 1 and 2.

All the possible phases obtained this way for n = 3 are shown in figure 18. Clearly, there

are 3! = 6 of them, however we see that there is still one involving intersections. Of course,

when sketching these six possible configurations by hand, it is easy to identify the one

involving intersections and to discard it. However, from our point of view of automatizing

this process, we need to formulate and implement the criterion that distinguishes the

unphysical phase

 1→ 4

3→ 6

5→ 2

 (6.7)
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Figure 18. 3! = 6 preliminary configurations for n = 3. Note that the 4th configuration is likely

unphysical. According to the nomenclature of [80], the phase 6 is referred to as engulfed phase.

from the physical phases such as e.g.  1→ 4

3→ 2

5→ 6

 . (6.8)

To do so, we exclude all configurations in which there are two intervals spanned by the

endpoints of bulk curves that intersect in such a way that the intersection is an interval

that is not either empty or one of the intervals spanned by the bulk curves. For example,

in the unphysical example (6.7) the curves span the intervals [1, 4], [3, 6] and [2, 5].21 The

first and the last of these intersect in [2, 4] which is not one of the spanned intervals, hence

this configuration is excluded as unphysical. In contrast, in the example (6.8) the curves

span the set of intervals {[1, 4], [2, 3], [5, 6]}, and apart from the empty interval the only

intersection between these intervals is [2, 3], which is an element of the above set. Hence

this phase is considered physical. See the ancillary file for a concrete implementation.

This approach allows us to implement a general algorithm that gives us all possible

phases for the entanglement entropy of a set of n disconnected intervals, with any n. For

the case n = 3, we then have to exclude phase 4 in figure 18, and are left with the five

physical phases already identified in [78]. For n = 4 for example, the 14 physical phases

are shown in figure 19. For general n, the number of these physical phases is given by the

n-th Catalan number [86]

Cn =
1

n+ 1

(
2n

n

)
, (6.9)

which grows as Cn ∼ 4n

n3/2
√
π

for large n. However, with a more optimized code, it may not

be necessary to compute all the values of this number of phases [83].

21Remember that the numbers 1 to 6 serve here as labels of (ordered) boundary points, and not necessarily

as coordinates on the x-axis.
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Figure 19. Physical configurations for n = 4 intervals. Note that out of the 4! = 24 configurations

that our counting would naively have suggested, there are only 14 physical ones, i.e. 14 ones where

the curves do not intersect when projected to the same plane.

6.2 Inequalities for the union of n intervals

Our interest in this section is to study the entanglement inequalities that can be formulated

when working with n > 2 intervals.

At the level n = 3, the most well-known inequality that entanglement entropies are

expected to satisfy is the strong subadditivity (SSA) [87], commonly stated as

S(AB) + S(BC)− S(ABC)− S(B) ≥ 0. (6.10)
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A different inequality often associated with SSA is [87]

S(AB) + S(BC)− S(A)− S(C) ≥ 0, (6.11)

see [78, 88] for a discussion of the relation between (6.10) and (6.11) in the holographic

case. For the static holographic cases in which the Ryu-Takayanagi prescription [42, 43]

applies, these two inequalities were proven in [76]. For the case of time-dependent bulk

spacetimes where the HRT prescription [44] applies, a proof of (6.10) was given in [89]

using the null curvature condition, see also the review [90].

Similarly at n = 3, we encounter what is known as the monogamy of mutual informa-

tion22 or alternatively negativity of tripartite information

I3(A : B : C) ≡ S(A) + S(B) + S(C)− S(AB)− S(BC)− S(AC) + S(ABC) ≤ 0.

(6.12)

This was proven for the static RT case in [88], and for the time dependent HRT case

in [89]. There are many more possible inequalities that entanglement entropies for n ≥ 3

intervals have to satisfy [92, 93], which can be seen to follow from (6.12) and the other

inequalities discussed so far for n ≤ 3 [88]. Hence these inequalities are also proven to hold

in holography, assuming appropriate energy conditions.

The study of entanglement entropy inequalities in AdS/CFT is hence of very high

importance for the understanding of holography. On the one hand, if it can be shown

that holographic prescriptions satisfy certain entanglement inequalities that do not hold

in general quantum theories, this would help distinguish quantum theories that can in

principle have a simple holographic dual from those that cannot. On the other hand, if

energy conditions in the bulk can be used to prove certain entanglement inequalities that

have to hold in the dual, then conversely, it may be possible to derive novel bulk energy

conditions from boundary entanglement entropies [94].

In the following, we will hence use the entanglement entropies that we have calculated

in our time dependent background metric (2.9) using the matching procedure of section 4 to

test, for the manifestly time dependent HRT case, the validity of some of the entanglement

inequalities derived in [54] for the static RT case. It should however be noted that as the

metric (2.9) is a vacuum solution to Einstein’s equations everywhere, it trivially satisfies

all common energy conditions, and is hence considered to be a physical spacetime. We

hence do not expect any of the inequalities of [54] to be violated, however as their proof

is only valid in the static case, it is interesting to test this expectation thoroughly. At the

level of n = 5 boundary intervals, these inequalities read

S(ABC) + S(BCD) + S(CDE) + S(DEA) + S(EAB)− S(ABCDE)

− S(BC)− S(CD)− S(DE)− S(EA)− S(AB) ≥ 0 (6.13)

2S(ABC) + S(ABD) + S(ABE) + S(ACD) + S(ADE) + S(BCE) + S(BDE)

− S(AB)− S(ABCD)− S(ABCE)− S(ABDE)− S(AC)− S(AD)

− S(BC)− S(BE)− S(DE) ≥ 0 (6.14)

22See [91] for an illuminating discussion of the concept of monogamy for entanglement measures.
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S(ABE) + S(ABC) + S(ABD) + S(ACD) + S(ACE) + S(ADE) + S(BCE)

+ S(BDE) + S(CDE)− S(AB)− S(ABCE)− S(ABDE)− S(AC)

− S(ACDE)− S(AD)− S(BCD)− S(BE)− S(CE)− S(DE) ≥ 0 (6.15)

S(ABC) + S(ABD) + S(ABE) + S(ACD) + S(ACE) + S(BC) + S(DE)

− S(AB)− S(ABCD)− S(ABCE)− S(AC)− S(ADE)− S(B)

− S(C)− S(D)− S(E) ≥ 0 (6.16)

3S(ABC) + 3S(ABD) + 3S(ACE) + S(ABE) + S(ACD) + S(ADE) + S(BCD)

+ S(BCE) + S(BDE) + S(CDE)− 2S(AB)− 2S(ABCD)− 2S(ABCE)

− 2S(AC)− 2S(BD)− 2S(CE)− S(ABDE)− S(ACDE)− S(AD)

− S(AE)− S(BC)− S(DE) ≥ 0 (6.17)

A further quantity of interest is the n-partite information,

In(A1 : A2 : A3 : . . . : An) ≡
n∑
i=1

S(Ai)−
n∑
i<j

S(Ai ∪Aj) +
n∑

i<j<k

S(Ai ∪Aj ∪Ak)

∓ . . .− (−1)nS(A1 ∪A2 ∪ . . . ∪An), (6.18)

generalising the concept of three-partite information introduced in (6.12). In a holographic

context, quantities such as four- and five-partite information where studied for example

in [81, 82]. In fact, based on the examples studied in those papers, the authors proposed

the entanglement inequalities

I4(A : B : C : D) ≥ 0 (6.19)

and

I5(A : B : C : D : E) ≤ 0. (6.20)

While the inequalities (6.19) and (6.20) may be true for the special cases studied in [81, 82],

where all intervals have the same length and distance from their neighboring intervals, it

was already stated in [88] that (6.19) and (6.20) do not hold in general holographic setups.

In fact, using the numerical data for the time dependent backgrounds studied in this paper

or simply data valid for static backgrounds such as the BTZ metric (2.2) and feeding this

data into our ancillary file, it is possible to find explicit examples for sets of four or five

intervals that will lead to violations of the proposed inequalities (6.19) and (6.20).

6.3 Symmetries of entanglement inequalities

In section 6.1 we have described how we can systematically enumerate all the possible

phases that the entanglement entropy of the union of n intervals can have. In order to

check the validity of inequalities for entanglement entropy using this counting procedure, it

is also important to consider the symmetries of the inequalities under consideration. Take

as the simplest example the strong subadditivity inequality (6.10), valid for the combination

of the n = 3 intervals A,B,C. Comparing to our enumeration introduced in section 6.1,
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see also figure 18, it is clear that a priori there may be five different physical configurations

determining the quantity S(ABC). However, there are different ways to assign the labels

A,B,C to the intervals [1, 2], [3, 4], [5, 6] in figure 18. If we impose a strict alphabetical

ordering A = [1, 2], B = [3, 4], C = [5, 6], the inequality (6.10) will not be equivalent for

example to the inequality

S(AB) + S(AC)− S(ABC)− S(A) ≥ 0, (6.21)

which we obtained by relabeling A and B. On the other hand, (6.10) is invariant under

interchanging A and C. This means that entanglement inequalities involving many inter-

vals may have a non-trivial amount of symmetry (or asymmetry) under permutation (or

renaming) of intervals A,B,C, . . . which we will have to take into account when employ-

ing a strict enumeration of intervals from left to right as we do in section 6.1 and in our

numerical code for technical reasons.

In our ancillary file, we solve this problem as follows: take an inequality, e.g. (6.10),

in a form where the intervals are denoted A,B,C, . . . without assuming a specific ordering

of them on the boundary. We then write the inequality with all elements to the left of an

≥ sign, and represent it as a set of sets of elements, e.g.

{{A,B}, {B,C}, {−B}, {−A,−B,−C}}. (6.22)

It is then easy to apply all possible permutations to this set, and filter out the ones that

act non-trivially, i.e. that do not leave it invariant. In the end, we are left with a list of

sets of the form (6.22), which correspond to inequalities which are inequivalent when using

a strict alphabetical ordering A = [1, 2], B = [3, 4], . . . of the intervals along the boundary.

In this context, it is interesting to note that the degree of symmetries uncovered this way

varies from one inequality to the other. For example, while by permuting the intervals

A,B,C,D,E (which in this subsection are now assumed to be ordered alphabetically on

the boundary) gives us 10 inequivalent inequalities following from (6.15), this number is

60 for (6.17).

6.4 Analysis and results

We now have almost all prerequisites that are needed in order to check the validity of en-

tanglement inequalities such as (6.13)–(6.17) in the time dependent system holographically

described by the bulk metric (2.9). As the matching-procedure outlined in section 4 can

only be applied when the geodesics cross the shockwave once, we have to restrict ourselves

to the study of intervals for which all boundary points have x-coordinates either larger

than zero or smaller than zero. We generally assume all boundary points of intervals under

investigation to be located at equal boundary time.

We have carried out this analysis for various choices of temperatures TL and TR, for

various values of the boundary time t, and for intervals to the left and to the right of

x = 0. As the results were qualitatively similar in all these cases, we will in the following

only discuss the example where we chose TL = 9, TR = 1 (hence β = 4
5) and the boundary

time slice to be at t = 1, with intervals in the range x > 0. According to our discussion
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in section 6.1 there will be 42 possible phases that the entanglement entropy of n = 5

intervals can take. Furthermore, in a non-homogeneous system, n intervals are defined by

2n boundary points. As our calculations will be numerical, we are faced with a severe

problem: even if we are able to check the validity of inequalities such as (6.13)–(6.17) for

any given set of five intervals, how can we make sure that we find all potentially interesting

cases? After all, we have to cover a 2n dimensional parameter space, on which phase

transitions between 42 different phases can occur. Numerically, we will of course only be

able to check a finite number of examples. Naively, the best idea appears to be to take a

finite number of evenly spaced points on the boundary,

x = 0.1, 0.2, 0.3, . . . , 2.0 (6.23)

and to calculate the entanglement entropy for any interval formed by any two of these

points. From this data, we may then calculate the entanglement entropy of the union of

any possible set of n intervals that can be formed from the given boundary points, and

subsequently check the validity of all entanglement inequalities of interest.

However, we can do better than this. In the study of mutual information for Poincaré

backgrounds, where there are only two phases as shown in figure 16, it is known that the

phase will depend on the relation between the sizes of the two intervals and the distances

between them. In our attempt to cover the relevant phase space for n ≤ 5 intervals, it will

hence be advantageous to allow for the distances between boundary points to vary between

as many orders of magnitude as possible. Instead of using equally spaced boundary points

such as in (6.23), the idea is thus to use points which are positioned in a fractal-like

way,23 e.g.

x = 0, 1− 2

α
, 1− 4

α2
, 1− 8

α3
, . . . , 1 +

8

α3
, 1 +

4

α2
, 1 +

2

α
, 2, (6.24)

where we have found that the choice α = 9/2 gives a good trade-off between the orders

of magnitude of length scales covered and the overall number N of points, which for a

reasonable runtime of our numerics we would like to keep at N = 20.

Using the matching prescription explained in section 4, we have calculated the renor-

malised lengths of the geodesics connecting any two of the N = 20 boundary points under

consideration. In our case at hand, this requires 1
2N(N − 1) = 190 calculations. As a next

step, for some n ≤ 5 we want to form n boundary intervals by selecting 2n boundary points

out of the N available points.24 Obviously, there are(
N

2n

)
=

N !

(2n)!(N − 2n)!
(6.25)

23Indeed, the inspiration for this comes from the concept of fractal antennas, which in antenna technology

can be used when attempting to transmit in a broadband characteristic, compared to standard dipole

antennas. We thus aim at choosing the boundary points in such a way that they form a metaphorical

‘fractal antenna’ for the structure of entanglement entropy and n-partite information over many length

scales in the quantum system that we are studying holographically.
24As we are selecting 2n distinct boundary points, the intervals under investigation will never be adjacent,

i.e. they will never share a boundary point.
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Figure 20. Entanglement entropies for all 184756 possible unions of n = 5 non-adjacent intervals

formed out of the N = 20 boundary points (6.24) at t = 1, for TL = 9 and TR = 1. The value

of the entanglement entropy is dependent on the explicit cut-off or renormalisation scheme used,

so the overall shift of the vertical axis is of no relevance, only linear combinations of entanglement

entropies in which the cut-off dependence cancels are physical. The colour represents the different

phases that the entanglement entropy of the union of five intervals can be in. The intricate structure

of the data over the horizontal axis is due to the lexicographic order in which the 184756 possible

unions of n = 5 intervals are enumerated and the placement of the boundary points according

to (6.24).

ways to do so. Given our N = 20 points positioned on the boundary time slice t = 1

according to the sequence (6.24), we are hence for example able to study 184756 distinct

unions of n = 5 non-adjacent boundary intervals. For all these 184756 different cases, it is

then possible to calculate the entanglement entropy, see figure 20. Interestingly, in the case

at hand we find that out of the 184756 available unions of intervals, 100177 are in the totally

disconnected phase in which S(A1 ∪ A2 ∪ . . .) = S(A1) + S(A2) + . . ., and in which hence

the entanglement inequalities (6.12)–(6.20) are trivially saturated. Consequently, only the

remaining 84579 cases will be of further interest. It should also be noted that the overall

value of the entanglement entropy for a given union of intervals is dependent on the explicit

cutoff used in our numerics. However, the linear combinations of entanglement entropies

appearing in the inequalities (6.10), (6.12) but also (6.13)–(6.17), are always balanced in

such a way that the cut-off dependence of the individual terms cancels, such that the result

is physical.25

Now, we have all the necessary ingredients together to check the validity of various

entanglement inequalities, as well as of their permutated versions as discussed in section 6.3.

25For (6.11) this will not be the case unless the intervals A, B and C share some of their endpoints. We

will not study this inequality in this paper.
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The results are as follows:

• At n = 3, both strong subadditivity (6.10) and monogamy of mutual informa-

tion (6.12) are satisfied, as expected based on [89, 90]. In contrast to [80], we find that

even the engulfed phase (see figure 18) can be the minimal one in specific examples.

Generically, this seems to happen when the middle interval is very small compared

to the gap between the other two intervals.

• At n = 4, the only inequality that we are checking is the positivity of four-partite

information (6.19). In fact, in contrast to [81, 82], we find a number of examples for

sets of four intervals where this inequality is violated. However, as it was pointed

out in [88] and was explicitly checked by us, this is not a particular feature of the

time dependent case, and happens already in holographic systems with static bulk-

spacetime duals.

• At n = 5, we find numerous violations of the negativity of five-partite informa-

tion (6.20), see the similar discussion for n = 4. In fact, out of the 184756 total and

84579 nontrivial sets of five intervals under investigation, we find a violation of (6.20)

in 417 cases. It is also noteworthy that even for the 84579 cases where five-partite

information does no have to vanish a priori, the result that we obtain vanishes within

numerical accuracy for 81183 cases, see figure 21.

Furthermore, we check the inequalities (6.13)–(6.17) as well as all their relevant per-

mutations, see section 6.3. The result is that we find not a single case in which any

of these inequalities is violated, neither for the specific example currently at hand

(TL = 9, TR = 1, t = 1) nor for any other example that we studied. See for exam-

ple figure 22. We view this as a clear indication that the inequalities (6.13)–(6.17),

although so far only proven in the static case, will generally also hold in physical

time-dependent cases.

7 Comments on higher dimensions

7.1 State of the art in d > 2

After investigating the one-dimensional case in detail, it is natural to ask about a gener-

alisation to higher dimensions. That case is, however, much subtler. It has already been

addressed in various works. Let us briefly summarize the current state of discussion about

the higher-dimensional case. In [41], a straightforward generalization of the 1+1 dimen-

sional model was suggested, namely a solution consisting of two shockwaves, not necessarily

travelling with identical velocities, and a non-equilibrium steady state between the shocks.

Such a solution was numerically found in the hydrodynamic regime [41]. Later, a similar

solution beyond the hydrodynamic approximation was found in [45], in the framework of

gauge/gravity duality. However, at the hydrodynamical level an inconsistency between the

non-equilibrium steady-state (NESS) conjecture of [41] and thermodynamics was pointed

out in [46]. The issue is as follows: the setup of two heat baths put in contact at an initial
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Figure 21. Five-partite information for the 84579 sets of five intervals (out of initially 184756) for

which the total entanglement entropy is not in the totally disconnected phase. Clearly there are

multiple violations of the proposed inequality (6.20). As in figure 20, we are here displaying results

for the example where TL = 9, TR = 1 and the boundary time t = 1.

Figure 22. The left-hand sides of the inequality (6.13) for the 84579 sets of five intervals (out of

initially 184756) for which the total entanglement entropy is not in the totally disconnected phase.

Clearly there are no violations of the inequality (6.13). The different colors in the figure stand for

different permutations, as explained in section 6.3. As in figure 20, we are here displaying results

for the example where TL = 9, TR = 1 and the boundary time t = 1.
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time is essentially a classical Riemann problem of solving partial differential equations.26

For this type of problem, there is a so-called entropy condition. This is a requirement

that characteristic lines of the differential operator involved, i.e. curves along which the

initial condition is transported, always end rather than begin on the shock wave.27 The

name ‘entropic condition’ comes from the fact that if characteristics end at some point, the

information about the initial state is lost and hence the entropy is produced. If the char-

acteristics started at the discontinuity, the system would require fixing an initial condition

on the shockwave, such that information would be produced and entropy would decrease.

A detailed analysis of this condition for higher dimensions leads to the conclusion that

while a shockwave moving from the region of higher temperature to the colder one is a

entropically valid solution, a shock moving in the opposite direction is not (see section 3

of [46] for details). The results of [46] imply that the solution involving two shockwaves

is valid in d = 2 only, when the velocities of the shocks are identical and equal to one. In

higher dimensions, to stay in agreement with entropic considerations, we have to replace

the unphysical shockwave by a new solution — the rarefaction wave — which is continuous

but not smooth and much wider than the shockwave. Let us stress that the double-shock

solution is not mathematically incorrect since for complicated non-linear PDEs, uniqueness

of solutions is not always guaranteed for arbitrary types of boundary or initial conditions.

The double shockwave is however non-physical due to the entropic reasons mentioned. The

physical solution is unique in the sense that the shock-rarefaction solution is realised in

nature. Let us however emphasize that as shown in [46], the double-shock solution is a

valid, physically correct and unique solution to the initial value problem of our non-linear

equation in d = 2.

An important question about the shock-rarefaction solution in higher dimensions is

whether it does support the existence of a NESS, defined as a region with constant energy

current that can be obtained by boosting a static thermal state with some effective tem-

perature. There are two possibilities: either the rarefaction solution extends over a large

enough region and reaches the existing shock, excluding the formation of NESS, or the

rarefaction wave is relatively compact and a NESS is formed between the rarefaction and

the shock wave on the other side. In [47], the authors argue in favour of the latter, based

on numerical studies for hydrodynamical setups. Moreover they discover that for most

conditions, the quantitative difference of observables obtained in a non-physical dual-shock

solution and those obtained in the thermodynamically favoured rarefaction-shock solution

is of order of a few percent. The specific properties of the steady state remain similar to

the universal behaviour of the NESS in [41].

A further question is whether the dual gravity description allows for a physical

rarefaction-shock solution. An example of such a solution was found in [95] in the limit of

large dimensions d→∞. However, obtaining a clear, numerical shock-rarefaction solution

26In full generality, the Riemann problem is a initial value problem for a non-linear PDE with non-

continuous, piecewise-constant initial data.
27In the characteristic formulation of a PDE, the presence of a shockwave is manifested by the intersection

of characteristics. On a characteristic line, one direction is distinguished by the fact that the initial condition

is evolved forward in time. So, when there is an intersection of characteristics, it is possible to distinguish

whether the line ‘begins’ or ‘ends’ in that point.
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in the gauge/gravity framework in d = 3 or 4 dimensions and testing its properties such as

stability is still an open problem. It is worth noting that the authors of [45] found a full

numerical solution of an ‘almost’ Riemann problem where the initial condition is a smooth

approximation of a step function, as our (2.12) in the framework of AdS/CFT. Since,

as discussed previously, the values of the observables obtained from the shock-rarefaction

solution and the double shock solution differ only by a few percent, it is not clear which of

them is the holographic dual of the hydrodynamic solution. The authors of the previously

mentioned paper themselves state that their solution seems to agree with the double-shock

conjecture, the work however was published before the entropic issues of the double shock

solutions were pointed out in [46].

The arguments mentioned here ensure that a qualitative analysis of the entanglement

entropy in higher dimensions can be carried out, based on the simple NESS model of [41].

We devote this section to this analysis.

7.2 Analytical considerations

Here we present analytical results for the higher-dimensional cases. These are obtained by

assuming that the dual-shock solution is valid at least approximately. While the higher

dimensional analogue of the time-dependent metric (2.9) is not known analytically any

more, we still know the boosted black-brane line element generalising (2.5) to higher di-

mensions [41]28

ds2 =
L2

z2

(
dz2

f(z)
− f(z) (cosh θdt− sinh θdx)2 + (cosh θdx− sinh θdt)2 + dy2

⊥

)
,

f(z) = 1−
(
z

zH

)d
, zH =

d

4πT
. (7.1)

Setting θ = 0 and T = TL or T = TR, we recover the metrics of the initial static black

branes. For the late time steady state, the boost parameter (or rapidity) θ is given by [41]

T =
√
TLTR, (7.2)

χ =

(
TL
TR

) d
2

, (7.3)

β =
χ− 1√(

1
d−1 + χ

)
(d− 1 + χ)

, (7.4)

θ = arctanhβ, (7.5)

where β is the boost velocity. It is also important to note that in higher dimensions, the

two shockwaves move with different velocities, [41]

uL =
1

d− 1

√
χ+ d− 1

χ+ 1
d−1

, uR =

√
χ+ 1

d−1

χ+ d− 1
. (7.6)

28Note that in contrast to [41], we are here using a notation in which the dimensionality of the bulk AdS

space is d+ 1. Hence the case investigated so far was the one for d = 2.
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Interchanging TL and TR means χ→ 1/χ and under this transformation uL ↔ uR.

Although the entanglement entropy S(`) for a strip of width ` and infinite extent in

the dy⊥ directions cannot be calculated analytically in the background (7.1), we find that

in the limit `→∞ where the entanglement entropy becomes extensive, the entropy density

analytically reads

seq =
1

4G

(
4πTL

d

)d−1

cosh θ. (7.7)

=
(4πL)d−1

4Gdd

√√√√((TL
TR

) d
2

+ d− 1

)(
(d− 1)

(
TL
TR

) d
2

+ 1

)(
TR
TL

) d
4

(TLTR)
d−1

2 (7.8)

Let us consider the question whether meaningful statements, similar to (5.20), about the

(average) entropy increase rates of a strip in this setup may also be found for higher

dimensions. Due to the form of the velocities (7.6), we see that the time the shockwave

takes to pass through a strip29 of width ` is

∆tL/R =
`

uL/R
. (7.9)

Just as in section 5.4, we may calculate the average increase/decrease rate of entanglement

entropy. We assume for now that the entanglement is only influenced by the shockwaves,

and not the light cones. We find

vav, L/R =
∆SL/R

∆tL/R
→ 1

4G

(
4πL

d

)d−1

uL/R

(
T d−1 cosh θ − T d−1

L/R

)
(7.10)

for `→∞. Consequently, in analogy to (5.22),

ṽav, L =
vav, L
seq

= uL

(
1− χ

d−1
d

cosh θ

)
=

√
(d− 1 + χ)((d− 1)χ+ 1)− dχ

d−1
d

+ 1
2

√
d− 1((d− 1)χ+ 1)

, (7.11)

ṽav,R =
vav,R
seq

= uR

(
1− χ

1−d
d

cosh θ

)
=

√
1
d−1 + χ

d− 1 + χ

(
1− dχ

1
d√

χ(d− 1 + χ)((d− 1)χ+ 1)

)
.

(7.12)

As a consistency check, we see that under TL ↔ TR, ṽav, L ↔ ṽav,R. Also, for d = 2 this

exactly reproduces our findings from section 5.4. Interestingly, in contrast to (5.23), we

find that while these formulas imply an upper bound

ṽav, L,R(χ) ≤ 1 (7.13)

on the normalised average entropy increase, we do not find a lower bound on ṽav, L,R
limiting the entropy decrease for d > 2. In figure 23, the two functions ṽL/R(χ) are plotted

for d = 2, 3, 4. We see that in higher dimensions, due to (7.13), ṽav may exceed both vE and

vB defined in section 5.4. However, only a full numerical solution of the higher dimensional

29We here assume a strip with finite extent in the x direction and infinite extent in the y⊥ directions.
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Figure 23. Normalised entropy increase and decrease rates (7.11), (7.12) for d = 2 (solid), d = 3

(dashed) and d = 4 (dotted) as a function of χ. Note that in the formulas (7.11), (7.12), ṽL > 0,

ṽR < 0 for χ > 1 and ṽL < 0, ṽR > 0 for χ < 1. While 1 ≥ ṽL,R ≥ −1 for d = 2, we see that

1 ≥ ṽL,R with no lower bound for d > 2.

case will produce a clearer picture of the relation between the entropy increase rate for

a given intervals and other bounds or quantities such as (5.3) or (5.4). Such a numerical

solution will also allow to address the impact of considering a shock or a rarefaction wave

in relation to the absence of a lower bound on ṽav in d > 2. This may be relevant for a

general discussion of whether choosing a gravity solution that decreases the thermodynamic

entropy has unphysical consequences for the entanglement entropy.

7.3 Numerical considerations

Refs. [96, 97] give a solution of the background equations of motion on the gravity side in

the case d ≥ 2 by considering a linearization of the system. This approach turns out to

be equivalent to linearized hydrodynamics, as it is valid as long as |TL − TR| < |TL + TR|.
Using this background, we may compute numerically the entanglement entropy for any

number of dimensions by following the procedure of section 3. The result for d = 3 and

moderate values of ` is shown in figures 24 and 25.30 These figures display that in contrast

to the case d = 2 studied in section 3, the ‘conservation’ of entanglement entropies between

t = 0 and t = ∞ given by (3.18) turns out to be not valid for d = 3, at least within the

linearization procedure chosen.31 As a consequence, the possible existence of a universal

behavior for the time evolution of entanglement entropies analogous to (3.10) is not obvious

in this case. However, the increase of the mutual information with time ∂tI(A,B) ≥ 0,

30We have computed the renormalised entanglement entropy for d = 3 with the subtraction of the

divergent term Sdiv = 1
2Gε

.
31Note, however, that the deviations from conservation displayed in figure 24 (right) may potentially be

explained as a linearization artefact.
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Figure 24. (Left) Renormalized entanglement entropies SA and SB as a function of time, in a

system with d = 3. (Right) Renormalized entanglement entropy SA + SB as a function of time. In

both figures we have considered the linearized background computed in refs. [96, 97], the intervals

xA ∈ [0.05, 0.275] and xB ∈ [−0.275,−0.05], and temperatures TL = 0.6 and TR = 0.5. We have

set G = 1 and L = 1.

0.0 0.2 0.4 0.6 0.8
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Figure 25. (Left) Renormalized entanglement entropy of A ∪ B as a function of time. (Right)

Mutual information of A and B as a function of time. We consider a system with d = 3 within the

linearized background of refs. [96, 97], with the same configuration as in figure 24.

cf. eq. (3.13), appears to be a robust property valid also for d = 3, and the same can be

said for the decrease of S(A ∪B) with time. A more detailed study of these issues will be

addressed elsewhere.

8 Conclusion and outlook

In this work we have studied a holographic model for far-from-equilibrium dynamics that

describes the time-dependent properties of energy flow and information flow of two thermal

reservoirs initially isolated. In this system, a universal steady state develops, described by a

boosted black brane. A relevant observable that provides physical insight into the evolution

of the system is the entanglement entropy, which measures the information flow between

two subsystems. By using the exact solution for d = 2 provided in [41], we have studied the

time evolution of the entanglement entropy, and characterized some universal properties

of the quenching process. We also studied the time evolution of mutual information and

found it to monotonically grow in time.

In section 5, after a brief overview of velocity bounds for entropy spread and increase,

we have investigated the matching procedure outlined in section 4 in more detail, showing

that in certain circumstances an analytical solution is possible. This allowed us to prove
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the validity of the universal formula (3.10) in the appropriate low temperature limits. In

subsection 5.4, we then investigated the increase rates of entanglement entropy obtained

using the numerical and analytical results of the previous sections. We find that both

averaged and momentary entanglement entropy increase and decrease rates are bounded by

the speed of light (5.25). While this bound is close to being saturated for intervals that are

large compared to the scale set by the temperature, this is not the case for smaller intervals,

where the universal formula (3.10) becomes a good approximation, see again figure 15. This

indicates that the shockwave in our setup, which in many ways is similar to a local quench,

mimics an entanglement tsunami for large interval sizes `, leading to a linear entropy

increase with the appropriate rate. For small ` however, the universal behaviour (3.10)

with its characteristic S-shape takes over. We refer to this as an ‘entanglement tide’. As

discussed in section 7, it will be very interesting to study these questions for analogous

systems in higher dimensions, where the speed of light, the entanglement velocity vE and

the butterfly velocity vB are not equivalent any more. This may help to get a better

understanding of the mechanisms related to entanglement tsunamis.

Apart from the monogamy of mutual information and strong subadditivity, other in-

equalities involving a large number of subsystems have been proven in the static case,

see [54]. In section 6, we have studied various entanglement entropy inequalities, which

were proposed for up to n = 5 intervals, in the present time-dependent system. What

we found was that the inequalities proven in [54] also hold in the time-dependent system

under consideration in this paper, at least in all cases that we numerically checked. How-

ever, we found that the signs of four- and five-partite information are not definite in this

holographic system, in contrast to the results of [81, 82]. As the bulk metric investigated in

this paper is a vacuum solution everywhere, and hence trivially satisfies the most common

energy conditions, we did not have any a priori reason to expect encountering a violation

of the entanglement entropy inequalities of [54]. It may hence be an interesting possibil-

ity for future research to check the validity of these inequalities for time-dependent bulk

spacetimes that violate, for example, the null energy condition (NEC), similarly to what

was done for strong subadditivity in [78, 90, 98, 99]. With this paper, we also upload the

numerical code used to obtain the results of section 6 to the arXiv. We hope that this will

facilitate future research in this direction.

One of the possible further directions of investigation is suggested by the elegant ana-

lytical behaviour of the entanglement entropy in the small temperature limit. It is known

that low-energy behaviour of ballistic, quantum-mechanical models is well described by con-

formal field theories. For a thermal state this means that in the low-temperature regime

of lattice model may be approximated by a thermal state of a CFT since that is a situa-

tion in which lower part of energy spectrum determines properties of the theory, as more

excited states are not occupied. Therefore, we presume that the simple universal evolu-

tion of the entanglement entropy we observe should be as well visible in lattice (i.e. tensor

network or exact diagonalisation) calculations. It will be interesting to compare to that

kind of models, as local quenches in such systems have recently drawn some attention, see

for example [100]. Moreover, it is conceivable that further physically observables can be

computed in that low-temperature limit.
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Finally, comparisons to non-equilibrium hydrodynamics may provide further useful

information. Recent work on this includes [101]. Universal structures in a holographic

model of non-equilibrium steady states, which are spatial analogues of quasinormal modes,

have recently been considered in [102].
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