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Abstract
In this work, we propose a new acoustic-based method for
the screening of obstructive sleep apnea (OSA) which employs
breath and respiratory sounds recorded using an smartphone.
In our proposed method, a set of acoustic parameters aimed at
characterizing the respiratory and snore patterns of the patient
are extracted from the sleep sound recordings. These include
Snore Rate Variability (SVR), SET (Snore Energy Trench) pa-
rameters and Snore-to-Snore Intervals (SSI). Data fusion tech-
niques were investigated, as well as the demographic charac-
teristics of the subjects, which were assessed from the apnea-
hypopnea index (AHI) estimated from all nightly recordings.
Subsequently, a multiclass classification of each patient ac-
cording to their OSA level was performed using several classi-
fier methods, namely TabTransfomer, Support Vector Machines
(SVM) and XGBoost. Real recordings made during home sleep
apnea tests were used to develop and evaluate the proposed sys-
tem. The TabTransformer-based classifier obtained the best re-
sults in estimating AHI severity, achieving a specificity of 0.65,
accuracy rate of 0.65 and an sensitivity of 0.64, with an AUC
score of 0.78. This offers the prospect of at-home screening for
OSA.
Index Terms: Obstructive sleep apnea, acoustic analysis, res-
piratory effort, multimodal, neural network, sleep-disordered
breathing, transformers.

1. Introduction
Obstructive sleep apnea (OSA) is the most common sleep-
related breathing disorder in the adult population, with an esti-
mated 1 billion adults potentially affected [1]. It is characterized
by episodes of total (apnea) or partial (hypopnea) upper airway
obstruction, leading to intermittent hypoxia, micro-awakenings,
and increased negativity of intrathoracic pressure during inspi-
ration [2]. OSA has significant clinical repercussions, includ-
ing daytime sleepiness, impaired quality of life, neurocognitive
disorders, and increased cardiovascular morbidity and mortality
[3, 4].

Polysomnography (PSG) is currently the gold-standard tool
for detecting OSA [5]. PSG measures multiple variables such
as respiratory airflow, respiratory movements, oxygen satura-
tion (SpO2), electroencephalogram (EEG), electrooculogram
(EOG), electromyogram (EMG), electrocardiogram (ECG), and
the patient’s body position. Despite being the most widespread
method, PSG has significant limitations, including high costs,
the necessity for the patient to spend the night in a sleep lab,
the requirement for administration by expert clinical personnel,
and the discomfort of wearing multiple sensors throughout the
night, which can affect sleep quality and diagnostic results. Ad-
ditionally, manual interpretation of PSG data can be subjective

and prone to errors also time-consuming and costly.
These inconveniences have contributed to the current un-

derdiagnosis of OSA [6, 1]. For example, it is estimated that
in the U.S., approximately 80% of patients with moderate to
severe OSA remain undiagnosed, resulting in economic losses
ranging from $60 to $160 billion annually [7]. Similarly, a re-
cent report estimated that 85% of OSA patients in the UK are
undiagnosed, and diagnosing and treating these patients could
save the National Health Service £55 million and increase sur-
vival rates by 25%, reducing the risk of cardiovascular diseases,
strokes, and other health issues [8].

Overall, these limitations underscore the urgent need for
new, non-invasive diagnostic techniques for OSA. Using a
smartphone to analyze breathing sounds during sleep emerges
as an excellent candidate for OSA screening due to its con-
venience for at-home implementation, minimal disruption to
sleep, and cost-effectiveness. Therefore, this paper aims to de-
velop and validate a system for OSA screening based on au-
dio recordings of snoring and breathing sounds. The proposed
method analyzes whole-night audio recordings to extract a set
of acoustic parameters that characterize the patient’s respiratory
and snore patterns. These acoustic features, combined with de-
mographic and clinically related data, are then used in a multi-
class classifier to determine the severity of OSA from the com-
puted features.

2. Related work
OSA manifests through distinct acoustic features emitted by
the person during sleep, including snores, chokes, gasps, and
periods of silence. By tracking and analyzing these acoustic
features, it is possible to compute parameters in the clinical
scoring guidelines for OSA, such as the apnea-hypopnea index
(AHI). For example, Castillo et al. [9] predicted AHI values
using sound entropy from smartphone recordings attached to
the chest. Saha et al. [10] estimated AHI values using a com-
bination of oxygen saturation, tracheal sounds, and respiratory
movements. Other research [11] utilized smartphone-collected
sound energy, oxygen saturation, and body movement to screen
for OSA.

Classical machine learning techniques have also been ex-
plored for OSA screening. In [12], a Gaussian mixture model-
based system was developed to analyze acoustic features from
speech signals of 93 subjects, effectively differentiating be-
tween OSA and non-OSA patients. Discriminative features
such as vocal tract length and linear prediction coefficients were
selected to train the model. Specifity (sensitivity) values of
up to 86% (84%) were achieved by the system, indicating po-
tential for OSA screening tool development. More recently,
deep learning approaches have shown significant promise in this
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Figure 1: Block diagram of the proposed acoustic-based method

field. In [13], a convolutional neural network (CNN)-based sys-
tem was proposed that computed AHI values from spectrogram
images of tracheal sounds. In [14], CNNs were used to de-
tect snoring from ambient sound recordings and analyze active
snore noises with a smartphone.

Most previous studies used controlled sleep clinic data, lim-
iting their applicability in home settings. An exception to this is
the study [15], which described a CNN-based system to screen
for OSA by analyzing sleep breathing sounds recorded with a
smartphone at home. Audio recordings made over a whole night
were divided into 30s segments and AHI values were predicted
for each segment using a CNN. When evaluated over a sample
of 103 participants, the system achieved a sensitivity of 79%
and a specificity of 80% when screening for moderate OSA,
while the sensitivity and specificity when screening for severe
OSA were 78% and 93%, respectively.

Our study takes a different approach by using the previously
unused TabTransfomer classifier and by using a database with
patients with other respiratory pathologies, the COVID-19.

3. Materials and methods
3.1. Dataset

A total of 80 participants were recruited in 2022 from the
Sheffield and Greater Manchester area in the UK, comprising
41 male and 39 female individuals. The dataset included cardio-
respiratory data collected using Home Sleep Apnea Testing
(HSAT) SOMNOTouch RESP devices, as well as sleep breath-
ing sound data recorded via smartphones. Participants were
recorded for at least two nights each in their own homes, re-
sulting in a total of 170 nights of recordings. All participants
were suffering from long-COVID at the time of the recordings
and scored 3 or higher on the STOP-Bang questionnaire1. Both
the HSAT and audio recordings underwent a sanity check pro-
cedure, leading to the exclusion of 70 nights. This left 100 valid
nights of recordings from 59 participants (29 males and 30 fe-
males). The 59 participants included in this study had an aver-
age age of 41 years (SD = 11 years) and an average body-mass
index (BMI) of 29 (SD = 6). Patients were classified into 4 lev-
els of OSA according to their AHI score, with 3 being the most
severe and 0 for healthy patients.

3.2. System description

Figure 1 presents a block diagram of the proposed acoustic-
based method for OSA screening. Initially, the audio signal

1http://www.stopbang.ca/osa/screening.php

is downsampled to 16 kHz and denoised to enhance its qual-
ity. Subsequently, relevant sound events, such as snoring sounds
and apneas (defined as silence periods exceeding 10 seconds),
are automatically detected within each audio segment. These
events are then utilized to extract a set of acoustic features, as
detailed in Table 1. These acoustic features, combined with ba-
sic demographic information such as age and body mass index
(BMI), are used to train multiclass classification models to as-
sess the severity level of OSA. In the following, more details
about the processing blocks in Figure 1 are given.

3.3. Acoustic features

To characterize respiratory and snore patterns during sleep, our
system extracts a set of acoustic features from the preprocessed
audio signals for each participant from snoring events. The pre-
processing steps include converting the audio to mono, down-
sampling it to 16 kHz, and applying Wiener-filter denoising to
enhance its quality. Based on previous studies [16, 17, 18],
we consider the following types of acoustic features for OSA
screening and classification, as summarized in Table 1.

It should be clarified that Snore-to-Snore Intervals (SSI) are
the time intervals between consecutive snoring episodes esti-
mated from sounds. It can provide information about breath-
ing patterns and the presence of obstructive events during sleep.
More information on how to calculate it can be found at 3.3.1.

• Time-domain features: are used to analyse and describe
temporal signal variability. They provide information on dif-
ferent aspects of the signal, such as total variability, short-
and long-term fluctuations, and regularity. SDSS: Standard
deviation of SSIs of the whole night. cSS1: Count of suc-
cessive SSIs that differ by more than 1 s. RMSSD: Root
mean square of successive SSI differences of the whole night.
SDSD: Standard deviation of successive SSI differences of
the whole night. SRV triangular index : Integral of the den-
sity of the SSI histogram divided by its height [19]. TISS:
The baseline width of the distribution measured as a base of
a triangle, approximating the SSI distribution.

• Frequency-domain features: Relative power of the
very-low-frequency (VLF) band (0.0006–0.008 Hz), low-
frequency (LF) band (0.008–0.03 Hz) and high-frequency
(HF) band (0.03–0.08 Hz). LF/HF : Ratio of LF-to-HF
power.

• Non-linear features: are used to evaluate the complexity and
structure of the time signal, they can detect complex patterns
and dynamic characteristics of the signal. S: Area of the el-
lipse which represents total SRV. SD1: Poincaré plot standard
deviation perpendicular to the line of identity. SD2: Poincaré
plot standard deviation along the line of identity. SD1/SD2:
Ratio of SD1-to-SD2. DFA: Detrended fluctuation analysis,
which describes short-term ( α1 )and long-term ( α2 ) fluc-
tuations of SRV. SampEn : Sample entropy (entropy em-
bedding dimension = 2, tolerance distance = 0.2 * standard
deviation), which measures the regularity and complexity of
a time series. MSE: Multiscale entropy (scale: 2, 4, 6, 8, 10),
which measures the complexity of fluctuations over a range
of time series.

• SET: are indicators of time complexity and asymmetry in
time series. They are used to analyse the variability and struc-
ture of the signal.SET Percentile: SET percentile of the 10-
90%. SET ss: Sample statistics for all concatenated WES
values:mean, variance, skewness, kurtosis, minimum, max-
imum, median, standard deviation and interquartile range.
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Table 1: Parameter descriptions for time-domain, frequency-
domain, non-linear features, SET and demographic.

Parameter Unit No
Time-domain features

SDSS s 1
cSS1 1
RMSSD s 1
SDSD s 1
SRV triangular index 1
TISS s 1

Frequency-domain features
VLF relative power % 1
LF relative power % 1
HF relative power % 1
LF/HF % 1

Non-linear features
S s 1
SD1 s 1
SD2 s 1
SD1/SD2 % 1
DFA α1 1
DFA α2 1
SampEn 1
MSE 5

SET
SET Percentil % 8
SET ss 9
SET SamplEn 5

Demographic
Age 1
BMI 1

SET SampEn: Sample entropy of concatenated SET values.
• Demographic: In addition to the acoustic parameters, patient

demographic parameters are taken into account. A larger
number of parameters than those shown in the table are avail-
able, but only age and BMI are used as they have been shown
to be the most relevant in the study of OSA.

More technical details about the extraction of the acoustic
features are given in the following subsections.

3.3.1. Sound and Snore event detection

It follows the study’s hypothesis that the occurrence of sleep-
disordered breathing events perturbs the continuous occurrence
of snoring events. Therefore, exploiting the temporal variability
of snoring can help characterise the periodicity of occurrence of
these events and help estimate AHI without explicitly detecting
apneas and hypoapneas.

To detect sound events, the energy vector is calculated from
the RMS and an adaptive energy threshold is calculated by ap-
plying a median filter of order 5 and a 90th percentile. If the
event exceeds this threshold it is considered sound and if there is
a silence greater than 10s it is hypoapnea, finally nearby events
are merged.

The concept of SVR is proposed to characterise changes in
snoring events. Snoring can occur in clusters separated by rel-
atively long intervals, which should not be included in the time
series of SSIs used to calculate SVR features. Therefore, before
extracting SVR entities, the first step is to calculate all SSIs and
then separate the snoring clusters based on these distances.

The steps for calculating the SSI series followed are based
on the snore estimation system proposed in [20], which follows
the recommendations of studies[17, 18]

Figure 2 shows an example of the result of the audio pre-
processing, where the top panel shows the original audio and the
Wiener filtering; the middle panel shows the energy of the sig-
nal, the sound events and the possible apnea events (silences of
more than 10s) around 1:00, 1:15 and 1:30 minute in Figure 2;
and the bottom panel shows the evolution of the SSI. This audio
corresponds to patient nº10, who presents a high level of AHI

Figure 2: Audio pre-processing result patient 10 with three
OSA.

(label severe = 3).

3.3.2. Extraction of SVR and SET parameters

After obtaining the SSI per group and for the whole night, fea-
tures are extracted from SSI that can then be used in the esti-
mation of the AHI and the classification of OSA severity. For
the frequency domain features, the VLF, LF and HF bands were
empirically chosen by dividing the VLF, LF and HF frequency
bands typically used for HVR [21] analysis by 5, as the heart
rate (60-100 beats per minute) is on average 5 times faster than
the respiratory rate (12-20 times per minute) during rest. A total
of 22 all-night ISS features are obtained.

Trends in the energy of consecutive snoring events are col-
lected in different features that we call SET. The calculation is
performed using the Root Mean Square Error (RMSE) to repre-
sent the amplitudes of a snoring event and the SSI between con-
secutive snores for each group of snores. We work with groups
of 4 snoring events and their time stamps, where RMSEs ≥ 1
and RMSEs = SET × TimestampsMatrix + b, where b is
the intercept of the fitted linear model, representing the initial
value of the RMSE at time zero. These are then concatenated to
describe the final SET features for the whole night, seen in 1.

3.4. Classification models

We evaluated three models for OSA severity-level classifica-
tion: support vector machines (SVM) [22], extreme gradient
boosting (XGBoost) [23], and TabTransformers [24], an arti-
ficial neural network [25] model designed for tabular data, in
our case the features extracted from the audios, modeling using
contextual embeddings. These models were assessed for classi-
fying OSA into the four severity levels (0: healthy, 1: mild, 2:
moderate, 3: severe). For the SVM classifier, we used standard
parameters from the Scikit-learn library [26], to compensate for
the imbalance between the data of different classes, the weights
of the classes are adjusted to give more importance to the
minority class, using the parameter class weight=’balanced’
. The XGBoost classifier was configured with a softmax ob-
jective function for the four-class classification. Additionally,
we tuned the following hyperparameters using Randomized-
Search from the Scikit-learn library across 100 iterations and
five folds: (i) number of epochs (10-90), (ii) learning rate (0.01-
0.2), (iii) maximum tree depth (1-5), (iv) minimum sum of in-
stance weight needed in a child (1-9), and (v) the proportion of
column subsamples when building each tree (0.5-0.9). The Tab-
Transformer model was finetuened with the following parame-
ters: a batch size of 32, 42 features (corresponding to the sum of
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Figure 3: Features with the top average importance scores.

the characteristics SRV, SET and demographic characteristics)
, an embedding dimension of 32, 8 multi-head attention heads,
6 encoder layers, a feedforward dimension of 128, a regulariza-
tion rate of 0.1, and a learning rate of 5 × 10−5. The classifier
was trained over 25 epochs to prevent overfitting.

3.5. Model training and evaluation

For evaluation, the database is randomly divided into two sets,
a training set (80%) and a test set (20%). We will perform
hyperparameter fitting by cross-validation on the training set
and use the validation set to compare models. For this we will
use the library of Machine Learning Scikit-learn library and its
sklearn.model.selection.train.test.split function to split the sub-
sets randomly into training and test. We evaluated model per-
formance using accuracy, sensitivity, specificity, F-1 score and
AUC score, calculated from the ROC curve and confusion ma-
trix. Training was performed using leave-one-fold-out cross-
validation at the subject level.

4. Results
4.1. Exploratory analysis

Firstly, we aimed to identify the most predictive features (acous-
tic or demographic) for OSA severity-level classification. We
trained an XGBoost classifier and obtained importance scores
for each feature type, indicating their utility in constructing the
model’s decision trees. This allows for ranking and comparison
of features based on their contribution to classification accu-
racy improvements. Figure 3 presents the ranking of the top
15 features selected by the XGBoost technique for our dataset,
where the F score indicates the relevance of this characteristic,
the higher it is, the more it influences the detection of OSA.
As can be seen, demographic features such as age and BMI are
among the top five features for our problem. This is not surpris-
ing, as there is ample evidence supporting the relationship be-
tween these attributes and OSA-related parameters such as AHI
[27, 28]. It is also observed that the SVR characteristics occupy
more relevant places than the SET characteristics, with simple
entropy being the most important of the SVR characteristics and
petencil 90th the most important of the SET characteristics.

4.2. OSA classification results

The results obtained for each classifier are shown in table 2.
They have been obtained by calculating the metrics per class
and then performing a weighted average across all classes. We
can see that the three classifiers achieve considerably low sen-

Table 2: OSA classification results weighted average.

XGBoost SVM TabTransformers

Sensitivity 0.67 0.55 0.64
Specificity 0.55 0.61 0.65
Accuracy Rate 0.59 0.42 0.65
F-1 Score 0.58 0.42 0.64
AUC 0.8 0.87 0.78

Figure 4: Confusion matrix TabTransformer model.

sitivity, accuracy rate and f-1 metrics. This is mainly due to the
imbalance of the data since class 3 is not detected by the mod-
els, which results in worse metrics. The worst of these is the
SVM, which shows that this model is less robust to mismatches
in the distribution, as well as being the least consistent. This un-
derlines the importance of obtaining other metrics such as the
AUC score or ROC curve, all of which are above 0.5, showing
that no prediction is random.

If we look at the confusion matrix from the evaluation of
the TabTransformer model (20 nights) in Figure 4, which gets
the best metrics, shows that the model performs reasonably well
in classifying classes 0 and 2, but struggles with classes 1 and
3. This may be acceptable or even preferable in scenarios where
false positives have a high cost, but there is room for improve-
ment in identifying all positive instances to increase the sensi-
tivity and hence the F1-score. To improve performance, more
training data could be collected from the under-represented
classes.

5. Conclusions
Robust screening for OSA in a real home environment during
sleep is a difficult task. There are two main problems: 1) am-
bient sound recordings may be affected by background noise;
2) the mismatch between OSA classes affects the models con-
siderably. This paper proposes a novel solution by exploiting
the temporal pattern of sounds and the integration of comple-
mentary information from acoustic signal characteristics and
patient demographics. It has been evaluated using three types
of classifiers, from the more conventional SVM to the more
novel Transformer-based classifiers, the latter being the most
appropriate for this purpose, offering a cost-effective domes-
tic solution for an accurate and reliable assessment for a first
screening. Future work will investigate ways to automatically
resort to single-mode approaches when data are not available.
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