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Abstract
Personalized health monitoring and prediction are
indispensable in advancing healthcare delivery, partic-
ularly amidst the escalating prevalence of chronic ill-
nesses and the aging population. Deep learning (DL)
stands out as a promising avenue for crafting per-
sonalized health monitoring systems adept at forecast-
ing health outcomes with precision and efficiency. As
personal health data becomes increasingly accessible,
DL-based methodologies offer a compelling strategy for
enhancing healthcare provision through accurate and
timely prognostications of health conditions. This article
offers a comprehensive examination of recent advance-
ments in employing DL for personalized health mon-
itoring and prediction. It summarizes a diverse range
of DL architectures and their practical implementations
across various realms, such as wearable technologies,
electronic health records (EHRs), and data accumulated
from social media platforms. Moreover, it elucidates
the obstacles encountered and outlines future directions
in leveraging DL for personalized health monitoring,
thereby furnishing invaluable insights into the immense
potential of DL in this domain.
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1 INTRODUCTION

Deep learning (DL) models have revolutionized the field of personalized healthcare by providing
new avenues for disease diagnosis, In recent years, DL has proven successful in various verti-
cal domains, including internet traffic classification,1 digital twins for sensor-fault detection and
accommodation,2 and networking and communications, as demonstrated in the application of
DL for tasks at the physical layer.3 Similarly, DL also exhibits significant progress in the clinical
field,4,5 resulting in enhanced precision and rapidity in healthcare applications.6 By examining
enormous datasets, DL models can identify patterns and offer valuable insights that can aid physi-
cians in making informed decisions. As telemedicine and remote patient monitoring become
increasingly prevalent,7–9 personalized health monitoring and prediction using DL can offer a
timely, precise, and uninterrupted observation of a patient’s health status, allowing for the early
identification of possible health problems and averting unfavorable events.10

In recent years, significant progress has been made in the field of DL,4,5 resulting in enhanced
precision and rapidity in healthcare applications.6 By examining enormous datasets, DL mod-
els can identify patterns and offer valuable insights that can aid physicians in making informed
decisions. As telemedicine and remote patient monitoring become increasingly prevalent,7–9

personalized health monitoring and prediction using DL can offer a timely, precise, and unin-
terrupted observation of a patient’s health status, allowing for the early identification of possible
health problems and averting unfavorable events.10

1.1 Background of personalized health monitoring and prediction

Personalized healthcare monitoring has revolutionized medical services by allowing individuals
to track their health in real-time with wearable devices and mobile applications.11 By doing so,
individuals can monitor vital signs, activity levels,12 and other health parameters, giving them a
better understanding of their health status and empowering them to take proactive measures to
prevent diseases and manage chronic conditions. An overall framework for DL-based personal-
ized health monitoring is depicted in Figure 1. It shows the integrated supporting technological
services for facilitating personalized health prediction.

The growth of personalized healthcare has been made possible through advances in wear-
able technology and the availability of low-cost sensors that can monitor an extensive range of
health metrics.13 These sensors can be embedded in wearable devices such as smartwatches, fit-
ness trackers, and clothing, enabling individuals to monitor their health seamlessly throughout
the day.14 Chronic diseases such as diabetes, hypertension, and heart disease incur a significant
proportion of healthcare costs worldwide. Such healthcare services can help individuals with
chronic conditions monitor their health more closely and receive personalized recommendations
to manage their condition more effectively, potentially reducing the need for hospitalization and
enhancing their quality of life.15

Further, personalized healthcare is expected to become increasingly important in the future
of healthcare. As wearable technology continues to become more advanced and affordable, more
individuals will have access to robust health monitoring tools. Furthermore, advances in DL algo-
rithms and artificial intelligence (AI) are expected to make personalized healthcare systems even
more accurate.

 14678640, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/coin.12682 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [22/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



DAMAŠEVI ̌CIUS et al. 3 of 37

F I G U R E 1 Overall DL-based personalized health monitoring framework.

1.2 Motivation: Importance of DL in personalized health monitoring

DL strategies are essential for personalized healthcare services to interpret the vast amounts
of data generated by wearable sensors. DL is a type of machine learning that uses artificial
neural networks to analyze large amounts of data. Personalized healthcare systems use DL algo-
rithms to learn from the data collected by wearable sensors and generate personalized health
recommendations based on an individual’s unique health profile.16,17

Recent advancements in personalized healthcare using DL strategies have seen the develop-
ment of algorithms that predict hospital readmissions and mortality risk in heart failure patients
using data collected from wearable sensors.18 Similarly, DL models have been developed to predict
the onset of diabetic retinopathy using data collected from eye exams.19

1.3 Objectives, novelty, and contributions of the review paper

The article aims to summarize various DL architectures and their applications for personalized
health monitoring, including wearable devices, EHRs, and social media data. The review also
explores the challenges and future directions for the application of DL in personalized health
monitoring.

The novelty of the review lies in its focus on DL-based approaches for personalized health
monitoring and prediction. With the increasing availability of personal health data, DL-based
methods have emerged as a promising approach to improve healthcare delivery by providing accu-
rate and timely predictions of health outcomes.20 The review article provides valuable insights
into the potential of DL for personalized health monitoring and prediction.

The significant contribution of this review article can be summarized as follows:

1. To provide a comprehensive summary of the recent developments in the application of DL for
personalized health monitoring and prediction.

2. By summarizing the various DL architectures and their applications for personalized health
monitoring, the review article provides a valuable resource for researchers and healthcare
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providers to develop and implement DL-based approaches for personalized health monitoring
and prediction.

3. Additionally, the review article highlights the challenges and future directions for the appli-
cation of DL in personalized health monitoring, providing useful insights for researchers and
policymakers who are interested in advancing personalized healthcare delivery.

1.4 Research questions

This review article addresses the following research questions:

1. What are the recent developments in the application of DL for personalized health monitoring
and prediction?

2. What are the various DL architectures used for personalized health monitoring and prediction,
and how do they work?

3. How can DL-based approaches be used to develop personalized health monitoring systems for
wearable devices, EHRs, and social media data?

4. What are the challenges associated with the application of DL in personalized health moni-
toring, and how can they be addressed?

5. What are the future directions for the application of DL in personalized health monitoring and
prediction, and what are the potential implications for healthcare delivery?

1.5 Organization of the article

We organize the rest of the paper as follows: Section 2 outlines our survey describing, including
the strategy for including relevant articles. In Section 3, we first furnish an overview of the DL
approaches for personalized health monitoring and its architectures, wherein we introduce the
premise of our work. Section 4 presents an overview of the issues faced by using DL for person-
alized health monitoring. Section 5 reiterates the key takeaways from our work, and directs the
future scope of EEG.

Finally, Section 6 concludes the overall guide for DL deployment for personalized healthcare.
The detailed acronyms and the definitions used in this article are presented in Table 1 for readers’
convenience.

2 METHODOLOGY

This section outlines our approaches in conducting this systematic literature review, including
our database selection, search criteria, and inclusion parameters, providing a robust framework
for our research process. Figure 2 depicts the phases involved in the literature search and selection
process in this study.

2.1 Search methods

To identify and select relevant studies, we used four databases, including Google Scholar, IEEE
Xplore Digital Library, Web of Science (WoS), and Scopus databases. Google Scholar database
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T A B L E 1 The acronyms and definitions used in the article.

Acronym Definition

AD Alzheimer’s disease

ADNI AD neuroimaging initiative

AI Artificial intelligence

ASD Autism spectrum disorder

AUC Area under curve

BiLSTM-CRF Bidirectional LSTM with a conditional random field

CADD Computer aided disease diagnosis

CAGR Compound annual growth rate

CDS Clinical decision support

CNNs Convolutional neural networks

COPD Chronic obstructive pulmonary disease

CT Computed tomography

CVDs Cardiovascular diseases

CXR Chest x-ray

DL Deep learning

DPD-fVAE Variational autoencoder with differentially-private decoder

DRIVE Digital retinal images for vessel extraction

ECG Electrocardiogram

EHRs Electronic health records

fMRI functional magnetic resonance imaging

GANs Generative adversarial networks

G-BERT GNN-bidirectional encoder representations from transformers

GCNN Graph CNN

GDPR General data protection regulation

GNN Graphical neural network

GPU Graphics processing unit

HHOCN Harris Hawks optimized convolution network

HIPAA Health insurance portability and accountability act

HRF High resolution fundus

HRNER Health-related named entity recognition

ICA Independent component analysis

ICU Intensive care unit

IoMT Internet of medical things

LBP Local binary pattern

(Continues)
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T A B L E 1 (Continued)

Acronym Definition

LSTM Long-short term memory

MCA Monte Carlo approach

MCI Mild cognitive impairment

MRIs Magnetic resonance images

mTBIs mild traumatic brain injuries

NLP Natural language processing

PCA Principal component analysis

PD Parkinson’s disease

PET Positron emission tomography

QoL Quality of life

RNNs Recurrent neural networks

RTPCR Reverse transcription polymerase chain reaction

SHAP Shapley additive explanations

STARE Structured analysis of the retina

SVM Support vector machine

TVAE Transitional VAE

VAEs Variational autoencoders

WHO World Health Organization

was chosen due to its large volume of sources available in a single platform. The IEEE database
was chosen due to its dedication to technological advancement for the benefit of society. Sco-
pus, a prominent database, was selected for its extensive coverage of abstracts and citations
from peer-reviewed literature across a multitude of global publishers. WoS, a comprehensive
resource, was included for its wide-ranging access to references and abstracts across all knowl-
edge domains and its array of tools for citation analysis, references, h-index, bibliometric analysis,
and access to five distinct database collections. Scopus and WoS were also preferred for their
similarities and prominence among other databases, specifically designed to facilitate research
citation and bibliometric analysis, making them pivotal references for bibliographic research.
To conduct our search, we employed the following set of keywords: “Personalized healthcare,”
“Wearable,” “Internet of Things,” “Artificial Intelligence,” “Machine Learning,” and “Deep
Learning.”

In shaping the criteria for source selection in this review, we considered several factors. We
employed the Boolean logical operator “AND” to merge the search terms “Personalized health-
care” and “Deep Learning,” facilitating a focused exploration of articles that encompass both
concepts. Furthermore, we utilized the Boolean logical operator “OR” to establish a connection
between “Artificial Intelligence” and “Internet of Things,” thereby ensuring that articles address-
ing these interconnected themes were included in our search across the databases. Additionally,
we incorporated “Machine Learning” into our search criteria to encompass a broader scope of
relevant articles.
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F I G U R E 2 Our methodology for systematic review: The PRISMA flowchart for literature search and
selection.

2.2 Inclusion and exclusion criteria

We exclusively considered primary articles in the English language, with further refinement based
on specific domains, including Computer Science, Engineering, Medicine, Business, Manage-
ment, and Health Professions. Notably, we did not impose any restrictions on publication dates, as
research related to personalized healthcare and DL has predominantly emerged in recent years,
with relevant publications originating within the last 3 years. In this systematic review, the evalua-
tion focused on primary studies addressing specific research inquiries, while excluding secondary
studies and other document types, such as books, book chapters, editorials, patent documents, let-
ters, and conference papers, to ensure a comprehensive examination of primary studies relevant
to our research question.

2.3 Data extraction and structured meta-analysis

In the initial screening phase, all titles and abstracts were scrutinized to identify articles poten-
tially pertinent to DL in personalized healthcare. Subsequently, we conducted the initial identi-
fication of relevant studies, and full-text screening was then independently performed, with any
disparities resolved through peer discussion among all the authors. The data management pro-
cess was facilitated using Google Sheets, which enabled the recording of reasons for inclusion
or exclusion and the storage of extracted data. We used key questions to evaluate the selected
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studies, including assessing whether they represented primary research, addressed the applica-
tion of machine learning, smart wearable, and IoT technology in the education domain, and
adhered to the specified inclusion and exclusion criteria. Primary insights into the methodological
approaches described in the selected studies, with articles lacking a clear definition of their study
type or posing ambiguities in their methodology, were excluded. The data extraction strategy pri-
marily entailed tabulation to ensure alignment with the research question and study objectives.
All data, along with the final evaluations, were documented in a Google Sheet. The methodolog-
ical data from the 134 selected articles were meticulously evaluated, analyzed, and subsequently
presented in this systematic review.

3 DL APPROACHES FOR PERSONALIZED HEALTH
MONITORING

The use of DL approaches for personalized health monitoring has the potential to revolution-
ize healthcare by enabling the analysis of large amounts of patient-specific data in real time. In
this section, we provide an overview of recent research on DL models for personalized health
monitoring and discuss their potential applications in various healthcare domains.

3.1 Overview of DL models

DL has become a popular approach in various fields for its ability to learn and model complex pat-
terns in data. One of the key advantages of DL models is their ability to learn and generalize from
large datasets, which makes them highly useful in applications such as computer vision, natural
language processing (NLP), and speech recognition.21 However, these models can also be com-
putationally expensive and require large amounts of data to train, which can pose challenges for
their practical use. In addition, the interpretability of DL models is still an active area of research,
as they can be seen as “black boxes” that are challenging to understand and interpret. Despite
these challenges, the use of DL models has already led to breakthroughs in many fields, and they
hold great promise for the future of AI and machine learning.22

In the context of personalized health monitoring and prediction, DL models have the poten-
tial to analyze large amounts of data from various sources such as EHRs, wearable devices, and
mobile apps.23 The use of DL can help to uncover important patterns in data that may not be
apparent through traditional statistical methods, enabling personalized and precise health mon-
itoring and prediction. The authors in reference 24 reviewed the latest advancements in digital
health management using multi-modal signal monitoring, specifically focusing on lower-limb
data collection, statistical analysis, and rehabilitation. The use of medical devices that commu-
nicate data over a network without human intervention, represented as the Internet of Medical
Things (IoMT), is also discussed. A personalized healthcare framework using IoMT is shown in
Figure 3, which highlights the layers involved and the incorporation of the DL and visualization
aspects involved in the healthcare system.

Various types of DL models can be used in personalized health monitoring and prediction.
For instance, convolutional neural networks (CNNs)25 can be used to process images and signals
from wearable devices and sensors to detect patterns and changes in health status. Recurrent
neural networks (RNNs) can be used to process sequential data such as time-series data from
wearable devices or EHRs to predict health outcomes.26 Generative models such as variational
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F I G U R E 3 IoMT-based personalized health monitoring solution.

autoencoders (VAEs) can be used to generate synthetic data for use in personalized medicine and
drug discovery.27

To fully comprehend the distinctive contributions of DL applications for individualized health
monitoring, specificity is essential. CNNs, for example, are very good at interpreting time-series
data from wearables, making it possible to identify irregularities in heart rate or activity levels.28

Predicting the course of a disease and patient outcomes is made easier by RNNs, particularly
LSTM networks, which are excellent at interpreting sequential data from EHRs.29 Furthermore,
real-time monitoring of public health trends is facilitated by the ability of NLP approaches, includ-
ing transformer models, to extract useful health information from social media posts.30 These
specific examples show how DL techniques are specially designed to take advantage of various
data sources for improved health prediction and monitoring.
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However, the use of DL models in personalized health monitoring and prediction also presents
challenges such as data privacy concerns, the need for large amounts of high-quality data, and
the interpretability of the models.6 Therefore, it is essential to carefully consider the design and
implementation of these models, as well as their ethical and legal implications. For promising
means of personalized health monitoring and prediction, further research in using DL has the
potential to revolutionize the way we approach healthcare.

3.2 DL for wearable devices and remote monitoring systems

The adoption of DL models in personalized health monitoring and prediction holds immense
promise, as highlighted in the section above. However, translating these models into practical
solutions for healthcare delivery necessitates overcoming various challenges, including data pri-
vacy concerns, data quality, and interpretability issues. Despite these challenges, wearable devices
and remote monitoring systems have emerged as a focal point for leveraging DL techniques to
revolutionize healthcare.

The field of wearable devices and remote monitoring systems has witnessed a surge in inter-
est in DL techniques. With the help of such techniques, intelligent systems can be developed
that analyze and interpret data from multiple sensors. Such systems can offer valuable insights to
healthcare professionals for monitoring patients’ health conditions and managing diseases. DL
techniques have the potential to transform healthcare delivery by enabling personalized and con-
tinuous monitoring of patient’s health in real time. The study in31 presents a systematic literature
review on smart wearables for detecting and predicting cardiovascular diseases (CVDs), high-
lighting their effectiveness and the need for DL to enhance their use in healthcare. The systematic
literature review in reference 32 focuses on wearable sensors for Parkinson’s disease (PD) man-
agement, analyzing symptoms, diagnosis, and management techniques. It identifies research gaps
and emphasizes the need for DL in wearables, particularly in the management of PD’s non-motor
symptoms.

The authors in reference 33 developed a wearable respiratory monitoring system using a
computational fluid dynamics-assisted on-mask sensor network. The system is also assisted
by DL for respiration pattern recognition with classification accuracy. The sensor network is
made of permeable and moisture-proof textile triboelectric sensors, which can collect highly
accurate respiratory signals with a decent signal-to-noise ratio, response time, and sensitivity.
RO-SmartAgeing34 was developed to address mild cognitive impairment (MCI) in old age. It offers
personalized remote monitoring and assistance for the elderly, including predictive models for
detecting MCI onset and its progression toward dementia. This system with integrated DL services
enables to provision of safe, low-cost, privacy-protected and supports independent living. It also
enables continuous monitoring of vital signs, position, and activities, with significant reminders
and alarms from remote locations.

The work in reference 35 emphasizes the significance of promptly diagnosing mild traumatic
brain injuries (mTBIs) and addresses the shortcomings of current screening methods. It under-
scores the importance of identifying physiological biomarkers and integrating them with machine
learning tools to enhance the diagnostic sensitivity for mTBI, thereby facilitating timely diagnosis
and treatment.

The article in reference 36 highlights the increasing demand for wearable devices that can
continuously gather high-quality biosignals over long durations to facilitate advanced diagnostics
and therapies. It explores the design challenges involved, showcases recent progress in continuous
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operation and precise biosignal recording, addresses implementation obstacles, and underscores
the significance of embedded AI for future autonomous diagnostic, therapeutic, and assistive
healthcare tools.

The authors in reference 37 introduces an autonomous smart toilet designed for long-term
health monitoring by analyzing a user’s excreta. Utilizing sensors, computer vision, and DL, the
toilet evaluates urine composition, flow rate, and stool characteristics, achieving comparable per-
formance to trained medical personnel. The technology’s objectives include seamless integration
with clinical workflows, secure data storage and analysis, and potential applications in screening,
diagnosis, and longitudinal monitoring for specific patient groups.

3.3 DL for predicting health outcomes

DL has shown great potential in predicting health outcomes by analyzing large amounts of data
from EHRs, medical imaging, wearable devices,38 and other sources.39–41 Here are some examples
of how DL can be used to predict health outcomes:

1. Disease diagnosis: DL algorithms can be trained to recognize patterns in medical images,
such as X-rays or magnetic resonance images (MRI), to diagnose diseases like diagnose breast
cancer,42 lung cancer,43 and diabetic retinopathy accurately.44

2. Disease risk prediction: DL methods can predict the risk of developing certain diseases based
on genetics, lifestyle, and medical history.45 For example, DL has been used to predict the risk
of developing Alzheimer’s,46 diabetes,47 and heart diseases.48

3. Clinical decision support (CDS): DL can help healthcare providers make more informed deci-
sions about patient care. For example, DL can analyze EHR data to identify patients at high
risk of hospital readmission or who may benefit from specific treatments.40

4. Patient monitoring: DL can be used to monitor patients remotely and detect changes in health
status that may require intervention.49 For example, DL can analyze data from wearable
devices to predict the risk of falls in elderly patients50 or to monitor patients with chronic
diseases such as asthma,51 and heart failure.52–56

5. Drug discovery: DL can be used to predict the efficacy and safety of new drugs. For example,
DL can analyze molecular structures and predict which drugs are most likely effective against
a particular disease.57

6. Treatment pathway prediction: The work in reference 58 highlights the research community’s
focus on discovering digital biomarkers using diverse data sources (physiological, psycholog-
ical, social, and environmental) to enable smart services in clinical trials and eHealth/digital
therapeutic settings. It discusses the APACHE trial, which aims to assess the quality of life
(QoL) in cervical cancer patients, and introduces a methodology to identify a biomarker that
can predict significant QoL variations. The abstract emphasizes the use of real-world data for
detecting the cervical cancer QoL biomarker and its potential for innovative treatments. The
methodology is implemented by Healthentia eClinical solution and has been employed in
multiple clinical studies.

7. Biomarker discovery: The work in reference 59 emphasizes that DL techniques, specifically
long-short-term memory (LSTM) models, can accurately predict the most suitable treatment
paths for hypertension and the likelihood of achieving blood pressure goals using differ-
ent regimens. These models offer significant value as decision-support tools for developing
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personalized and adaptable hypertension treatment strategies, particularly for patients with
complex conditions.

DL algorithms possess the potential to significantly improve our ability to predict health out-
comes and develop personalized treatments for patients. However, it is essential to ensure that
DL models are transparent, interpretable, and ethically sound and used with clinical expertise to
provide the best possible care for patients.

3.3.1 Patient monitoring and disease risk prediction

DL techniques have become increasingly popular in patient monitoring via wearable devices due
to their ability to analyze large volumes of complex data and make accurate predictions. In refer-
ence 60, the authors presented a DL-based approach for fall risk assessment in elderly individuals
using data collected from inertial sensors. They proposed a methodology to extract spatiotempo-
ral gait features from inertial sensor data and then use a CNN to classify fallers and non-fallers.
The proposed approach was tested on a dataset of elderly individuals with different fall risk lev-
els and achieved high accuracy in fall risk prediction. The authors conclude that their approach
shows great promise for accurate and convenient fall risk assessment, which could ultimately
lead to improved quality of life for elderly individuals.

In reference 61, the authors presented a prediction system for acute exacerbation of chronic
obstructive pulmonary disease (COPD) using data from wearable devices and DL techniques.
They extracted features from physiological signals obtained from wearable devices and utilized
machine learning and DL models to predict the occurrence of COPD exacerbation. The proposed
approach was evaluated on a cohort of COPD patients and achieved high accuracy in predicting
exacerbation events. The authors conclude that their method shows potential for early detec-
tion and prevention of COPD exacerbation, which could improve patient outcomes and reduce
healthcare costs.

DL is a powerful tool that can predict disease risk based on various factors. Here are some
general steps involved in using DL for disease risk prediction62:

1. Collecting and preparing data: The first step is to collect and prepare the data. It may
involve gathering information on patient demographics, medical history, lifestyle factors, and
biomarkers. The data must be carefully cleaned and formatted for training the DL model.
The quality and diversity of data are critical components in DL-based individualized health
monitoring.

Three important categories of data include unstructured data from social media platforms,
clinical data from EHRs, and physiological measures from wearable technology (e.g., heart
rate, and activity levels).63 To guarantee data consistency, preprocessing techniques include
normalization and standardization as well as imputation methods for handling missing val-
ues. Improving the quality of data can be achieved in several ways, such as using NLP to extract
structured information from unstructured social media content, reducing noise in wearable
data through signal processing, and rigorously validating EHR data to guarantee accuracy
and dependability. Completing these stages is essential to creating strong DL models that can
accurately monitor and forecast health.

2. Defining the problem: The next step is to define the problem and decide on the outcome we
want to predict. For example, we might want to predict the risk of developing heart disease or
the likelihood of cancer recurrence.
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3. Selecting a DL model: Once the problem is defined, we must select a suitable DL model. The
choice of model will depend on the nature of the problem and the available data. Many models
exist, including feedforward neural networks, CNNs, and recurrent neural networks.

4. Training the model: The DL model is then trained on the prepared data. It involves feed-
ing the model input data and comparing the output to the desired outcome. The weights
and biases of the model are adjusted during training to improve the accuracy of the
predictions.

5. Evaluating the model: The trained model is then evaluated using a separate test data set. The
model’s accuracy is measured using various metrics, such as sensitivity, specificity, and area
under the curve (AUC). Alternative measures, including precision, recall, and F1-score, are
important to consider when assessing DL models for customized health monitoring, particu-
larly in unbalanced datasets where accuracy alone may be deceptive. Precision illustrates the
model’s capacity to prevent false positives by calculating the percentage of real positive predic-
tions among all positive predictions. Recall measures how many accurate positive predictions
there are among all real positives, highlighting the model’s capacity to find all pertinent cases.
A more thorough evaluation of the model’s performance in certain health monitoring appli-
cations is provided by the F1-score, which is the harmonic mean of accuracy and recall and
offers a balanced evaluation statistic that takes into account both false positives and false
negatives.

6. Deploying the model: If it performs well on the test data, it can be used in clinical prac-
tice. It may involve integrating the model into a CDS system or a mobile app that patients
can use.

DL can be a powerful tool for disease risk prediction, but it requires careful preparation and
validation of the data and careful selection and training of the DL model. It is important to remem-
ber that DL models are not a replacement for clinical judgment and should be used with other
diagnostic tools and expert opinions.

In reference 64, the authors conducted a study on multimodal DL models to predict the stage
of Alzheimer’s disease (AD) based on data from different imaging modalities. They introduced
the concept of multimodal imaging, which combines data from different imaging modalities, such
as MRI and positron emission tomography (PET), to improve the accuracy of AD diagnosis. The
study analyzed data from the AD neuroimaging initiative (ADNI) cohort and used DL algorithms
based on multimodal imaging data to predict the AD stage. They concluded that the use of mul-
timodal DL models could be a promising approach for early AD detection and that this approach
could potentially be applied in clinical settings for accurate diagnosis and treatment. However,
further research is required to validate these findings and address the study’s limitations, such as
the relatively small sample size. The study in reference 65 proposed a framework for data gener-
ation and heart disease prediction based on efficient DL models. They introduced the concept of
data generation, which is the process of creating new data from existing data to improve the per-
formance of machine learning models. The authors evaluated the performance of their framework
and compared it to other models that used different machine-learning algorithms. The results
showed that the proposed framework achieved high accuracy in predicting heart disease risk, out-
performing other models. The authors also found that data generation improved the performance
of DL models, particularly in cases where the training data was limited. However, the authors
state that further research is needed to validate these findings and address the study’s limitations,
such as the relatively small sample size and limited scope of the data used.
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3.3.2 Disease diagnosis

DL has been extensively used in disease diagnosis and has shown great promise in improving
diagnostic accuracy and efficiency. This section presents how DL algorithms have been exploited
for various disease diagnoses.

Breast cancer diagnosis
The authors in reference 42 reviewed several studies using DL algorithms for breast cancer diag-
nosis, including those using CNNs and other DL techniques. They note that DL algorithms
perform superiorly in detecting breast cancer and can sometimes outperform radiologists. How-
ever, they also caution that more research is needed to validate these results and to ensure that
DL algorithms are robust and reliable in clinical settings. The authors also discussed several chal-
lenges and future directions for DL in breast cancer imaging, including the need for large datasets,
the importance of interpretability and explainability, and the potential for personalized medicine.

In reference 66, the authors proposed a DL-based capsule neural network model for diagnos-
ing breast cancer using mammogram images. The model uses capsule networks, a type of neural
network that can handle spatial relationships between features. The proposed model is trained on
a dataset of mammogram images and can classify images as either malignant or benign. The cap-
sule network model has several advantages over traditional CNNs, including the ability to handle
spatial relationships between features and generate more informative data representations.

In reference 67, the authors proposed a study in which a deep CNN based on residual learning
is developed to classify breast cancer histopathological images. The proposed CNN architecture
uses residual connections to alleviate the problem of vanishing gradients in deep networks, and it
is trained on a large dataset of breast cancer histopathological images. The study also analyzes the
contribution of different components of the proposed CNN to its performance. The results show
that the residual connections and the use of batch normalization contribute significantly to the
network’s performance. Moreover, the study shows that the proposed CNN can capture essential
features for breast cancer histopathological image classification, such as the shape and texture of
nuclei and the architecture of glandular structures.

Lung cancer diagnosis
In reference 43, the authors proposed a DL-based algorithm for detecting lung cancer on chest
radiographs using the segmentation method. The proposed algorithm consists of two stages: lung
segmentation and nodule detection. In the first stage, the algorithm uses a U-Net architecture to
segment the lungs from the chest radiograph. The segmented lungs are then input for the second
stage, nodule detection. The second stage uses a Faster R-CNN architecture to detect nodules in
the segmented lung region. The algorithm was trained and evaluated on a dataset of chest radio-
graphs with annotations of lung nodules. The results show that the proposed algorithm achieved
high accuracy in lung segmentation and nodule detection, with an overall accuracy of 96.7%.
However, the algorithm only analyzes 2D chest radiographs. It does not consider information
from other imaging modalities, such as computed tomography (CT) scans, which can provide
more detailed information on the location and size of lung nodules. The authors in68 proposed a
modified Alexnet DL framework to detect lung abnormalities using chest X-ray (CXR)and lung
CT scan images. The study aimed to improve the accuracy and efficiency of lung abnormality
detection, which is critical for the early diagnosis and treatment of lung diseases. The proposed DL
was trained on a large CXR and lung CT scan image dataset. The dataset consisted of over 50,000
images, which expert radiologists labeled. They introduced a threshold-based filter to remove the
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artifacts in the CT images. The features obtained by the DL framework were then subjected to the
support vector machine (SVM) to classify the CT images. The study’s results showed that the DL
framework was highly effective at detecting lung abnormalities, with an accuracy of over 96% for
both CXR and lung CT scan images.

Diabetic retinopathy diagnosis
In reference 44, the authors presented a review of the adoption of DL interpretability techniques
for analyzing diabetic retinopathy, a leading cause of blindness in working-age adults. The review
focuses on using these techniques to improve the transparency, explainability, and reliability of
DL models in diagnosing and treating diabetic retinopathy. The review suggests that DL inter-
pretability techniques enable clinicians to understand the model’s decision-making process better.
They also help identify the most important features contributing to the model’s decision-making
process. The review also focused on some demerits of these techniques, like needing technical
expertise, limited scalability, and limited robustness.

The study in reference 69 aims to address the challenge of limited training data in glaucoma
detection and to evaluate the effectiveness of different data augmentation techniques in improv-
ing the performance of a DL classifier. The authors developed several local descriptor-based data
augmentation techniques and are compared for glaucoma detection using retinal fundus images.
The local binary pattern (LBP) based-augmentation with Alexnet provided superior classifica-
tion performance with an accuracy of 96.7%. Maqsood et al.70 proposed a method that focuses
on precise and early detection of hemorrhages in retinal fundus images for diabetic retinopathy
diagnosis. The method incorporates contrast enhancement, a unique CNN architecture, feature
extraction, fusion using sparse image decomposition, and feature selection techniques. Evalu-
ation on various databases showcases superior accuracy of 97.71% compared to prior works,
offering improved visual quality, quantitative analysis, and outperforming existing methods in
hemorrhage detection for diabetic retinopathy.

Brain cancer diagnosis
The challenge of brain tumor classification for radiologists and the potential of DL-based meth-
ods to aid in diagnostic analysis are reviewed in reference 71. It focuses on the key steps involved
in DL-based brain tumor classification methods, encompassing preprocessing, feature extrac-
tion, and classification. The abstract further investigates CNN models, benchmark datasets, and
emphasizes the importance of future research directions, particularly in the realm of personal-
ized and smart healthcare. To enhance the accuracy and reliability of brain tumor diagnosis in
radiology through the development of an advanced DL algorithm is carried out in reference 72.
By integrating DL and radiometric technologies and leveraging a transfer learning model through
AlexNet’s CNN, the proposed method achieves exceptional accuracy of 99.62%. Furthermore, the
algorithm automates the diagnostic process and demonstrates the ability to detect and classify
tumors at various stages and sizes, thereby improving robustness, efficiency, and accuracy in the
healthcare field.

Computer aided disease diagnosis (CADD)73 system aimed at improving the accuracy of brain
tumor classification (Glioblas- toma/Glioma) using 2D MRI slices. The proposed CADD system
integrates CNN-based segmentation and classification methods, combining automated tumor
segmentation, deep-feature extraction, handcrafted feature extraction, feature selection using the
firefly algorithm, and binary classification. The results demonstrate the effectiveness of the CADD
system, with SVM-Cubic achieving superior accuracy >98%, confirming the enhanced disease
detection achieved through the combination of CNN-assisted segmentation and classification.
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The proposed method of tumor dection in reference 74 consists of several steps, includ-
ing edge determination, deep neural network-based segmentation, feature extraction with
transfer learning, feature selection using an entropy-based controlled method, and classifica-
tion using a multiclass support vector machine. Experimental findings on BraTS 2018 and
the Figshare datasets demonstrate the superior performance of the proposed method in both
visual and quantitative assessments, achieving impressive accuracy rates of 97.47% and 98.92%,
respectively.

While DL has shown promise in disease diagnosis, there are several demerits to consider:

• Limited interpretability: DL models can be complex and difficult to interpret, making it chal-
lenging to understand how the model arrives at its predictions. It can limit the model’s
usefulness in understanding the disease’s underlying biological mechanisms.

• Dependence on large amounts of data: DL models require massive high-quality training data
to achieve optimal performance. In some cases, collecting and labeling this data can be
time-consuming and resource-intensive.

• Potential biases in the training data: If the data is biased, the DL model may learn these biases
and perpetuate them in its predictions. It can lead to discrepancies in diagnosis and treatment.

• Limited generalizability: DL models trained on one dataset may not generalize to other datasets
or populations. It can limit the model’s usefulness in real-world settings where the prevalence
and presentation of the disease may differ.

• Ethical considerations: Using DL models in disease diagnosis raises ethical considerations, such
as privacy concerns, informed consent, and potential biases in the model. Above all, DL can
potentially improve disease diagnosis. It is essential to consider and address these demerits to
ensure the models are effective, equitable, and ethical.

3.3.3 Clinical decision support

DL has shown great potential in CDS systems. CDS systems are designed to help healthcare
providers make informed decisions about patient care by providing them with timely, accurate,
and relevant information. DL algorithms can be used in CDS systems to analyze large amounts
of patient data and identify patterns and correlations that might not be apparent to human
clinicians. This can help improve patient outcomes, reduce errors, and save time and money.
An overview of the use of DL approaches for predicting clinical outcomes from EHRs is pre-
sented in reference 40. The article discusses the benefits and challenges of using DL for this
purpose and reviews several studies that have applied DL to predict outcomes such as mortal-
ity, readmissions, and disease progression. DL’s main advantage for outcome prediction is its
ability to learn from complex and heterogeneous EHR data, including a wide range of clini-
cal variables such as lab values, medications, and demographics. DL can also capture complex
relationships between variables that might not be apparent using traditional statistical mod-
els. The authors conducted several studies that have used DL to predict outcomes, including a
study that used a CNN to predict mortality in intensive care unit (ICU) patients, a study that
used a recurrent neural network to predict 30-day readmissions for heart failure patients, and a
study that used a deep autoencoder to predict disease progression in patients with Parkinson’s
disease.
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3.3.4 Drug discovery

Conventional approaches to drug discovery, known for their arduous and time-intensive nature,
have historically required sub-stantial manpower and resources, often prolonging the journey
from inception to market by several years or even decades.75 This process typically involves
sequential phases such as target identification, validation, lead compound identification, opti-
mization, and clinical trials, but has been plagued by high rates of failure. Many potential drug
candidates encounter setbacks at various stages of development, particularly during clinical tri-
als, primarily due to issues related to efficacy or safety.76 Furthermore, these methods have been
hindered by their limited capacity for data analysis, relying predominantly on empirical data
and linear models. This reliance has severely restricted the ability to accurately forecast drug
interactions, side effects, and efficacy, owing to the intricate nature of biological data, thereby
exacerbating the challenges inherent in traditional drug discovery.75

A pivotal achievement facilitated by AI in drug discovery lies in its capacity to sift through
extensive volumes of biological data, encompassing genomic, proteomic, and pharmacological
datasets, intending to pinpoint potential drug targets.76 Moreover, AI algorithms can be harnessed
to sift through virtual libraries of chemical compounds, pinpointing promising drug candidates
that align with predefined criteria. Another notable accomplishment involves AI’s capability to
forecast drug toxicity and safety with heightened precision in comparison to conventional meth-
ods.57 By scrutinizing vast datasets on chemical compounds and their interactions with biological
systems, AI models furnish a more holistic comprehension of potential side effects. Furthermore,
AI holds promise in optimizing lead compounds to enhance their effectiveness, pharmacokinet-
ics, and drug-like attributes, thereby facilitating the development of superior medications with
reduced adverse effects.76

The significant impact of graphics processing unit (GPU) computing and DL on the drug dis-
covery process is explained in reference 57. The authors discussed how the increased computing
power provided by GPUs has enabled the development of DL models capable of accurately pre-
dicting the properties of small molecules, such as their bioactivity and pharmacokinetics. These
models have the potential to greatly accelerate drug discovery and reduce the cost of developing
new drugs. The authors also discuss some of the challenges facing the adoption of DL models
in drug discovery, such as the need for high-quality data and the interpretability of the models.
The article highlights the transformative potential of GPU computing and DL in the field of drug
discovery.

3.4 DL for integrating diverse health data sources

To support the integration of diverse health data sources, DL techniques are widely used for ana-
lyzing and integrating large and diverse health data sources. With the increasing availability of
data generated from different sources such as EHRs, wearables, and genomics, traditional meth-
ods of analyzing health data have become limited.77 Table 2 presents various known open datasets
that are used for health monitoring and prediction applications. The DL-based framework can
integrate and analyze diverse health data sources to enable personalized healthcare solutions.
The framework employs a deep neural network architecture that can handle both structured and
unstructured data, enabling it to integrate and analyze various health data sources.78 The poten-
tial of this framework is demonstrated through examples such as predicting the risk of adverse
health outcomes and identifying personalized treatment plans for patients.79 The following are a

 14678640, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/coin.12682 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [22/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



18 of 37 DAMAŠEVI ̌CIUS et al.
T

A
B

L
E

2
Th

e
op

en
-d

at
as

et
in

fo
rm

at
io

n
us

ed
fo

rp
er

so
na

liz
ed

he
al

th
m

on
ito

rin
g.

R
ef

er
en

ce
s

Ye
ar

D
is

ea
se

D
ia

gn
os

is
D

at
as

et
(s

)i
nf

or
m

at
io

n
W

eb
lin

k(
s)

67
20

20
Br

ea
st

ca
nc

er
Br

ea
st

ca
nc

er
hi

st
op

at
ho

lo
gi

ca
li

m
ag

e
cl

as
si

fic
at

io
n:

Br
ea

kH
is

:9
10

9
m

ic
ro

sc
op

ic
im

ag
es

of
br

ea
st

tu
m

or
tis

su
es

;2
48

0
be

ni
gn

,
an

d
54

29
m

al
ig

na
nt

sa
m

pl
es

.

ht
tp

s:/
/w

w
w

.k
ag

gl
e.

co
m

/d
at

as
et

s/
am

ba
ris

h/
br

ea
kh

is

68
20

20
Lu

ng
ab

no
rm

al
ity

i.
C

he
st

X-
ra

y8
(C

XR
da

ta
):

Th
is

da
ta

ba
se

co
nt

ai
ns

10
8,

94
8

C
XR

im
ag

es
.

ii.
LI

D
C

-I
D

R
(L

un
g

C
T

im
ag

es
):

Th
is

da
ta

ba
se

ha
s1

01
8

sl
ic

es
of

10
10

ca
se

s
of

lu
ng

CT
im

ag
es

w
ith

di
ffe

re
nt

no
du

le
si

ze
s.

i.
ht

tp
s:/

/n
ih

cc
.a

pp
.b

ox
.c

om
/v

/C
he

st
Xr

ay
-N

IH
CC

ii.
ht

tp
s:/

/w
ik

i.c
an

ce
rim

ag
in

ga
rc

hi
ve

.n
et

/

69
20

22
G

la
uc

om
a

de
te

ct
io

n
RI

M
-O

N
E

r2
gl

au
co

m
a

da
ta

se
t:

Th
e

da
ta

se
th

as
45

5
re

tin
al

fu
nd

us
im

ag
es

:
25

5
no

rm
al

,a
nd

20
0

gl
au

co
m

a.
ht

tp
s:/

/m
ed

im
rg

.w
eb

s.u
ll.

es
/T

hi
sl

in
k

co
nt

ai
ns

di
ffe

re
nt

gl
au

co
m

a
da

ta
se

ts
al

so
.

70
20

21
Re

tin
al

ab
no

rm
al

ity
i.

H
ig

h-
re

so
lu

tio
n

fu
nd

us
(H

RF
)

im
ag

es
:T

hi
s

da
ta

co
nt

ai
ns

,1
5

he
al

th
y

im
ag

es
,1

5
im

ag
es

of
pa

tie
nt

s
w

ith
di

ab
et

ic
re

tin
op

at
hy

,a
nd

15
im

ag
es

of
gl

au
co

m
at

ou
sp

at
ie

nt
s.

ii.
D

ig
ita

lr
et

in
al

im
ag

es
fo

r
ve

ss
el

ex
tr

ac
tio

n
(D

RI
V

E)
:T

hi
s

da
ta

se
tc

on
-

ta
in

s4
0

re
tin

al
im

ag
es

w
ith

7
pa

th
ol

og
ic

al
im

ag
es

.
iii

.
St

ru
ct

ur
ed

an
al

ys
is

of
th

e
re

tin
a

(S
TA

RE
):

O
ut

of
40

im
ag

es
20

ar
e

pa
th

ol
og

ic
al

im
ag

es
.

iv
.

M
ES

SI
D

O
R:

Th
is

da
ta

se
th

as
12

00
co

lo
ri

m
ag

es
w

ith
va

rio
us

la
be

ls
.

v.
D

IA
RE

TD
B0

:I
th

as
13

0
im

ag
es

vi
.

D
IA

RE
TD

B1
:T

hi
sd

at
as

et
ha

s8
9

im
ag

es
.

i.
ht

tp
s:/

/w
w

w
5.

cs
.fa

u.
de

/r
es

ea
rc

h/
da

ta
/f

un
du

s-
im

ag
es

/
ii.

ht
tp

s:/
/w

w
w

.is
i.u

u.
nl

/R
es

ea
rc

h/
D

at
ab

as
es

/D
RI

V
E/

or
ht

tp
s:/

/i
ee

ex
pl

or
e.

ie
ee

.o
rg

/s
ta

m
p/

st
am

p.
jsp

?a
rn

um
be

r
=

12
82

00
3

iii
.

ht
tp

://
ce

ca
s.c

le
m

so
n.

ed
u/
∼

ah
oo

ve
r/

st
ar

e/
iv

.
ht

tp
s:/

/w
w

w
.a

dc
is

.n
et

/e
n/

th
ird

-p
ar

ty
/m

es
si

do
r/

v.
ht

tp
://

w
w

w
.it

.lu
t.f

i/
pr

oj
ec

t/
im

ag
er

et
/d

ia
re

td
b0

/
vi

.
ht

tp
://

w
w

w
.it

.lu
t.f

i/
pr

oj
ec

t/
im

ag
er

et

72
20

22
Br

ai
n

tu
m

or
de

te
ct

io
n

Br
aT

S2
02

0
D

at
as

et
(M

RI
):

Th
is

da
ta

se
tc

on
si

st
so

f3
92

9
M

R
im

ag
es

:2
75

6
ar

e
tu

m
or

af
fe

ct
ed

,a
nd

11
73

ar
e

he
al

th
y.

ht
tp

s:/
/w

w
w

.k
ag

gl
e.

co
m

/d
at

as
et

s/
aw

sa
f4

9/
br

at
s2

0-
da

ta
se

t
-t

ra
in

in
g-

va
lid

at
io

n

73
20

21
Br

ai
n

tu
m

or
de

te
ct

io
n

Th
e

ca
nc

er
im

ag
in

g
ar

ch
iv

e:
It

is
a

la
rg

e
ar

ch
iv

e
of

di
ffe

re
nt

ty
pe

so
f

m
ed

ic
al

im
ag

es
.

ht
tp

s:/
/w

w
w

.c
an

ce
rim

ag
in

ga
rc

hi
ve

.n
et

74
20

22
Br

ai
n

tu
m

or
de

te
ct

io
n

i.
Br

aT
S

20
18

:T
hi

sd
at

as
et

co
ns

is
ts

of
46

1
M

RI
sc

an
s.

ii.
Fi

gs
ha

re
da

ta
se

ts
:T

hi
sd

at
as

et
co

ns
is

ts
of

30
64

T1
-w

ei
gh

te
d

pa
th

ol
og

ic
al

M
RI

sc
an

s.

i.
ht

tp
s:/

/w
w

w
.m

ed
.u

pe
nn

.e
du

/s
bi

a/
br

at
s2

01
8/

da
ta

.h
tm

l
ii.

ht
tp

s:/
/f

ig
sh

ar
e.

co
m

/a
rt

ic
le

s/
da

ta
se

t/
da

ta
se

ts
/5

47
29

70

64
20

21
A

D
A

D
N

Id
at

as
et

:I
ti

sa
la

rg
e

re
po

si
to

ry
of

im
ag

in
g,

ge
ne

tic
,a

nd
cl

in
ic

al
da

ta
ov

er
22

20
pa

tie
nt

sf
or

A
D

N
I.

ht
tp

s:/
/a

dn
i.l

on
i.u

sc
.e

du
/

65
20

22
H

ea
rt

di
se

as
e

i.
U

ni
ve

rs
ity

of
C

al
ifo

rn
ia

,I
rv

in
e

(U
C

I)
M

L
re

po
si

to
ry

:I
ti

sa
hu

ge
re

po
s-

ito
ry

of
m

an
y

ty
pe

s
of

da
ta

,a
nd

it
al

so
co

nt
ai

ns
va

rio
us

he
al

th
-r

el
at

ed
da

ta
se

ts
.

ii.
Th

e
C

le
ve

la
nd

an
d

St
at

lo
g

da
ta

se
ts

:T
hi

sd
at

as
et

co
nt

ai
ns

11
90

in
st

an
ce

s
of

va
rio

us
he

ar
td

is
ea

se
s.

i.
ht

tp
s:/

/a
rc

hi
ve

.ic
s.u

ci
.e

du
/d

at
as

et
/4

5/
he

ar
t+

di
se

as
e

ii.
ht

tp
s:/

/w
w

w
.k

ag
gl

e.
co

m
/d

at
as

et
s/

si
d3

21
ax

n/
he

ar
t-

st
at

lo
g

-c
le

ve
la

nd
-h

un
ga

ry
-f

in
al

 14678640, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/coin.12682 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [22/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.kaggle.com/datasets/ambarish/breakhis
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://wiki.cancerimagingarchive.net/
https://medimrg.webs.ull.es/
https://www5.cs.fau.de/research/data/fundus-images/
http://www.isi.uu.nl/Research/Databases/DRIVE/
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1282003
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1282003
http://cecas.clemson.edu/
http://www.adcis.net/en/third-party/messidor/
http://www.it.lut.fi/project/imageret/diaretdb0/
http://www.it.lut.fi/project/imageret
http://www.kaggle.com/datasets/awsaf49/brats20-dataset-training-validation
http://www.kaggle.com/datasets/awsaf49/brats20-dataset-training-validation
https://www.cancerimagingarchive.net
http://www.med.upenn.edu/sbia/brats2018/data.html
https://figshare.com/articles/dataset/datasets/5472970
https://adni.loni.usc.edu/
https://archive.ics.uci.edu/dataset/45/heart+disease
https://www.kaggle.com/datasets/sid321axn/heart-statlog-cleveland-hungary-final
https://www.kaggle.com/datasets/sid321axn/heart-statlog-cleveland-hungary-final


DAMAŠEVI ̌CIUS et al. 19 of 37

few of the most popular deep-learning frameworks that are commonly used for integrating and
interpreting meaningful insights from health data sources.

3.4.1 Convolutional neural networks (CNNs)

CNNs are widely used for medical image analysis, such as identifying tumors or detecting
anomalies in X-rays or MRI scans. These models have shown impressive accuracy in detect-
ing diseases from medical images, making them valuable for radiologists and clinicians. The
authors in reference 80 overcome the direct Monte Carlo approach for personalized dosime-
try as the limitation of excessive computational cost and time in the Monte Carlo approach
for personalized dosimetry using CNN. They proposed a voxel dose prediction tool using PET
and CT image patches with ground truth from direct Monte Carlo. The CNN-based dosimetry
method showed improved accuracy and speed compared to conventional dosimetry approaches
and had results comparable to direct Monte Carlo simulation with significantly lower calculation
time. In reference 81, the authors ensured to provide clinical decision-making for personalized
treatment using CNN, big data through a quadratic phenotypic optimization platform. The Har-
ris Hawks optimized convolution network (HHOCNN)82 in medical image processing for brain
tumor classification has shown an significant impact. It uses pre-processing, candidate region
process, feature extraction, and classification by applying a CNN. The use of the HHOCNN sys-
tem improves the overall tumor recognition accuracy to 98%. The use of precision medicine in
oncology relies on obtaining accurate data from various sources to develop personalized treat-
ments. Next-generation sequencing has generated a vast amount of gene-expression data, but
existing public gene-expression databases have an unfavorable imbalance between the number
of genes and samples available. The study in reference 83 proposes a methodology to rearrange
RNA-seq data into gene-expression images, allowing CNNs to extract high-level features to pre-
dict lung cancer progression, and investigate if information from other tumor types can improve
predictions.

The study in reference 84 proposes a deep graph CNN (GCN) model for diagnosing autism
spectrum disorder (ASD) using multi-site data, as the current shallow GCN models are insuf-
ficient in handling the variability in data from different sites. The proposed model, integrated
with ResNet units and DropEdge strategy, achieves a mean accuracy of 73.7% for ASD classifi-
cation, outperforming well-established models based on the same subjects, and provides a new
perspective for studying biological markers for early diagnosis of ASD.

3.4.2 Recurrent neural networks (RNNs)

RNNs are commonly used for sequence data analysis, such as time-series data from sensors or
patient records. RNNs can learn from past observations to predict future outcomes, making them
useful for predicting disease progression or treatment outcomes. The authors in reference 85
discuss how the use of RNN can help capture the dynamic information of time sequences in
functional magnetic resonance imaging (fMRI) data for mental disorder classification. Here, the
multi-scale RNN model uses fMRI-independent components directly and achieves high accuracy
in classifying schizophrenia and healthy controls. The study also identifies the top contributing
time courses from specific brain components.
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The study in reference 86 suggests a system for recognizing human behavior using body sen-
sors that integrates data from various sensors like electrocardiogram (ECG), accelerometer, and
magnetometer, and uses deep RNN. It surpasses traditional methods on standard datasets and has
potential practical applications such as smart healthcare systems. The system can support patient
rehabilitation and help prolong their independent life. The article in reference 87 presents a
health-related named entity recognition (HNER) task to recognize health-related entities in Twit-
ter messages, utilizing DL architecture and healthcare-domain ontology. The bidirectional LSTM
with a conditional random field (BiLSTM-CRF) model demonstrated excellent precision, recall,
and F1-score for identifying disease, sign or symptom, and pharmacologic substance-named
entities, signifying its potential for diverse healthcare applications.

Chovatiya et al.88 presents a system that employs RNN to forecast the likelihood of a dengue
epidemic in India by utilizing data on climatic conditions, pollution, and previous patient statis-
tics. The system intends to aid the public health sector in arranging essential resources in advance
and minimizing the fatality rate by utilizing Google heatmaps to indicate the areas where dengue
is expected to occur. The authors in reference 89 suggested an optimized LSTM method, to
interpret genome sequencing for personalized cancer treatment. Its primary focus is to detect
new disease-related variants and genes, and it has shown superior accuracy performance than
conventional hybrid classifiers.

The study in reference 90 evaluated the efficacy of machine learning models in predicting sui-
cide risk using data on 3548 suicide deaths and 35,480 non-suicide deaths. Here, the RRN-based
gradient-boosted tree model outperformed other models in discrimination and calibration, but
additional research is necessary to develop models suitable for clinical implementation. Jelodar
et al.91 utilized NLP and LSTM recurrent neural networks to analyze COVID-19-related discus-
sions from social media and determine their sentiment. The research highlights the significance
of employing public opinions and computational methods for decision-making and attained a
higher accuracy rate compared to other machine learning algorithms for COVID-19 sentiment
classification.

3.4.3 Variational autoencoders (VAEs)

VAEs are generative models that can learn to generate new data samples that resemble the train-
ing data. They have shown great potential in drug discovery by generating new molecules with
specific properties, thus reducing the time and cost of developing new drugs. Baucum et al.92 sug-
gested using transitional VAE, as a neural network architecture that can learn the direct mapping
between clinical measurements at adjacent time points, to train reinforcement learning agents
with an “environment model” for developing personalized treatment regimens from healthcare
data. This approach produces more realistic patient trajectories and can help in learning effec-
tive treatment policies.93 An extension to the Variational Autoencoder is introduced in reference
94 to address the problem of imputing missing values with a single sample. The method outper-
forms existing imputation strategies in 71% of medical datasets and improves 50% of classifiers in
a heart failure data case study.

Biswal et al.95 proposes a solution for the conflict between timely access to real-world longi-
tudinal EHRs and patient privacy and data security in health systems. The proposed EHR VAE
can synthesize realistic EHR sequences that account for individual differences and can be condi-
tioned on specific disease conditions, resulting in improved predictive performance when used to
augment real data. EHR VAE96 synthesizes realistic EHR sequences while considering individual
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differences and specific disease conditions, allowing for timely access to real-world longitudinal
EHRs while maintaining patient privacy and data security. The synthetic EHRs produced by VAE
can be used to improve predictive performance when combined with real data. The article in refer-
ence 97 presents a self-learning algorithm that utilizes generative variational autoencoder models
and LSTM for precise identification and analysis of tumors in MRI images. The proposed model in
reference 97 shows 89.7% accuracy, making it a resource-efficient and computationally efficient
alternative for tumor identification and analysis, evaluated through benchmark metrics. VAE has
been utilized for visualizing big data in the healthcare industry to manage medical files, patient
data, and clinical reports. The study in reference 98 shows that VAE outperforms traditional
methods like principal component analysis (PCA), independent component analysis (ICA), non-
negative matrix factorization, and latent Dirichlet allocation in terms of prediction performance
and feature analysis. Variational autoencoder with differentially-private decoder (DPD-fVAE),99

is a federated VAE that generates synthetic data while preserving privacy. The study demonstrates
the competitive performance of DPD-fVAE through an evaluation of MNIST, Fashion-MNIST,
and CelebA datasets, reporting benefits over related work in terms of Fréchet Inception Distance
and classifier accuracy.

3.4.4 Generative adversarial networks (GANs)

GANs are also generative models that can generate new data samples. In healthcare, GANs have
been used to generate synthetic medical images, which can be used for training other models or to
augment small datasets. The survey in reference 100 provides an overview of the potential appli-
cations of GANs in the healthcare sector, along with their advantages and disadvantages. The
study emphasizes the increasing popularity of GANs in the medical community and concludes
with future scope and conclusions. Another similar survey in reference 101 provides an overview
of the recent progress in GANs for EHRs applications and proposes new methodologies to gener-
ate synthetic EHR data. The study also compiles a list of metrics and datasets used as benchmarks
for future research and discusses the challenges and recommended practices for developing
GANs in EHRs. To address the privacy challenges associated with creating DL models using
EHR data, a new framework called CorGAN102 has been proposed by combining Convolutional
GAN and Convolutional Autoencoders, CorGAN captures correlations between adjacent medical
features to generate synthetic healthcare records that perform similarly to real data in classifi-
cation and prediction tasks. Gonzalez et al.103 presented a solution to limited data availability
and confidentiality concerns in health care by introducing the use of GANs to generate syn-
thetic data of lung cancer patients. The synthetic patients are validated using statistical methods
and indirect mortality rates, proving to be a valuable tool for doctors in treatment decisions and
procedures.

The study in reference 104 suggests an unsupervised framework using GANs to identify
healthcare fraud by detecting anomalies in healthcare provider data sets. The GAN-AD model
demonstrates good performance in classification using logistic regression and extreme gradient
boosting models, and shapley additive explanations (SHAP) analysis confirms the explanation
of predictors for anomalous healthcare providers. The work in reference 105 demonstrated a
DL solution that uses deep convolutional generative adversarial networks to produce synthetic
hyperspectral images for epidermal lesions. The framework addresses the challenge of training
DL architectures with small-sized datasets and demonstrates the effective generation of synthetic
data for training DL classifiers to diagnose skin cancer.
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The work in reference 106 proposes a model for healthcare data clustering and classifica-
tion using fuzzy c-means clustering and generative adversarial network-based approaches. The
model aims to provide effective medication and precautions based on patient history and exhibits
improved accuracy of 97.8% and 98.6% for lung cancer and Arrhythmia datasets, respectively,
outperforming existing techniques like support vector machine, decision tree, and random forest
algorithms. The proposed research in reference 107 suggests using GANs to generate realistic syn-
thetic data for EHRs that address privacy challenges. The study introduces a novel approach that
utilizes 1-D CNN and convolutional autoencoders to capture the correlation between diagnosis
records and to measure the similarity between real and synthetic data.

3.4.5 Transformers

Transformers are a type of DL model that has been used for NLP tasks, such as medical record
analysis. Transformers can learn to extract relevant information from unstructured text data,
which can be useful for predicting disease risk or patient outcomes. With the potential to trans-
form personalized healthcare, and by enabling the development of personalized treatments the
aforementioned DL models can improve patient outcomes. Despite the potential of DL models
in personalized healthcare, some challenges need to be addressed. These include concerns about
data privacy and security, the need for interpretability and explainability of models, and the poten-
tial for biases in the data that could result in unequal access to care. However, it is crucial to ensure
that these models are used ethically and responsibly to benefit all patients. Moreover, there are
also challenges and limitations associated with using DL for health data integration, such as the
need for high-quality data and the interpretability of models.

An attention-based feature learning approach, utilizing Vision Transformers as a new back-
bone architecture for medical imaging,108 constructs dependable AI models for healthcare. The
study examines the generalization abilities of Vision Trans- formers in categorizing chest radio-
graphs for COVID-19 and establishes that the feature learning approach based on the attention
mechanism is a hopeful avenue to create trustworthy DL models in the healthcare sector. The
vision transformers for detecting COVID-19 in reference 109 use CXR images as an alternative to
the primary screening test with a long turnaround time, reverse transcrip- tion polymerase chain
reaction (RT-PCR). The research demonstrates superior performance, achieving an AUC of 0.99
for multiclass classification and a sensitivity of 0.99 for the COVID-19 class, outperforming exist-
ing CNN models. Additionally, attention maps show the proposed model’s efficient capability to
identify COVID-19 signs.

The study in reference 110 investigates the potential of transformers and language models in
predicting the prognosis of immunotherapy with the help of clinical data and molecular profiles
of real-world patients. The research indicates that transformers offer substantial enhancements in
accuracy and possess the ability to advance early detection and intervention for various diseases.
SANS formers,111 a new attention-free sequential model that incorporates inductive biases for
predicting healthcare utilization, with a focus on rare diseases. The model is pre-trained on a large
health registry and fine-tuned for specific subgroups and shows better performance than LSTM
and Transformer models in most cases. A mathematical framework with feature transformers
in reference 112 allows for lifelong learning in medical imaging applications while preserving
data privacy. The study shows superior results on the iCIFAR100 dataset and demonstrates the
framework’s effectiveness in the classification of X-ray Pneumothorax and Ultrasound cardiac
views.
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A Transformer-based EHR embedding pipeline113 was introduced as a predictive model
framework that takes advantage of healthcare-specific data attributes. The framework accurately
predicts clinical outcomes in the ICU, demonstrating its feasibility in a case study. Shavit et al.114

introduced an activity recognition model using Transformers that surpasses current learning-
based methods for inertial sensor data. The model demonstrates better accuracy and generaliza-
tion across various user activity scenarios, as evidenced by evaluations on multiple datasets, with
the codebase accessible for public use. Graphical neural network (GNN)-bidirectional encoder
representations from transformers (G-BERT),115 is a novel model that integrates GNN and BERT
to improve medication recommendation by exploiting the hierarchical structure of medical codes.
The model surpasses previous works by achieving the highest performance on this task using
EHRs of patients with only one visit.

3.4.6 Summary

With the potential to transform personalized healthcare, and by enabling the development of per-
sonalized treatments the aforementioned DL models can improve patient outcomes. Despite the
potential of DL models in personalized healthcare, some challenges need to be addressed. These
include concerns about data privacy and security, the need for interpretability and explainabil-
ity of models, and the potential for biases in the data that could result in unequal access to care.
However, it is crucial to ensure that these models are used ethically and responsibly to benefit all
patients. Moreover, there are also challenges and limitations associated with using DL for health
data integration, such as the need for high-quality data and the interpretability of models. Table 3
shows a few of the most popular deep-learning approaches from literature used for personalized
health monitoring in various disease diagnoses.

4 CHALLENGES AND LIMITATIONS OF DL FOR
PERSONALIZED HEALTH MONITORING

4.1 Technical challenges

Technical challenges and limitations in using DL for personalized health monitoring have been
widely recognized and addressed in the recent literature. Some of the most significant challenges
and limitations are discussed below.

1. Data quality and quantity: DL algorithms rely heavily on the quality and quantity of data.
In personal health monitoring, data collected from wearable devices and health sensors are
often noisy, unstructured, and incomplete. This leads to difficulties in data pre-processing and
representation, which affects the performance of DL models.

2. Model complexity and overfitting: DL models are often very complex and can have millions of
parameters, leading to the risk of overfitting. Overfitting occurs when a model fits too closely
to the training data, which can result in poor generalization to unseen data. This is a particu-
lar challenge in personalized health monitoring, where data is unique to each individual and
requires individualized models.

3. Lack of interpretability: DL algorithms are often considered as “blue box” models, which makes
it difficult to understand the underlying reasoning behind the predictions. This is a major
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limitation in the medical domain, where decisions must be transparent and explainable to
ensure patient safety.

4. Privacy concerns: Personal health monitoring data often contains sensitive information, such
as medical history, demographic information, and lifestyle habits. Ensuring the privacy and
security of this data is crucial, especially when using cloud-based DL models.

5. Computational requirements: DL algorithms require significant computational resources,
including high-performance GPUs and large amounts of memory. This is a challenge in per-
sonal health monitoring, where data is often collected from wearable devices with limited
computational power.

6. Generalizability: DL models must be able to generalize well to different populations, health
conditions, and data sources. This is a challenge in personalized health monitoring, where
data is unique to each individual and requires individualized models.

The technical challenges and limitations in DL for personalized health monitoring are
significant and require ongoing research and development to overcome. Despite these chal-
lenges, DL has the potential to revolutionize personalized health monitoring and prediction,
providing new opportunities for early diagnosis, disease management, and patient-centric
healthcare.

4.2 Ethical considerations

The use of DL in personalized health monitoring presents a range of ethical challenges and con-
siderations. It is important to address these challenges and considerations to ensure that the use
of DL in personalized health monitoring is ethical, responsible, and effective. The following are
some of the key areas of concern:

1. Privacy: The use of personal health data in DL algorithms raises privacy concerns. The data col-
lected for personalized health monitoring may be sensitive and personal, and it is crucial that
this data is stored, processed, and shared in an ethical manner. The privacy of patients’ health
information must be protected, and the data should only be used for the intended purpose,
with proper consent from the individuals concerned.

2. Bias and discrimination: The use of DL algorithms may introduce bias and discrimination into
the results. This can occur if the algorithms are trained on biased data sets or if the algorithms
are not designed to be fair and impartial. For example, a DL model trained on a predominantly
white population may not perform as well for individuals from other ethnic groups. It is impor-
tant to ensure that DL models for personalized health monitoring are trained on diverse data
sets to reduce the risk of bias and discrimination.

3. Responsibility and accountability: The use of DL algorithms in personalized health monitoring
may lead to incorrect or misleading results. For example, a DL algorithm may predict a health
outcome that is not supported by the available data. In such cases, it is important to determine
who is responsible for the incorrect result and what steps should be taken to correct it. There
should be clear mechanisms in place to hold those responsible accountable for their actions.

4. Data quality: The quality of the data used to train DL algorithms is critical. If the data is incor-
rect or of poor quality, the results of the algorithm may also be incorrect. It is important to
ensure that the data used to train DL algorithms is accurate and reliable.
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5. Interpreting results: The results of DL algorithms for personalized health monitoring may be
difficult to interpret. This can make it challenging for healthcare providers and patients to
understand the results and make informed decisions based on them. It is important to develop
methods to make the results of DL algorithms more interpretable and understandable.

4.3 Privacy concerns

The use of DL for personalized health monitoring raises several privacy concerns that must be
considered to ensure the responsible use of this technology. The challenges related to data col-
lection and storage, data sharing, bias in algorithms, algorithm transparency, and data security
and privacy regulations must be addressed to ensure the responsible use of DL for personalized
health monitoring. This section presents a discussion on the key privacy concerns related to the
use of DL for personalized health monitoring.

1. Data collection and storage: The first privacy concern is related to the collection and stor-
age of personal health data, which is a sensitive type of information. The data collected for
health monitoring purposes can be used for malicious purposes if it falls into the wrong hands.
Therefore, it is essential to ensure that the data collected and stored is protected using secure
methods, such as encryption and access control mechanisms.

2. Data sharing: Another privacy concern is related to the sharing of personal health data. This
data can be shared with third parties, such as healthcare providers, researchers, or insurance
companies. The sharing of personal health data can lead to privacy breaches and can also result
in discrimination or prejudice based on the individual’s health status.

3. Bias in algorithms: DL algorithms can also introduce biases that can result in discrimination
and prejudice. For example, if the training data used to develop the algorithm contains biased
samples, the algorithm will also be biased. This can result in discriminatory predictions and
can also have a negative impact on individual privacy.

4. Algorithm transparency: Another challenge related to the use of DL for personalized health
monitoring is the lack of transparency in the decision-making process of the algorithms. The
lack of transparency makes it difficult to understand how the algorithms are making pre-
dictions and also makes it difficult to detect and correct any biases that may exist in the
algorithms.

5. Data security and privacy regulations: Personal health data is protected by privacy regulations,
such as the general data protection regulation (GDPR) in Europe and the Health Insurance
Portability and accountability act (HIPAA) in the United States. The use of DL for personalized
health monitoring must comply with these regulations to ensure the privacy of personal health
data.

Given the sensitive nature of personal health data, privacy concerns are a crucial component
of DL-based customized health monitoring. The DL architectures support strong data anonymiza-
tion methods, safe data storage procedures, and stringent access control mechanisms to address
crucial issues in healthcare data. Differential privacy techniques are also used predominantly
to protect individual data privacy while allowing aggregate data analysis. Ongoing research
and development aim to improve these privacy-preserving strategies to foster confidence and
guarantee adherence to legal requirements.
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5 DISCUSSION

5.1 Answers to research questions

5.1.1 What are the recent developments in the application of DL
for personalized health monitoring and prediction?

Recent developments in the application of DL for personalized health monitoring and predic-
tion include real-time monitoring and prediction, multi-modal data integration, and the ability to
analyze large amounts of data from various sources such as EHRs, wearable devices, and mobile
apps. Various types of DL models can be used, such as CNNs for processing images and signals
from wearable devices and sensors, RNNs for processing sequential data such as time-series data
from wearable devices or EHRs, and generative models such as VAEs for generating synthetic
data for use in personalized medicine and drug discovery. DL models have revolutionized the field
of personalized healthcare by providing new avenues for disease diagnosis, exploring treatment
options, and drug discovery.

5.1.2 What are the various DL architectures used for personalized health
monitoring and prediction, and how do they work?

Various DL architectures are used for personalized health monitoring and prediction, including
CNNs, recurrent neural networks (RNNs), and generative models such as variational autoen-
coders (VAEs). CNNs are commonly used for processing images and signals from wearable
devices and sensors, while RNNs are used for processing sequential data such as time-series data
from wearable devices or EHRs. VAEs are used for generating synthetic data for use in personal-
ized medicine and drug discovery. CNNs work by using multiple layers of filters to extract features
from images or signals. The filters are learned through backpropagation, and the output of each
layer is fed into the next layer. RNNs work by processing sequential data through a series of hid-
den states, with each state being a function of the previous state and the current input. This allows
RNNs to capture temporal dependencies in the data. VAEs work by learning a low-dimensional
representation of the data, which can be used to generate new data points that are similar to the
original data. Overall, DL architectures are used to process large amounts of data from various
sources such as EHRs, wearable devices, and mobile apps, and to provide accurate and timely
predictions of health outcomes.

5.1.3 How can DL-based approaches be used to develop personalized
health monitoring systems for wearable devices, EHRs, and social media data?

DL-based approaches can be used to develop personalized health monitoring systems for wear-
able devices, EHRs, and social media data by analyzing large amounts of data from these sources
and providing personalized insights and recommendations to patients. For wearable devices, DL
algorithms can be used to process data from sensors and provide real-time monitoring of vital
signs, activity levels, and other health-related metrics. DL models can also be used to predict
health outcomes based on this data, such as the risk of falls or the likelihood of developing a par-
ticular disease. For EHRs, DL algorithms can be used to analyze large amounts of patient data and
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identify patterns and correlations that might not be apparent to human clinicians. This can help
improve patient outcomes, reduce errors, and save time and money. DL models can be used to pre-
dict outcomes such as mortality, readmissions, and disease progression, and can capture complex
relationships between variables that might not be apparent using traditional statistical models.
For social media data, DL algorithms can be used to analyze user-generated content and identify
patterns and trends related to health behaviors and attitudes. This can help identify at-risk popula-
tions and provide targeted interventions to improve health outcomes. DL models can also be used
to predict health outcomes based on social media data, such as the likelihood of developing a par-
ticular disease or the risk of relapse for individuals with substance use disorders. Such DL-based
approaches can be used to develop personalized health monitoring systems that provide timely,
accurate, and relevant information to patients, healthcare providers, and researchers. These sys-
tems have the potential to improve health outcomes, reduce healthcare costs, and advance our
understanding of health and disease.

Real-time health trend analysis and early health issue diagnosis are made possible by incorpo-
rating social media data into DL health monitoring applications. Social media data may be used to
monitor issues related to public health, spot new health trends, and make context-sensitive health
forecasts. attitude analysis aids in comprehending public attitudes about health-related events,
while advanced natural language processing (NLP) techniques are utilized to extract pertinent
health information from social media posts.123 Personalized health monitoring systems become
more accurate and comprehensive when this data is integrated with other health sources.

5.1.4 What are the challenges associated with the application of DL
in personalized health monitoring, and how can they be addressed?

There are several challenges associated with the application of DL in personalized health monitor-
ing, including data quality and quantity, model complexity and overfitting, generalizability, data
privacy and security, and data availability. Data quality and quantity are significant challenges
in personalized health monitoring, as data collected from wearable devices and health sensors
is often noisy, unstructured, and incomplete. This leads to difficulties in data pre-processing
and representation, which affects the performance of DL models. To address this challenge,
researchers can explore new methods for data cleaning, feature extraction, and data augmen-
tation. Model complexity and overfitting are also significant challenges in personalized health
monitoring, as DL models are often very complex and can have millions of parameters, leading
to the risk of overfitting. To address this challenge, researchers can explore new methods for reg-
ularization, early stopping, and model selection. Generalizability is a challenge in personalized
health monitoring, as DL models must be able to generalize well to different populations, health
conditions, and data sources. To address this challenge, researchers can explore new methods for
transfer learning, domain adaptation, and model interpretability. Data privacy and security are
also significant challenges in personalized health monitoring, as personal health data is particu-
larly vulnerable to breaches, theft, or misuse. To address this challenge, researchers can explore
new methods for privacy-preserving data analysis, secure data sharing, and data anonymization.
Data availability is another challenge in personalized health monitoring, as the accuracy and per-
formance of DL models depend on the quality and quantity of data available for training and
testing. To address this challenge, researchers can explore new methods for data collection, data
sharing, and data integration. Overall, addressing these challenges requires ongoing research and
development in the field of DL for personalized health monitoring. By developing new methods
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and techniques, researchers can overcome these challenges and realize the full potential of DL
for personalized health monitoring and prediction.

5.1.5 What are the future directions for the application of DL
in personalized health monitoring and prediction, and what are the potential
implications for healthcare delivery?

The future directions for the application of DL in personalized health monitoring and prediction
include the integration of DL models with EHRs, the development of personalized interventions,
and the use of DL models for drug discovery and precision medicine. Integrating DL models
with EHRs can provide more comprehensive and accurate health information for more effec-
tive predictions and treatment. This can lead to improved patient outcomes, reduced healthcare
costs, and more efficient healthcare delivery. Personalized interventions can be developed using
DL algorithms to provide targeted and individualized treatment plans for patients. This can lead
to more effective treatment outcomes and improved patient satisfaction. DL models can also be
used for drug discovery and precision medicine by analyzing large amounts of data from vari-
ous sources such as genomics, proteomics, and metabolomics. This can lead to the development
of more effective and personalized treatments for a wide range of diseases. The potential impli-
cations for healthcare delivery include improved patient outcomes, reduced healthcare costs,
and more efficient healthcare delivery. DL-based approaches can provide accurate and timely
predictions of health outcomes, leading to more effective treatment plans and improved patient
satisfaction. Additionally, DL-based approaches can help identify at-risk populations and provide
targeted interventions to improve health outcomes. Overall, the future directions for the applica-
tion of DL in personalized health monitoring and prediction are promising, and have the potential
to revolutionize the way we approach healthcare delivery.

5.2 Guidelines for DL deployment for personalized healthcare are
as follows

1. Data quality and quantity: Ensure that the data used for training and testing DL models is
of high quality and quantity. This includes ensuring that the data is accurate, complete, and
representative of the population being studied.

2. Model selection and validation: Select appropriate DL models for the specific healthcare
application and validate the models using appropriate metrics and techniques.

3. Interpretability and transparency: Ensure that the DL models used for personalized healthcare
are interpretable and transparent so that healthcare providers and patients can understand
how the models arrived at their predictions.

4. Privacy and security: Ensure that the privacy and security of patient data are protected
throughout the entire process of DL deployment, from data collection to model training and
testing.

5. Ethical considerations: Consider the ethical implications of using DL for personalized health-
care, including issues related to bias, fairness, and informed consent.

6. Integration with EHRs: Integrate DL models with EHRs to provide more comprehensive and
accurate health information for more effective predictions and treatment.
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7. Personalized interventions: Use DL algorithms to develop personalized interventions for
patients, based on their unique health profiles and needs.

8. Generalizability: Ensure that DL models can generalize well to different populations, health
conditions, and data sources.

9. Ongoing research and development: Continue to invest in research and development to over-
come technical, ethical, and privacy challenges associated with DL deployment for personal-
ized healthcare.

By following these guidelines, DL can be leveraged to revolutionize personalized health-
care, providing new opportunities for early diagnosis, disease management, and patient-centric
healthcare.

5.3 Limitations of this review

This review article provides a comprehensive overview of DL methods for personalized health
monitoring. However, it is important to keep in mind its limitations and to further advance
research in this field.

1. Scoped to DL: The review is focused on DL methods, ignoring other machine learning or
non-machine learning-based methods, which might have their own limitations, strengths, and
applications in personalized health monitoring.

2. Data availability: The accuracy and performance of DL models depend on the quality and
quantity of data available for training and testing. This review does not take into consideration
the limitations of data availability and quality, which may affect the performance of DL models
for personalized health monitoring.

3. Personalization: Personalized health monitoring requires the collection and use of personal
information such as medical history, genetic information, lifestyle habits, and so forth. This
review does not cover the ethical, legal, and technical issues related to the collection, storage,
and usage of such personal information.

4. Diversity: This review does not take into consideration the diversity of individuals and popu-
lations, which may affect the performance of DL models for personalized health monitoring.
This diversity includes differences in age, gender, ethnicity, and socioeconomic status, which
can impact the accuracy of deep-learning models.

5. Performance evaluation: The evaluation of DL models for personalized health monitoring is a
challenging task, as it requires the collection of large and diverse data sets, proper selection of
evaluation metrics, and fair comparison of different models. This review does not address the
limitations and challenges of performance evaluation in this field.

5.4 Open research challenges

Despite the promising advancements in DL for personalized health monitoring, there are still
several open research challenges that need to be addressed in order to fully realize the potential
of these methods. These challenges highlight the need for continued research and development
in the field of DL for personalized health monitoring, in order to fully realize its potential and
overcome its limitations as follows:
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1. Data privacy and security: One of the biggest concerns with the use of DL for personalized
health monitoring is the privacy and security of sensitive medical information. This infor-
mation is particularly vulnerable to breaches, theft, or misuse, and there is a need for robust
privacy-preserving methods to protect this data.

2. Data quality and availability: Another challenge is the quality and availability of data, as
the accuracy of DL models is highly dependent on the quality and diversity of the data they
are trained on. Additionally, many health monitoring systems rely on wearable devices and
self-reported data, which may not always be reliable or accurate.

3. Explainability and interpretability: DL models are often considered black boxes, making it dif-
ficult to understand how they arrive at a particular prediction. This lack of transparency can
limit the trust that patients, doctors, and regulatory bodies have in these systems, and there is
a need for more interpretable models that can be more easily understood.

4. Generalization: Another challenge is a generalization, as DL models may not always perform
well on new or unseen data. This can be particularly problematic in the health monitoring
context, where the performance of the model may have significant consequences for patients.

5. Integration with existing healthcare systems: Finally, there is a need for the integration of
DL-based personalized health monitoring systems with existing healthcare systems. This will
allow for seamless data transfer and collaboration between healthcare providers, and will also
help to ensure that these systems are used in the most effective and efficient manner.

5.5 Future directions

The future of DL in personalized health monitoring and prediction is bright, but many technical,
ethical, and privacy challenges need to be addressed. With continued investment and develop-
ment, these challenges can be overcome and DL can be leveraged to revolutionize the way that we
monitor and predict health outcomes. Future directions for DL in personalized health monitoring
and prediction could include the following:

1. Integration with EHRs: Currently, DL models for personalized health monitoring rely on
data collected from wearable devices and self-reported health metrics. Integrating these mod-
els with EHRs can provide more comprehensive and accurate health information for more
effective predictions and treatment.

2. Personalized interventions: DL algorithms can be used to develop personalized interventions
that can be adapted to the specific health needs of each individual. This could include targeted
treatment plans, tailored lifestyle recommendations, and personalized medication regimes.

3. Improved model generalizability: Despite the progress made in DL for personalized health
monitoring, many models have limited generalizability and can only be applied to specific
populations or health conditions. Future research should aim to develop models that can be
applied more broadly to a wider range of populations and health conditions.

4. Model explainability: Despite the accuracy of DL models, they can be difficult to interpret
and understand, leading to questions about their transparency and accountability.124 Future
research should aim to develop models that are more interpretable and transparent so that the
reasoning behind their predictions can be better understood. However, there are a few works
in health care that follow this explainable AI to reveal the model’s role in health monitoring.125

5. Real-time monitoring and prediction: DL algorithms can be used to provide real-time health
monitoring and predictions. This could involve incorporating data from wearable devices,
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sensors, and other sources in real time to provide more accurate and up-to-date health
information.

6. Multi-modal data integration: DL algorithms can be used to integrate and analyze data from
multiple sources, including medical imaging, genomics, and other health data. This can pro-
vide a more comprehensive view of an individual’s health status and improve the accuracy of
predictions.

6 CONCLUSIONS

This article has provided a comprehensive review of the recent developments in the application
of DL for personalized health monitoring and prediction. As personalized healthcare becomes
increasingly important in managing chronic diseases and addressing the needs of an aging pop-
ulation, DL has emerged as a promising approach for accurate and efficient health outcomes.
DL architectures and their applications in personalized health monitoring, including its utiliza-
tion through wearable devices, EHRs, and social media data. By leveraging these diverse health
data sources, DL-based methods have demonstrated their potential to improve healthcare deliv-
ery by providing timely and accurate predictions of health outcomes. Through the exploration of
these topics, the article has provided valuable insights into the potential of DL by addressing the
challenges and limitations. Through this, future researchers can focus on overcoming technical
barriers, addressing ethical concerns, and ensuring privacy protection.
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