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ABSTRACT
This work presents the development of a model-based online damage identification
system for a 13th century rammed earth (RE) tower in the Alhambra, the Muham-
mad Tower. The system is fed with continuous data from an ambient vibration-based
monitoring system and a meteorological station. Ambient vibrations are continu-
ously processed through Operational Modal Analysis (OMA), and environmental
effects are minimised via statistical pattern recognition. The normalized modal sig-
natures are used to update the stiffness properties of certain parts of the tower
through inverse model calibration. To do so, a high-fidelity three-dimensional finite
element model (FEM) of the tower is developed. Since its computational burden
precludes conducting online calibration, the FEM is bypassed by a light Kriging
surrogate model (SM). In this light, the developed SM-assisted system identifica-
tion constitutes a long-term Structural Health Monitoring (SHM) system outputting
quasi-real-time series of modal properties and local stiffness parameters, so providing
full damage assessment (detection, localization and quantification). The presented
results refer to a time period of three months since January until March 2022.
Numerical results and discussion are reported concerning the characterization and
removal of environmental effects, and synthetic damage scenarios through non-linear
simulations are used to validate the developed damage identification system.
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1. Introduction1

Raw earth has been used worldwide for millennia as a traditional construction ma-2

terial, and nowadays earthen architecture is attracting growing interest as a viable3

solution for modern sustainable building policies (Bernardo et al. (2022)). The most4

ancient use of this material dates back to 10,000 B.C.E. as evidenced by archaeo-5

logical excavations of the first permanent dwellings in South-west Asia (Schroeder6
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(2016)). The most widespread construction techniques with raw earth are adobe ma-7

sonry and RE (Minke (2013)). Adobes are sun-dried mud bricks typically layered with8

earth mortar, while RE consists in compacting moistened earth inside a form-work to9

erect walls. Rammed earth construction has a particularly long tradition in Spain and10

Portugal, where it prospered during the Islamic occupation of the Iberian Peninsula11

between the 8th and the 15th centuries (Jaquin et al. (2007); Jiménez-Delgado and12

Guerrero (2006)). Noticeable examples are the historic centre of the city of Córdoba,13

or the Alhambra, Generalife and Albayźın in Granada, enlisted by UNESCO as World14

Heritage Sites (WHSs) (Viu et al. (2008)). Given their strategic role in the tourism15

industry and related sectors as well as their invaluable historical, architectural and16

artistic value, there exists broad awareness among citizens and administrations on the17

critical importance of safeguarding these Cultural Heritage (CH) structures. Nonethe-18

less, although the implementation of SHM to civil engineering infrastructures such as19

bridges or dams is becoming popular, the application to CH structures and specially20

to RE constructions remains marginal.21

In the broadest sense, SHM exploits long-term monitoring data to track anomalies22

in the structural performance caused by damage and, desirably, to predict damage23

evolution and structural life expectancy (Boller et al. (2009)). Among the wide vari-24

ety of available technologies, ambient vibration-based SHM has become particularly25

popular for CH structures owing to their non-destructive nature and minimum intru-26

siveness, causing no disruption to the normal fruition of the monitored assets (Carden27

and Fanning (2004); Pallarés et al. (2021)). These systems are often complemented28

with sensors assessing the environmental and operational conditions (EOC) to facil-29

itate the discrimination of damage effects from normal fluctuations in the in-service30

structural performance. Environmental effects typically translate into daily and sea-31

sonal trends in the dynamic response of the monitored structure, which may mask32

the appearance of structural pathologies and thus need to be filtered out through33

pattern recognition (Farrar and Worden (2012)). In this regard, a noticeable evidence34

is the well-known benchmark case study of the Z24-Bridge in Switzerland first re-35

ported by Peeters and De Roeck (2001), who found variations of up to 18% in the36

first four resonant frequencies of the bridge primarily driven by temperature oscilla-37

tions. In general, field applications reported in the literature reveal that the effects38

of EOC are extremely case-dependent. In masonry structures, positive correlations39

between environmental temperature and resonant frequencies are often observed (see40

e.g. Ceravolo et al. (2021); Ubertini et al. (2018)). Such a behaviour is commonly as-41

cribed to the closure of surface- or micro- cracks induced by thermal expansion with42

the subsequent stiffening effect. Nevertheless, completely different correlations can be43

found depending on the structural topology, solar radiation, material heterogeneity,44

and more. For instance, Gentile et al. (2019) reported negative correlations between45

temperature and the resonant frequencies of the Milan Cathedral (Italy). The com-46

bination of static and dynamic monitoring allowed those authors to conclude that47

such a correlation was driven by the actions exerted by metallic tie-rods in the cathe-48

dral. Similarly, Garćıa-Maćıas and Ubertini (2022b) reported negative correlations49

between environmental temperature and the resonant frequencies of a masonry palace50

in Gubbio (Italy), the Consoli Palace. In that case, such correlations were ascribed to51

temperature-induced softening of some metallic tie rods restraining the lateral thrusts52

exerted by the barrel-vault ceiling of the palace.53

While most research on condition-based maintenance of CH assets focuses on ma-54

sonry constructions, the number of experiences on continuous SHM of earthen ar-55

chitecture is considerably more scarce. Among the few works in the literature, it is56
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worth noting the contribution by Miccoli et al. (2017) who reported an experimental57

campaign carried out for a time period of 13 months to evaluate the structural vul-58

nerability of a medieval earthen building at Ambel (Zaragoza, Spain). The potential59

presence of active damage mechanisms was surveyed with a static monitoring system60

comprising linear variable displacement transducers (LVDTs) and digital strain gauges61

across major cracks in the façades of the building. Correlation analyses with environ-62

mental factors (temperature and humidity) allowed those authors to conclude that the63

monitored crack displacements were reversible and solely driven by daily and seasonal64

EOC, thus discarding the existence of active damage mechanisms. In general, negative65

correlations between crack displacements and temperature were observed – decreasing66

temperature induces material contraction with the subsequent crack opening. Another67

noteworthy contribution was made by Aguilar et al. (2019) who reported the contin-68

uous ambient-vibration monitoring of the 16th century adobe Church of San Pedro69

Apóstol in Andahuaylillas (Peru) from March 2017 to December 2018. Their results70

evidenced the existence of positive and negative correlations between the resonant71

frequencies of the church with environmental temperature and humidity, respectively.72

With the aim of assessing the potential appearance of damage after a 5.2 Mw earth-73

quake occurred in October 2018 and with epicenter 110.8 km far from the church,74

those authors eliminated the effects of ECO through and Autoregressive model with75

Exogenous (ERX) input and Principal Component Analysis (PCA). In agreement with76

visual inspections and the low ground-motions registered on site, the filtered time se-77

ries of modal signatures proved no anomaly indicating the appearance of structural78

damage.79

The damage identification problem is commonly organized in a hierarchical struc-80

ture of increasing complexity (Rytter (1993)): Level I: Detection; Level II: Local-81

ization; Level III: Classification; Level IV: Extension; and Level V: Prognosis. On82

this basis, damage assessment can be generally conducted by means of unsupervised83

learning (UL) and supervised learning (SL) tools (Hou and Xia (2021)). Unsuper-84

vised techniques through statistical pattern recognition and anomaly detection have85

become particularly popular given its independence from structural models and re-86

lated uncertainties, as well as its straightforward implementation into continuous SHM87

schemes (de Oliveira Dias Prudente dos Santos et al. (2016); Martinez-Luengo et al.88

(2016); Garćıa-Maćıas and Ubertini (2022a)). Nonetheless, a major drawback of UL89

regards its limitation to damage detection (Level I), being possible to locate and quan-90

tify defects only in some particular cases. Although this can suffice for the maintenance91

of singular CH constructions, SL techniques allowing higher damage identification lev-92

els may become imperative for the management of architectural ensembles and the93

coordination of field inspections with emergency services after natural disasters such94

as earthquakes. These techniques, often referred to as Structural Identification (St-95

Id), represent the process of construction and inverse calibration of a mathematical96

model of a structural system through observations and experimental data, which can97

be used for estimations and predictions of increased confidence on the condition and98

residual life of structural systems (Lai et al. (2021)). The calibration of such mod-99

els is typically conducted through model updating approaches. Model updating aims100

to bridge the gap between numerical models and real systems by tuning the model101

parameters in such a way that the mismatch amidst experimental and theoretical ob-102

servations is minimal (Alkayem et al. (2018)). The progressive cheapening of sensor103

technologies (Mishra et al. (2022)) and the hasty development of machine learning104

(ML) and artificial intelligence (AI) (Mishra (2021)) in recent years have enabled the105

incorporation of SL approaches to the novel concept of Digital Twins (Chakraborty106
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et al. (2021); Chiach́ıo et al. (2022)). In general, a digital twin (DT) represents a dig-107

ital replica of a physical asset characterized by cyber-physical interaction (Tao et al.108

(2018)). In the context of SHM of civil engineering structures, a DT involves a physics-109

based or a machine learning model that continuously exploits monitoring data to infer110

and classify the health condition of the physical asset (Angjeliu et al. (2020)). In this111

light, a growing number of recent publications can be found in the literature on the112

development of continuous deterministic (Cabboi et al. (2017); Garćıa-Maćıas et al.113

(2020)) and probabilistic (Garćıa-Maćıas and Ubertini (2022c); Zhou et al. (2022))114

model updating approaches capable of providing real-time damage identification.115

In the realm of RE historic constructions, most research efforts in the literature have116

focused on the development of efficient seismic vulnerability assessment techniques. It117

is worth noting the work by Silva et al. (2018) who proposed a general classification118

method for the vulnerability assessment of twenty traditional Portuguese RE dwellings119

based on simple geometrical and seismic hazard indexes. In addition, a set of destruc-120

tive and non-destructive tests for more precise classifications were also proposed and121

applied to a modern RE building in Esposende, northern Portugal. Considerable efforts122

have been also devoted to the modelling of RE historic constructions. This represents123

a formidable problem given the complex constitutive properties of RE (Ávila et al.124

(2022a)) and the intrinsic uncertainties of any ancient structure (uncertain history125

of interventions, pre-existing pathologies, material heterogeneity, to mention a few).126

Smeared damage approaches based on the concrete damage plasticity (CDP) constitu-127

tive law have proved efficient to simulate the non-linear behaviour of adobe (Al Aqtash128

et al. (2017)) and RE structures (Bui et al. (2020)). Following this approach, Nguyen129

et al. (2021) evaluated different modelling strategies to replicate the seismic response of130

an inner-reinforced RE building under shaking table tests conducted by Zhou and Liu131

(2019). Their results evidenced the importance of implementing 3D volume elements132

to achieve close fittings with the experimental data. Another noteworthy contribution133

on the modelling of full-scale RE assets is the one by Mart́ınez et al. (2022) who re-134

ported the development of a 3D FEM of the 13th century Tower of Comares in the135

Alhambra, Granada (Spain). Given the massive nature of this sort of constructions136

and the considerable material heterogeneity stemming from diverse interventions over137

centuries, those authors evidenced the importance of implementing 3D elements to138

account for an accurate definition of volumes and material distribution. In particular,139

after a detailed material and geometrical survey, those authors considered 12 struc-140

tural partitions and 9 different material models in the FEM of the tower. The seismic141

vulnerability of another prominent tower in the Alhambra, the Torre de la Vela, was142

also recently investigated by Vuoto et al. (2022) through non-linear static simulations.143

For that purpose, those authors developed a high-fidelity 3D FEM of the tower ex-144

ploiting a comprehensive on-site survey involving laser scanning, sonic tests, and an145

ambient vibration test (AVT).146

It is clear from the literature review above that the numerical modelling of historic147

RE constructions is typically computationally intensive, which represents a major ob-148

stacle for the implementation of St-Id into automated long-term SHM systems. In149

this light, this work presents the development of a SM-assisted online damage iden-150

tification system for a 13th-century RE tower in the Alhambra monumental complex,151

the Muhammad Tower. The present investigation is framed within a research project152

aimed at assessing the structural damage experienced by the tower after a seismic153

swarm occurred from February until August 2021. In this context, a vibration-based154

SHM system was installed, comprising 8 uni-axial high-sensitivity piezoelectric ac-155

celerometers deployed at the three main levels of the tower and acquiring ambient156
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vibrations continuously since January until March 2022. On this basis, the modal157

properties of the tower are continuously extracted by automated Operational Modal158

Analysis (OMA), and the presence of benign EOC is characterized with environmen-159

tal data from an adjacent meteorological station and minimised via statistical pattern160

recognition. Then, the normalized time series of modal signatures are used to infer the161

local stiffness distribution in the tower through physics-based St-Id. To do so, a high-162

fidelity three-dimensional FEM is developed accounting for the complex distribution163

of volumes in the structure. Since the computational burden of the 3D FEM precludes164

its direct use for online inverse calibration, it is bypassed by a light meta-model. To165

this aim, a Kriging SM is constructed to map the selected stiffness parameters and the166

modal signatures of the tower. The developed SM-assisted St-Id approach constitutes167

a long-term SHM system outputting quasi-real-time series of global modal properties168

and local stiffness parameters, so providing full damage assessment (detection, local-169

ization and quantification). The presented results first concern the characterization170

and removal of environmental effects upon the modal properties of the tower. Then,171

synthetic damage scenarios obtained through non-linear static simulations are used to172

demonstrate the effectiveness of the proposed methodology.173

The remainder of this paper is organized as follows. Section 2 describes the investi-174

gated CH construction, the Muhammad Tower, as well as the SHM system installed175

in the tower. Section 3 presents the proposed meta-model assisted St-Id approach.176

Sections 4 and 5 overview the theoretical background of automated OMA and Kriging177

meta-modelling, respectively. Section 6 presents the numerical results and discussion178

and, finally, Section 7 concludes the paper.179

2. Muhammad Tower: Description of the structure and monitoring180

system181

The Muhammad Tower in Fig. 1 (a,c), also referred to as the Hontiveros Tower and182

the Tower of the Hens (English translation of its Spanish name, Torre de las gallinas),183

is the westernmost tower of the monumental complex of the Alhambra (Fig. 1 (b)),184

which is currently one of the few preserved palatine cities of the medieval Islamic185

period in Europe (8th-15th centuries). The Alhambra overlooks the city of Granada186

(Andalusia) on top of the Sabika Hill at the foot of the Sierra Nevada Mountains187

in South-East Spain (see Fig. 1 (b)). Originally constructed as a military enclosure,188

the Alhambra became a fortified palatine city during the Nasrid dynasty in the mid-189

13th century. Designated as a world heritage site by UNESCO in 1984, the Alhambra190

monumental complex is the second most visited monument in Spain and attracts more191

than 3 million tourists every year.192

Inserted in the walls of the Alhambra Fortress between the Tower of the Cube193

and the Mexuar Palace, the Muhammad Tower was erected in the 13th-century by194

Muhammad II to control the access to the royal palaces. The tower has an approx-195

imately rectangular cross-section (6.6 × 9.0 m) composed of 1.3-1.9 m thick RE and196

brick masonry walls. Along its height, the tower has two vaulted floors (average thick-197

ness of 1.65 m) and a terrace rising 11.6 m above the foundation, including a 0.80 m198

tall parapet and 1.2 m tall battlements (Fig. 1 (d)). The three levels of the tower are199

connected by masonry staircases at the South-West façade of the tower. The founda-200

tions lay on a geological formation of conglomerates with intercalated sands and clays201

of the Pliocene and Lower Pleistocene, known as the Alhambra Formation. Although202

there are evidences of numerous modifications of the tower over the centuries, it is only203
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after the 50s that rehabilitation interventions start being documented. These include204

the underpinning and consolidation of the foundations of the tower by the architect205

Francisco Prieto-Moreno Pardo in 1975 to rehabilitate the tower after a long period206

of abandonment in the 19th century.207

Level 1

Level 2

Level 3

Level 1

Level 2

Level 3

(a)

(c) (d)

(b)

9.0 m
6.

6 
m z=9.6 m

z=4.7 m

z=0.0 m

N

Figure 1. Drawing of the fortress of the Alhambra by David Roberts 1835 (from the Library of the Patronato

of the Alhambra and Generalife) (a). Panoramic view of the Alhambra and its geographic position (b). View
of the Muhammad Tower (c), plan and elevation views (d).

The present investigation is framed within a research project aimed at assessing208

the seismic vulnerability of the tower after a seismic swarm occurred from Febru-209

ary until August 2021. The seismic sequence registered more than 3,000 events with210

epicentres only about 20-30 km far from the Alhambra and Mw magnitudes ranging211

between 0.2 and 4.5. Preliminary in-situ inspections revealed the existence of im-212

portant earthquake-induced pathologies in the tower, including the extension of some213

pre-existent major cracks and the appearance of new local defects. In particular, severe214

damage was detected at the connections of the battlements and the parapet in the top215

level of the tower, requiring the installation of a temporary underpinning system. With216

the aim of assessing the current condition of the main body of the tower, a continuous217

vibration-based SHM system has been installed since January 2022. The monitoring218

system comprises 8 high-sensitivity piezoelectric accelerometers model PCB393B31219

(µ5% 10.0 V/g, broadband Resolution: 1 µg rms and ±0.5 g pk) installed on the three220

main levels of the tower as shown in Fig. 2 (a). The sensors, labelled with A1 to A8,221

were mounted on heavy steel plates inside IP66 sealed enclosures laying directly on the222

floor. The accelerometers are deployed forming a biaxial station in the East façade and223

a mono-axial one in the North façade (except for the first level where only a bi-axial224

station is installed). Such a configuration was defined from the authors’ experience,225

the inspection of a preliminary FEM of the tower, and the need for locating the sensors226
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inside the tower where they are not visible by the visitors. This sensors layout is aimed227

at characterizing the rigid diaphragm motions of the floors and the global torsional228

rotations of the tower. Ambient vibrations are sampled at 200 Hz and stored in sep-229

arate data files containing 30-min-long records through the LMS Testxpress software230

(Siemens, Munich, Germany). The acceleration signals are recoded by a data acquisi-231

tion system (DAQ) model LMS SCADAS located in the second level, and a portable232

WiFi router is used for data transfer and remote control of the system. The SHM233

system was powered by the electric grid of the Alhambra, so no batteries or backup234

system was provisioned. Environmental data are retrieved from the Granada-Albayźın235

meteorological station managed by the Department of Mineralogy and Petrology from236

the University of Granada, located only 280 m far from the tower. Environmental data237

include air temperature, relative humidity, wind speed, and atmospheric pressure with238

an acquisition frequency of 10 min.239
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WiFi Router

DAQ

Figure 2. Layout of the continuous monitoring system (a) and views of the sensors and the DAQ equipment
(b).

3. Meta-model assisted online damage identification240

The work-flow of the implemented meta-model assisted continuous St-Id approach241

is sketched in Fig. 3. The process iteratively acquires experimental data from the242

physical asset, conducts St-Id by inverse calibration of the FEM through a meta-model,243

and identifies the potential presence of damage. To attain quasi-real-time damage244

identification, it is of pivotal importance to guarantee that the total computational245

time involved in the signal processing, inverse calibration of the FEM, and the damage246

assessment is lower than the acquisition time (30 minutes in this work). If so, at any247

step j + 1, the damage identification can be conducted in parallel with the previous248

acquisition j without accumulating time delays. In this light, the procedure comprises249

four consecutive steps:250

(A) Automated OMA – Ambient vibrations are periodically recorded by a DAQ and251

stored in separate data files containing a certain time duration. Then, a set of252
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modal signatures (resonant frequencies fj , mode shapes ϕj , and damping ratios253

ζj) is extracted through automated OMA.254

(B) Removal of EOC – The presence of benign fluctuations driven by EOC in the255

previously identified modal signatures is minimized through statistical pattern256

recognition.257

(C) SM-assisted St-Id – This step relates the St-Id of the asset through the model258

updating of the FEM. This is accomplished by solving a certain optimization259

problem with an objective function J (x) accounting for the mismatch between260

the theoretical predictions of the model and the previously identified experimen-261

tal modal signatures. As a result, certain damage-sensitive model parameters x262

are calibrated (x̂) and collected in an observation matrix X̂.263

(D) Damage identification – Finally, the appearance of structural damage can be264

appraised by novelty analysis of the time series of modal signatures and model265

parameters contained in X̂. Since the latter are defined according to certain266

structural elements or damage mechanisms, the identification of permanent vari-267

ations in their time series provides direct assessment of the location and severity268

of the damage.269

Automated OMA

X=[x1, x2, ...,xj]

Surrogate model-based St-Id

SSI

Exp. Design (ED)
MCS ∣ FEM 

Sampling of 
design space

X = [x1, x2, ..., xN]

j=j+1

Start

xj=arg min J(x)
x∈�

Model parameters tracking

Initial FEM
calibration

Surrogate 
model

fj , φj

(A)

(C)

HealthyDamage

Anomaly detection(D) 

DAQ

Removal of EOC(B)

Figure 3. Flowchart of the implemented SM-assisted continuous St-Id of historic buildings.

In order to perform the meta-model assisted St-Id, an objective function J (x) in-270

cluding the relative differences between the l target modes of vibration determined271

experimentally and their theoretical counterparts is introduced as follows (Garćıa-272

Maćıas et al. (2020); Garćıa-Maćıas et al. (2021)):273
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J (x) =

l∑
i=1

[
η(1,i)εi (x) + η(2,i)δi (x)

]
+R (x) , (1)

with274

εi (x) =
|f exp
i − f srr

i (x)|
f exp
i

, δi (x) = 1−MAC (ϕexp
i , ϕsrr

i (x)) , (2)

and η(1,i) and η(2,i) being weighting coefficients that scale the contribution of the first275

two terms of the objective function. Terms f exp
i and f srr

i (x) denote the i-th resonant276

frequencies obtained by OMA and by the surrogate model, respectively, while MAC277

stands for the Modal Assurance Criterion (MAC) between the i-th experimental ϕexp
i278

and theoretical ϕsrr
i (x) mode shapes. On this basis, the St-Id procedure is given by279

the following constrained non-linear minimization problem:280

x̂ = arg min
x∈D

J (x) . (3)

The last term in Eq. (1), R (x), represents a regularization term used to mitigate281

ill-conditioning in the St-Id. In this work, a variation of the classical Tikhonov regu-282

larization is introduced as follows:283

R (x) =
1

m

m∑
i=1

η(3,i)

(
xi − x0

i

)2
bi − ai

, (4)

where terms ai and bi denote the limits of the allowed range of variation of model284

parameter xi, i.e. ai ≤ xi ≤ bi, and term η(3,i) represents a trade-off parameter used285

to weigh the intensity of the regularization for every model parameter. The imple-286

mented regularization forces the solution to remain close to a reference vector of design287

variables x0 =
[
x0

1, ..., x
0
m

]T
denoting the undamaged condition. For small values of288

η(3,i), the design variable xi remains almost unrestricted, while too large values may289

over-constrain the variation of xi. Note that the aim of defining different trade-off290

parameters η(3,i) for each model parameter is to tackle the particular sensitivities of291

the modal features to variations in the model parameters. Finally, it is important to292

remark that the optimization problem in Eq. (3) is often non-convex, thereby global293

optimization algorithms are recommended to prevent the optimization from getting294

stuck at local minima.295
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4. Modal identification and data normalization296

4.1. Automated Covariance-driven Stochastic Subspace Identification297

(Cov-SSI)298

The dynamic equilibrium equations of a linear time-invariant system with n2 de-299

grees of freedom (DOFs) under white noise unmeasured excitation can be writ-300

ten in discrete-time state-space form assuming zero-order hold (ZOH) discretization301

as (Juang (1994)):302

x(k+1) = Ax(k) + w(k),

y(k) = Cx(k) + v(k),
(5)

where k ∈ N is a generic time step (i.e. t (k) = k∆t = k/fs with fs = ∆t−1 the sam-303

pling frequency), and matrices A ∈ R2n2×2n2 and C ∈ Rno×2n2 respectively denote the304

state and output matrices of the system, no being the number of DOFs monitored by305

sensors. Vectors x ∈ R2n2 and y ∈ Rno stand for the state and observation vectors.306

Vectors w(k) ∈ R2n2 and v(k) ∈ Rno stand for zero-mean realizations of white noise307

processes accounting for the unmeasured input forces and the measurement noise, re-308

spectively. It can be demonstrated that the structure’s natural frequencies ωi, damping309

ratios ζi and complex mode shapes ϕi can be extracted from the eigenvalues µi and310

eigenvectors φi of matrix A as (Peeters (2000)):311

λi =
ln (µi)

∆t
⇔ λi = −ζiωi + iωi

√
1− ζ2

i , ϕi = Cφi, (6)

with i =
√
−1 being the imaginary unit.312

On this basis, the Cov-SSI method identifies the stochastic model in Eq. (5)313

by processing the output covariance matrix of the system. To do so, this method314

exploits a fundamental property of stochastic discrete-time state-space models re-315

lating the correlations between measurement records and the system matrices as316

Rj = CAj−1G (Van Overschee and De Moor (2012)), with Rj ∈ R(no×no) being317

the output correlation matrix for a time lag τ = j∆t, and G ∈ R(2n2×no) the next318

state-output covariance matrix given by G = E
[
x(k+1)y

T
(k)

]
. In this light, the Cov-SSI319

method decomposes the output correlation matrices R1 to R(2jb−1) for positive time320

lags varying from ∆t to (2jb − 1)∆t and organized into a no jb × no jb block Toeplitz321

matrix as:322

T1|jb =


Rjb Rjb−1 . . . R1

Rjb+1 Rjb . . . R2

. . . . . . . . . . . .
R2jb−1 R2jb−2 . . . Rjb

 =


C

CA
. . .

CAjb−1

 [Ajb−1G . . . AG G
]

= OΓ,

(7)
where terms O and Γ are the so-called extended observability and reversed extended323

stochastic controllability matrices, respectively. Then, if the Singular Value Decompo-324

sition (SVD) of the block Toeplitz matrix is calculated as:325
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T1|jb = USVT =
[
U1 U2

] [S1 0
0 0

] [
VT

1

VT
2

]
= U1S1V

T
1 . (8)

the comparison of Eqs. (7) and (8) reveals that the observability and the controllability326

matrices can be obtained from the outputs of the SVD as:327

O = U1S
1/2
1 , Γ = S

1/2
1 VT

1 . (9)

Note in Eq. (8) that only a subset of n singular values from S are retained in S1,328

which is referred to as the model order. Once matrices O and Γ are obtained, the329

identification of the state-space matrices is straightforward. On one hand, matrix C330

can be extracted from the first no rows of the observability matrix. On the other hand,331

the state matrix A can be obtained by the Balanced Realization (BR) method first332

proposed by Kung (1978), which exploits the shift structure of the observability matrix333

as:334

A =


C

CA
. . .

CAjb−2


† 

C
CA2

. . .
CAjb−1

 = Oto†Obo, (10)

where Oto and Obo contain the first and the last no(jb − 1) rows of O, respectively,335

and symbol † stands for the Moore-Penrose pseudo-inverse.336

The Cov-SSI algorithm is controlled by two parameters to be defined by the user:337

(i) the model order n given by the number of SVs retained in S1, and (ii) the time-lag338

parameter jb. The value of jb is typically fixed by the rule of thumb 2jb ≥ fs/fo (Reyn-339

ders and De Roeck (2008)), with fo being the fundamental frequency of the system.340

Instead, the model order n is iteratively selected spanning a certain interval from nmin341

to nmax (at least twice the number of expected modes). Then, with the aim of dis-342

criminating between physical and spurious modes, the identified poles are filtered by343

the application of a set of hard criteria (HC) and soft criteria (SC). The HC criteria344

concern the elimination of complex conjugate poles, damping ratios above physically345

feasible values (ζmax), low Mode Phase Collinearity (MPC) values, and high Mode346

Phase Deviation (MPD) values. After applying HC, a list of stable poles is obtained347

by imposing tolerances between consecutive model orders, including relative variations348

of resonant frequencies ∆f , damping ratios ∆ζ, and MAC values. Once a list of sta-349

ble poles are selected and represented in a stabilization chart, physical modes can be350

identified in the shape of columns of stable poles. Such a process, however, requires to351

be automated for its implementation into continuous SHM. In this work, a hierarchical352

clustering approach similar to the one proposed by Zini et al. (2022) is implemented353

following six sequential steps:354

(i) The algorithm starts (k = 1) by considering all the poles λi identified for the355

highest model order nmax as single element clusters.356

(ii) The process continues by comparing the stable poles obtained between every357

two consecutive model orders. Let us denote with f[λ(k)
i ] and ϕ[λ(k)

i ] the i-th358
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frequency and mode shape computed from a pole λ
(k)
i identified at an arbitrary359

k-th step, respectively. On this basis, the distance dkij between the stable poles360

obtained for the model order nk and those identified for the immediately lower361

model order n(k−1) is computed as:362

dkij = (1− η)

∣∣∣f[λ(k)
i ] − f[λ(k−1)

j ]

∣∣∣
f[λ(k−1)

j ]
+ η

(
1−MAC

(
ϕ[λ(k)

i ],ϕ[λ(k−1)
j ]

))
, (11)

η being a weighting factor between the contributions of ∆f and MAC.363

(iii) Once all the distances are calculated, the minimum distances dki in Eq. (11)364

computed between every two consecutive model orders are collected in a vector365

dk =
[
dk1 d

k
2 . . .

]
.366

(iv) The cut-off threshold is estimated as the 80th percentile of the statistical distri-367

bution of the distances in dk.368

(v) The Π-shape hierarchical tree (dendogram) is formed according to dki , and the369

optimal cut-off threshold is used to cut the tree arranging the stable poles in370

clusters. Low-dimension clusters are filtered out by imposing a minimum number371

of poles required to form a physical cluster.372

(vi) The physical modes are finally defined as the centroids of the previously selected373

clusters.374

4.2. Data normalization375

As anticipated above, it is fundamental to minimize the masking effects of EOC to at-376

tain effective damage identification. In practice, EOC effects are typically more evident377

in resonant frequencies, while mode shapes and damping ratios often remain weakly378

affected (see e.g. Azzara et al. (2018)). Let us denote the time series of nf identified379

resonant frequencies collected in an observation matrix Y =
[
y1, . . . ,yf

]
∈ RN×nf380

containing N observations. In this light, data normalization constitutes the process of381

subtracting the reversible variability in the selected features in Y induced by benign382

EOC. This can be achieved by training a certain statistical model over a set of tp sam-383

ples from Y defining a baseline in-control population, Ytp ∈ Rtp×nf , often referred384

to as the training period (Garćıa-Maćıas and Ubertini (2022a)). This baseline dataset385

must represent the healthy condition of the structure under all possible EOC, being386

a one-year period often adopted. Among the wide variety of data normalization tech-387

niques available in the literature, Multiple Linear Regression (MLR) models represent388

a simple but powerful approach (Garćıa-Maćıas and Ubertini (2022b)). MLR models389

exploit linear correlations between the selected features in Y (estimators) and a set390

of p independent exploratory variables (predictors or independent variables), which391

are typically taken from monitoring data of EOC (e.g. temperature, humidity). The392

predictions by MLR Ŷ of the observation matrix Y are obtained as:393

Ŷ = Pβ = [1N×1,P]

[
βT

0

β

]
, (12)

where 1N×1 is a column vector of ones and P =
[
p1, . . . ,pp

]
∈ RN×p is an observation394

matrix with columns containing the time series of the p selected predictors. Term395
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β0 ∈ Rnf is a vector of intercept terms and β ∈ Rp×nf is a matrix of linear regression396

coefficients. Assuming normally distributed errors between the estimators and the397

predictions by the MLR model over the training period, the least squares estimate of398

the coefficients matrix reads:399

β =
(
P

T
tpPtp

)−1
P

T
tpYtp, (13)

where subscript “tp” has been included to explicitly state that the MLR model is400

trained considering the set of predictors and estimators within the training period.401

Once constructed, the predictions of the MLR model Ŷ from Eq. (13) can be used to402

remove the variance due to EOC from Y through the so-called residual error matrix403

E ∈ RN×nf , that is:404

E = Y− Ŷ. (14)

When the system remains healthy, matrix Ŷ reproduces the part of the variance405

driven by EOC, while E only contains the residual variance stemming from mod-406

elling errors. Conversely, if a certain damage develops, matrix Ŷ remains unaltered407

while matrix E concentrates the damage-induced variance, being thus apt for damage408

identification.409

5. Kriging meta-modelling410

The construction of a SM generally comprises four consecutive steps as sketched in411

Fig. 4, including: (i) Selection of design variables; (ii) Sampling of the design space, (iii)412

Generation of the training population, and (iv) Construction of the SM. The definition413

of the design space consists in selecting all those parameters and their variation ranges414

required to parametrize the original FEM. Let us consider m design variables xi ∈415

R, i = 1, . . . ,m allowed to vary only within a certain physically meaningful range416

[ai, bi]. Accordingly, the vector of design variables x = [x1, . . . , xm]T spans the m-417

dimensional design space D = {x ∈ Rm : ai ≤ xi ≤ bi}. As anticipated in Section 3, the418

selected model parameters must reproduce the effects of potential damage upon the419

investigated response y of the structure. In this light, a SM provides a computationally420

efficient functional mapping between the selected damage-sensitive parameters x and421

the response y ∈ R predicted by the FEM of the structure. In the case of non-intrusive422

SMs, it is necessary to assemble a training population of Ns individuals mapping the423

output y and the design space D, also referred to as the experimental design (ED).424

This is accomplished by drawing a set of samples uniformly over the input design425

space D and building a matrix of design sites X = [x1, . . . ,xNs ] ∈ R(m×Ns). Then,426

the corresponding outputs yi are obtained by direct Monte Carlo simulations (MCS)427

using the main FEM and collected in an observation vector Y =
[
y1, . . . , yNs

]T
. In428

this work, the elastic moduli of certain regions of the FEM (referred to as macro-429

elements hereafter) are defined as damage-sensitive design variables, whilst the modal430

properties extracted from a linear modal analysis of the FEM are assumed as outputs.431

Therefore, different SMs must be constructed for each natural frequency and modal432

amplitude of all the vibration modes involved in the analysis. Specifically, if l modes433
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of vibration are selected and nDOF degrees of freedom are used to characterize the434

mode shapes, a total of l (1 + nDOF ) SMs must be constructed.435

(i) Design variables

x1

y(x)

x2

x1

x2
(ii) Sampling of the design space (iii) ED

X

�

Y

(iv) Training

SM

MCS

Figure 4. Schematic representation of the construction of a non-intrusive SM.

Among the wide variety of non-intrusive SMs available in the literature, the Kriging436

model is selected in this work owing to its high flexibility for adaptation to a wide437

variety of problems (Kleijnen (2009)). The Kriging interpolator conceives the function438

of interest y(x) as the sum of a linear regression term yr (x) and a zero-mean stochastic439

process Z (x) as follows (Kleijnen (2017)):440

y (x) = yr (x) + Z (x) . (15)

It can be understood that yr (x) globally approximates the design space, whilst441

Z (x) introduces localized deviations. The regression function yr(x) depends upon p442

regression parameters κ = [κ1, . . . , κp]
T and certain user-defined regression functions443

f(x) = [f1(x), . . . , fp(x)]T with fi : Rm → R as (Stein (1999)):444

yr(x) = f(x)Tκ. (16)

The stochastic process Z (x) is determined by its covariance function445

Cov [Z(xi)Z(xj)] between any two arbitrary data points xi and xj :446

Cov [Z(xi)Z(xj)] = σ2r (xi,xj ,θ) , (17)

where σ2 stands for the variance of Z (x), and r (xi,xj ,θ) is a given spatial correlation447

function dependent on θ parameters. On this basis, the Kriging predictions ŷ (x) of448

the response y (x) at an arbitrary design site x are defined as:449

ŷ(x) = f(x)Tκ+ r(x)TR−1
[
Y− f(x)Tκ

]
, (18)

where r(x) is a vector containing the correlations between the design sites and x, that450

is:451

r(x)T = [r (θ,x1,x) , . . . , r (θ,xNs
,x)]T , (19)
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and R is a Ns ×Ns positive definite matrix with components Rij = r (xi,xj ,θ).452

From Eq. (18), it is noted that, once the regression model and the correlation func-453

tion are chosen, the Kriging interpolator is determined by the regression parameters454

κ and the correlation parameters θ. In this work, second-order polynomial regression455

functions are used to define the trend term, while Gaussian correlation functions are456

chosen as (Sacks et al. (1989)):457

r (xi,xj ,θ) =

m∏
k=1

exp

[
−θk

(
x

(k)
i − x

(k)
j

)2
]
. (20)

Correlation parameters θk in Eq. (20) determine the shape of the correlation func-458

tion, which may be anisotropic along the dimensions of x. Nevertheless, in this work,459

correlations are assumed isotropic for the sake of simplicity, that is θk = θ ∀ 1 ≤ k ≤460

m. Given the values of the correlation parameters θ, the trend coefficients κ (θ) and the461

variance σ2 (θ) may be computed using the empirical best linear unbiased estimator462

(BLUE) as closed-form functions of θ (refer to Kleijnen (2017); Stein (1999) for further463

details). Instead, the estimation of the correlation parameters θ typically requires to464

solve a non-linear optimization problem, being the maximum-likelihood-estimator one465

of the most common approaches.466

In this work, the construction of the SMs has been carried out through a set of467

in-house Python scripts. Specifically, the input samples of the ED in X are drawn by468

the quasi-random sequence of Sobol using the SciPy toolbox. Then, the observation469

vectors Y are extracted by MCS of the FEM of the Muhammad Tower developed470

in ABAQUS environment (Abaqus (2009)) as described hereafter in Section 6.2. To471

do so, a second Python script has been designed to modify the input ABAQUS file472

according to the samples in X, launch linear modal analysis in ABAQUS, and read the473

resulting modal properties through text files. This script is launched iteratively for all474

the samples in X until completing the observation vectors Y. Finally, the Kriging SMs475

are trained in a third Python script containing the previous formulation. In particular,476

the maximum-likelihood-estimator of the correlation parameters θ is solved using the477

iterative pattern search optimization algorithm proposed by Lophaven et al. (2002) as478

implemented in the DACE toolbox.479

6. Numerical results and discussion480

This section reports the application of the proposed meta-model assisted St-Id ap-481

proach previously introduced in Section 3 to the Muhammad Tower from January482

until March 2022. In particular, the numerical results and discussion are organised as483

follows. Section 6.1 presents the continuous dynamic identification of the tower and484

the analysis of environmental effects. Sections 6.2 and 6.3 report the construction the485

3D FEM of the tower and the corresponding SM, respectively. Finally, Section 6.4 con-486

cerns the implementation of the proposed meta-model assisted St-Id of the Muhammad487

Tower and validation through several synthetic damage scenarios.488
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6.1. Modal identification of the Muhammad Tower489

The dynamic identification approach in Section 4 has been implemented in an in-house490

software suite called MOVA/MOSS (Garćıa-Maćıas and Ubertini (2020)) dedicated to491

long-term SHM. The software code contains all the necessary tools for unsupervised492

damage detection, including (i) signal processing, (ii) automated OMA, (iii) modal493

tracking, (iv) data normalization, and (v) novelty analysis. All the 30 min-long ac-494

celeration records have been processed following a filtering sequence comprising: (i)495

elimination of linear trends, (ii) removal of anomalous spikes through Hanning window496

filtering, and (iii) second order high-pass Butterworth filter with a cut-off frequency of497

2 Hz. Once cleansed, the acceleration time signals are used to extract the modal sig-498

natures of the tower following the automated Cov-SSI procedure previously reported499

in Section 4.1. To do so, the time-lag parameter jb has been assumed as 193 (corre-500

sponding to a time lag of 3.2 s), and the system matrices and the corresponding modal501

features have been estimated considering model orders varying from 20 to 120 with502

steps of 2. For the identification of stable poles, the maximum allowable damping ratio503

ζmax and the MPC and MPD limit values have been set to 10%, 80%, and 50%, re-504

spectively. The modal tolerances in the SC have been defined as ∆f ≤ 1%, ∆ξ ≤ 3%,505

and MAC ≥ 0.99. After the application of the SC, the weighing factor η in Eq. (11)506

to perform the cluster assignments has been set to 0 (distance between the surviving507

stable poles and the modal clusters defined only in terms of resonant frequencies).508

Finally, a minimum size of 3% of the number of stable poles after the application of509

SC has been defined as a reasonable size to consider a cluster as a physical mode.510
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Figure 5. Stabilization diagram obtained by Cov-SSI of the Muhammad Tower (January 10th 2022 10:00
a.m.).

Figure 5 furnishes the stabilization diagram obtained by Cov-SSI of the first 30511

min-long records acquired by the SHM system on January 10th 2022 at 10:00 a.m.512

The automated OMA procedure is applied to the stable poles depicted in Fig 5 in513

the frequency range between 0 and 60 Hz, leading to a total of 8 clusters with modal514

properties reported in Table 1. In the frequency broadband up to 10 Hz, three clear515

columns of stable poles are found at frequencies coincident with three evident resonant516

peaks in the first singular value (SV) of the spectral matrix. After inspection of the517

modal displacements shown in Fig. 6, these modes can be readily interpreted as global518

modes of vibration of the tower. Specifically, modes Fy and Fx are first-order bending519

modes along the N-S and W-E directions of the tower, respectively, while Tz is the520
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first torsional mode of the tower. The remaining clusters in Fig 5 are also coincident521

with clear peaks in the first SV of the spectral matrix. Nevertheless, the inspection of522

their modal displacements did not reveal any global motion of the tower. These modes,523

labelled with L1 to L5, are conceivably ascribed to local modes of the battlements in524

the terrace of the tower. The local nature of high-order modes above 10 Hz was also525

confirmed by the FEM of the tower reported hereafter in Section 6.2. Nonetheless, it526

would be necessary to incorporate additional local sensors to confirm whether modes527

L1 to L5 actually correspond to local movements of the abutments. Note that the528

modal complexity of all the identified clusters is very low, with MPC values very close529

to 100%. This circumstance supports the consideration of all the identified clusters as530

physical modes.531

Table 1. Experimentally identified modal signatures of the Muhammad Tower on January 10th 2022 10:00

a.m. and all throughout the monitoring period.

January 10th 2022 10:00 a.m. Continuous monitoring

Mode No. Label Frequency [Hz] Damping ratio [%] MPC [%] Mean Freq. [Hz] Mean Damp. [%] SR [%]

1 Fy 4.43 4.22 100.0 4.44 (±4.07%) 4.49 (±31.63%) 99.0

2 Fx 7.34 4.51 99.4 7.38 (±4.42%) 4.39 (±47.46%) 87.0
3 Tz 9.78 2.29 99.9 9.95 (±6.19%) 2.46 (±92.11%) 67.5

4 L1 15.56 3.64 99.8 16.50 (±13.97%) 2.17 (±128.00%) 45.6

5 L2 21.58 1.52 99.5 21.02 (±21.12%) 1.49 (±93.21%) 59.5
6 L3 22.41 1.79 99.5 - - -

7 L4 38.68 1.38 99.9 38.79 (±23.77%) 1.52 (±144.83%) 44.9

8 L5 50.47 1.27 99.7 51.40 (±23.41%) 1.61 (±163.08%) 72.4
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Figure 6. Experimentally identified global mode shapes of the Muhammad Tower on January 10th 2022 10:00

a.m.

The identification results obtained for the first acceleration record were used to532

define the baseline modal features of the tower to be tracked all throughout the moni-533

toring period from January 10th until March 31st 2022 (3233 acceleration records). To534

avoid misclassification, the modal tracking is only conducted for sets of poles abiding535

with certain user-defined tolerances with respect to the reference modes. In particular,536

every time a new identification is performed, only the modal clusters that are proxi-537

mate enough to any of the reference modes in terms of frequency and mode shape are538

kept in the modal tracking. In this case, maximum relative differences in frequency539
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∆f ≤ 5% and MAC values MAC ≥ 0.85 have been set for Modes 1 to 3, while fre-540

quency differences of ∆f ≤ 15% and MAC values MAC ≥ 0.75 have been selected for541

the remaining modes. At every step of the tracking procedure, all the poles comply-542

ing with these tolerances are assigned to the reference mode with the lowest distance543

metric from Eq. (11) with η = 0.5. On this basis, the time series of identified resonant544

frequencies are reported in Fig. 7 along with some statistical descriptors in Table 1. All545

the reference modes were tracked with a success ratio (SR) above 40% except for Mode546

L3, which could not be consistently identified and thus omitted herein. Note that the547

first three modes corresponding to global motions of the tower are consistently iden-548

tified all throughout the monitoring period with an average SR of 82.5%. Conversely,549

the SRs in the identification of the high-order modes are considerably lower, which550

may be ascribed to the absence of accelerometers monitoring the local movements of551

the battlements. Also, the excitation level of the tower is considerably low, with mean552

accelerations of 0.15 cm/s2. Given the poor identification of the local modes and their553

potentially limited sensitivity to identify the appearance of damage affecting the main554

body of the tower, only the time series of the resonant frequencies of Modes 1 to 3 are555

used hereafter. It is also noticeable in the detailed view in the bottom part of Fig. 7556

that considerable oscillations indicating the presence of strong environmental effects557

are found in the global modes of the tower, particularly in Mode 2. Finally, it can be558

also observed that there are times at which the monitoring system was interrupted559

due to electrical supply shortage (mid-January to mid-February, and twice in March).560
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Figure 7. Tracking of the resonant frequencies of the Muhammad Tower from January 10th until March 31st

2022.

In order to ascertain the influence of EOC upon the identified modal signatures,561

correlation analyses with the environmental factors assessed by the Granada-Albayźın562

meteorological station were conducted as reported in Fig. 8. In particular, only no-563

ticeable correlations were observed between the identified resonant frequencies and564

air temperature (AT ), humidity (H), and atmospheric pressure (AP ) as reported in565

Figs. 8 (b,c,d), (e,f,g), and (h,i,j), respectively. The time series of the resonant fre-566
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quency of Mode 2 (the mode in which the largest correlations have been found),567

temperature, humidity and air pressure are furnished in Fig. 8 (a). It is noted in this568

figure that the daily oscillations in the resonant frequency of Mode 2 (Fx) are partic-569

ularly well correlated with temperature and humidity, exhibiting certain in-phase and570

opposite-phase trends, respectively. This circumstance agrees with the appearance of571

positive and negative correlations with air temperature (R2 = 0.69) and relative hu-572

midity (R2 = 0.16) as shown in Figs. 8 (c) and (f), respectively. This leads to increases573

in the resonant frequency during day-times and decreases during night-times (Fig. 8574

(a)). Instead, note that the fundamental frequency Fy shows almost no correlation575

with temperature (R2 = 0.00), humidity (R2 = 0.00) nor air pressure (R2 = 0.04)576

(Figs. 8 (b, e, h)). Finally, only low to moderate correlations are found for Mode 3577

(Tz) (Figs. 8 (d, g, j)), with coefficients of determination of R2 = 0.25 and R2 = 0.10578

with respect to air temperature and relative humidity, respectively. Note that bend-579

ing motions concentrate in this mode along the N-S direction, where the walls of the580

Alhambra offer limited stiffness constraint. Conversely, Modes 2 and 3 do activate the581

longitudinal and bending stiffness about the axis of maximum inertia of the walls.582

This may indicate the walls of the fortress are particularly affected by EOC, which583

may explain the larger sensitivity of Modes Fx and Tz to EOC (Figs. 8 (c, d, f, g, i,584

j)). Indeed, only some weak correlation is observed between Mode Fy and air pressure585

(R2 = 0.08), which may indicate wind actions might drive some of the observed fluc-586

tuations. Unfortunately, no reliable wind speed measurements could be obtained from587

the meteorological station due to malfunctioning of the anemometer, so further future588

investigations should address this aspect.589
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Figure 8. Time series of Mode 2 (Fx) and environmental data (January 19th until January 28th 2020) (a).

Correlation analysis of the first three resonant frequencies of the Muhammad Tower, Mode 1 (Fy) (b,e,h), 2

(Fx) (c,f,i), and 3 (Tz) (d,g,j).

In view of the previous correlation analyses, the MLR model previously overviewed590

in Section 4.2 has been adopted to minimize the presence of EOC. Given the limited591

amount of monitoring data, the training period has been defined from January 10th
592

until March 8th 2022 (2200 data points). Missing data in the time series of resonant fre-593

quencies have been completed using an autoregressive model constructed in segments594

of 96 data points around the missing data (corresponding to 2 days of monitoring data)595

and model’s order of 3. The best combination of predictors in the MLR model was596

found after some manual tuning, and includes AT , H, AT 2, H2 as well as two derived597

quantities obtained as the moving averages of AT with time windows of 48 (1 day) and598

1344 (1 month) data points. The comparison between the experimental data and the599

predictions by MLR is reported in Fig. 9 (a). The quality of pattern recognition mod-600

els is usually assessed by the inspection of the statistical distributions of the residuals601

as those shown in Fig. 9 (b). In the case of ideal normalization, the residuals in the602

training period should only contain normally distributed errors stemming from limi-603
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tations in the identification of the healthy database as well as marginal EOC effects.604

In this light, it is first noted that all the residuals exhibit almost zero mean values µ605

(maximum value of 2.0E-15 Hz for Mode 1). In addition, kurtorsis values (κ) of 4.7,606

3.9 and 6.5 are obtained for Modes 1, 2 and 3, respectively. Considering that κ = 3607

is the theoretical value for a perfect Gaussian distribution, these results demonstrate608

that the best residuals have been obtained for Mode 2, while the quality of residu-609

als E1 and E3 is considerably lower. Similar conclusions can be visually observed in610

the time series of residuals in Fig. 9 (b). Note in this figure that, in agreement with611

the correlation analyses in Fig. 8, the best fitting was obtained for Mode 2. Instead,612

even though the MLR model can reproduce the incipient seasonal trend and part of613

the daily oscillations of Modes 1 and 3, considerably poorer fittings were obtained614

for these modes. The poor performance of MLR to normalize these modes is ascribed615

to limited correlations with the assessed environmental factors as previously reported616

in Fig. 8. Nonetheless, given that the maximum error in terms of dispersion is only617

σ=5.8E-2 Hz for Mode 3, the conducted statistical pattern recognition is considered618

adequate for the purpose of this work. Future developments of this study will include619

the deployment of new environmental sensors assessing the local temperature of the620

tower (indoor and outdoor) to analyse the potential existence of capacitance effects621

as commonly observed in massive structures (Zonno et al. (2019), Garćıa-Maćıas and622

Ubertini (2022b)), as well as an anemometer to estimate the influence of wind actions623

upon the variability of the resonant frequencies.624
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Figure 9. Minimization of EOC from the time series of the first three resonant frequencies of the Muhammad

Tower by MLR (a), and probability distribution functions (PDFs) of the resulting residuals (b).
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6.2. Finite element modelling and model calibration625

With the aim of training the surrogate model with a realistic physics-based numerical626

model, a 3D FEM of the Muhammad Tower and the surrounding walls has been built627

using ABAQUS environment as shown in Fig. 10. The geometry of the model was628

constructed from information gained from available structural drawings and in-situ629

inspections. The walls, vaulted floors, openings, interior stairs and battlements are630

included in the model. In order to maintain a trade-off between computational burden631

and accuracy, only a small section of the walls of the Alhambra fortress (2.35 m thick632

and 7.29 high) is included in the model and rigidly connected to the main body of the633

tower. In particular, sensitivity analyses revealed that walls longer than 15 m produce634

no significant variations in the modal properties of the tower. Given the massive char-635

acter of the structure, soil-structure interaction effects are disregarded and the base636

of the foundation and the adjacent walls are assumed fixed to the ground. Instead, to637

simulate the semi-buried condition of the south façade of the tower, sets of transverse638

and longitudinal spring elements were initially included in the model. Nevertheless,639

after some initial calibration by manual tuning, the stiffness of such springs resulted640

considerably large and hence fixed boundary conditions were eventually defined. The641

material model used for RE is assumed isotropic with elastic modulus 1.75 GPa, Pois-642

son’s ratio 0.3, and mass density 2.15 t/m3. Note that, since one single homogenized643

material is considered for the whole model, the initial constitutive properties were644

selected between the values corresponding to brick masonry (1.44-1.45 t/m3, and 1.6-645

3 GPa) and RE (2.1-2.3 t/m3, and 1.2-6.3 GPa) from references Arto et al. (2021);646

Ávila et al. (2022b); González Limón and Casas Gómez (1997), the latter reporting the647

analysis of samples from the Tower of Comares, a proximate tower and with similar648

characteristics to the investigated one. The geometry has been meshed using 4-nodes649

C3D4 linear tetrahedral elements with mean size of about 50 cm after preliminary650

convergence analyses, which amounts to a total of 70898 nodes and 345642 elements.651

M3

M2

M1

Semi-buried 
foundation

x y

z

Figure 10. Partitioning of the FEM of the Muhammad Tower.

To minimize the uncertainty in the constitutive properties of the model, the elastic652

modulus and the mass density of the model have been initially calibrated through653

linear sensitivity analysis (Venanzi et al. (2020)):654
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X1 = X0 +
(
ST S

)−1
ST (fexp − f0,FEM) , (21)

where X0 and X1 denote the initial guess and the updated value of the model param-655

eters, fexp and f0,FEM are vectors collecting the experimental (Table 1) and initially656

estimated natural frequencies, respectively, while S stands for the sensitivity matrix657

computed from the FEM by finite differences. As anticipated above, only the first658

three modes corresponding to global motions of the tower are considered in the cali-659

bration, while high-order local modes are disregarded in the calibration. The rationale660

for excluding those mode shapes is two-fold: (i) the sensors layout was not designed to661

provide an accurate representation of the local mode shapes, and (ii) the sensitivity662

of those modes to defects affecting the stiffness of the main body of the tower are663

conceivably minimum. The calibration resulted in a value of the Young’s modulus of664

the tower of 1.97 GPa and a mass density of 2.42 t/m3. Table 2 summarizes the com-665

parison between the experimental modal signatures and those predicted by the tuned666

FEM, and the comparison of the numerical and experimental mode shapes is shown in667

Fig. 11. In general, very good agreements were found in terms of resonant frequencies668

with a mean error value of 1.28% and MAC coefficients close to 1.669

Table 2. Comparison between experimental and numerical modal properties after FEM calibration. The

experimental resonant frequencies have been obtained by automated Cov-SSI of the first 30 min of ambient

vibrations of the Muhammad Tower recorded on January 10th 2022 10:00 a.m.

Mode No. Label Experimental [Hz] Numerical [Hz] Error [%] MAC

1 Fy 4.419 4.530 2.51 0.98

2 Fx 7.317 7.312 -0.07 0.94
3 Tz 9.788 9.666 -1.24 0.95

Mode 1 - Fy
Experimental Numerical Experimental Numerical Experimental Numerical

Mode 2 - Fx Mode 3 - Tz

Figure 11. Comparison between experimental and numerical mode shapes of the Muhammad Tower.

It is important to remark that one linear modal analysis of the FEM of the Tower670

approximately takes 5 minutes in a standard PC (64-bit, 16.0 GB RAM, Intel(R)671

Core(TM) i7-8750H processor, 2.20 GHz CPU). Note that, since the optimization672

problem previously introduced in Section 3 typically requires an elevated number of673

model evaluations, such a computational burden impedes the direct implementation674

of the FEM for continuous SL damage identification. This circumstance justifies the675

construction of the proposed SM. To do so, a simple parametrization of the model676
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has been defined by partitioning the tower into three macro-elements Ml (M1 in z ∈677

[0.0, 7.8], M2 in z ∈ [7.8, 11.8], and M3 in z ∈ [11.8, 15.9]) as shown in Fig. 10. The aim678

of such a partitioning is to provide a flexible parametrization capable of identifying679

a variety of earthquake-induced damage pathologies affecting the bending stiffness of680

the tower. In the subsequent analyses, the elastic moduli of the macro-elements are681

selected as damage-sensitive parameters for the Kriging SM. It is important to remark682

that different model parametrizations may be required depending on the target damage683

pathology to be assessed. Nonetheless, this would only represent a distinct definition of684

the design parameters x, while the general methodology proposed in Section 3 would685

remain unaltered.686

With the purpose of validating the proposed SM-based damage identification ap-687

proach, different earthquake-induced damage scenarios have been simulated through a688

displacement-controlled pushover analysis. This consists in a non-linear static analysis689

where the tower is subjected to gravity loading and increasing lateral displacements690

along the NS direction following a parabolic profile. In order to reproduce the non-691

linear behaviour of RE, the CDP constitutive model (Abaqus (2009)) with cracking in692

tension and crushing in compression has been adopted. Given the lack of characteriza-693

tion tests of the RE of the tower, the non-linear mechanical properties assigned to the694

FEM have been estimated from the literature as shown in Table 3. For simplicity, and695

given that the interest is focused on the simulation of damage patterns affecting the696

dynamics of the tower, the walls of the fortress have been replaced by linear springs.697

The stiffness of these springs has been manually tuned until reproducing the same698

modal properties as the original FEM, achieving maximum differences in frequency699

below 5%. Figure 12 furnishes the monitored base shear force versus top displacement.700

In this light, ten different damage scenarios, labelled from DS1 to DS10, are defined701

as indicated in Fig. 12 (a). Samples of the damage patterns for DS1, DS4, DS6, DS8,702

DS9 and DS10 are represented in Fig. 12 (b) in terms of contour maps of the tensile703

damage parameter dt. Note that dt denotes the material degradation, and spans from704

0 (undamaged material) to 1 (complete loss of strength). The main failure mechanism705

consists of a major horizontal crack originating from the door opening in the first level706

of the tower until crossing completely the north façade (DS1, DS2). Another major707

diagonal crack propagates upward from the door opening in the second level (DS1),708

although it does not cross the north façade until DS3. Some other secondary cracking709

patterns can be also observed as a result of stress concentrations in the remaining710

openings all throughout the tower. The structure loses completely its load bearing711

capacity when the main horizontal crack crosses entirely the cross-section of the tower712

for a maximum top displacement of 27.8 cm (DS10).713
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Table 3. Mechanical parameters utilized in the CDP model for RE (from Arto et al. (2021); Bui et al. (2020);

Garćıa-Maćıas et al. (2021); GB 50010-2010 (2010); González Limón and Casas Gómez (1997)).

Elasto-plastic behaviour Tensile behaviour

Kc
a 0.667 Tensile stress σt [kN/m2] Cracking strain ε̃ckt [-] Tensile damage dt [-]

Eccentricity 0.10 300 0.00E-00 0.00

Viscosity parameterb 0.003 212 8.40E-04 0.29

Dilation angle [◦] 21 153 1.67E-03 0.49

90 3.36E-03 0.70

62 5.04E-03 0.79

48 6.71E-03 0.84

32 9.23E-03 0.90

a Kc is the ratio of the second stress invariant on the tensile meridian.
b The viscosity parameter is used for the viscoplastic regularization of the constitutive equations.

* Compressive strength σc = 2450 kN/m2.
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Figure 12. Base shear force versus top displacement curve obtained by displacement-controlled pushover

analysis of the Muhammad Tower (a) and simulated crack patterns in the tower (b).

In order to include synthetic damage scenarios into the experimental time series714

of modal features previously reported in Section 6.2, every scenario in Fig. 12 (from715

DS1 to DS10) has been characterized through non-linear modal analysis. This consists716

in releasing the imposed lateral displacement in the model when the corresponding717

maximum displacement is achieved, followed by a modal analysis based on linear per-718

turbation. The latter considers the tangent stiffness matrix of the FEM, which allows719

accounting for the damage-induced stiffness degradation on the modal properties of720

the tower (similar experiences on the combination of the CDP model and linear per-721

turbation modal analysis can be found in the works by Hanif et al. (2016) and Scozzese722

et al. (2019)). This leads to the results reported in Fig. 13 where the frequency decays723

(a) and MAC values (b) of the first three modes of vibration are plotted against the724

top displacement. The frequency decays start to increase when the top displacement725

overpasses a value of about 1.25 cm (which roughly corresponds to a return period726
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of 20 years according to the NCSE-02 Spanish Norm), that is when the main failure727

mechanism in the tower activates (drift ratios of 1.45‰ and 0.78‰ with respect to728

the height of the free-standing portion of the total height of the tower, respectively).729

Damage-induced effects primarily concentrate in terms of resonant frequencies, achiev-730

ing maximum decays of up to about 14-18% for DS10, while only slight variations are731

observed in the mode shapes. Even though the pushover analysis is conducted along732

the N-S direction affecting Mode 1, frequency decays concentrate in Mode 2 as a result733

of larger stress concentrations in the E-W walls induced by the higher concentration734

of openings and the subsequent stiffness loss in this direction. From the experience of735

the authors, frequency decays around 1% are commonly detectable in heritage con-736

structions by dynamic-based SHM. Therefore, only damage scenarios DS1 to DS7 are737

selected hereafter to appraise the effectiveness of the proposed SM-based St-Id for738

damage localization and quantification.739

0 5 10 15 20 25 30
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Top displacement [cm]

Fr
eq

ue
nc

y
de

ca
ys
∆

f i/
f0 i

[%
]

(a)

Mode 1
Mode 2
Mode 3

0 5 10 15 20 25 30
0.988

0.990

0.992

0.994

0.996

0.998

1.000

Top displacement [cm]

M
AC

(ϕ
i,
ϕ

0 i)

(b)

DS7
DS8

DS9

DS10

D
S5

D
S1

-D
S4

D
S6

Figure 13. Frequency decays (a) and MAC values (b) of the first three modes of vibration obtained by the

displacement-controlled pushover analysis of the FEM of the Muhammad Tower.

6.3. Construction of the SM740

The accuracy of any SM is primarily determined by the quality in the sampling of the741

ED. The density of the training population is highly case-dependent, and it typically742

needs to be tailored according to the variability of the quantity of interest and the pres-743

ence of non-smoothness and non-linearities. In general, the design space must be uni-744

formly sampled to cover the whole domain of interest. Following the parametrization of745

the FEM into macro-elements from Fig. 10, the design variables have been defined as746

stiffness multipliers ki, i = 1, . . . , 3, affecting the elastic moduli of macro-elements Mi.747

The stiffness multipliers are assumed to be uniformly distributed within the variation748

domain [0.7, 1.2]. Note that such a variation range is considerably large, with 0.7 mean-749

ing a reduction of 30% of the elastic modulus of the affected macro-element. In this750

light, random samples have been drawn uniformly over D =
{
k ∈ R3 : 0.7 ≤ ki ≤ 1.2

}
751

using the quasi-random sequence of Sobol (Sobol (1967)). In order to select the size752

of the ED, a convergence analysis has been conducted considering different training753

populations with Ns=20, 40, 80, 120, and 160 individuals and a validation set (VS)754

of 200 samples as shown in Fig. 14 (a). For every population, the modal signatures755

corresponding to each individual are obtained by forward evaluation of the 3D FEM,756

being this step the most computationally intensive stage in the procedure. Since the757

first three modes of the tower have been considered in the analysis, a total of 27 SMs758
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(3 resonant frequencies plus 8×3 modal displacements) are built. Convergence is eval-759

uated in terms of the statistical moments of the modal estimates in Fig. 14 (b), as760

well as some error metrics between the estimates of the SM and the FEM in Fig. 14761

(c). In particular, the error in the prediction of the resonant frequencies is assessed762

through the root-mean-square-error (RMSE) and the coefficient of determination R2.763

To appraise the quality in the estimation of the mode shapes, a metric J(MAC,r) ac-764

counting for the median of the 1 −MAC values between the r-th exact mode shape765

ϕr and the predictions by the SM ϕ̂r in the VS is introduced as:766

JMAC,r = med {1−MAC (ϕr, ϕ̂r)} . (22)

The analyses in Fig. 14 (b) show that the mean values of the resonant frequen-767

cies exhibit a slowly decreasing trend for increasing EDs (except for Ns = 120 that768

presents a local increase). In addition, the dispersion of the distributions in terms of769

statistical variance achieves convergence right after the population of 40 individuals.770

With respect to accuracy of the corresponding SMs in Fig. 14 (b), it is noted that771

the fitting errors decrease drastically at the population of 40 individuals, after which772

the accuracy stabilizes and only limited enhancements are obtained. In view of these773

results, a population of 160 individuals is selected to train the SMs as a conservatively774

accurate solution. The comparison between the predictions of the resulting SM and775

the forward FEM is shown in Fig. 15. The low scatter of the data points around the776

diagonal line corroborates that the SMs are formed with accuracy, with coefficients of777

determination R2 very close to 1 and maximum root-mean-squared-errors (RMSE) of778

3.8E-4 Hz. Note in Fig. 15 that very low J(MAC,r) values are obtained for all the con-779

sidered mode shapes, which demonstrates the high accuracy of the SMs to reproduce780

the modal displacements. An essential aspect of the SM regards its computational781

cost. Note that the evaluation of the modal properties of the Muhammad Tower only782

requires 0.02 s, that is a reduction of 99.998% with respect to the forward model.783

27



0.8
1

0.8
1

0.8

1

1.2

Ns = 20 Ns = 40 Ns = 80 Ns = 120 Ns = 160 Ns = 200

9

9.5

Fy
[H

z]

6.9

7

7.1

Fx
[H

z]

20 40 60 80 100 120 140 160 180 200
9.2

9.4

9.6

Population Size Ns

T
z

[H
z]

0.0

0.2

0.4

0.6

0.8

1.0

R
M

S
E

(×
10
−2

)

20 40 60 80 100 120 140 160

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Population Size Ns

J M
AC
,r

(×
10
−8

)

k1

k2

k3

(a)

(b) (c)

Fy
Fx
TzR2=0.998

R2=0.997
R2=0.994
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Figure 15. Scatter plot of the predictions by the Kriging SM (160 training samples) versus the forward

evaluations of the 3D FEM of the Muhammad Tower: (a) Fy, (b) Fx, (c) Tz.

6.4. Continuous St-Id of the Muhammad Tower784

This last section presents the results of the meta-model assisted St-Id approach previ-785

ously introduced in Section 3 when applied sequentially to each set of identified modal786

data (30 min) over the testing period from January 10th until March 31st 2022. To787

this aim, the non-linear minimization problem in Eq. (3) is solved using a Particle788

Swarm optimization algorithm with 40 particles and error tolerance of 1E-5. In the789
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regularization term R (x), a reference vector of design variables k0 = [1, 1, 1]T is con-790

sidered (i.e. k0 represents the situation when macro-elements Mi possess undamaged791

nominal Young’s moduli). In addition, the variation range of the parameters is set792

to 0.7 ≤ ki ≤ 1.2 as specified in the training of the surrogate model. The weighting793

parameters η(1,i) and η(2,i) in the cost function in Eq. (3) have been defined after some794

manual tuning as η(1,1) = η(1,2) = 1.0, η(1,3) = 0.3 and η(2,1) = η(2,2) = η(2,3) = 0.5.795

Note that the weight given to the third resonant frequency (Tz) is lower than those796

assigned to the first two modes. Given the limitations of the MLR model to remove the797

effects of EOC from this frequency as previously reported in Fig. 9, the selection of this798

low value is intended to minimize the effects of residual variances on the subsequent799

St-Id.800
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Figure 16. Model sensitivities of the 3 macro-elements of the 3D FEM of the Muhammad Tower in terms of

resonant frequencies (a) and mode shapes (b).

For the definition of the trade-off parameters η(3,i), it is important to inspect the801

sensitivities of the model response with respect to variations in the design variables802

ki. Figure 16 represents the sensitivity of the modal estimates in terms of resonant803

frequencies Sfij and 1 − MAC values S1−MAC
ij , i, j = 1, . . . , 3, computed using the804

3D FEM and finite differences. While in classical model updating the parameters805

with the least sensitivities are typically excluded from the optimization or clustered806

together with other design parameters, such an approach would impede the localization807

of damage in certain regions of the structure. In this particular case study, the low808

sensitivity of the modal features of the tower to variations in k3 considerably hinders809

the location of damage in M3 (top macro-element). In this light, with the aim of810

accommodating the different sensitivities and as an attempt to maintain the damage811

localization capabilities in M3, larger regularization parameters η(3,i) are assigned to812

the design variables with lower sensitivities. In particular, after some iterations by813

manual tuning, good results have been obtained when assuming η(3,1) = 0.30, η(3,2) =814

0.72, η(3,3) = 1.2.815
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Figure 18. Mahalanobis distances with respect to the in-operation training period in terms of the first three
fundamental frequencies of the Muhammad Tower (a,c,e) and the identified stiffness multipliers ki (b,d,f) for

synthetic damage scenarios DS1 to DS7. Red dashed lines stand for the 99% confidence level of the considered
features empirically estimated for the training period.

The considered damage scenarios have been incorporated in the time series of modal816
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features from March 15th 2022 (after the training period) by means of the frequency817

decays previously reported in Fig. 13 (a). Given the minimal impact of the considered818

damage scenarios upon the mode shapes of the tower, the time series of experimental819

modal displacements have been maintained unaffected. In this light, the outcomes of820

the continuous meta-model assisted St-Id are presented in Figs. 17 and 18. Figures 17821

(a) and (b) depict the time series of identified stiffness multipliers ki and the corre-822

sponding histograms after the application of damage, respectively. In addition, Fig. 18823

presents the squared Mahalanobis distances with respect to the training period as a824

novelty analysis metric in terms of resonant frequencies and stiffness multipliers. It is825

clear in these figures that all the considered damage scenarios except for DS1 can be826

detected in the shape of sudden drops in the time series of ki after the damage con-827

dition is imposed. Although some slight decreases are noticeable for DS1 in k1 with828

respect to the undamaged condition (see the zoom insert in Fig. 17 (a)), the frequency829

decay associated with this damage scenario is lower than the residual variance in the830

normalized time series of resonant frequencies and, therefore, goes unnoticed. Instead,831

the damage-induced frequency decays of the remaining scenarios overpass the residual832

variances and, therefore, appear as clear anomalies in the time series of the stiffness833

parameters. Furthermore, these results evidence the localization and quantification834

ability of the proposed approach, allowing to effectively track the evolution of damage835

in the tower. Specifically, note in Fig. 17 that scenarios DS1 to DS4 primarily affect836

the stiffness of macro-element M1 with increasing severities. Moreover, some slight de-837

creases can be also observed in k2, while almost no effects are noticeable in k3. These838

results coincide with the damage patterns previously furnished in Fig. 12 (b), which839

reported the initiation and propagation of the major horizontal crack (affecting M1)840

from DS1 until DS4. Afterwards, new diagonal cracks affecting macro-elements M2841

and M3 originate, which agrees with the anomalies observed in Figs. 17 and 18 for842

DS5, DS6 and DS7. In particular, note that no significant degradation is found in k3843

until DS7, when the diagonal crack originating at the upper corner of the opening in844

the second floor crosses the North façade of the tower (see Fig. 12 (b)). Interestingly,845

it is noted in Fig. 17 (a) that the stiffness degradation for DS7 in k1 decreases with846

respect to the values obtained for DS5 and DS6. This circumstance has no physical847

justification and evidences some limitations in the St-Id. On one hand, this may be848

due to the natural limitation of any model parametrization that does not explicitly849

represent the damage mechanism under analysis, as it is the case in these analyses850

since the model does not consider any particular parameter accounting for the specific851

crack pattern observed in Fig. 12 (b). On the other hand, despite the implementation852

of the regularization function R, the circumstance that only three modes are consis-853

tently identified in the experimental campaign represents an observability limitation.854

These aspects certainly give origin to important sources of ill-conditioning, which may855

explain the aforementioned inconsistency in the damage identification. Nonetheless,856

given that DS7 represents an extremely severe damage condition, it can be concluded857

that the proposed meta-model assisted St-Id is proficient for damage identification858

of early-stage and moderate damage pathologies. It is noticeable in Fig. 18 that the859

damage-induced anomalies are more easily detectable in terms of stiffness multipliers,860

which furthers justify the use of the proposed methodology as a complementary ap-861

proach to traditional OMA-based SHM. Finally, it is important to remark that the862

computational time to perform the St-Id is only around 7.4 s, which guarantees the863

compatibility of the proposed approach with long-term SHM applications.864

Finally, a comprehensive damage index Di is depicted in Fig. 19 to summarize the865

previous damage identification results. The damage index is simply defined as the rela-866
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tive variation of the medians of the time series of stiffness multipliers ki in the damaged867

period with respect to the healthy baseline. It is noted in this figure that increasing868

damage indexes are obtained as the damage condition progresses, strengthening the869

discussion above on the ability of the proposed approach to localize and quantify870

damage. Moreover, these results highlight the impossibility of properly identifying871

DS1 and DS2 as a consequence of the afore-mentioned limitations in the statistical872

pattern recognition and the inverse model calibration, respectively.873
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Figure 19. Damage indexes Di in the three macro-elements Mi defined in the Muhammad Tower obtained
for synthetic damage scenarios DS1 to DS7.

7. Concluding remarks874

This work has presented the development of a meta-model assisted St-Id approach for875

online damage identification of a 13th century RE tower, the Muhammad Tower in the876

Alhambra (Granada, Spain). The developed meta-model has been fed with a contin-877

uous data-flow from an ambient vibration-based SHM system installed in the tower878

since January until March 2022. Through automated OMA, the modal signatures of879

the tower have been continuously extracted, and the presence of reversible oscillations880

induced by EOC has been minimised by means of statistical pattern recognition. Then,881

the normalized time series of modal signatures have been used to conduct St-Id and882

damage assessment. To this aim, a high-fidelity 3D FEM of the Tower has been de-883

veloped and used to train a computationally light Kriging SM. Specifically, a simple884

parametrization of the tower into horizontal macro-elements has been designed as a885

flexible solution to identify earthquake-induced defects affecting the bending stiffness of886

the main body of the tower. It is important to strengthen that the model parametriza-887

tion must be tailored according to the target damage pathology under investigation.888

Nevertheless, the presented methodology is general for any model parametrization,889

being only necessary to adapt the training phase of the Kriging SM. Numerical results890

and discussion have been reported on the characterization of environmental effects,891

quality assessment of the SM, and evaluation of damage identification capabilities by892

several synthetic damage scenarios obtained through non-linear simulations. Overall,893

the presented results and discussion have demonstrated the potential of the developed894

meta-model assisted St-Id for online damage identification, attaining computational895

times that are fully compatible with continuous SHM schemes. The key findings of896
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this work can be summarised as:897

• Three global modes have been consistently identified all throughout the mon-898

itoring period. In addition, up to 5 high-order modes have been also found in899

the frequency broadband up to 60 Hz, possibly related to local motions of the900

battlements of the tower.901

• Clear correlations between air temperature and relative humidity have been902

found for two global modes involving the motion in the longitudinal and in-903

plane direction of the walls of the Alhambra fortress where the tower is inserted.904

Conversely, the fundamental mode activating the out-of-plane stiffness of the905

walls reveals almost no correlation with environmental data.906

• Positive and negative correlations have been found between the resonant fre-907

quencies of the tower and environmental temperature and humidity, respec-908

tively. Such a positive correlation with temperature may be ascribed to thermal-909

induced closure of micro- and macro-cracks, while the negative correlation with910

relative humidity may indicated the presence of moisture-induced softening of911

the RE.912

• The presented results have demonstrated the ability of the proposed meta-model913

assisted St-Id approach to identify damage (detection, localization and quantifi-914

cation) when the associated effects are larger than the residual variance in the915

normalized time series of modal signatures originated by limitations in the sta-916

tistical pattern recognition.917

Forthcoming works will include the local monitoring of the battlements with the918

aim of differentiating between local and global modes. Furthermore, the presented919

statistical pattern recognition approach will be used to evaluate the impact of struc-920

tural interventions scheduled to retrofit the damaged battlements of the tower after921

the seismic swarm occurred from February until August 2021.922
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