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Prescriptions in Loop Quantum Cosmology: A comparative analysis
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Various prescriptions proposed in the literature to attain the polymeric quantization of a homoge-
neous and isotropic flat spacetime coupled to a massless scalar field are carefully analyzed in order
to discuss their differences. A detailed numerical analysis confirms that, for states which are not
deep in the quantum realm, the expectation values and dispersions of some natural observables of
interest in cosmology are qualitatively the same for all the considered prescriptions. On the con-
trary, the amplitude of the wave functions of those states differs considerably at the bounce epoch
for these prescriptions. This difference cannot be absorbed by a change of representation. Finally,
the prescriptions with simpler superselection sectors are clearly more efficient from the numerical
point of view.

PACS numbers: 04.60.Pp, 04.60.Kz, 98.80.Qc

I. INTRODUCTION

Loop Quantum Gravity (LQG) [1, 2], one of the most
promising approaches to unify general relativity with
quantum physics, has attracted a lot of attention in re-
cent years. In particular, considerable progress has been
achieved in its application to symmetry reduced models
for cosmology, a field known as Loop Quantum Cosmol-
ogy (LQC) [3]. In this context, the analysis of the sim-
plest (isotropic) cosmological systems [4, 5] has led to a
qualitatively new picture of the early universe dynam-
ics [6], where the current expanding universe is preceded
by a –semiclassical [7, 8]– contracting one. This promis-
ing viewpoint opens new windows in modern cosmology,
resulting for example in a drastic increase of the proba-
bility for inflation [9] and ensuring the geodesic complete-
ness of the (isotropic) cosmological spacetimes [10]. The
original analysis has been rigorously extended to various
topologies [11] and matter contents [12, 13], as well as to
homogeneous but anisotropic cosmologies [13]. Further-
more, recent years have witnessed growing progress in the
extension of the formalism to inhomogeneous scenarios,
particularly to Gowdy models (both in vacuo [14] and
with matter [15]) and to perturbative frameworks [16].
In addition, the generalization of the formalism to vari-
ous Bianchi type models [17] has provided a viable hope
for a general singularity resolution through the Belinsky-
Khalatnikov-Lifshitz mechanism [18]. On the other hand,
the reformulation of LQG as a deparametrized theory [19]
enables the application of the techniques of LQC (either
directly or after a suitable generalization) in the context
of the full theory, allowing one to check, in particular,
the robustness of the LQC results.

Despite the rapid advances and successful applications
of LQC to systems of increasing complexity, many of the
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basic aspects of the theory in its simplest setting remain
to be fully understood. One of them is the ambiguity in-
herent to the construction of the quantum Hamiltonian
constraint. The choice of factor ordering (and densiti-
zation) gives rise to various quantization prescriptions.
While all of them provide the same physical picture –to
a high precision– for the kind of states that are usually
considered in cosmology (admitting an epoch when the
universe is semiclassical), any possible physical or math-
ematical difference in other regimes must be investigated
and discussed.

Here we address this question using as probe model the
simplest cosmological system with nontrivial evolution,
i.e., a flat Friedmann-Robertson-Walker (FRW) universe
coupled to a massless scalar field. We focus our attention
on four prescriptions, three of which have already been
studied in the literature. These are the original prescrip-
tion used in Ref. [5] (known as APS, from the initials of
its authors), its corresponding simplification put forward
in Ref. [20], which allows one to describe the dynam-
ics analytically (known as sLQC, which stands for solv-

able LQC), and the prescription of Ref. [21] (denoted
as MMO, again from the initials of the authors). This
latter prescription is known to significantly simplify the
physical Hilbert space structure, asserts rigorously the
generality of the bounce paradigm, and leads to a unique
Wheeler-DeWitt (WDW) limit in each of the superse-
lection sectors that are (anti)symmetric under parity re-
flection. The fourth prescription that we are going to
analyze is a simpler version of this MMO prescription.
In this article, we discuss the analytical and numerical
implications of the application of each of these prescrip-
tions to construct the quantum model, and we compare
the details of the physical picture that they provide, in-
vestigating them in fully quantum (not sharply peaked)
states. In particular we will show that, while the expecta-
tion values of certain natural observables show negligible
discrepancies, physical differences between prescriptions
actually do exist, making them detectable, at least in
principle. This fact has important consequences for any
effective or semiclassical treatment, because it shows that
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the choice of representation and the details of the quan-
tization procedure actually can have an imprint on the
dynamics and have to be taken into account.

This manuscript is organized as follows. In Sec. II
we briefly describe the classical system and the quantum
framework. The prescriptions analyzed in this article and
their main properties are presented in Sec. III. Our nu-
merical methods and results are explained in Sec. IV and
Sec. V. Finally, Sec. VI contains a general discussion and
the main conclusions. In addition, an appendix present-
ing the WDW quantum counterpart of the considered
model is included.

II. CLASSICAL AND QUANTUM

FRAMEWORK

Let us first remind the construction and basic proper-
ties of the model in LQC. The foundations and specifica-
tions of this model have been discussed in Refs. [5, 22].
In particular, the APS prescription is described in Ref.
[5]. Details about the other quantization prescriptions
can be found in Refs. [20, 21]. We will briefly review
them all, focusing on those steps where the prescriptions
differ.

A. The classical spacetime

The flat FRW spacetime admits an orthogonal foliation
by spatial homogeneous 3-surfaces Σt (parametrized by
t). Its metric can be written in the form

g = −N2(t)dt2 + a2(t) oq, (2.1)

where N is a lapse function, a is the scale factor, and
oq is a fiducial Cartesian metric, constant in comoving
coordinates.

The canonical description derived from the Einstein-
Hilbert action requires integrating the Lagrangian and
Hamiltonian density over Σt. To avoid divergences of
the integrals when Σt is noncompact, one introduces an
infrared regulator restricting the integration to a cubical
cell V (again constant in comoving coordinates). The
geometrical degrees of freedom are coordinatized in the
phase space by the Ashtekar-Barbero connections and
triads, which, owing to the isotropy of the system, can
be gauge fixed to the form

Ai
a = cV −1/3

o δia, Ea
i = pV −2/3

o δai , (2.2)

where Vo is the volume of V with respect to oq. Then, all
the information about the geometry is captured in the
canonical pair {c, p} = 8πγG/3 (where γ is the Immirzi
parameter, fixed as explained in Ref. [23]). The matter
degrees of freedom are described by the field φ and its
canonical momentum pφ, such that {φ, pφ} = 1.

The only nonvanishing constraint that remains after
the gauge fixing is the Hamiltonian one:

C(N) = N(Cgr + Cφ), (2.3a)

Cgr = − 6

γ2
c2
√
|p|, Cφ = 8πG

p2φ
|p|3/2 . (2.3b)

On shell (Cgr + Cφ = 0), it completely determines the
dynamics of the system.

B. Quantum foundations

In order to quantize the system, we apply the Dirac
program, first representing the classical degrees of free-
dom as operators, momentarily ignoring the constraint
(kinematical level). The physical description is then ob-
tained by imposing the constraint quantum mechanically.

1. Kinematics

The kinematical quantization is performed in two
steps, each of them with a different approach. For the
matter content, we apply a standard Schrödinger repre-
sentation. The matter sector of the kinematical Hilbert
space is identified with Hφ

kin = L2(R, dφ), spanned by
the basis of generalized eigenstates (φ| of the field oper-

ator φ̂. The elementary operators are φ̂ (which acts by
multiplication in this representation) and p̂φ = −i~∂φ.

In turn, the geometry is quantized adopting the meth-
ods of LQG (see Ref. [22] for details). For an isotropic
model, the standard holonomy-flux algebra can be re-
stricted to holonomies along straight edges and fluxes
across unit squares with respect to oq. As a consequence,
the configuration algebra CylS is an algebra of almost pe-
riodic functions of c, and the kinematical Hilbert space
for the gravitational sector becomes Hgr

kin = L2(R̄, dµB),
where R̄ is the Bohr compactification of the real line (with
Bohr measure dµB). A natural basis for Hgr

kin is formed
by the eigenfunctions |v〉 of the triad operator p̂ (which
can be identified with the flux across a unit square) such

that p̂|v〉 = sgn(v)(2πγℓ2Pl

√
∆|v|)2/3|v〉, where ∆ is re-

lated with the spectrum of the LQG area operator. This
basis is orthonormal: 〈v|v′〉 = δv,v′ .

All geometric elements of the system (constraints, ob-
servables) can be expressed in terms of two types of op-
erators: i) an oriented physical volume corresponding to
the cell V , V (V) = sgn(p)|p|3/2, and ii) the holonomy
components Nµ = eiµc/2, for an appropriate choice of
µ. Actually, owing to the specifics of the quantization
[5], the choice that must be adopted in the construction
of the Hamiltonian constraint is such that µ becomes a
function of the triad, µ̄(p), and this function is fixed by
the requirement that the square loop with fiducial length
µ̄ built by the holonomies (in order to define the cur-
vature) has the minimum physical area that is allowed,
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∆. This choice corresponds to the so called improved dy-
namics [5]. The action of these operators on the basis of
Hgr

kin is:

V̂ |v〉 = sgn(v)|v|2πγl2Pl

√
∆|v〉, N̂µ̄|v〉 = |v + 1〉. (2.4)

Finally, the full kinematical Hilbert space is the tensor

product Hkin = Hgr
kin ⊗Hφ

kin.

2. The quantum constraint

We now express the constraint in terms of the oper-
ators introduced above. This involves, in particular, an
approximation to the curvature using holonomies along
a square loop of physical area equal to ∆, as we have
already commented (see Ref. [5] for the detailed proce-
dure). As a result, the Hamiltonian constraint (2.3), at
a lapse function of reference, N0, takes the general form

Ĉ(N0) = N̂0Cgr ⊗ 11 + B̂ ⊗ p̂2φ, (2.5)

where B̂ is some operator which is diagonal in the basis

{|v〉}, and N̂0Cgr is a selfadjoint, difference operator of
second order. For both of them, the domain of definition
is chosen to be CylS .

Depending on the prescription, the operator B̂ may
involve the inverse volume, which is again quantized via
Thiemann methods and takes the form:

[
1̂

V

]
=

(
3

4πγl2Pl

√
∆

)3

̂sgn(V )|V̂ |

×
(
N̂−µ̄|V̂ |1/3N̂µ̄ − N̂µ̄|V̂ |1/3N̂−µ̄

)3
.

(2.6)

In order to solve the constraint, it is convenient to
bring it into the explicitly separable form

Ĉ = 8πG(−~2Θ̂ ⊗ 11 + 11 ⊗ p̂2φ) (2.7)

through a process which is often called change of densi-
tization [24].

The resulting difference operator Θ̂ is a nonnegative
selfadjoint [25] operator on CylS . For all the considered
prescriptions, it is defined on CylS as

Θ̂ = −N̂2µ̄f(v̂)N̂2µ̄ − N̂−2µ̄f(v̂)N̂−2µ̄ + fo(v̂), (2.8)

where v̂|v〉 = v|v〉 and

f(v) =
3πG

4
(v2 − 2 − α) +O(v−2), (2.9a)

fo(v) =
3πG

2
(v2 − α) +O(v−2). (2.9b)

Here, α is a constant whose value depends on the factor
ordering chosen in each prescription. The action of Θ̂
only relates states with support on lattices or semilat-
tices of step 4, denoted by Lε, where ε ∈ (0, 4]. Then, we

can identify sectors Hε ⊂ Hkin preserved under the ac-
tion of Θ̂, as well as by all the observables considered in
this manuscript (see the definitions in Sec. II B 4). They
form superselection sectors. At each of these sectors, the
quantity ε used as a label to characterize them, can be
thought of as proportional to the minimum physical vol-
ume.

By applying the analysis of Ref. [25], one can show

that the restriction of Θ̂ to each of the superselection
sectors has essential and absolutely continuous spectra
that are both equal to R+. Its degeneracy depends both
on ε and on the prescription, but in all the cases it is
at most twofold. The spectral decomposition of Θ̂ intro-
duces a natural basis of generalized eigenfunctions (eεk|,
solutions to

[Θ̂eεk](v) = 12πGk2eεk(v), (2.10)

where eεk(v) = (eεk|v〉. The basis is normalized,

(eεk|eεk′) = δ(k′ − k), (2.11)

where the delta is defined on a domain R which can be
either R or R+, depending on the degeneracy of the spec-
trum (see the discussion in Sec. III).

Finally, let us clarify the physical meaning of the sub-
leading coefficient α in Eq. (2.9). One can conveniently
split the evolution operator into

Θ̂ = Θ̂o + δ̂Θ, (2.12)

where δ̂Θ is a compact operator that contains all the
terms O(v−2) neglected in Eq. (2.9). On the other hand,

Θ̂o has quite a simple closed form when expressed in
terms of v and the corresponding canonical momentum b
with {v, b} = 4. Namely, introducing the transformation
[26]

[Fψ](b) =
∑

v∈Lε

eivb/4ψ(v) (2.13)

and the coordinate change x = ln[tan(b/4)]/2, a simple
computation yields [25]

Θ̂o = −12πG

[
α+ 1

4 cosh2(2x)
+ ∂2x

]
. (2.14)

The prescription-dependent constant α acquires then
a neat physical interpretation, related to the potential
strength (see Ref. [25] for more details).

3. Physical Hilbert space

Taking into account that Ĉ has an invariant dense do-
main in each Hε and is essentially selfadjoint there, one
can construct the physical Hilbert space Hphy, for in-
stance, by applying group averaging techniques [27, 28]
to Eq. (2.7). The result is Hphy = L2(R, dk), where
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the domain R is determined by the degeneracy of the
spectrum, as explained above. This result is completely
equivalent to the deparametrization of the constrained
system by selecting φ as an internal time [4]. That pro-
cedure provides two sectors, which correspond to positive
and negative frequencies. Without loss of generality, one
can restrict all considerations e.g. to the positive fre-
quency sector. In addition, the deparametrization leads
to a notion of dynamical evolution (consistent with the
Schrödinger evolution picture) given by the map

R ∋ φ 7→ Ψφ(·) = Ψ(·, φ); Ψ ∈ Hgr
kin. (2.15)

The “time translations” are the unitary transformations

Ψφo
(v) 7→ Ψφ(v) = ei

√
|Θ̂|(φ−φo)Ψφo

(v), (2.16)

whose generator is the operator

√
|Θ̂| (defined by the

spectral decomposition of Θ̂).
Finally, the lack of symmetry breaking interactions in-

troduces into the system a large symmetry: reflection of
the triad orientation, v 7→ −v. It is then possible to split
the physical space into two sectors: the symmetric and
the antisymmetric ones. For the rest of our discussion,
we choose the symmetric sector. This choice does not
affect the results.

The physical states take the form:

Ψ(v, φ) =

∫

k∈R

dkΨ̃(k)eεk(v)eiω(k)φ, (2.17)

where ω(k) =
√

12πG|k|, eεk(v) are the symmetric ba-
sis functions (2.10) corresponding to the superselection

sector ε, and Ψ̃ ∈ Hphy.

4. Natural observables

In order to extract the physics and test possible dif-
ferences between prescriptions, we need to introduce (a
convenient set of) physical observables on Hphy. The
unitary mapping (2.15) allows us to promote any well

defined kinematical observable Ô to a physical one, Ôφ,
acting on the wave function as follows

[ÔφΨ](v, φ) = ei
√

|Θ̂|(φ−φo)
[
ÔΨ(v, φ)

]∣∣∣
φo

. (2.18)

For our analysis here, we select a set of observables
that are frequently used in cosmology: the function of
the volume ln |v̂|φ [29], the energy density ρ̂φ –obtained
from

ρ̂ = :
p̂2φ

2V 2
: =

~2

2

[
1̂

V

]
Θ̂

[
1̂

V

]
, (2.19)

where the symbol “:” stands for symmetric ordering–,
and the Hubble parameter Ĥφ, built from

Ĥ = − 1

4iγ
√

∆
(N̂4µ̄ − N̂−4µ̄). (2.20)

All of them leave the spaces Hε invariant.
These operators will be analyzed in Sec. IV C where,

for certain classes of states, we will investigate the differ-
ence in their expectation values for the distinct prescrip-
tions under study. These differences between expectation
values will be considered significant if they are at least of
the order of the dispersions of the corresponding observ-
ables.

III. THE PRESCRIPTIONS

Even at the classical level, there exists a freedom in
defining the densitization of the Hamiltonian constraint
of the system. This amounts to identifying in Eq. (2.3a)
what is the density weight of the function on phase space
that provides the constraint and which part simply plays
the role of a Lagrange multiplier. Equivalently, one can
define the densitization of the constraint by providing a
(nonvanishing) lapse of reference N0, or at least specify-
ing its density weight, setting then the constraint equal

to Ĉ(N0), as in Eq. (2.5). One can then regard N/N0

as the associated Lagrange multiplier. Although these
considerations have no much relevance on purely classi-
cal grounds, different choices produce different expres-
sions after rewriting the constraint in terms of triads and
holonomies; in particular, there appear slight changes in
the holonomy dependence owing to the regularization of
the inverse volume terms (see Sec. II B 2).

These differences get even more important at the quan-
tum level where, in addition to the already mentioned
effects of “holonomization”, we have the freedom to se-
lect a particular operator representation for the classical
constraint, including the choice of order in functions of
noncommuting elementary operators (commonly called
the factor ordering ambiguity).

The above ambiguities have already given rise to sev-
eral constructions for the geometric operator Θ̂. Here,
we will focus our attention on four of them, three of
which have already appeared in the literature. They
are the Ashtekar–Paw lowski–Singh (APS) prescription
[5], the solvable LQC (sLQC) prescription [20], and
the Mart́ın Benito–Mena Marugán–Olmedo (MMO) pre-
scription [21]. In addition to those three, we will also
consider a prescription (that we call sMMO) that unifies
some properties of the sLQC and MMO ones. These four
prescriptions are described below, case by case, pointing
out the properties of the evolution operator and the form
of the physical Hilbert space for each of them.

A. APS

This is the original prescription used in the pioneer
analysis of the (improved) LQC dynamics [5] (see also
Ref. [30] for a recent discussion of some aspects of this
quantization). The choices of density weight and opera-
tor representation are the following:
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(i) The densitization agrees with the standard one in
full LQG. Formally, this amounts to setting N0 = 1
in Eq. (2.5).

(ii) For the constraint, one chooses the algebraically
simple, symmetric factor ordering:

N̂0Cgr ∝ −(N̂2µ̄ − N̂−2µ̄) V̂ (N̂2µ̄ − N̂−2µ̄). (3.1)

(iii) In passing to the form (2.7), one requires that the
emerging Schrödinger system is strictly equivalent
to the group averaging of the Hamiltonian con-
straint in its original form (2.5) [31].

As a consequence of these settings, the operator B̂ is
given by

B(v) =
27

8
|v|
∣∣|v + 1|1/3 − |v − 1|1/3

∣∣3, (3.2)

while, the coefficients of the evolution operator Θ̂ on the
symmetric sector of the theory are

f(v) = [β(v + 2)]1/2f̃(v)[β(v − 2)]1/2, (3.3a)

fo(v) = β(v)[(1 − δv,−4)f̃(v + 2)

+ (1 − δv,4)f̃(v − 2)],
(3.3b)

where

f̃(v) =
3πG

8
|v|
∣∣|v + 1| − |v − 1|

∣∣, (3.4a)

β(v) =

{
[B(v)]−1, v 6= 0,

0, v = 0.
(3.4b)

Similar expressions are obtained in the antisymmetric
sector (except for the δv,±4 terms, which do not con-
tribute in that case).

Furthermore, the implementation of (iii) imposes on
the physical wave functions (2.17) the constraint

Ψ(0, φ) = 0. (3.5)

Therefore, in the precise form presented here for this
prescription, the state |v = 0〉 does not decouple from the

rest of the domain from the start (note that in the orig-
inal representation of Ref. [5] the wave function still has
a nontrivial value at v = 0 [30]). However, the appar-
ent nondecoupling is only formal inasmuch as the state
|v = 0〉 does not contribute to the space of physical states
anyway.

The constant α describing the potential term in Eq.
(2.14) takes the value:

α = αAPS =
5

9
. (3.6)

The structure of the physical Hilbert space depends on
the superselection sector. We distinguish two cases:

(i) For ε = 0, 2 (in the case ε = 0, upon our sym-
metry/antisymmetry assumption) the subdomains
v > 0 and v < 0 decouple, and the eigenspaces of
the (extended) evolution operator are nondegener-
ate. As a consequence, the physical Hilbert space
is Hε=0,2

phy = L2(R+, dk). This case is called excep-

tional (following Ref. [4]).

(ii) When ε 6= 0, 2, the two triad orientations are in-

terconnected and the eigenspaces of Θ̂ are two-
dimensional. The resulting physical Hilbert space
is Hε

phy = L2(R, dk). We will further refer to this
case as the generic one.

This dichotomy affects, in particular, the form of the
symmetric superselection sectors of the theory. For ex-
ceptional cases, one can restrict all considerations to
functions supported on semilattices

L±
ε = {±(ε+ 4n), n ∈ N} (3.7)

and next extend them to fully symmetric domains by
parity reflection.

For generic cases the superselection sectors have sup-
port on full lattices, of the form Lε = {ε + 4n, n ∈ Z}.
These lattices are not invariant with respect to reflection,
and therefore one has to work with the union of two lat-

tices, Lε ∪ L4−ε, first constructing the state on Lε and
then extending it by parity. This will force us to use dif-
ferent techniques in Sec. IV A when identifying the basis
of symmetric functions eεk(v) numerically.

One of the unfortunate properties of the generic sectors
in this prescription is the fact that the physical Hilbert
space is twice larger than for exceptional sectors. For
the physically interesting applications (analysis of the
universes which are semiclassical and expanding at late
times), one restricts the study in practice to half of the
physical space, thus spanned by only half of the basis
functions. As we will see in Sec. IV A, one chooses them
to resemble as close as possible (in certain aspects) the
basis of the exceptional cases. This is achieved by impos-
ing additional requirements on the behavior of their ge-
ometrodynamical limit (the selection procedure and nu-
merical construction will be presented in the mentioned
section). The remaining basis elements can be then de-
fined as the orthogonal completion of the constructed
subset.

B. sLQC

This prescription, first suggested in Ref. [20], has been
proposed to bring the evolution operator into a form as
simple as possible, so that the study of the system can be
carried out in a fully analytic way. The density weight
and operator representation of the constraint are as fol-
lows:

(i) The constraint is defined with density weight equal
to one. Formally, this corresponds to a choice of the
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type N0 = V/(8πG), for which the time parameter
is synchronized with the scalar field.

(ii) The gravitational part of the constraint is defined
with the ordering

N̂0Cgr ∝ −V̂ [N̂2µ̄ − N̂−2µ̄]2 V̂ . (3.8)

With the above criteria, in particular, the operator B̂
in Eq. (2.5) is just the identity; so no change of densi-
tization is needed in the quantum theory to reformulate
the constraint and attain separation of the geometric and
matter variables. The resulting coefficients of the evolu-
tion operator are thus much simpler than for the APS
prescription and read

f(v) =
3πG

4

√
|v + 2||v|

√
|v − 2|, (3.9a)

fo(v) =
3πG

2
v2, (3.9b)

which implies that the subleading term in Eq. (2.9) is

α = αsLQC = 0. (3.10)

One of the consequences of expression (3.9) is the anni-

hilation of the state |v = 0〉 by Θ̂. The zero volume state
therefore decouples from the evolution. One can then su-
perselect this state by its own and remove the quantum
counterpart of the singularity from the start. The mech-
anism of singularity resolution is thus slightly different
from that of the APS prescription.

The form of Θ̂ simplifies also the construction of the
energy density operator, which in this case is

ρ̂ = − 3

32πG∆γ2
(N̂2µ̄ − N̂−2µ̄)2 . (3.11)

It is then possible to show that the entire spectrum of
ρ̂, and not just its essential part [30] (as in the case of
other prescriptions), is the interval [0, ρc], where ρc is the
critical energy density [5].

Another convenient property of this prescription is the
fact that, although in the representation used in Eq.
(2.14) the operator Θ̂ still includes a nontrivial potential
(apart from the compact remnant), there exists an equiv-
alent representation in which it adopts a simple Klein-
Gordon form Θ̂ = −∂2x̄ (see Eqs. (3.16) and (3.17) of
Ref. [20]).

The structure of the physical Hilbert space is exactly
the same as for the APS prescription. Again one has
two cases: (i) the exceptional case for ε = 0, 2, where
the triad orientations either decouple or the degeneracy
is removed by the parity symmetry restriction, and (ii)
the generic case, for all other values of ε. The treatment
is exactly the same as in the APS prescription; in partic-
ular, the physical Hilbert space is Hε=0,2

phy = L2(R+, dk)
in the exceptional cases, and the eigenspaces are non-
degenerate then, whereas for the generic case one has
Hε

phy = L2(R, dk) and a twofold degeneracy (although in
practice we will restrict the study to just half of Hε

phy,
given the kind of semiclassical states that we want to
consider).

C. MMO

This prescription was originally motivated by the anal-
ysis of Bianchi I cosmologies in the LQC scenario [13, 14],
which give rise to natural proposals that, when applied
to the isotropic situation, affect the factor ordering in
the representation of the constraint. The main difference
with respect to the previous prescriptions is the appear-

ance in Ĉ(N0) of an operator ŝgn(v). In the isotropic
context, the prescription was first introduced and stud-
ied in Ref. [21], following the analysis of its anisotropic
counterpart. It is characterized by

(i) The density weight is the same as in LQG. Formally,
the lapse can be viewed as N0 = 1.

(ii) The gravitational part of the constraint is defined as
the reduction of its analog in the Bianchi I model
[13], by identifying the degrees of freedom corre-
sponding to distinct eigendirections of the metric.

(iii) This and the presence of sgn(v) allows one to choose
the following operator representation for the con-
straint:

N̂0Cgr = −
[
Â :

(
N̂2µ̄ − N̂−2µ̄

)
ŝgn(v) : Â

]2
, (3.12)

where Â is certain operator that is diagonal in |v〉
and satisfies Â|0〉 = 0. We have used the notation

[: X̂Ŷ :] = (1/2)[X̂Ŷ + X̂Ŷ ].

In order to achieve separation of variables, one can
change the densitization and reformulate the constraint
by a procedure that is directly inherited from the Bianchi
I model. Namely, one can first deal with the non-isotropic
Bianchi I constraint and then reduce the result to the
isotropic case. In this way, one gets a constraint of the
form (2.7), with coefficients for the evolution operator
(2.8) that are given by

f(v) =
πG

12
g(v + 2)g(v − 2)g2(v)s+(v)s−(v), (3.13a)

fo(v) =
πG

12
g2(v)

{
[g(v + 2)s+(v)]2

+ [g(v − 2)s−(v)]2
}
,

(3.13b)

where

s±(v) = sgn(v ± 2) + sgn(v), (3.14a)

g(v) =





∣∣∣
∣∣1 + 1

v

∣∣ 13 −
∣∣1 − 1

v

∣∣ 13
∣∣∣
− 1

2

v 6= 0,

0 v = 0.

(3.14b)

The resulting evolution operator has several interesting
properties:

(i) The operator is an explicit square, Θ̂ ∝ Ω̂2, where

Ω̂ is a known second-order difference operator (see
Eq. (7) of [21]).



7

(ii) The coefficients f(v) and fo(v) vanish in the whole
interval v ∈ [−2, 2].

The latter implies, in particular, that the states whose
support corresponds to different orientations of the triad
are not mixed under the action of the constraint. Fur-
thermore, one can see that the superselection sectors cor-
responding to Θ̂ now have support on semilattices (3.7),

and the absolutely continuous spectrum of Θ̂ in each of
them is positive and nondegenerate. Hence, each supers-
election sector (without any exception) has the structure
found for the exceptional situations in the other prescrip-
tions presented above.

This in turn implies that the exact structure of Hphy

not only becomes the same for all the superselection sec-
tors (in contrast with the previous prescriptions), but
also that it is technically simpler to deal with it (as we
will discuss in detail in Sec. IV).

Another interesting property follows directly from the
nondegeneracy of the spectrum. Namely, all the basis
elements converge in the limit of large v to WDW exact

standing waves. This property, which holds always in this
prescription, is achieved in the previous two prescriptions
only for the exceptional cases ε = 0, 2. For the remaining
sectors, the discussed limit presents a small (decaying
exponentially with k) but nonvanishing deviation from
the standing waves, analogous to the case of a tunneling
through a potential barrier.

Finally, the asymptotic expansions of f(v) and fo(v)
for v → ∞ give

α = αMMO =
5

3
. (3.15)

D. sMMO

In this prescription, which has not been stated explic-
itly in the literature so far, the density weight and the
operator representation of the constraint are selected to
bring together the nice features of the sLQC and MMO
prescriptions:

(i) The density weight is chosen as in the sLQC pre-
scription, so that one directly attains separation
of the geometric and matter variables in the con-
straint.

(ii) The constraint operator is defined as a reduction of
its Bianchi I counterpart, as in the MMO prescrip-
tion.

Again, the presence of sgn(v) and the parallelism with
Bianchi I allow one to choose an operator ordering such
that the gravitational part of the constraint is of the form
specified in Eq. (3.12) (but with the operator Â differing
from that of the MMO prescription). With these choices,

Θ̂ is given by the following coefficients:

f(v) =
3πG

16

√
|v + 2||v|

√
|v − 2|s+(v)s−(v), (3.16a)

fo(v) =
3πG

16
|v|
[
|v + 2|s2+(v) + |v − 2|s2−(v)

]
, (3.16b)

with s±(v) defined in Eq. (3.14a). The asymptotic be-
havior of these coefficients leads to a potential term in
Eq. (2.14) with

α = αsMMO = 0. (3.17)

This prescription shares all the qualitative properties
of the MMO one: the spectrum, the decoupling of the
|v = 0〉 state, the decoupling of the triad orientations
for all superselection sectors, as well as all the properties
following from this (see Sec. III C). On the other hand,
the resulting evolution operator differs from the one of
the sLQC prescription only by a diagonal operator sup-
ported on v ∈ (−4, 4) \ {0}. For the sector ε = 0 that
difference vanishes. This implies that the system is ex-
actly solvable for ε = 0, while for the remaining sectors
the difference is just a tiny correction (see the compari-
son in Sec. V), which for a noncompact system vanishes
in the limit in which the regulator is removed.

E. Measuring the differences between prescriptions

In principle, the considered prescriptions may lead to
distinct physical pictures. To analyze this possibility, we
will investigate in Sec. IV the behavior of the set of stan-
dard cosmological observables introduced above. But,
independently of the existence of significant differences
for these observables and the feasibility of its detection,
it is clear that there are discrepancies in the physical sec-
tor of the theory and that these cannot be absorbed just
by a change of representation. In fact, we observe dif-
ferences both in the exact structure of Hphy and in the

(subleading) potential term of Θ̂, characterized by the
constant α [see Eq. (2.14)].

This implies that there indeed exist observables which
can detect the differences between prescriptions, even
though they may be not of the greatest interest from
a physical viewpoint. One observable of this kind is the
densitized constraint Ĉ itself. Actually, given a prescrip-
tion A corresponding to either APS, sLQC, MMO, or
sMMO, the constraint ĈA will obviously annihilate all
physical states |ΨA〉 ∈ HA

phy, while it will not do so
generically for physical states of any other prescription
B 6= A (provided the action of ĈA can be defined on
them). Mathematically, this means that

∀A 6= B,

{
∀χ ∈ Hkin : (ΨA|ĈA|χ〉 = 0,

∃χ ∈ Hkin : (ΨA|ĈB|χ〉 6= 0.
(3.18)

The difference between two constraints is of the form

ĈA − ĈB = ∆̂ΘAB ⊗ 11, ∆̂ΘAB = Θ̂A − Θ̂B, (3.19)
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where ∆̂ΘAB is a well defined kinematical observable in
Hgr

kin. We can then define a family of physical observables

∆̂ΘAB |φ following the procedure explained in Sec. II B 4.
Such family allows us not only to detect the differences
between prescriptions, but also to pinpoint its variation
in the evolution.

To understand the nature of these differences, let us

note that the operator ∆̂ΘAB can be split like in Eq.
(2.12), which gives in the (momentum) b representation:

∆̂ΘAB = 3πG
αB − αA

cosh2(2x)
+ δ̂ΘA − δ̂ΘB. (3.20)

The compact term ∆̂δΘAB = δ̂ΘA − δ̂ΘB can be ne-
glected in the limit in which the infrared regulator is
removed. The only residual difference between the pre-
scriptions is thus generated by the potential term in Eq.
(3.20). Owing to the shape of the potential, the max-
imum difference is expected to occur near the bounce
point x = 0. Its global effect can be understood phys-
ically as a slight difference in the dispersion of the free
Klein-Gordon wave packets [32] by this potential.

IV. NUMERICAL ANALYSIS

The different properties of the studied prescriptions
force us to apply different numerical methods in our anal-
ysis. The elementary “bricks” from which we construct
the physical states are (some of) the eigenfunctions of the

operator Θ̂, which form an orthonormal basis of the grav-
itational part of the kinematical Hilbert space. We will
thus start (in Sec. IV A) with a detailed explanation of
the procedure to build this basis. We will then describe
the procedures to construct the physical states and eval-
uate the expectation values and the dispersions of the
observables. This will be done in Sec. IV B and IV C,
respectively. Finally, in Sec. IV D we will discuss and
compare the efficiency and precision of the methods used
in different regimes. The details of most of the numerics
employed in our analysis can be found in Refs. [4, 5, 21].
Here, we will concentrate mainly on aspects that are new
or have not been sufficiently explored before. Our start-
ing point is provided by appendices B and A.2 of Refs. [4]
and [8], respectively.

A. Basis construction

As we have already commented, the operator Θ̂ has a
continuous spectrum, and is thus diagonalizable in a ba-
sis of generalized eigenfunctions [solutions to Eq. (2.10)
with an infinite kinematical norm]. Depending on the de-
generacy of the spectrum, these basis elements are sup-
ported on semilattices (nondegenerate case) or entire lat-
tices (degenerate case), and can be determined following
different procedures.

1. Nondegenerate eigenfunctions

This is the simplest situation from a technical point of
view. It occurs in the exceptional superselection sectors
(ε = 0, 2) of the APS and sLQC prescriptions and in all
sectors of the MMO and sMMO ones. In all these cases,
the particular form of the evolution operator Θ̂ is such
that the eigenfunctions (eεk| (where k ∈ R+) are uniquely
determined by their initial value eεk(ε). To fix the phase
of the eigenfunctions, we choose this initial piece of data
to be positive (see Refs. [5, 21]). Once the values at
v > 0 are obtained, the function is extended to v < 0 by
symmetry requirements: eεk(−v) = eεk(v).

Let us now explain how to get eεk(v) for v > 0. One
can see [8] that the asymptotic limit v → ∞ of eεk(v) has
the form

eεk(v) → r[eiφ
ε

k ek(v) + e−iφε

k e−k(v)], (4.1)

where φεk is a phase shift, r is a positive real number, and
e±k(v) are the generalized eigenfunctions of the WDW

analog of Θ̂ (see Appendix A). Given that e±k(v) are
(delta-)normalized as in Eq. (A3), the normalization
condition (2.11) implies that r = 2 (see appendix A.2 of
Ref. [8]). The relation between the initial value eεk(ε) and
the normalization factor r is a priori unknown and can
be determined only once the eigenfunction (its v → ∞
limit) is evaluated. To overcome this problem, we divide
the evaluation into several steps:

(i) evaluation of a non-normalized eigenfunction ψk;

(ii) finding its WDW limit to determine its norm ‖ψk‖
relative to the condition (2.11);

(iii) rescaling the eigenfunction to reach a normalized
one: ψk(v) 7→ eεk(v) = ‖ψk‖−1ψk(v).

In the first step, we construct ψk by setting ψk(ε) = 1.
The eigenfunction is then evaluated using Eq. (2.10) in
an iterative process, point by point in the domain L+

ε ∩I,
where I = [ε, vM ]. The boundary vM ≫ k is chosen to
lie (whenever technically possible) deeply in the regime
where the corrections to the asymptotic behavior (4.1)
are small. In the present simulations, following numerical
estimations, we fix

vM ≈ 4 · min[107,max{100 · k, exp(3π/k)}] . (4.2)

This choice ensures also that, for small k, the selected
interval contains at least one oscillation period.

The second step is completed by a method analogous
to the transfer matrix technique used in the proof of Eq.
(4.1) in Ref. [8]. Namely, the value of the eigenfunction
at each pair of consecutive points in its domain of defini-
tion is represented as a linear combination of the WDW
basis functions, adopting the form

ψk(v) =

√
2

πv
r̃k(v) cos[kx+ φk(v)], (4.3)



9

where x = ln v, and the v-dependent coefficients r̃k(v)
and φk(v) converge according to Eq. (4.1) to their re-
spective limits r̃ǫk and φεk, respectively, with a rate

r̃k(v) = r̃ǫk

[
1 +O

(
k2

v2

)]
, (4.4a)

φk(v) = φεk

[
1 +O

(
k2

v2

)]
. (4.4b)

The normalization is now determined by the identity
r̃εk = 2||ψk||. The limit r̃εk can be evaluated quite easily.
For that we only need a sequence of points {(v−1

n , r̃nk )}
with n ∈ N, extrapolating numerically the desired limit
at v−1 → 0 (see appendix B of Ref. [4]). In practice,
we choose the sequence of points vn to approximately
follow the behavior vn ≈ 2−nv0, and use a polynomial
extrapolation (Neville’s method). The specific method
to evaluate r̃nk depends on the value of k, namely:

1. If k xM > 2π (large k), with xM = ln vM , the
WDW limit (being a standing wave) has a wave-
length small enough as to oscillate at least a few
times in the chosen domain. Collecting the in-
formation at the extrema of these oscillations, we
build a set of pairs {(v−1

n , r̃nk )}. The precise algo-
rithm to evaluate these pairs is the following:

(a) we find an extremum of ψk(v), namely, a point
vn ∈ L+

ε ∩I where |ψk(vn)| > |ψk(vn +4)| and
|ψk(vn)| > |ψk(vn − 4)|; initially, we look for
the extremum closest to xM ;

(b) we extend ψk to the interval [vn−4, vn+4] via
a polynomial interpolation of second-order (in
x); the resulting function has the form (4.3)
up to fourth-order corrections;

(c) given this interpolating function, we deter-
mine the pair {(v−1

n , r̃nk )} corresponding to its
extremum;

(d) we repeat the procedure, searching for the
next extremum close to the point xn − ln 2;
the procedure is repeated iteratively until we
obtain a sequence of five points, or we enter
the region where the loop corrections become
significant.

2. If k xM < 2π (small k), the wavelength of the os-
cillations is larger than xM , and we do not get a
sufficient number of extrema in the selected do-
main. Therefore, we modify the procedure ex-
plained above as follows: for each value of vn,
with xn = ln vn, instead of searching for an ex-
tremum, we consider the pair of consecutive points
(vn, vn+4) and solve algebraically Eq. (4.3) to find
(rk(v), φk(v)).

The procedure used for small values of k is simpler, since
it does not involve identifying extrema nor interpolating,
but is less accurate than the one employed for large k’s.

Once the sequence {(v−1
n , r̃nk )} has been found, the

limit of r̃nk is determined using a polynomial extrapo-
lation (Neville’s method) at v−1 = 0.

2. Degenerate eigenfunctions

This is the generic situation (generic superselection
sectors) found in the APS and sLQC prescriptions. In
the basis construction, we follow (with minor improve-
ments) the procedure presented in Refs. [4, 5]. As al-
ready mentioned, the eigenspaces are twofold degenerate,
but in our analysis we concentrate ourselves on a distin-
guished one-dimensional family of eigenstates (which can
be next extended to the full basis via orthogonal comple-
tion). The general eigenfunctions are solutions of a gen-
uine second-order difference equation, and hence require
the specification of two pieces of initial data, e.g. the
values at two consecutive points of their support. The
restriction by parity symmetry does not impose any con-
straints on the data, since for generic sectors the image
under parity reflection of a lattice Lε is a different lattice
L4−ε. This implies in particular that any eigenfunction
supported on Lε can be extended in a straightforward
way to Lε ∪ L4−ε by (anti)symmetry.

Taking into account all this, we construct the (distin-
guished half) basis as follows:

(i) first, we build on Lε a pair of auxiliary eigenfunc-
tions ψ±

k (v) [again solutions to Eq. (2.10)] which
converge to the WDW basis elements e−|k| in the
limits v → ±∞, respectively;

(ii) then, after a suitable rotation of their phases in a
process detailed below, we add these functions and
(delta-)normalize the outcome.

In the first step of these computations, we choose the
domain I = Lε ∩ [−vM , vM ], where vM is selected as
in Eq. (4.2). The initial data for ψ± are given at the
lowest (for −) or greatest (for +) pair of points in I, and
are set equal to the values of e−|k|(v) at those points.
While this construction is not an exact implementation
of (i) above, in practice it approximates it with sufficient
precision, owing to the quick convergence of the LQC
eigenfunctions to their WDW limits.

Once the auxiliary eigenfunctions are evaluated, we de-
termine their WDW limit at the opposite orientation side
v → ∓∞. Since the initial data are complex, this limit
does not generally correspond to WDW standing waves,
and takes the more general form:

ψ±
k (v) = a±ε e

iα±
ε ek(v) + b±ε e

iβ±
ε e−k(v), (4.5)

where a±ε , b
±
ε ∈ R+, whereas α±

ε , β
±
ε ∈ [0, 2π). They are

all functions of k, but we will ignore this in the notation
so that it does not get too complicated. The numerical
analysis shows that the amplitude coefficients a±ε and
b±ε grow (approximately) in an exponential way with k.
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And, on the other hand, the selfadjointness of Θ̂ implies
that |a±ε |2 − |b±ε |2 = 1 [4, 5].

To evaluate these coefficients, we split ψ± into real and
imaginary parts, denoted from now on by the symbols ℜ
and ℑ, respectively. Since each of them separately con-
verges to a standing wave, we can then directly apply the
technique used in the nondegenerate situation, presented
in Sec. IV A 1. The only complication with respect to
that case is that, in addition to the norm factors [like
r̃εk in Eq. (4.4a)], we also need to find the phase shifts
φεk. We do so by constructing the sequences {(v−1

n , φnk )}
–analogs of {(v−1

n , r̃nk )}– and by finding their limit when
v−1
n → 0. As before, the values of φnk are determined for

large k by the positions of extrema, while for low k they
are evaluated algebraically.

Once we know the limiting coefficients of the four com-
ponents ℜ[ψ±] and ℑ[ψ±], the coefficients a±ε , b±ε , α±

ε ,
and β±

ε can be easily calculated in terms of them. The
determined data are then used to construct the desired
linear combination of the two components ψ±. This in-
volves two aspects: (i) normalization, and (ii) rotation.

Concerning the normalization, we rescale the function
using the fact that 4‖ψ±

k ‖2 = |a±ε |2 + |b±ε |2 + 1. This
ensures that each of the two considered components con-
tributes with the same weight to the final basis element.
Thus, the final result will have a very similar behavior to
that of the asymptotically standing waves of Sec. IV A 1.

We then rotate ψ± to compensate for the overall phase

χ±
ε = −1

2
(α±

ε + β±
ε ). (4.6)

This step, new with respect to the procedure specified in
Refs. [4, 5], is convenient to improve the semiclassical-
ity properties of the physical states constructed with our
techniques from the final basis elements.

As a result, we obtain the new two components

ψ̃±
k (v) = eiχ

±
ε ‖ψ±

k ‖−1ψ±
k (v). One can see that, in the cor-

responding limits v → ∓∞, they behave as in Eq. (4.1)
up to corrections of order (a+ε )−1, which is a sufficiently
good approximation for k ≫ 1.

Finally, these components are added and their sum is
normalized:

ẽεk(v) =
1√
2

ψ̃+
k (v) + ψ̃−

k (v)√
1 + ℜ[zk]

, (4.7)

where

zk =
a−ε e

i(φ−
ε
−χ+

ε
) + a+ε e

−i(φ+
ε
−χ−

ε
)

‖ψ+
k ‖ ‖ψ−

k ‖
. (4.8)

This last quantity comes from the scalar product between
ψ̃+
k and ψ̃−

k , and in the regime k ≫ 1 is of the order
of (a+ε )−1. As a consequence, it can be neglected for
physically interesting states (large k). In such case, one
again recovers the behavior of ẽεk shown in Eq. (4.1).

The final step in the basis construction is the sym-
metrization to get the generalized eigenfunction (eεk| sup-

ported on Lε ∪ L4−ε:

(eεk|v〉 =
1√
2

[(ẽεk|v〉 + (ẽεk| − v〉] . (4.9)

B. Physical states: construction and analysis

In the numerical analysis that was carried out in
Refs. [4, 5], the physical states consisted in Gaussian dis-
tributions

Ψ̃(k) = ΨG(k) =
1

(2π)1/4
√
σ
e−(k−k0)

2/(4σ2), k ∈ R.

(4.10)
The parameters k0 and σ are related in a simple way with
the expectation value 〈p̂φ〉 and the dispersion ∆p̂φ of the
momentum of the scalar field

〈p̂φ〉 =
√

12πGk0,
∆p̂φ
〈p̂φ〉

=
σ

k0
. (4.11)

In principle, the support of the Gaussian spectral profile
is the entire real line, thus being directly applicable to
the cases when the basis elements cover the entire set
k ∈ R (the degenerate situation described in Sec. IV A 2,
after including the orthogonal complement of the con-
structed half basis). In the cases where the spectrum of

Θ̂ is nondegenerate, the Gaussian profiles suffer a modifi-
cation (owing to the cutoff at k = 0). Therefore, in such
situations the final shape resembles a true Gaussian only
for profiles that are sharply peaked, so that k0 is large
compared to σ.

Since we are interested in the study of more general
physical states, for which the different prescriptions may
in principle lead to different quantum predictions, we
introduce more convenient profiles, applicable without
modifications to both the degenerate and the nondegen-
erate cases. Specifically, we consider logarithmic normal
distributions of the type:

ΨL(k) =
1

(2π)1/4
√
σk
e−[ln(k/k0)]

2/(4σ2), (4.12)

with k running over the positive semiaxis. The positive
parameters k0 and σ are related now to 〈 p̂φ 〉 and ∆p̂φ as
follows:

〈p̂φ〉 =
√

12πGk0e
σ2/2,

∆p̂φ
〈p̂φ〉

=
√
eσ2 − 1. (4.13)

We will analyze this two-parameter family of states to
investigate the discrepancies between prescriptions in the
regimes where 〈p̂φ〉 and ∆p̂φ are of the same order.

The wave function Ψ(v, φ) corresponding to a given

profile Ψ̃(k) can be evaluated directly by performing the
integral (2.17). Obvious technical limitations require us
to, first, discretize the integral and, second, restrict it to a
compact domain D in k. For our purposes, it is sufficient
to choose D as

D = [k0e
−sσ, k0e

sσ], with s ∈ N+. (4.14)
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As far as s > 7, one can check that the relative error
in the integration owing to the neglected contribution of
k ∈ R \D is less than 10−12. In our simulations, we have
chosen s = 10.

For the numerical integration of Eq. (2.17) in D, we
have used Romberg’s method (see e.g. Ref. [33]). This
method is particularly convenient if one wants to restrict
the number of integrand probing points in D, which is
the case here, as the evaluation of the basis elements
is the most numerically expensive step of the process.
To control the integration precision, we have demanded
that the difference of the results between the consecutive
orders l and l + 1 of the polynomial extrapolation (an
internal component of the Romberg method [33]) satisfy

‖Ψ
(l+1)
φ − Ψ

(l)
φ ‖phy < δ‖Ψ

(l+1)
φ ‖phy, (4.15)

where the imposed error bound δ varies from 10−6 to
10−10, depending on the simulation. To avoid an exces-
sive cost of time in the integration, we have restricted
the number of the integrand probing points (forming the
uniform lattice in D) to 212 + 1.

C. Observables

We can now proceed to calculate the action of observ-
ables on the states represented by the wave functions
constructed in the previous subsection. In particular,
we can evaluate and compare the expectation values and
dispersions of those observables. We consider two types
of observables: those introduced in Sec. II B 4, which
encode standard properties of interest in cosmology –
namely, ln |v̂|φ, Ĥφ, and ρ̂φ–, and the observables de-
fined in Sec. III E, which are specially suitable to detect
the differences between the studied prescriptions.

The dynamical information is extracted by means of
the Schrödinger picture, where the evolution of a state
is seen as a mapping between initial data (on a constant
φ slice) via the unitary transformation (2.16). In this
picture, the action of a physical observable is obtained
from that of its kinematical precursor (see Sec. II B 4) on
the appropriate initial data slice.

This fact has been applied in previous numerical stud-
ies of LQC, starting with Ref. [5], in order to extract
dynamical data. In our case, in the v representation,
all the interesting kinematical operators (precursors) are
either multiplication operators or combinations of mul-
tiplications and shifts. This simple form allows us to
evaluate the results of their action straightforwardly by
making use of the map Ψφ(v) 7→ ln |v|Ψφ(v), Eq. (2.19),
Eq. (2.20), and the right formula in Eq. (3.19).

The expectation values are then evaluated via the kine-
matical inner product on Hgr,

〈Ψφ|Φφ〉 =
∑

v∈Lǫ∩J

Ψ̄φ(v)Φφ(v) , (4.16)

where, for technical reasons, the summation is restricted
to the compact region J = [−vm′ , vm′ ] (in the degenerate

case) or J = [0, vm′ ] (in the nondegenerate case). In our
simulations the bound vm′ has been selected to lay always
in the interval [104, 4 · 106], its specific value varying for
different simulations. This choice ensures that the error
caused by the restriction to a compact domain J has a
subleading contribution compared with other numerical
errors that arise in the evaluation process.

To isolate the numerical noise (see Fig. 1) generated by
the errors introduced in the evaluation of the basis and in
the integration of the wave function Ψ on each slice, the
values of Ψφ(v) entering Eq. (4.16) have been modified
by a filter, namely, whenever |Ψφ(v)| < α sup |Ψφ| the
value Ψφ(v) has been set equal to zero. This prevents
this type of noise from affecting the computation of the
expectation values. In our simulations, the value of the
relative bound α has been selected to vary between 10−8

and 10−6.
The dispersions have been calculated using the stan-

dard formula

〈∆Ô 〉2 = 〈 Ô2 〉 − 〈 Ô 〉2 (4.17)

for each observable Ô.
Finally, since we work in the symmetric sector, we

note that we can restrict all our considerations to half
of the support of the wave function; in particular, when
limited to a compact region, we can restrict ourselves to
a domain like J , as specified below Eq. (4.16).

D. Efficiency and precision

Let us now investigate the properties of the numeri-
cal techniques discussed in the previous subsections from
the perspective of the computational precision and ef-
ficiency. The numerical computations necessary to get
the final results consist of several steps: (i) evaluation of
the basis elements (eεk| (discussed in detail in Sec. IV A),
(ii) integration of the spectral profile to determine the
wave function for each constant value of φ (Sec. IV B),
and (iii) evaluation of the action of the observables and
computation of their expectation values and dispersions
(Sec. IV C). Each of these steps introduces its own source
of numerical error and presents a different efficiency.

We start with the first of these steps: the evaluation of
the basis elements. The comparisons during the simula-
tions have shown that this step is responsible for most of
the computational cost, and therefore it is the most criti-
cal part from the viewpoint of the efficiency. As discussed
in Sec. IV A, the actual algorithms and cost depend on
the degeneracy of the basis, and hence vary significantly
with the considered superselection sector and quantiza-
tion prescription.

In the nondegenerate case (Sec. IV A 1), the calcula-
tion involves two steps: the determination of the non-
normalized eigenfunctions ψk and the computation of
their norm by finding their WDW limit. The calculation
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(a) (b)

FIG. 1. Amplitude |Ψφ(v)| of the physical wave function corresponding to a state with a logarithmic normal distribution. The
amplitude for different prescriptions is compared both away from the bounce (a) and at the bounce (b). The parameters of the

profile Ψ̃ of this state are fixed by the conditions 〈p̂φ〉 = 100~ and ∆p̂φ/〈p̂φ〉 = 0.1. Away from the bounce, the amplitudes
are indistinguishable up to numerical noise, whereas at the bounce one can observe differences (phase shift) in the interference
pattern. The noise level clearly depends on the used techniques, something which depends in turn on the degeneracy of the
spectrum of Θ̂.

precision depends on the size of the evaluation domain
chosen for the eigenfunction and on the wave number k
[see Eq. (2.17)]. In particular, we observe that two effects
compete: since the eigenfunctions are evaluated via itera-
tive methods, the evaluation precision decreases with the
size of the domain, whereas the precision in determining
the WDW limit increases with it. In that respect, the
choice of the domain size given by Eq. (4.2) provides a
fairly acceptable balance between these two sources of er-
ror. It is also worth recalling that, with our conventions
[eεk(ε) > 0], there are no ambiguities in the freedom of
choice for the global phase of the eigenfunctions.

The degenerate case, as we have seen in Sec. IV A 2,
is considerably more complicated. First, the procedure
applied in the nondegenerate case becomes just the first
step of the evaluation. Even this stage introduces now a
higher numerical error, because the domain of calculation
of ψk is now twice larger, and hence the evaluation of the
eigenfunctions requires twice more iterative steps. Apart
from that, we observe a significant cost increase since
we have to evaluate the pair of eigenfunctions ψ±

k and,

besides, both ψ±
k are now complex instead of real. In

total, the three commented facts amount to an increase
of 8 times in the computational cost.

Furthermore, the next step –taking the appropriate lin-
ear combination of ψ± to form the final basis functions–
has its own cost (which is linear in the domain size).
Apart from that, the rotational symmetry of the compo-
nents ψ± is broken, in the sense that, in order to con-
struct the appropriate basis vectors, we need to compen-
sate for the overall phase of the WDW limits of those
components (4.6). This step introduces extra complica-
tions, since the phase itself can be determined only mod-
ulo π. The correct identification of this phase, crucial

for the subsequent construction of the relevant physical
states, is nontrivial, and in fact one can check that this
phase is proportional to k ln |k| at its leading order. As
a consequence, this step in the determination of eεk(v)
introduces an additional numerical error.

In the integration of the wave function profiles [step
(ii) above], the use of the high-order Romberg’s method
allows us to restrict the number of evaluated basis ele-
ments to a manageable amount, while keeping sufficiently
high numerical precision. The selection of this method
and of a proper compact integration domain makes also
possible that both the integration error and the error
caused by the restriction of the domain can be limited
to a level where they do not exceed the error generated
in our previous step (i) of the numerical computation.
The differences between the degenerate and nondegener-
ate cases do not require a different treatment. However,
in practice, the degenerate situation turns out to be ap-
proximately 3 times more expensive numerically owing
to two reasons: (a) because the eigenfunctions eεk(v) are
complex in that case, and (b) because the wave function
has to be calculated for both v > 0 and v < 0.

The effect and dependence of the overall numerical er-
ror introduced in the previous steps (i) and (ii) is shown
in Fig. 1. For the states analyzed in this article, the er-
ror stays at the level of 10−12 in the nondegenerate case.
The additional complications characteristic of the degen-
erate case cause the error to grow in those cases by 2 or 3
orders of magnitude. Nonetheless, all the wave function
profiles can be integrated with a final relative error which
does not exceed 10−8.

The final step (iii) in the numerical computation in-
volves algorithms which are common for both the de-
generate and the nondegenerate cases. However, in the



13

degenerate case, a higher level of numerical noise is visi-
ble in Fig. 1. This has forced us to conveniently increase
in this case the value of the relative bound α in the dis-
crimination filter (see Sec. IV C). In turn, this happens to
increase the error in the evaluation of the expectation val-
ues and dispersions by the same order of magnitude (i.e.,
it increases from approximately 10−12 to 10−9–10−8).

V. RESULTS AND DISCUSSION

We have applied the methods explained in the previous
section to the numerical analysis of a population of states
that are given by a normal logarithmic distribution of the
form (4.10), with the value of 〈p̂φ〉 ranging from 30~ to
500~ and the relative dispersion 〈∆p̂φ〉/〈p̂φ〉 from 0.05 to
0.25. The analysis of these states has been carried out in
the four prescriptions discussed in this article. We have
analyzed 25 different values of ε, labeling distinct super-
selection sectors. The results are displayed in Figs. 1-6.
At various levels of comparison, we can distinguish the
following aspects.

First, a preliminary comparison can be performed at
the level of the wave function itself. Namely, one can
compare the probability amplitude –the value |Ψ(v, φ)|
scaled by the square root of the inner product measure on
Hgr– of the wave function which represents the same state

[i.e., with the same spectral profile Ψ̃(k)] in the different
prescriptions. Away from the bounce [see Fig. 1(a)], one
does not observe any significant difference. However, at
the bounce [Fig. 1(b)] the situation becomes slightly more
complicated. The general shape of the wave function
(position of the peak, general behavior of the function
slopes) still does not show any clear distinction; never-
theless, one observes a phenomenon that actually reveals
the existence of fine differences. In fact, the interaction
of the expanding and contracting branches creates an in-
terference pattern, which can be seen on the downward
slope of the function in Fig. 1(b). For a chosen superse-
lection sector and wave functions representing the same
state, the pattern shows a dependence on the prescrip-
tion: for different prescriptions the minima and maxima
of the interference are displaced. Nonetheless, the spe-
cific shift of the various extrema depends not only on the
prescription, but also on the shape of the state (spec-
tral profile), as well as on the superselection sector to
which it belongs. As a consequence, it cannot be used
in a systematic obvious way to identify the prescription
employed, regardless of the state under consideration.

Another, more physically relevant aspect for compari-
son has to do with the use of the cosmological observables
ln |v̂|φ, Ĥφ, and ρ̂φ. The results are presented in Figs. 2-
5. Analyzing the same state in different prescriptions we
have found detectable differences between the expecta-
tion values of all the three observables [see Figs. 3(b),
4, 5(a)]. These differences are most prominent at the
bounce and decay quickly as the wave packet enters the
low energy density regime. For the states investigated

here, for which 〈p̂φ〉 & 30~ and 〈∆p̂φ〉 . 0.25〈p̂φ〉, the
differences are nevertheless several orders of magnitude
smaller than the dispersions of the corresponding observ-
ables through all the evolution. Those differences depend
on the degeneration of the spectrum of Θ̂, apart from
their natural dependence on the observables and the par-
ticular state under consideration. The situation where
the highest differences have been observed occurs when
one compares the expectation values of the energy den-
sity operator on highly dispersed states with low momen-
tum 〈p̂φ〉. Then, the computed differences lay only one
or two orders of magnitude below the dispersions during
the whole evolution. In the rest of situations considered
here, the differences are even smaller when compared to
the dispersions.

Among the results presented above, the dispersion of
the energy density ρ̂φ deserves special attention. For all
the prescriptions, the essential spectrum of this operator
is the interval [0, ρc] where ρc ≈ 0.81ρPl is the so called
critical energy density. Depending on the prescription,
the spectrum may also have a discrete part with eigen-
values exceeding ρc, but these play no role in the states
that represent the cosmological solutions [30]. This fact
is reflected in the behavior of 〈∆ρ̂φ〉. Namely, for the
states analyzed in this paper and for the nondegener-
ate cases (as defined in Sec. IV A), the expectation value
〈ρ̂φ〉 reaches the critical energy density ρc at the bounce,
and its dispersion drops significantly there (in particular,
it vanishes up to the numerical error for states peaked
at large pφ). In this sense, the states with the spec-
tral profile (4.10) are coherent ones. In the degenerate
cases the situation is different: we observe that 〈∆ρ̂φ〉
decreases near the bounce, but it reaches a positive mini-
mum significantly larger (at least a few times) than in the
nondegenerate case. This property clearly distinguishes
between the APS and sLQC prescriptions, on the one
hand, and the MMO and sMMO prescriptions, on the
other hand, at least for the superselection sectors with
ε 6= 0, 2. The observed difference might be nonetheless
related to the particular way of constructing the basis in
the degenerate cases [34].

The other physical aspect considered in our numer-
ical analysis concerns the expectation values of the ob-

servables (∆̂ΘAB)2, constructed specially to measure the
discrepancies between the different prescriptions. The re-
sults are presented in Fig. 6. As we can see, these expec-
tation values are nonvanishing. Thus the prescriptions
are clearly distinct, and the differences between them are
of course detectable. As we could have guessed, the ex-
pectation values (and therefore the physical differences
between the prescriptions) are largest near the bounce.
Away from it, they decay exponentially. This behavior
can in fact be proven analytically for all physical states,
for which 〈∆p̂φ〉 is finite, by employing methods similar
to those applied in Sec. VB of Ref. [8]. Not surprisingly,
the largest differences are observed between prescriptions
which lead to a different potential term in the expansion
(2.14) (i.e., to different values of the constant α). An ex-
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(a) (b)

FIG. 2. Dynamical trajectories of Ĥφ (a) and ρ̂φ (b), given by the expectation values of these observables on the state of Fig. 1
with ε = 1 in the APS prescription.

(a) (b)

FIG. 3. (a) Quantum trajectory of ln |v̂|φ for the same state and the same prescription as in Fig. 2. (b) Uncertainty in ln |v̂|φ
for the same state and prescription, compared with the difference between the corresponding expectation values calculated in
the APS and MMO prescriptions.

ample of such situation is presented in Fig. 6(a). In the
case of the sLQC and the sMMO prescriptions [Fig. 6(b)],
the difference is many orders of magnitude smaller (in the
presented case, more than 16 orders), because the poten-
tial terms in these two prescriptions coincide and the only
difference is a compact operator, supported only on three
lattice points near the classical singularity.

VI. CONCLUSIONS

In LQC, even in simplest models, the standard ambi-
guities of the canonical quantization affecting the spec-
ification of the Hamiltonian constraint and its operator
representation have led to several quantization prescrip-
tions. In this paper we have analyzed in detail three of
those most commonly used in the literature, known as the

APS [5], the sLQC [20], and the MMO [21] prescriptions.
In addition, we have introduced a new one, the sMMO
prescription, which combines useful features of both the
MMO and the sLQC ones (see Sec. III D).

Basically, different prescriptions lead to slight differ-
ences in the evolution operator Θ̂ that generates the uni-
tary dynamical evolution in the internal time, whose role
is played by the massless scalar field. These differences
make that the use of one or another of the prescriptions
results to be more convenient in distinct circumstances,
depending on the particular application under consider-
ation.

In particular, the mathematical structure of the physi-
cal Hilbert space is different for the various prescriptions
discussed here. In fact, for generic superselection sec-
tors, the system has a rather more complicated structure
in the APS and sLQC prescriptions, owing to a twofold
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(a) (b)

FIG. 4. Absolute dispersions (a) and relative dispersions (b) of Ĥφ for the considered state of Fig. 1, compared with the

corresponding difference between the expectation values of Ĥφ in the APS and MMO prescriptions. For both relative values,

one can observe a peak at the bounce owing to the vanishing of 〈Ĥφ〉; however, the peak in the differences (red curve) is so
sharp that it is placed between probing points.

(a) (b)

FIG. 5. (a) Relative dispersion of ρ̂φ for the same state as in the previous figures, compared with the relative difference between
the corresponding expectation values in the APS and MMO prescriptions. (b) Comparison between the relative dispersion of
ρ̂φ in the APS and MMO prescriptions, for a “generic” superselection sector. Better coherence properties are observed for the
state constructed in the MMO prescription.

degeneracy of the spectrum of Θ̂, whereas in the same
situations the MMO and sMMO prescriptions (for which
the spectrum is nondegenerate) provide a much simpler
Hilbert space of physical states. This fact has a signif-
icant influence in the efficiency of the numerical tech-
niques used in the dynamical study of the system, which
therefore varies considerably from the first to the second
of these sets of prescriptions. As discussed in Sec. IV, the
construction and analysis of the physical states in the de-
generate cases requires more complicated methods, which
in turn increase the computational cost and the numer-
ical error. Although this error is far from critical in the
computations that we have performed, since the relative
error grows in the degenerate cases, compared to the non-

degenerate ones, from approximately 10−12 to only 10−9,
the problem of the time cost is relevant from the numer-
ical point of view. As discussed in Sec. IV A, the cost of
the (most demanding) step, in which the basis of Hphy is
constructed, is at least 8 times higher in the degenerate
cases than in the nondegenerate ones. This shows that,
whenever the system has to be analyzed numerically, the
MMO and sMMO prescriptions are much more appro-
priate. The cost difference becomes particularly critical
once one tries to analyze more complicated cosmological
models, like for example Bianchi I [35].

Despite the significant focus on technical aspects, the
main aim of our investigation has been to identify and
study possible differences between the considered pre-
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(a) (b)

FIG. 6. Expectation values of the observable (∆̂ΘAB)2|φ for A = APS and B = MMO (a); as well as for A = sLQC and
B = sMMO (b). In both cases, ε = 1 and the observable is evaluated on the state with a logarithmic normal distribution
whose parameters are 〈p̂φ〉 = 100~ and ∆p̂φ/〈p̂φ〉 = 0.1. The state is built in the MMO prescription in case (a), and in the
sMMO prescription in case (b). The difference reaches a maximum at the bounce and decays exponentially away from it. The
difference between the sLQC and the sMMO prescriptions is many orders of magnitude smaller than the difference between
any other pair of prescriptions.

scriptions on a physical level. To achieve this, we have
analyzed a two-parameter family of physical states with
spectral profiles corresponding to a logarithmic normal
distribution [see Eq. (4.10)], and without imposing the
restriction of semiclassicality. For our analysis, we have
chosen states peaked about low values of the scalar field
momentum, 〈p̂φ〉 < 500~, since the differences are easier
to unveil in this regime. For these states, we have been
able to detect differences between the various prescrip-
tions by observing the interference pattern in the wave
packet tail at the bounce. The comparison of the states
built in the different prescriptions, for the same spectral
profiles, has shown that the patterns are actually shifted
with respect to each other. This result confirms the exis-
tence of differences. Nonetheless, it does not allow one to
straightforwardly deduce which specific prescription has
been employed, because the commented shift depends
also on other factors, such as the superselection sector
and the particular spectral profile of the state.

In order to address in depth the feasibility of the de-
tection of differences between prescriptions, further anal-
ysis has been performed. We have focused it on two
fronts, discussing the discrepancies in the measurements
of standard cosmological observables, on the one hand,
and studying certain quantum operators which are spe-
cially sensible to a change of prescription, on the other
hand.

Concerning the first of these fronts, we have picked
up three observables of interest in cosmology, namely,
the logarithmic volume, the Hubble parameter, and the
scalar field energy density. We have used them to com-
pare the dynamical (quantum) trajectories of the physi-
cal states specified above. We have evaluated the differ-
ences in the expectation values of these observables be-

tween the different prescriptions, and shown that they are
several orders of magnitude smaller than the respective
dispersions. As a consequence, and as far as we restrict
ourselves to these standard cosmological observables and
to the considered physical states, the differences between
prescriptions are not detectable in practice.

As for the other kind of observables that has been con-
sidered, we have computed the expectation values of the

operators (∆̂ΘAB)2 defined in Eq. (3.19), which essen-
tially encode the differences between the Hamiltonian
constraints that correspond to different prescriptions.
These expectation values are nonvanishing, reach the
maximum at the bounce, and decay exponentially away
from it. The nature of the physical differences between
prescriptions has been well understood (see Sec. III E).
The principal component from which these differences
arise comes from the potential term of Θ̂ in the volume
momentum representation. This potential term does not
coincide for all the studied prescriptions. While the sub-
leading remnant in Θ̂ also varies when one changes the
prescription, this remnant is a compact operator and its
effect is negligible. This also explains why the smallest
differences are observed between the sLQC and sMMO
prescriptions, since the potential term is the same in
these two cases.

At this point, it is worth recalling that the studied
physical trajectories and the measured differences are
genuinely well defined only if the spatial homogeneous
slices are compact (in the considered model, of T 3 topol-
ogy). In noncompact cases, it is important to take the
limit in which the infrared regulator (the fiducial cell) is
removed. This step affects the observed difference. In-
deed, taking states that correspond to the same universe
but with different fiducial cells, one can see that the ef-
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fect of the compact remnant gets removed once the cell
V tends to Σt. As a consequence, in the limit when the
regulator is removed, both the sLQC and the sMMO pre-
scriptions can be considered to converge in the physical
sense discussed here (focusing the attention on the kind
of observables that we have introduced, constructed from
Θ̂).

The existence of nontrivial differences shows that the
prescriptions are truly physically different, and the dif-
ference cannot be canceled out by a change of repre-
sentation. This fact has far going consequences, since,
contrary to statements commonly found in the literature
[36], the classical effective description of the system does
depend on the details of the quantization, and the charac-
teristic effects of the particular prescription that is used
have to be taken into account in the process of arriving to
that description and determining its domain of validity.
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Appendix A: WDW model

In this appendix, we describe a geometrodynamical
analog of the system considered in this paper. This ge-
ometrodynamical model, built via a WDW quantization,
has been discussed extensively in the literature (see for
example Ref. [5]). Here, we just summarize the prop-
erties necessary to define the WDW limit of the LQC
states.

The model is constructed following a process similar

to that of the loop quantization (see Sec. II B). The only
difference is that now the geometry degrees of freedom
are quantized using a standard Schrödinger representa-
tion. The kinematical Hilbert space is given again by a
tensor product, Hkin = Hφ⊗Hgr

kin, where Hφ is the space
defined in Sec. II B 1 and the gravitational Hilbert space
is now Hgr

kin = L2(R, dv). The triad operator still acts

by multiplication, p̂|v) = sgn(v)(2πγℓ2Pl

√
∆|v|)2/3|v), but

the connection is now a well defined derivative operator,
ĉ = 2i(2πγℓ2Pl)

1/3∆−1/3|v|1/6∂v|v|1/6, contrary to the sit-
uation found in LQC. Then, the evolution operator ana-
log to Θ̂ (with a factor ordering compatible with that
chosen for the latter operator) takes the form:

Θ̂ = −12πG
√
|v|∂v|v|∂v

√
|v|. (A1)

This operator is essentially selfadjoint in Hgrav
kin . Its spec-

trum is positive, twofold degenerate and absolutely con-
tinuous. Opposite orientations of the triad (v > 0 and

v < 0) are disjoint under the action of Θ̂, therefore the
restriction to the (anti)symmetric sector can be imple-
mented by considering only the part v > 0 and proceed-
ing then to the (anti)symmetric completion of that part.
In the symmetric sector, there exists an orthonormal ba-
sis of generalized eigenfunctions (ek| of Θ̂ whose elements
are the rescaled plane waves

e±k(v) = (e±k|v) =
1√
2πv

e±ik ln v, v ∈ R+. (A2)

The corresponding eigenvalues are ω2 = 12πGk2. These
generalized eigenfunctions satisfy the normalization con-
dition

(ek|ek′) = δ(k − k′). (A3)

The group averaging procedure is straightforward to ap-
ply in this case, and provides the Hilbert space of physical
states Hphy = L2(R, dk) ∋ Ψ̃, where

Ψ(v, φ) =

∫

R

dkΨ̃(k)ek(v)eiω(k)φ (A4)

and ω(k) =
√

12πG|k|.
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