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Abstract
In this paper we present a novel mathematical optimization-based methodology to con-
struct tree-shaped classification rules for multiclass instances. Our approach consists of 
building Classification Trees in which, except for the leaf nodes, the labels are temporarily 
left out and grouped into two classes by means of a SVM separating hyperplane. We pro-
vide a Mixed Integer Non Linear Programming formulation for the problem and report the 
results of an extended battery of computational experiments to assess the performance of 
our proposal with respect to other benchmarking classification methods.

Keywords  Supervised classification · Optimal classification trees · Support vector 
machines · Multiclass

Mathematics Subject Classification  90C27 · 62H30 · 90C90

1  Introduction

Interpretability is a crucial requisite demanded to machine learning methods provoked by 
the tremendous amount of methodologies that have arised in the last decade  (Du et  al., 
2019). It is expected that the model that results when applying a machine learning meth-
odology using a training sample, apart from being able to adequately predict the behav-
iour of out-of-sample observations, can be interpreted. Different tools have been applied to 
derive interpretable machine learning methods. One of the most popular strategies to sim-
plify the obtained models is feature selection, in which a reduced set of attributes is to be 
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selected without loosing quality in the predictions. Reducing the number of parameters to 
analyze, the models can be easier to understand, yielding higher descriptive accuracy. One 
could also consider models that can be modulated, in the sense that a great proportion of 
its prediction-making process can be interpreted independently. This is the case of general-
ized linear models (Hastie & Tibshirani, 2017). Other methods incorporate interpretability 
as a synonym of being able to be reproduced by humans in its entire construction (Brei-
man et al., 1984; Letham et al., 2015). This is the case of Decision Trees with small depth 
which can be visualized and interpreted easily by users even not familiar with the tools 
behind their construction. We adopt a tree-based methodology through this paper.

Among the wide variety of strands derived under the lens of Machine Learning, clas-
sification is one that has attracted a lot of attention because of its applicability in many 
different fields  (Bahlmann et al., 2002; Harris, 2013; Kašćelan et al., 2016; Majid et al., 
2014; Radhimeenakshi, 2016). Classification methodologies aim to adequately predict the 
class of new observations provided that a given sample has been used to construct the clas-
sification rule. The role of Mathematical Programming in the construction of classifica-
tion models has been widely recognized, and some of the most popular methods to derive 
classification rules are based on solving optimization problems (see, Blanco et al., 2020b; 
Cortes & Vapnik, 1995; Carrizosa et al., 2021; Blanco et al., 2020a; Günlük et al.,2018, 
among many others). Moreover, Mathematical Programming has also been proven to be a 
flexible and accurate tool when requiring interpretability to the obtained models (see, e.g. 
Baldomero-Naranjo et al., 2020; 2021; Blanco et al.,2022b; Gaudioso et al., 2017).

However, most of the optimization tools derived to construct classifiers assume 
instances with only two classes. In this paper, we provide a novel classification method in 
which the instances are allowed to be classified into two or more classes. The method is 
constructed using one of the most interpretable classification method, Classification Trees, 
but combined with Support Vector Machines, which provide highly predictive models.

We have developed a Mathematical Programming model that allows to construct an 
Optimal Classification Tree for a given training sample, in which each split is generated by 
means of a SVM-based hyperplane. When building the tree, the labels of the observations 
are ignored in the branch nodes, and they are only accounted for in the leaf nodes where 
misclassification errors are considered. The classification tree is constructed to minimize 
the complexity of the tree (assuring interpretability) and also the misclassification risk 
(assuring predictive power).

1.1 � Related works

Several machine learning methodologies have been proposed in the literature in order to 
construct highly predictive classification rules. The most popular ones are based on Deep 
Learning mechanisms  (Agarwal et  al., 2018), k-Nearest Neighborhoods (Cover & Hart, 
1967; Tang & Xu, 2016), Naïve Bayes (Lewis, 1998), Classification Trees (CT) (Breiman 
et al., 1984; Friedman et al., 2001) and Support Vector Machines (SVM) (Cortes & Vap-
nik, 1995). Among them, CT and SVM, which are, by nature, optimization-based meth-
odologies, apart from producing highly predictive classifiers have been proven to be very 
flexible tools since both allow the incorporation of different elements (through the ade-
quate optimization models by means of constraints and objective functions) to be adapted 
to different situations, as Feature Selection (Günlük et al., 2018; Baldomero-Naranjo et al., 
2020, 2021; Jiménez-Cordero et  al., 2021), accuracy requirements  (Benítez-Peña et  al., 
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2019; Gan et  al., 2021) or dealing with unbalanced or noisy instances  (Eitrich & Lang, 
2006; Blanco et al., 2022a; Blanquero et al., 2021), amongst others.

Support Vector Machines were originally introduced by Cortes and Vapnik (1995) as a 
binary classification tool that builds the decision rule by means of a separating hyperplane 
with large separation between the two classes. This hyperplane is obtained by solving a 
convex quadratic optimization problem, in which the goal is to separate data by their two 
differentiated classes, maximizing the margin between them and minimizing the misclas-
sification errors. Duality properties of this optimization problem allow one to extend the 
methodology to find nonlinear separators by means of kernels.

Classification Trees were firstly introduced by Breiman et  al. (1984), and the deci-
sion rule is based on a hierarchical relation among a set of nodes which is used to define 
paths that lead observations from the root node (highest node in the hierarchical relation), 
to some of the leaves in which a class is assigned to the data. These paths are obtained 
according to different optimization criteria over the predictor variables of the training sam-
ple. The decision rule comes up naturally, the classes predicted for new observations are 
the ones assigned to the terminal nodes in which observations fall in. Clearly, the clas-
sification rules derived from CTs are easily interpretable by means of the splits that are 
constructed at the tree nodes. In Breiman et al. (1984), a greedy heuristic procedure, the 
so-called CART approach, is presented to construct CTs. Each level of the tree is sequen-
tially constructed: starting at the root node and using the whole training sample, the 
method minimizes an impurity measure function obtaining as a result a split that divides 
the sample into two disjoint sets which determine the two descendant nodes. This process 
is repeated until a given termination criteria is reached (minimum number of observations 
belonging to a leaf, maximum depth of the tree, or minimum percentage of observations 
of the same class on a leaf, amongst others). In this approach, the tree grows following a 
top-down greedy approach, an idea that is also shared in other popular decision tree meth-
ods like C4.5  (Quinlan, 1993) or ID3  (Quinlan, 1996). The advantage of these methods 
is that the decision rule can be obtained rather quickly even for large training samples, 
since the whole process relies on solving manageable problems at each node. Nevertheless, 
these types of heuristic approaches may not obtain the optimal classification tree, since 
they look for the best split locally at each node, not taking into account the splits that will 
come afterwards. Thus, these local branches may not capture the proper structure of the 
data, leading to misclassification errors in out-of-sample observations. Furthermore, the 
solutions provided by these methods can result into very deep (complex) trees, resulting in 
overfitting and, at times, loosing interpretability of the classification rule. This difficulty is 
usually overcome by pruning the tree as it is being constructed by comparing the gain on 
the impurity measure reduction with respect to the complexity cost of the tree. The recent 
advances on modeling and solving difficult optimization problems together with the flex-
ibility and adaptability of these models have motivated the use of optimization tools to 
construct supervised classification methods with a great success (Bertsimas & Dunn, 2019; 
Carrizosa et al., 2021)). In particular, recently, Bertsimas and Dunn (2017) introduced the 
notion of Optimal Classification Trees (OCT) by approaching Classification and Regres-
sion Trees under optimization lens, providing a Mixed Integer Linear Programming for-
mulation for its optimal construction. Moreover, the authors proved that this model can be 
solved for reasonable size datasets, and equally important, that for many different real data-
sets, significant improvements in accuracy with respect to CART can be obtained. In con-
trast to the standard CART approach, OCT builds the tree by solving a single optimization 
problem taking into account (in the objective function) the complexity of the tree, avoiding 
post pruning processes. Moreover, every split is directly applied in order to minimize the 
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misclassification errors on the terminal nodes, and hence, OCTs are more likely to capture 
the hidden patterns of the data.

Recently, several algorithms have been designed to efficiently training OCTs. Demirović 
et  al. (2022); Lin et  al. (2020); Hu et  al. (2019) propose different dynamic program-
ing based algorithms to construct OCTs, also enhancing them with different features. 
Demirović and Stuckey (2001) develop a biobjective opitimization based approach to 
obtain OCT with nonlinear classification metrics (F1-score, Matthews correlation coef-
ficient, or Fowles–Mallows index) in contrast to the classical linear accuracy goodness 
measure or with sparsity properties. Different methodologies have been derived also to 
obtain optimal decision trees based on Constraint Programming (Verhaeghe et al., 2020) or 
SAT (Yu et al., 2020; Hu et al., 2020; Narodytska et al., 2018). Verwer and Zhang (2019) 
and Firat et al. (2020) provide an alternative integer programming formulation and solution 
approaches to construct OCTs with a number of decision variables significantly smaller 
than the one proposed by Bertsimas and Dunn (2017). Finally, in order to obtain inter-
pretable classification rules, CTs are usually derived in their univariate version, i.e., with 
single-variables splits. Nevertheless, oblique CT, with trees where multiple variables can 
be involved in the splits, have been also widely studied and one can find numerous heu-
ristic methods in the literature,(Murthy et al., 1994; Carreira-Perpiñán & Tavallali, 2018). 
OCTs with oblique splits (OCT-H) have also been successfully applied. Moreover, due to 
the good results of oblique trees, algorithms have been designed that combine SVM with 
CT (Montañana et  al., 2021; Chen & Ge, 2019), intending that these oblique splits also 
consider maximum margin between observations. Aligned with this trend, in this paper we 
also study an optimal method for combining oblique classification trees with SVM-based 
splits for multiclass instances.

While SVM were initially designed to deal only with bi-class instances, some 
extensions have been proposed in the literature for multiclass classification. The most 
popular multiclass SVM-based approaches are One-Versus-All (OVA) and One-Ver-
sus-One (OVO). The former, namely OVA, computes, for each class r ∈ {1,… , k} , a 
binary SVM classifier labeling the observations as 1, if the observation is in the class 
r, and −1 otherwise. The process is repeated for all classes (k times), and then each 
observation is classified into the class whose constructed hyperplane is the furthest 
from it in the positive halfspace. In the OVO approach, classes are separated with 

(
k

2

)
 

hyperplanes using one hyperplane for each pair of classes, and the decision rule comes 
from a voting strategy in which the most represented class among votes becomes the 
class predicted. OVA and OVO inherit most of the good properties of binary SVM. In 
spite of that, they are not able to correctly classify datasets where separated clouds of 
observations may belong to the same class (and thus are given the same label) when 
a linear kernel is used. Another popular method is the directed acyclic graph SVM, 
DAGSVM (Agarwal et al., 2018). In this technique, although the decision rule involves 
the same hyperplanes built with the OVO approach, it is not given by a unique vot-
ing strategy but for a sequential number of votings in which the most unlikely class is 
removed until only one class remains. In addition, apart from OVA and OVO, there are 
some other methods based on decomposing the original multiclass problem into sev-
eral binary classification ones. In particular, in Allwein et al. (2000) and Dietterich and 
Bakiri (1994), this decomposition is based on the construction of a coding matrix that 
determines the pairs of classes that will be used to build the separating hyperplanes. 
Alternatively, other methods such as CS (Crammer & Singer, 2001), WW (Weston & 
Watkins, 1999) or LLW (Lee et  al., 2004), do not address the classification problem 
sequentially but as a whole considering all the classes within the same optimization 
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model. Obviously, this seems to be the correct approach. In particular, in WW, k hyper-
planes are used to separate the k classes, each hyperplane separating one class from 
the others, using k − 1 misclassification errors for each observation. The same separat-
ing idea, is applied in CS but reducing the number of misclassification errors for each 
observation to a unique value. In LLW, a different error measure is proposed to cast the 
Bayes classification rule into the SVM problem implying theoretical statistical proper-
ties in the obtained classifier. These properties cannot be ensured in WW or CS.

We can also find a quadratic extension based on LLW proposed by Guermeur and 
Monfrini (2011). In van den Burg and Groenen (2016), the authors propose a multi-
class SVM-based approach, GenSVM, in which the classification boundaries for a 
problem with k classes are obtained in a (k − 1)-dimensional space using a simplex 
encoding. Some of these methods have become popular and are implemented in most 
software packages in machine learning as e1071 (Meyer et  al., 2015), scikit-
learn (Pedregosa et  al., 2011) or (Lauer & Guermeur, 2011). Finally, in the recent 
work (Blanco et al., 2020a) the authors propose an alternative approach to handle multi-
class classification extending the paradigm of binary SVM classifiers by construnting a 
polyhedral partition of the feature space and an assignment of classes to the cells of the 
partition, by maximizing the separation between classes and minimizing two intuitive 
misclassification errors.

1.2 � Contributions

In this paper, we propose a novel approach to construct Classification Trees for mul-
ticlass instances by means of a mathematical programming model. Our method is 
based on two main ingredients: (1) An optimal binary classification tree (with oblique 
cuts) is constructed in the sense of Bertsimas and Dunn (2017), in which the splits and 
pruned nodes are determined in terms of the misclassification errors at the leaf nodes; 
(2) The splits generating the branches of the tree are built by means of binary SVM-
based hyperplanes separating fictitious classes (which are also decided by the model), 
i.e., maximizing separation between classes and minimizing the distance-based misclas-
sification errors.

Our specific contributions include: 

1.	 Deriving an interpretable classification rule which combines two of the most powerful 
tools in supervised classification, namely oblique OCT and SVM.

2.	 The obtained classification tree is optimally designed to approach multiclass instances 
by means of introducing fictitious binary classes at the intermediate splits of the OCT 
and compute the hinge-loss SVM errors based on that classes.

3.	 The classifier is constructed using a mathematical programming model that can be 
formulated as a Mixed Integer Second Order Cone Programming problem that can be 
solved using any of the available off-the-shelf optimization software. The classifier is 
simple to apply and interpretable.

4.	 Several valid inequalities are presented for the formulation that allow one to strengthen 
the model and to solve larger size instances in smaller CPU times.

5.	 Our approach, based on the results of the computational experiments that we perform on 
realistic datasets from UCI, outperforms some of the state-of-the-art decision tree-based 
methodologies as CART, OCT and OCT-H.
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1.3 � Paper structure

Section 2 is devoted to fix the notation and to recall the tools that are used to derive our 
method. In Sect. 3 we detail the main ingredients of our approach and illustrate its perfor-
mance on a toy example. The mathematical programming model that allows us to construct 
the classifier is given in Sect. 4, where we include all the elements involved in the model: 
parameters, variables, objective function and constraints. In Sect. 5 we report the results of 
our experiments to assess the performance of our method compared with other tree-shaped 
classifiers. Finally, Sect. 6 is devoted to draw some conclusions and future research lines on 
the topic.

2 � Preliminaries

This section is devoted to introduce the problem under study and to fix the notation used 
through this paper. We also recall the main tools involved in our proposed approach 
namely, Support Vector Machines and Optimal Classification Trees. These methods are 
adequately combined to develop a new method, called Multiclass Optimal Classification 
Trees with Support Vector Machines based splits (MOCTSVM).

We are given a training sample, X =
{
(x1, y1),… , (xn, yn)

}
⊆ ℝ

p × {1,… ,K} , which 
comes as the result of measuring p features over a set of n observations (x1,… , xn) as well 
as a label in {1,… ,K} for each of them (y1,… , yn) . The goal of a classification method is 
to build a decision rule so as to accurately assign labels (y) to data (x) based on the behav-
iour of the given training sample X .

The first ingredient that we use in our approach is the Support Vector Machine method. 
SVM is one of the most popular optimization-based methods to design a classification rule 
in which only two classes are involved, usually referred as the positive (y = +1) and the 
negative class (y = −1 ). The goal of linear SVM is to construct a hyperplane separating the 
two classes by maximizing their separation and simultaneously minimizing the misclassifi-
cation and margin violation errors. Linear SVM can be formulated as the following convex 
optimization problem:

where c is the regularization parameter that states the trade-off between training errors and 
model complexity (margin), �′ is the transpose of the vector � and ‖ ⋅ ‖2 is the Euclidean 
norm in ℝp (other norms can also be considered but still keeping similar structural proper-
ties of the optimization problem (Blanco et al., 2020b)). Note that with this approach, the 
positive (resp. negative) class will tend to lie on the positive (resp. negative) half space 
induced by the hyperplane H = {z ∈ ℝ

p ∶ ��z + �0 = 0} . On the other hand, the popu-
larity of SVM is mostly due to the so called kernel trick. This allows one to project the 
data onto a higher dimensional space in which a linear separation is performed in a most 
accurate way with no need of knowing such a space, but just knowing the form of its inner 

min
1

2
‖�‖2

2
+ c

�

i∈N

ei

s.t. yi(�
�xi + �0) ≥ 1 − ei, ∀i ∈ N,

� ∈ ℝ
p, �0 ∈ ℝ,

ei ∈ ℝ+, ∀i ∈ N.
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products, and maintaining the computational complexity of the optimization problem (see 
Cortes and Vapnik (1995) for further details).

The second method that we combine in our approach is Classification Trees. CTs are a 
family of classification methods based on a hierarchical relationship among a set of nodes. 
These methods allow one to create a partition of the feature space by means of hyperplanes 
that are sequentially built. CT starts on a node containing the whole sample, that is called 
the root node, in which the first split is applied. When applying a split on a node, by means 
of a hyperplane separating the observations, two new branches are created leading to two 
new nodes, which are referred to as its child nodes. The nodes are usually distinguished 
into two groups: branch nodes, that are nodes in which a split is applied, and on the other 
hand the leaf nodes, which are the terminal nodes of the tree. Given a branch node and a 
hyperplane split in such a node, their branches (left and right) are defined as each of the 
two halfspaces defined by the hyperplane. The final goal of CT is to construct branches in 
order to obtain leaf nodes as pure as possible with respect to the classes. In this way, the 
classification rule for a given observation consists of assigning it to the most popular class 
of the leaf where it belongs to.

There is a vast amount of literature on CTs since they provide an easy, interpretable 
classification rule. One of the most popular methods to construct CT is known as CART, 
introduced in Breiman et al. (1984). However, CART does not guarantee the optimality of 
the classification tree, in the sense that more accurate trees could be obtained if instead of 
locally constructing the branches one looks at the final configuration of the leaf nodes. For 
instance, in Fig. 1(left) we show a CT constructed by CART for a biclass problem with 
maximal depth 2. We draw the classification tree, and also in the top right corner, the parti-
tion of the feature space (in this case ℝ2 ). As can be observed, the obtained classification 
is not perfect (not all leaf nodes are composed by pure classes) while in this case is not dif-
ficult to construct a CT with no classification errors. This situation is caused by the myopic 
construction done by the CART approach that, at each node only cares on better classifica-
tion at their children, but not at the final leaf nodes, while subsequent branching decisions 
clearly affect the overall shape of the tree.

Motivated by this drawback of CART, in Bertsimas and Dunn (2017), the authors 
propose an approach to build an Optimal Classification Tree (OCT) by solving a single 
Mathematical Programming problem in which not only single-variable splits are possi-
ble but oblique splits involving more than one predictive variable (by means of general 
hyperplanes in the feature space) can be constructed. In Fig. 1(right) we show a solution 
provided by OCT with hyperplanes (OCT-H) for the same example. One can observe that 

Fig. 1   Example of a CT obtained with CART (left) and OCT-H (right) approaches for the same instance
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when splitting the root node (orange branches) a good local split is not obtained (the nodes 
contain half of the observations in different classes), however, when adding the other two 
splits, the final leaves only have observations of the same class, resulting in a perfect clas-
sification rule for the training sample.

Both approaches, OCTs and SVMs can be combined in order to construct classification 
trees in which the classes separated by the hyperplanes determined in the CT are maximally 
separated, in the sense of the SVM approach. This idea is not new and has been proven to 
outperform standard optimal decision trees methods amongst many different biclass clas-
sification problems, as for instance, in Blanco et al. (2022b) where the OCTSVM method 
is proposed. In Fig.  2 we show how one could construct OCTs with larger separations 
between the classes using OCTSVM but still with the same 100% accuracy in the training 
sample as in OCT-H, but more protected to misclassification in out-sample observations.

Nevertheless, as far as we know, the combination of OCT and SVM has only been ana-
lyzed for biclass instances. The extension of this method to multiclass settings (more than 
two classes) is not trivial, since one could construct more complex trees or use a multi-
class SVM-based methodology (see e.g., Crammer & Singer, 2001; Weston & Watkins, 
1999; Lee et al., 2004). However, these adaptations of the classical SVM method have been 
proved to fail in real-world instances (see e.g., Blanco et al., 2020a). In the rest of the paper 
we describe a novel methodology to construct accurate multiclass tree-shaped classifiers 
based on a different idea: constructing CTs with splits induced by bi-class SVM separators 
in which the classes of the observations at each one of the branch nodes are determined by 
the model, but adequately chosen to provide small classification errors at the leaf nodes. 
The details of the approach are given in the next section.

3 � Multiclass OCT with SVM splits

In this section we describe the method that we propose to construct classification rules for 
multiclass instances, in particular Classification Trees in which splits are generated based 
on the SVM paradigm.

As already mentioned, our method is based on constructing OCT with SVM splits, but 
where the classes of the observations are momentarily ignored and only accounted for at 
the leaf nodes. In order to illustrate the idea under our method, in Fig. 3 we show a toy 
instance with a set of points with four different classes (blue, red, orange and green).

Fig. 2   Example of a CT obtained 
with OCTSVM
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First, at the root node (the one in which all the observations are involved), our method 
constructs a SVM separating hyperplane for two fictitious classes (which have to be also 
decided). A possible separation could be the one shown in Fig. 4, in which the training 
dataset has been classified into two classes (black and white).

This separation allows one to generate two child nodes, the black and the white nodes. 
At each of these nodes, the same idea is applied until the leaf nodes are reached. In Fig. 5 
we show the final partition of the feature space according to this procedure.

Clearly, ignoring the original classes of the training sample in the whole process would 
result in senseless trees, unless one accounts for the goodness in the classification rule in 
the training sample at the leaf nodes. Thus, at the final leaf nodes, the original labels are 
recovered and the classification is performed according to the generated hyperplanes. The 
final result of this tree is shown in Fig. 6 where one can check that the constructed tree 
achieves a perfect classification of the training sample.

Once the tree is constructed with this strategy, the decision rule comes up naturally as 
it is usually done in decision trees methods, that is, out of sample observations will follow 
a path on the tree according to the splits and they will be assigned to the class of the leaf 

Fig. 3   Instance for a 4-class 
problem (Color figure online)

Fig. 4   Root split on the 4-class 
classification problem

Fig. 5   Child node splits on the 
4-class classification problem 
with the two fictitious classes 
decided by our model
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where they lie in (the most represented class of the leaf over the training set). In case a 
branch is pruned when building the tree, observations will be assigned to the most repre-
sented class of the node where the prune took place.

4 � Mathematical programming formulation for MOCTSVM

In this section we derive a Mixed Integer Non Linear Programming formulation for the 
MOCTSVM method described in the previous section.

We assume to be given a training sample X =
{
(x1, y1),… , (xn, yn)

}
⊆ ℝ

p × {1,… ,K} . 
We denote by N = {1,… , n} the index set for the observations in the training sample. We 
also consider the binary representation of the labels y as:

Moreover, without loss of generality we will assume the features to be normalized, i.e., 
x1,… , xn ∈ [0, 1]p.

We will construct decision trees with a fixed maximum depth D. Thus, the classification 
tree is formed by at most T = 2D+1 − 1 nodes. We denote by � = {1,… , T} the index set for 
the tree nodes, where node 1 is the root node and nodes 2D,… , 2D+1 − 1 are the leaf nodes.

For any node t ∈ ��{1} , we denote by p(t) its (unique) parent node. The tree nodes can 
be classified in two sets: branching and leaf nodes. The branching nodes, that we denote 
by �b , will be those in which the splits are applied. In constrast, in the leaf nodes, denoted 
by �l , no splits are applied but is where predictions take place. The branching nodes can 
be also classified into two sets: �bl and �br depending on whether they follow the left or the 
right branch on the path from their parent nodes, respectively. �bl nodes are indexed with 
even numbers meanwhile �br nodes are indexed with odd numbers.

We define a level as a set of nodes which have the same depth within the tree. The num-
ber of levels in the tree to be built is D + 1 since the root node is assumed as the zero-level. 
Let U = {u0,… , uD} be the set of levels of the tree, where each us ∈ U is the set of nodes 
at level s, for s = 0,… ,D . With this notation, the root node is u0 while uD represent the set 
of leaf nodes.

In Fig. 7 we show the above mentioned elements in a 3-depth tree.
Apart from the information about the topological structure of the tree, we also con-

sider three regularization parameters that have to be calibrated in the validation pro-
cess that allow us to find a trade-off between the different goals that we combine in our 
model: margin violation and classification errors of the separating splitting hyperplanes, 

Yik =

{
1 if yi = k,

0 otherwise,
for all i ∈ N, k = 1,…K.

Fig. 6   Child node splits on the 
4-class classification problem 
with their original labels (colors) 
(Color figure online)
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correct classification at the leaf nodes and complexity of the tree. These parameters are the 
following: 

c1	� : unit misclassification cost at the leaf nodes.
c2	� : unit distance based misclassification errors for SVM splits.
c3	� : unit cost for each splitting hyperplane introduced in the tree.

The complete list of index sets and parameters used in our model are summarized in 
Table 1.

4.1 � Variables

Our model uses a set of decision and auxiliary variables that are described in Table 2. We 
use both binary and continuous decision variables to model the MOCTSVM. The binary 
variables allow us to decide the allocation of observations to the decision tree nodes, or 
to decide whether a node is splited or not in the tree. The continuous variables allow us to 
determine the coefficients of the splitting hyperplanes or the misclassification errors (both 

Fig. 7   Elements in a depth D = 3 tree

Table 1   Index sets and parameters used in our model

N = {1,… , n} Index set for the observations in the training sample
D Maximal depth of the tree
T = 2

D+1 Maximal number of nodes in a D-depth tree
� = {1,… ,T} Index set for the set of nodes of the tree
p(t) Parent of node t, for t ∈ ��{1}

�b ∈ � Branching nodes of the tree
�l Leaf nodes of the tree
�bl ∈ �b Nodes that follow the left branch on the path from their parent nodes
�br ∈ �b Nodes whose right branch has been followed on the path from their parent nodes
us Nodes at level s of the tree, for s = 0,… ,D

U = {u
0
,… , ud} Sets of levels of the tree

c
1

Unit misclassification cost
c
2

Unit distance based missclassification errors for SVM splits
c
3

Unit cost for splitting hyperplanes
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Table 2   Summary of the variables used in our model

Continuous decision variables
�t ∈ ℝ

p Coefficients of the separating hyperplane of node t
�t

0
∈ ℝ Intercept of the separating hyperplane of node t

eit ∈ ℝ+ Misclassification error of observation i at node t
� ∈ ℝ+ Inverse of the minimum margin between splitting hyperplanes
Binary decision variables
zit ∈ {0, 1} Is one if observation i belongs to node t and zero otherwise
dt ∈ {0, 1} Is one if a split is applied at node t and zero otherwise
Auxiliary variables
Lt ∈ ℤ+ Number of misclassified observations at leaf node t
�it ∈ {0, 1} Is one if observation i belongs to the reference fictitious class in node t and 

zero otherwise
hit ∈ {0, 1} Is one if observation i is in node t and lies on the positive half space of the 

hyperplane of node t, and zero otherwise
vt ∈ {0, 1} Is one if not all observations in node t lie on the positive half space of the 

hyperplane in node t and zero otherwise
qkt ∈ {0, 1} Is one if class k is the most represented one in leaf node t and zero other-

wise

Fig. 8   Illustration of the sets of variables used in our model in a toy example (Color figure online)
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in the SVM separations or at the leaf nodes). We also use auxiliary binary and integer vari-
ables that are useful to model adequately the problem.

In Fig. 8 we illustrate the use of these variables in a feasible solution of a toy instance 
with three classes (red,blue and green).

The whole set of training observation is considered at the root node (node t = 1 ). There, 
the original labels are ignored and to determine the fictitious class of each observation a 
SVM-based hyperplane is constructed. Such a hyperplane is defined by the coefficients 
�1 ∈ ℝ

p and �10 ∈ ℝ (hyperplane/line drawn with a dotted line in the picture) and it 
induces a margin separation 

�
2

‖�1‖2

�
 and misclassification errors ei1 . In the feasible solution 

drawn in the figure, only three observations induce positive errors (those that are classified 
either in the margin area or in the opposite side of the hyperplane). Such a hyperplane also 
determines the splitting rule for the definition of the children of that node. Since the node 
is split ( d1 = 1 ), the observations that belongs to the positive side of the hyperplane are 
assigned to the left node (node t = 2 ) while those in the negative side are assigned to the 
right node (node t = 3 ) through the z-variables. At node t = 2 , the same scheme is applied, 
that is, the hyperplane defined by �2 is constructed, inducing SVM-based margin and 
errors and since d2 = 1 , also the splitting rule applies to define nodes t = 4 and t = 5 . At 
node t = 2 , one must control the observations in that node to quantify the misclassifying 
errors, ei2 , only for those observations in the objective function. Specifically, we only 
account for these errors for the observations that belong to the node ( zi2 = 1 ) and either 
belong to the positive ( �i2 = 1 ) or the negative ( �i2 = 0 ) side of the hyperplane. Also, in 
order to control the complexity of the tree, the h-variables are used to know whether an 
observation belongs to the node and to the positive side of the SVM-hyperplane. If all 
observations in a node belong to the positive side of the hyperplane, the variable v assumes 
the value 0. Otherwise, in case v takes value 1, two situations are possible: (1) there are 
observations in both sides of the hyperplane (as in node t = 2 ) inducing a new split 
( d2 = 1 ), and (2) all observations belong to the negative side (as in node t = 3 ) determining 
that the tree is pruned at that node ( d3 = 0).

Concerning the leaf nodes, node t = 2 is split into nodes t = 4 and t = 5 and node t = 3 , 
which was decided to be no longer split, is fictitiously split in two leaf nodes, although one 
of them is empty and the other one receives all the observations of the parent node (node 
t = 3 ). The allocation of any leaf node �l to a class is done through the q-variables (to the 
most popular class in the node or arbitrarily in case the node has no observations) and the 
number of misclassified observations is accounted for by the L-variables.

4.2 � Objective function

As already mentioned, our method aims to construct classification trees with small misclas-
sification errors at the leaf nodes, but at the same time with maximal separation between 
the classes with the SVM-based hyperplanes and minimum distance based errors.

Using the variables described in the previous section, the four terms that are included in 
the objective functions are the following:

Margins of the splitting hyperplanes: The separating hyperplane of branching node 
t ∈ �b has margin 2

‖�t‖2
 . Thus, our method aims to maximize the minimum of these mar-

gins. This is equivalent to minimize the maximum among the inverse margins �
1

2
‖�t‖22 ∶ t ∈ �b

�
 which is represented by the auxiliary variable �.
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Misclassification Errors at the leaf nodes: Variable Lt accounts for the number of mis-
classified observations in leaf node t, i.e., the number of observations that do not belong to 
the most represented class in that leaf node. These variables allow us to count the overall 
number of misclassified observations in the training sample. Therefore, the amount to be 
minimized by the model is given by the following sum:

Distance-based Errors at branching nodes: Each time a split is added to the tree, a 
SVM-based hyperplane in which the labels are assigned based on the global convenience 
of for the overall tree is incorporated. Thus, we measure, at each branching node in �b , the 
distance-based errors incurred by the SVM classifier at that split. This amount is measured 
by the eit variables and is incorporated to the model through the sum:

Complexity of the tree The simplicity of the resulting tree is measured by the number of 
splits that are done in its construction. Since the dt variable tells us whether node t is split 
or not, this term is accounted for in our model as:

Summarizing, the overall objective function of our model is:

Note that the coefficients c1 , c2 and c3 trade-off the misclassification of the training sample, 
the separation between classes and the complexity of the tree, respectively. These param-
eters should be carefully calibrated in order to construct simple decision trees with high 
predictive power, as can be seen in our computational experiments.

4.3 � Constraints

The requirements on the relationships between the variables and the rationale of our model 
are described through the following constraints that define the mathematical programming 
model.

First of all, in order to adequately represent the maximum among the inverse margins of 
the splitting hyperplanes, we require:

Next, we impose how the splits are performed in the tree. To this end, we need to know 
which observations belong to a certain node t (z-variable) and how these observations are 
distributed with respect to the two fictitious classes to be separated ( �-variables). Gather-
ing all these elements together, we use the following constraints to define the splits of the 
decision tree:

c1

∑

t∈�l

Lt

c2

∑

i∈N

∑

t∈�b

eit

c3

∑

t∈�b

dt

(OBJ)min � + c1

∑

t∈�l

Lt + c2

∑

i∈N

∑

t∈�b

eit + c3

∑

t∈�b

dt.

(C1)� ≥
1

2
‖�t‖22,∀t ∈ �b.
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According to this, constraint (C2a) is activated just in case the observation i belongs to the 
reference class and it is in node t ( hit = 1 ). On the other hand, (C2b) is activated if i is allo-
cated to node t ( zit = 1 ) but it does not belong to the reference class ( �it = 0 ). Therefore, 
the reference class is located on the positive half space of hyperplane Ht , while the other 
class is positioned in the negative half space, and at the same time, margin violations are 
regulated by the eit variables.

To ensure the correct behaviour of the above constraints, we must correctly define the zit 
variables. First, it is required that each observation belongs to exactly one node per level in 
the tree. This can be easily done by adding the usual assingment constraints to the problem 
at each of the levels, u ∈ U , of the tree:

Furthermore, we should enforce that if observation i is in node t ( zit = 1 ), then observa-
tion i must also be in the parent node of t, p(t) ( zip(t) = 1 ), and also observation i can not 
be in node t if it is not in its parent node ( zip(t) = 0 ⇒ zit = 0 ). These implications can be 
obtained by means of the following constraints:

Nevertheless, the way observations descend through the tree needs a further analysis, since 
at this point they could just randomly define a path in the tree. Whenever an observation 
i is in the positive half space of the splitting hyperplane at node t, Ht , this observation 
should follow the right branch connecting to the child node of t. Otherwise, in case i is on 
the negative half space, it should follow the left branch. The knowledge on the side of the 
splitting hyperplane where an observation belongs to is encoded in the �-variables. Then, 
in case i lies on the positive half space of Ht , �it will never be equal to zero since it would 
lead to a value of eit greater than one, while eit < 1 is guaranteed in case �it = 1.

With the above observations, the constraints that assure the correct construction of the 
splitting hyperplanes with respect to the side of them where the observations belong to are 
the following:

Constraints (C5a) assure that if observation i is on the parent node of an even node t (
zip(t) = 1

)
 , and i lies on the negative half space of Hp(t) 

(
�ip(t) = 0

)
 , then zit is enforced to 

be equal to one. As a result, �ip(t) = 0 forces observation i to take the left branch in node t. 
Note that in case zip(t) = 1 , and at the same time observation i is not in the left child node of 
t( zit = 0 for i ∈ �bl ), then �ip(t) = 1 , which means that observation i lies on the positive half 
space of Hp(t) . Constraints (C5b) are analogous to (C5a) but allowing to adequately repre-
sent right branching nodes.

Moreover, two additional important elements need to be incorporated to complete our 
model: the tree complexity and the correct definition of misclassified observations. Note that 

(C2a)�
�
t
xi + �t0 ≥ 1 − eit − (1 − hit) ∀i ∈ N, t ∈ �b,

(C2b)�
�
t
xi + �t0 ≤ −1 + eit + (1 − zit + �it) ∀i ∈ N, t ∈ �b.

(C3)
∑

t∈u

zit = 1 ∀i ∈ N, u ∈ U.

(C4)zit ≤ zip(t) ∀i ∈ N, t = 2,… , T .

(C5a)zip(t) − zit ≤ �ip(t) ∀i ∈ N, t ∈ �bl,

(C5b)zip(t) − zit ≤ 1 − �ip(t) ∀i ∈ N, t ∈ �br.
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in usual Optimal Classification Trees that do not use SVM-based splits, the complexity can 
be easily regulated by just imposing ‖�t‖22 ≤ Mdt (for a big enough M constant) in all the 
branch nodes, since in case a node is no further branched ( dt = 0 ), the coefficients of the split-
ting hyperplane are set to zero. However, in our case, in which the splitting hyperplanes are 
SVM-based hyperplanes, these constraints are in conflict with constraints (C2a) and (C2b), 
since in case dt = 0 (and therefore �t = 0 ) it would not only imply that the coefficients �t are 
equal to zero, but also that the distance based errors would be set to the maximum value of 
1, i.e., eit = 1 for every observation i in the node, even though these errors would not make 
any sense since observations would not be separated at the node. To overcome this issue, we 
consider the auxiliary binary variables hit = zit�it ( hit takes value 1 if observation i belongs to 
node t and lies in the positive half-space of the splitting hyperplane applied at node t) and vt 
(that takes value zero in case all the points in the node belong to the positive halfspace and one 
otherwise). The variables are adequatelly defined if the following constraints are incorporated 
to the model:

where constraints (C6a) and (C6b) are the linearization of the bilinear constraint hit = zit�it . 
On the other hand, Constraints (C6c) assure that in case vt = 0 , then all observations in 
node t belong to the positive halfspace of Ht , and constraints (C6d) assure that if vt = 1 and 
the tree is pruned at node t (dt = 0) , then those observations allocated to node t are placed 
in the negative halfspace defined by the splitting hyperplane. Thus, it implies that dt takes 
value one if and only if the observations in node t are separated by Ht , and therefore pro-
ducing an effective split at the node.

Finally, in order to adequately represent the Lt variables (the ones that measure the number 
of misclassified observations at the leaf nodes) we use the constraints already incorporated in 
the OCT-H model in Bertsimas and Dunn (2017). On the one hand, we assign each leaf node 
to a single class (the most popular class of the observations that belong to that node). We use 
the binary variable qkt to check whether leaf node t ∈ �l is assigned to class k = 1,… ,K . The 
usual assignment constraints are considered to assure that each node is assigned to exactly one 
class:

The correct definition of the variable Lt is then guaranteed by the following set of 
constraints:

(C6a)hit ≥ zit + �it − 1, ∀i ∈ N, t ∈ �b,

(C6b)hit ≤ zit − �it + 1, ∀i ∈ N, t ∈ �b,

(C6c)
∑

i∈N

(zit − hit) ≤ nvt, ∀t ∈ �b,

(C6d)
∑

i∈N

hit ≤ n(1 + dt − vt), ∀t ∈ �b,

(C7)
K∑

k=1

qkt = 1, ∀t ∈ �l.

(C8)Lt ≥
∑

i∈N

zit −
∑

i∈N

Yikzit − n(1 − qkt), ∀k = 1,… ,K, t ∈ �l,
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These constraints are activated if and only if qkt = 1 , i.e., if observations in node t are 
assigned to class k. In such a case, since Lt is being minimized in the objective function, 
Lt will be determined by the number of training observations in node t except those whose 
label is k, i.e., the number of missclasified observations in node t according to the k-class 
assignment.

Observe that the constant n in (C8) can be decreased and fixed to the maximum number 
of misclassified observations in the training sample. This number coincide with the dif-
ference between the number of observations in the training sample (n) and the number of 
observations in the most represented class in the sample.

Summarizing the above paragraphs, the MOCTSVM can be formulated as the following 
MINLP problem:

(OBJ)min � + c1

∑

t∈�l

Lt + c2

∑

i∈N

∑

t∈�

eit + c3

∑

t∈�

dt

(C1)s.t. � ≥
1

2
‖�t‖, ∀t ∈ �b,

(C2a)�
�
t
xi + �t0 ≥ 1 − eit − (2 − zit − �it), ∀i ∈ N, t ∈ �b,

(C2b)�
�
t
xi + �t0 ≤ −1 + eit + (1 − zit + �it), ∀i ∈ N, t ∈ �b,

(C3)
∑

t∈u

zit = 1, ∀i ∈ N, u ∈ U,

(C4)zit ≤ zip(t), ∀i ∈ N, t = 2,… , T ,

(C5a)zip(t) − zit ≤ �ip(t), ∀i ∈ N, t ∈ �bl,

(C5b)zip(t) − zit ≤ 1 − �ip(t), ∀i ∈ N, t ∈ �br, .

(C6a)hit ≥ zit + �it − 1, ∀i ∈ N, t ∈ �b,

(C6b)hit ≤ zit − �it + 1, ∀i ∈ N, t ∈ �b,

(C6c)
∑

i∈N

(zit − hit) ≤ nvt, ∀t ∈ �b,

(C6d)
∑

i∈N

hit ≤ n(1 + dt − vt), ∀t ∈ �b,

(C7)
K∑

k=1

qkt = 1, ∀t ∈ �l,
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4.4 � Strengthening the model

The MINLP formulation presented above is valid for our MOCTSVM model. However, 
it is a computationally costly problem, and although it can be solved by most of the off-
the-shelf optimization solvers (as Gurobi, CPLEX or XPRESS), it is able to solve opti-
mally only small to medium size instances. To improve its performance, the problem can 
be strengthen by means of valid inequalities which allows one to reduce the gap between 
the continuous relaxation of the problem and its optimal integer solution, being then able 
to solve larger instances in smaller CPU times. In what follows we describe some of these 
inequalities that we have incorporated to the MINLP formulation:

•	 If observations i and i′ belongs to different nodes, they cannot be assigned to the same 
node for the remainder levels of the tree: 

•	 If leaf nodes t and s are the result of proper splitting hyperplanes, then, both nodes can-
not be assigned to the same class: 

•	 Variable �it is enforced to take value 0 in case zit = 0 : 

•	 Variable hit is not allowed to take value one if �it takes value zero: 

•	 There should be at least a leaf node to which each class is assigned to (assuming that 
each class is represented in the training sample). It also implies that the number of 
nodes to which a class is assigned is bounded as: 

In order to reduce the dimensionality and also to avoid symmetries of the MINLP problem, 
one can also apply some heuristic strategies to fix the values of some of the binary varia-
bles in a preprocessing phase. Specifically, we choose an observation in the training sam-
ple, i0 , with maximum number of observations in the same class close enough to it (at dis-
tance less or equal than a given 𝜀 > 0 ), i.e., 
i0 ∈ argmax

i∈N
∣ {i� ∈ N ∶ ‖ai − ai�‖ ≤ � and yi = yi� } ∣ . This observation, and all the obser-

(C8)

Lt ≥
∑

i∈N

zit −
∑

i∈N

Yikzit − n(1 − qkt), ∀k = 1,… ,K, t ∈ �l,

eit ∈ ℝ
+, �it, hit ∈ {0, 1}, ∀i ∈ N, t ∈ �b,

zit ∈ {0, 1}, ∀i ∈ N, t = 1,… , T ,

qkt ∈ {0, 1}, ∀k = 1… ,K, t ∈ �l,

�t ∈ ℝ
p,�t0 ∈ ℝ, dt ∈ {0, 1}, ∀t = 1,… , T .

zis + zi�s ≤ zit + zi�t,∀t ∈ u, s ∈ u�u ≤ u�

qkt + qks ≤ 2 − dp(t),∀t, s = 2,… , T(t ≠ s) with p(t) = p(s), k = 1,… ,K.

�it ≤ zit,∀i ∈ N, t ∈ �b.

hit ≤ �it,∀i ∈ N, t ∈ �b.

1 ≤
∑

t∈�l

qkt ≤ 2D − 1,∀k = 1,… ,K.



Machine Learning	

1 3

vations in the same class which are close enough to it will be likely predicted in the same 
node. Thus, we fix to one all the z-variables assigning these selected observations to a 
given leaf node (for example to the first left leaf node of the tree) and fixing to zero the 
allocation of these points to the rest of the leaf nodes.

5 � Experiments

In order to analyze the performance of this new methodology we have run a series of 
experiments among different real datasets from UCI Machine learning Repository (Asun-
cion & Newman, 2007). We have chosen twelve datasets with number of classes between 
two and seven. The dimension of these problems is reported in Table  3 by the tuple 
(n ∶ number of observations, p ∶ number of features,K ∶ number of classes).

We have compared the MOCTSVM model with three other Classification Tree-based 
methodologies, namely CART, OCT and OCT-H. The maximum tree depth, D, for all the 
models was equal to 3, and the minimum number of observations per node in CART, OCT 
and OCT-H was equal to the 5% of the training size.

We have performed, for each instance a 5-fold cross validation scheme, i.e., datasets 
have been splited into five random train-test partitions where one of the folds is used to 
build the model and the remaining are used to measure the accuracy of the predictions. 
Moreover, in order to avoid taking advantage of beneficial initial partitions, we have 
repeated the cross-validation scheme five times for all the datasets.

The CART method was coded in R using the rpart library. On the other hand, 
MOCTSVM, OCT and OCT-H were coded in Python and solved using the optimization 
solver Gurobi 8.1.1. All the experiments were run on a PC Intel Xeon E-2146 G proces-
sor at 3.50GHz and 64GB of RAM. A time limit of 300 s was set for training the training 
folds. Although not all the problems were optimally solved within the time limit, as can 
be observed in Table 3, the results obtained with our model already outperform the other 
methods.

Table 3   Average accuracies (± standard deviations) obtained in our computational experiments

CART​ OCT OCT-H MOCTSVM Diff

Australian (690,14,2) 85.54 ± 0.81 85.22 ± 1.27 85.65 ± 1.02 85.27 ± 1.11 − 0.38 ± 0.63
BalanceScale (625,4,3) 69.55 ± 1.76 73.30 ± 1.20 90.43 ± 1.07 89.53 ± 1.28 − 0.90 ± 1.69
Banknote (1372,5,2) 89.27 ± 0.95 88.50 ± 1.17 98.89 ± 0.33 98.91 ± 0.46 0.02 ± 0.43
BreastCancer (683,9,2) 92.69 ± 1.01 94.16 ± 0.54 95.10 ± 1.26 96.27 ± 0.64 1.17 ± 1.39
Dermatology (358,34,6) 75.69 ± 3.60 77.82 ± 4.34 91.41 ± 2.83 95.39 ± 1.47 3.98 ± 2.74
Heart (294,13,5) 64.37 ± 1.48 65.14 ± 1.57 64.30 ± 1.79 66.41 ± 1.54 1.26 ± 1.38
Iris (150,4,3) 94.26 ± 1.90 95.37 ± 0.97 95.64 ± 1.46 95.72 ± 1.79 0.08 ± 1.70
Parkinson (240,40,2) 72.29 ± 4.05 73.53 ± 2.26 74.92 ± 3.01 80.83 ± 1.89 5.91 ± 3.06
Seeds (210,7,3) 86.36 ± 4.02 88.52 ± 2.69 91.12 ± 2.99 92.98 ± 1.82 1.85 ± 2.23
Teaching (150,5,3) 41.91 ± 5.64 48.35 ± 3.80 48.09 ± 2.92 48.62 ± 3.37 0.26 ± 4.60
Thyroid (215,5,3) 89.77 ± 2.37 92.43 ± 2.12 92.46 ± 2.49 94.57 ± 2.08 2.11 ± 3.10
Waveform (5000,21,3) 70.07 ± 1.30 69.68 ± 1.49 71.42 ± 1.84 79.64 ± 1.16 8.22 ± 1.68
Wine (178,13,3) 84.52 ± 2.66 92.22 ± 3.41 89.35 ± 3.71 94.13 ± 1.78 1.90 ± 3.37
Zoo (101,16,7) 74.96 ± 5.79 87.75 ± 1.99 89.11 ± 2.58 92.31 ± 2.15 3.20 ± 2.95
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In order to calibrate the parameters of the different models that regulate the com-
plexity of the tree, we have used different approaches. On the one hand, for CART 
and OCT, since the maximum number of nodes for such a depth is 2D − 1 = 7 , one 
can search for the tree with best complexity by searching in the grid 

{
1,… , 2D − 1

}
 

of possible active nodes. For OCT-H, we search the complexity regularization fac-
tor in the grid 

{
10i ∶ i = −5,… , 5

}
 . Finally, in MOCTSVM we used the same grid 

{
10i ∶ i = −5,… , 5

}
 for c1 and c2 , and 

{
10i ∶ i = −2,… , 2

}
 for c3.

The dataset Waveform, has 5000 observations and 21 features with 3 different classes. 
The limitations of the off-the-shelf solvers to certify optimality of MISOCO problems 
allow one to solve only small to medium size instances up to optimality or with a rea-
sonable MIP Gap within the time limit. Thus, for this dataset we adopt an aggrega-
tion strategy which has been successfully applied in other machine learning and facility 
location problems (see e.g., Blanco et al., 2022a; b). Specifically, for each training sam-
ple in the cross validation, we aggregate the observations using the k-means cluster-
ing algorithm until the resulting dataset contains around 100 points. Then, we solve the 
problem on this simplified dataset. The obtained results show that our approach is easily 
scalable applying this type of aggregation strategies.

In Table 3 we report the results obtained in our experiments for all the models. The 
first column of the table indicates the identification of the dataset (together with its 
dimensionality). Second, for each of the methods that we have tested, we report the 
obtained average test accuracy and the standard deviation. We have highlighted in bold 
the best average test accuracies obtained for each dataset.

As can be observed, our method clearly outperforms in most of the instances the 
rest of the methods in terms of accuracy. Clearly, our model is designed to construct 
Optimal Classification Trees with larger separations between the classes, which results 
in better accuracies in the test sample. The datasets Australian and BalanceScale obtain 
their better results with OCT-H, but, as can be observed, the differences with respect the 
rest of the methods are tiny (it is the result of correctly classifying in the test sample just 
a few more observations than the rest of the methods). In that case, our method gets an 
accuracy almost as good as OCT-H. In the rest of the datasets, our method consistently 
gets better classifiers and for instance for Dermatology the difference with respect to the 
best classifiers among the others ranges in [4%, 19%] , for Parkinson the accuracy with 
our model is at least 6% better than the rest, for Wine we get 5% more accuracy than 
OCTH and 10% more than CART and for Zoo the accuracy of our model is more than 
17% greater than the one obtained with CART.

Concerning the variability of our method, the standard deviations reported in Table 3 
show that our results are, in average, more stable than the others, with small deviations 
with respect to the average accuracies. This behaviour differs from the one observed 
in CART or OCT, where larger deviations are obtained, implying that the accuracies 
highly depends of the test folder where the method is applied.

In most of the instances that were solved in the training phase by the cross validation 
scheme, the solutions at the end of the time limit were not guaranteed to be optimal. 
The MIPGaps that we obtained were large (close to 100% ) since this type of problems, 
with big M (C8) and norm-based constraints (C1) have weak continuous relaxations that 
usually exhibit a large MIPGap unless the optimality of the solution is certified. Thus, 
in this case the MIPGap is not an accurate value to measure the quality of the obtained 
solution and could be even meaningless. For this reason, we have decided not to report 
it.
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6 � Conclusions and further research

We have presented in this paper a novel methodology to construct classifiers for multi-
class instances by means of a Mathematical Programming model. The proposed method 
outputs a classification tree were the splits are based on SVM-based hyperplanes. At each 
branch node of the tree, a binary SVM hyperplane is constructed in which the observations 
are classified in two fictitious classes (the original classes are ignored in all the splitting 
nodes), but the global goodness of the tree is measured at the leaf nodes, where misclassifi-
cation errors are minimized. Also, the model minimizes the complexity of the tree together 
with the two elements that appear in SVM-approaches: margin separation and distance-
based misclassifying errors. We have run an extensive battery of computational experi-
ments that shows that our method outperforms most of the Decision Tree-based method-
ologies both in accuracy and stability.

Future research lines on this topic include the analysis of nonlinear splits when branch-
ing in MOCTSVM, both using kernel tools derived from SVM classifiers or specific fami-
lies of nonlinear separators. This approach will result into more flexible classifiers able to 
capture the nonlinear trends of many real-life datasets. Additionally, we also plan to incor-
porate feature selection in our method in order to construct highly predictive but also more 
interpretable classification tools.
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