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A B S T R A C T

Speech, as a necessary way to express emotions, plays a vital role in human communication. With the
continuous deepening of research on emotion recognition in human–computer interaction, speech emotion
recognition (SER) has become an essential task to improve the human–computer interaction experience. When
performing emotion feature extraction of speech, the method of cutting the speech spectrum will destroy the
continuity of speech. Besides, the method of using the cascaded structure without cutting the speech spectrum
cannot simultaneously extract speech spectrum information from both temporal and spatial domains. To this
end, we propose a spatial–temporal parallel network for speech emotion recognition without cutting the speech
spectrum. To further mix the temporal and spatial features, we design a novel fusion method (called multiple
fusion) that combines the concatenate fusion and ensemble strategy. Finally, the experimental results on five
datasets demonstrate that the proposed method outperforms state-of-the-art methods.
1. Introduction

Speech is the basic, direct, and convenient medium in human
daily communication, so speech emotion recognition (SER) is widely
used in practice, such as depression auxiliary diagnosis [1], intelligent
car [2], child-centered medical research [3] and human–computer
interaction [4]. Unfortunately, the uncertain duration and ambiguous
emotional characteristics of speech make SER research very diffi-
cult [5].

Since the speech spectrum has the ability to express temporal and
spatial information, how to automatically extract distinctive emotion
features from the spectrum has become a new trend in the development
of SER [6]. Neural networks have strong representation ability for sam-
ples and can handle large-scale data, enabling learning, recognition,
and solving a wide range of complex problems [7]. Hence, speech
emotion recognition methods based on neural networks are gradually
favored by many scholars [8]. However, the indeterminate duration
of speech leads to the inconsistent length of speech spectrum, but
neural networks usually require the same input size. Two approaches

∗ Corresponding author.
E-mail addresses: gcq2010cqu@163.com (C. Gan), s200101155@stu.cqupt.edu.cn (K. Wang), zhuqy@cqupt.edu.cn (Q. Zhu), yong.xiang@deakin.edu.au

(Y. Xiang), dkj@ieee.org (D.K. Jain), salvagl@decsai.ugr.es (S. García).

are normally used to deal with this issue. The first approach cuts the
entire speech spectrum into multiple segments of the same length, and
the second approach does not cut the speech spectrum.

For the first approach of cutting the speech spectrum, the entire
speech spectrum is cut into segments of the same length and each
segment is assigned an emotion label of the whole speech [9]. They
often adopt cascaded [10] or parallel structure [11] or concatenate
fusion [12] to learn emotion features of the speech spectrum. However,
since emotion is not evenly distributed throughout the speech, cutting
the speech spectrum into the same length makes each segment contain
incomplete emotion cues. To avoid this problem, the second approach
does not cut the speech spectrum by processing the speech spectrum in
two ways.

One way is to take the converted speech spectrum as input, such
as extracting acoustic feature sets from the speech spectrum [13] or
converting the speech spectrum into a fixed-size picture [14]. But
these methods all result in the lack of emotion information to vary-
ing degrees. Another way is to take the speech spectrum directly as
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input, and generally adopt a cascaded structure [15,16] or concatenate
fusion [17]. However, the cascaded structure is composed of different
functional modules in series, and the latter module can affect the
feature extraction result of the former module, which will cause feature
loss and deviation. Besides, different features contain different emo-
tion cues, but the concatenate fusion does not consider each feature
separately, which will lead to the omission of emotion cues.

To avoid the loss of spatio-temporal features caused by cutting the
speech spectrum, our proposed model will use the complete speech
spectrum as input. Additionally, due to strong inter-module dependen-
cies, cascading different feature extraction modules is not conducive
to extracting speech emotion features. To address this, we parallelly
process the time-domain feature extraction module with the spatial-
domain feature extraction module in our approach. Subsequently, we
employ a multi-feature fusion mechanism for speech emotion recogni-
tion. In summary, our main contributions are as follows:

(1) The proposed spatial–temporal parallel network without cutting
the speech spectrum can extract temporal and spatial features
from the complete speech spectrum, mitigating feature loss and
deviation.

(2) The proposed model extensively leverages the benefits of both
temporal and spatial domains. By employing parallel extraction,
the model effectively captures and incorporates the temporal
and spatial features of speech emotions. To enable a two-way
interaction between the temporal and spatial domain features,
our model utilizes a concatenate fusion and ensemble strategy.

2. Related work

The work Satt et al. [18] divided the speech spectrum into a set of
segments of 3 s and utilized the convolutional neural networks (CNNs)
cascaded with long short-term memory (LSTM) to extract emotion cues
from the linear scale spectrum. Since then, Li et al. [10] used cas-
caded CNNs with spatial–temporal attention and large margin learning
method, and Li et al. [9] redesigned a cascaded structure of CNNs
and attention mechanism. Further, Wu et al. [19] replaced the above
attention mechanism with a capsule network. In addition, Mustaqeem
et al. [11] and Zhao et al. [12] used a parallel network with cutting
speech spectrum and concatenate fusion. However, these studies may
introduce incorrect emotion labels or make emotion information miss-
ing because they assign emotion labels of the complete speech to the cut
segments. Noticing this, our method does not cut the speech spectrum.

To avoid the loss of speech emotion information caused by cutting,
the input methods without cutting the speech spectrum bring new
inspiration to SER. Among them, some methods take the converted
speech spectrum as input, e.g., Daneshfar et al. [20], Yi et al. [21], and
Xiao et al. [22] utilized acoustic feature sets as input. Li et al. [23]
slice the feature matrix to form new features and Singh et al. [24]
proposed new modulation spectrum features based on spectral maps
and time modulation. Zhang et al. [14] converted the speech spectrum
into pictures. Unfortunately, the acoustic feature sets or generating
new features cannot deeply describe the emotion in speech [25], and
expanding or compressing speech with inconsistent lengths into fixed-
size pictures will lose the temporal domain information of the speech
spectrum.

In addition, the original length of the speech spectrum remains un-
changed and is directly used as input. Ma et al. [15] proposed a method
of not cutting speech spectrum with processing redundant zero-padded,
and compared with the method of cutting speech spectrum in [18].
Later, Zhang et al. [16] developed a fully CNN for the complete speech
spectrum. However, these methods all employ cascaded networks to
generate single-type features. It is not conducive to the model to estab-
lish a comprehensive emotion cognition. For this issue, Cao et al. [26]
used a parallel LSTM to get the dynamic and static features, but the
2

parallel LSTM ignores the spatial features. Tseng et al. [27] enhanced o
emotion learning through the speech and text modalities, multimodal
approaches rely on the contributions of additional modalities. And Li
et al. [28] improved the recognition rate of speech emotion by integrat-
ing the output of automatic speech recognition into the pipeline of SER,
but the speech recognition features that are beneficial to SER still need
to be studied. Besides, Wu et al. [17] adopted concatenate fusion to fuse
the features generated by a parallel network, but concatenate fusion
does not consider the unique information of each feature. For this, our
method designs a novel fusion method named multiple fusion. Taking
the above factors into consideration, in order to better extract the
spatio-temporal features of continuous speech spectrograms, we sep-
arately extract the spatio-temporal features of speech emotions using
parallel time-domain and spatial-domain feature extraction modules.
Finally, we combine a concatenate fusion and ensemble strategy to
integrate the spatio-temporal features of speech emotions.

Instead of cutting the speech spectrum into a set of segments and
using the cascaded structure, our method keeps the original speech
spectrum unchanged and adopts a spatial–temporal parallel structure
with multiple fusion. It not only can avoid the loss of emotion in-
formation caused by cutting the speech spectrum, but also can learn
multi-type emotion features.

3. The proposed method

3.1. Motivation

The speech spectrum includes both spatial and temporal domains,
where the spatial domain comprises the relationship between time
and frequency, while the temporal domain expresses the contextual
relationship of time frames and the emotion richness of each time
frame. Inspired by the spatial feature extraction in the image field
and the feature extraction of the time context in the natural language
processing field, we consider extracting features from the spatial and
temporal domain of the speech spectrum. Furthermore, in order to
extract more comprehensive emotion features from speech samples,
we input the speech without cutting and independently extract the
temporal and spatial information of the speech spectrum in parallel.

3.2. Overview

As shown in Fig. 1, the proposed method mainly consists of four
parts: preprocessing, temporal module, spatial module, and multiple
fusion module. Specifically, the preprocessing module maps the original
one-dimensional speech waveform to a two-dimensional spectrum con-
taining both spatial and temporal characteristics. The temporal module
utilizes the bidirectional gated recurrent unit (Bi-GRU) and attention
mechanism (AM) with zero fill masking to capture temporal emotional
changes in the spectrum. The spatial module uses multi-layer CNNs
and global average pooling to locate emotion triggering regions in the
spatial domain of the spectrum. The multiple fusion module generates
spatio-temporal interaction features based on single connection fusion
and ensemble strategy, and outputs the probability distribution of
sentiment classification.

3.3. Preprocessing

Firstly, Hamming window and short-time Fourier transform are used
to map speech into a linear spectrum. Secondly, in order to better match
human auditory characteristics, a Mel filter bank is applied to the linear
spectrum to obtain the log Mel filter bank energy spectrum (henceforth:
spectrum):

𝐗 = [𝐱1,… , 𝐱𝑖,… , 𝐱𝐿] ∈ R𝑓×𝐿, (1)

where 𝐱𝑖 is the 𝑖th frame of spectrum, 𝐿 is the spectrum length, and
is the number of filters. Finally, for speeding up the efficiency
f computation, all spectrums are sorted by length and divided into
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Fig. 1. The overview framework of the proposed method.

batches according to the proximity of their lengths. Meanwhile, each
spectrum is padded with zeros to the maximum length of the spectrum
in each batch. Given the maximum length 𝑀 , then the zero-padding
spectrum can be represented as:

𝐗𝑖𝑛 =
[

𝐗, 𝐱𝐿+1,… , 𝐱𝑀
]

∈ R𝑓×𝑀 , (2)

where 𝐱𝐿+1,… , 𝐱𝑀 are zero-padding frames.

3.4. Temporal module

The time frames of the spectrum have contextual relationships and
varying emotional richness. When learning temporal features of the
spectrum, the dependencies between consecutive frames and salient
emotional moments usually need to be considered [29]. On this basis,
the bidirectional gated recurrent unit (Bi-GRU) and attention mecha-
nism (AM) are combined to model temporal properties of the spectrum,
as illustrated in Fig. 2.

Firstly, zero-padding frames will waste storage resources and affect
the calculation process in Bi-GRU, so we compress them of 𝐗𝑖𝑛 through
the pack_padded_sequence and the pad_packed_sequence functions in Py-
Torch [30]. The output of Bi-GRU can be represented as 𝐆 ∈ R2𝑑𝑇 ×𝑀 ,
where 𝑑𝑇 is the number of hidden neurons. The zero-padding output
𝐗𝑝 ∈ R1×𝑑𝐿 is represented as:

𝐗𝑝 = 𝑝𝑎𝑐𝑘_𝑝𝑎𝑑𝑑𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝐗𝑖𝑛). (3)

Secondly, in order to capture the temporal context from both for-
ward and backward directions, the input 𝐗𝑝 is fed into a BiGRU with
a hidden neuron count of 𝑑𝑇 . In order to facilitate subsequent feature
extraction operations, the output of the BiGRU is transformed back into
a two-dimensional form using the corresponding sequence expansion
function. The resulting output 𝐆 = [𝑔1, 𝑔2,… , 𝑔𝐿, 𝑔𝐿+1,… , 𝑔𝑀 ] can be
represented as:

𝐆 = 𝑝𝑎𝑑_𝑝𝑎𝑐𝑘𝑒𝑑_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝐵𝑖𝐺𝑅𝑈 (𝐗 )), (4)
3

𝑝

Fig. 2. The structure diagram of temporal module.

where 𝐵𝑖𝐺𝑅𝑈 (⋅) represents the computation process of BiGRU in both
forward and backward directions. 𝑔𝐿+1,… , 𝑔𝑀 frames refer to zero vec-
tors. pad_packed_sequence represents the sequence expansion function
in the PyTorch toolkit, corresponding to the aforementioned sequence
compression function pack_padded_sequence.

Thirdly, we adopt AM to evaluate the contribution of each frame in
𝐆. The output of this process is denoted as 𝐜 = [𝑐1, 𝑐2,… , 𝑐𝑖,… , 𝑐𝑀 ], the
sentiment score 𝑐𝑖 of the 𝑖𝑡ℎ frame is calculated as:

𝑐𝑖 =
exp

(

ℎ𝑖
)

∑𝑀
𝑖=1 exp

(

ℎ𝑖
)
, (5)

where ℎ𝑖 = 𝐕 tanh
(

𝐠𝑖𝐖 + 𝐛
)

, 𝐠𝑖 is the 𝑖th frame of 𝐆, 𝐕 and 𝐖 are train-
able weights, 𝐛 is the trainable bias, exp(⋅) and tanh(⋅) are exponential
function and hyperbolic tangent activation function, respectively.

To ensure that zero-padding frames have a sentiment score of
zero, we reset 𝐜 with the mask matrix 𝑀𝑎𝑠𝑘(⋅) and then obtain the
corresponding 𝐜′ = [𝑐′1, 𝑐

′
2,… , 𝑐′𝑖 ,… , 𝑐′𝑀 ]:

𝐜′ = 𝐜⊙𝑀𝑎𝑠𝑘(𝐗𝑖𝑛), (6)

where ⊙ indicates the Hadamard product.
Finally, according to the summation of the sentiment score of each

frame, the temporal feature 𝐔𝑇 ∈ R2𝑑𝑇 ×1 can be obtained:

𝐔𝑇 =
𝑀
∑

𝑖=1
𝑐′𝑖𝐠𝑖. (7)

3.5. Spatial module

The spectrum is an image-like representation that contains specific
emotion information in the spatial domain. Inspired by [9] and verified
by experiments, we adopt a CNN-based spatial domain module to ex-
tract spatial domain features of the spectrum, and its detailed structure
is shown in Table 1. The structure of the spatial domain module is
illustrated in Fig. 3.

Firstly, we add a channel dimension for 𝐗𝑖𝑛 to get the corresponding
𝐗′
𝑖𝑛 ∈ R1×𝑓×𝑀 as the input, the local spatial features 𝐗𝑐 can be obtained

through five convolution blocks, where each convolution block are
sequentially stacked by CNN, batch normalization (BN), and rectified
linear unit (ReLU). Specifically, the first layer is set up as a set of par-
allel convolution blocks with average pooling, which are used to focus
on the temporal and frequency dimensions of the spectrum, in order to
capture the temporal and frequency variation relationships contained in
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Fig. 3. The structure diagram of spatial module.
Table 1
Architectural details of spatial module.

Layer name Backbone Kernel size Output size

Expand Expand – 1 × 𝑑 × 𝑀

Conv1 Convolution block 10 × 2 2 × 8 16 × 𝑑∕2 × 𝑀∕2Avg-pooling 2 × 2

Conv2 Convolution block 3 × 3 32 × 𝑑∕4 × 𝑀∕4Avg-pooling 2 × 2

Conv3 Convolution block 3 × 3 48 × 𝑑∕6 × 𝑀∕6Avg-pooling 2 × 2
Conv4 Convolution block 3 × 3 64 × 𝑑∕6 × 𝑀∕6
Conv5 Convolution block 3 × 3 80 × 𝑑∕6 × 𝑀∕6
GAP Global-avg-pool 𝑑∕6 × 𝑀∕6 80 × 1 × 1
Squeeze Squeeze – 80 × 1
the spatial domain. Then, two convolution blocks with average pooling
are sequentially used to mix different feature information generated
by the time and frequency dimensions of the spectrum, and redundant
invalid information is discarded. Finally, the local spatial feature 𝐗𝑐 ∈
R80×𝑓∕8×𝑀∕8 is generated by encoding the features through the two
stacked convolution blocks. The whole process can be summarized as
follows:

𝐗𝑐 = 𝐶𝑜𝑛𝑣(𝐗′
𝑖𝑛), (8)

where 𝐶𝑜𝑛𝑣(⋅) represents the feature processing of five convolution
blocks.

Secondly, the global average pooling (GAP) is used to map 𝐗𝑐 to
global spatial feature 𝐔𝑆 ∈ R80×1×1. Notably, 𝐔𝑆 is squeezed to 80 × 1
for subsequent concatenation with the temporal feature.

𝐔𝑆 = 𝑆𝑞𝑢𝑒𝑒𝑧𝑒(𝐺𝐴𝑃 (𝐗𝑐 )). (9)

Finally, it is worth mentioning that this module does not deal with
zero-padding, because the work [17] proves that zero-padding has no
impact on the feature extraction of CNN.

3.6. Multiple fusion module

To better fuse the above-mentioned temporal and spatial features,
we design a multiple fusion that combines the concatenate fusion and
ensemble strategy, the structure diagram is shown in Fig. 4.

Firstly, the temporal and spatial sentiment probability distributions
𝐘𝑇 ∈ R𝑁×1 and 𝐘𝑆 ∈ R𝑁×1 are calculated through the temporal
classifier and spatial classifier:

𝐘𝑇 = Sof tmax(𝐖𝑇𝐔 + 𝐛𝑇 ),
𝐘𝑆 = Sof tmax(𝐖𝑆𝐔𝑆 + 𝐛𝑆 ),

(10)

where 𝐔 = ReLU(BN(𝐖𝑡𝐔𝑇 + 𝐛𝑡)), 𝑁 is the number of emotion
categories, Sof tmax(⋅) represents the Softmax function, 𝐖𝑇 ,𝐖𝑆 ,𝐖𝑡 are
trainable weights, and 𝐛𝑇 ,𝐛𝑆 ,𝐛𝑡 are trainable biases.

Secondly, concatenate the temporal and spatial features to obtain
the concatenate fusion feature 𝐔𝐹 ∈ R(80+2𝑑𝑇 )×1 = Concatenate(𝐔𝑇 ,𝐔𝑆 ),
and then calculate the corresponding sentiment probability distribution
𝐘𝐹 ∈ R𝑁×1 through the fusion classifier:

𝐘 = Sof tmax(𝐖 𝐔 + 𝐛 ), (11)
4

𝐹 𝐹 𝐹 𝐹
where 𝐖𝐹 and 𝐛𝐹 are trainable weight and bias, respectively.
To further fuse emotion information in the spatial and temporal

domains, the probability distributions 𝐘𝑇 , 𝐘𝑆 , 𝐘𝐹 are integrated, the
output 𝐘̂ ∈ R𝑁×1 can be represented as:

𝐘̂ =
∑

𝑗=𝑇 ,𝑆,𝐹
𝐘𝑗 . (12)

Finally, the cross-entropy is adopted as the loss function:

Loss(𝐘, 𝐘̂) = −
∑

𝑘∈𝑁
𝑦𝑘 ln 𝑦̂𝑘, (13)

where 𝐘 = [𝑦1,… , 𝑦𝑘,… , 𝑦𝑁 ], 𝐘̂ = [𝑦̂1,… , 𝑦̂𝑘,… , 𝑦̂𝑁 ] are real and pre-
dicted probability distributions, respectively. 𝑦𝑘, 𝑦̂𝑘 represent the real
probability and the predicted probability of the 𝑘𝑡ℎ emotion category,
respectively.

4. Experimental setup

4.1. Datasets

To show the performance of our method, this section performs sev-
eral experiments on five datasets: IEMOCAP [31], MSP-IMPROV [32],
EMO-DB [33], eNTERFACE05 [34], SAVEE [35]. The IEMOCAP dataset
includes recordings from two scenarios: scripted and improvised, in-
cluding 9 emotions: anger, happiness, sadness, neutral, excitement,
disgust, fear, depression, and surprise. Consistent with most studies
on SER, we consider the four emotions of anger, happiness, sadness,
and neutral under improvised scenes. Moreover, due to the similar
activation and valence states of excitement and happiness in emo-
tional dimension analysis, excitement is divided into happiness. The
MSP-IMPROV dataset contains 8348 samples, including 652 samples
improvised against the target text, 620 samples read as scripts, 4381
samples improvised by actors, and 2785 samples recorded in natural
interactions. However, due to the ambiguity of human emotion percep-
tion, different emotion experts may have different emotion cognition
for the same speech sample, which has been confirmed in psychological
research [36] and statistical models [37]. Therefore, the emotion labels
of speech samples may not be unanimously recognized by experts, so
only 7798 samples in this dataset have certain emotion labels. The
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Fig. 4. The structure diagram of multiple fusion module.
Table 2
Details of the five datasets.

Dataset Speaker Emotion Sample number

IEMOCAP 5 female/5 male happiness, neutral, angry, sadness 2943
MSP-IMPORV 6 female/6 male happiness, neutral, angry, sadness 7798
EMO-DB 5 female/5 male happiness, neutral, angry, sadness, fearful,

disgusted, bored
535

eINTERFACE05 42 human happiness, angry, sadness, fearful, disgust,
surprise

1257

SAVEE 4 male happiness, neutral, angry, sadness, fearful,
disgusted, surprise

480
Table 3
Sample distribution of five datasets.

Dataset happiness neutral angry sadness fearful disgusted surprise bored

IEMOCAP 947 1099 289 608 – – – –
MSP-IMPORV 2644 3477 792 885 – – – –
EMO-DB 71 79 127 62 69 46 – 81
eINTERFACE05 207 – 210 210 210 210 210 –
SAVEE 60 120 60 60 60 60 60 –

Note: Dash (–) indicates the corresponding dataset does not have samples of that emotion category.
current research has discarded samples without labels and selected
7798 samples with labels for training and testing. To facilitate com-
parison with other methods, we also select 7798 samples with labels
for experiments. The EMO-DB and SAVEE datasets are both audio
recorded in deductive scenarios. The eNTERFACE05 dataset reflects
the corresponding emotion states based on six predefined emotion
scenarios. Additional detailed information on these datasets can be
found in Tables 2 and 3.

4.2. Performance measures

Weighted accuracy (WA) and unweighted accuracy (UA) are two
evaluation indicators commonly used in speech emotion recognition,
and the calculation methods are shown in Eqs. (14)–(15).

• WA: The ratio of the total number of correctly predicted samples
to the total number of samples, representing the classification
accuracy of all utterances.

• UA: The average of the accuracy of each emotion category, rep-
resenting the classification accuracy of each emotion category.

𝐴 =
∑𝑁

𝑖=1 𝑇𝑃𝑖
∑𝑁 ( )

, (14)
5

𝑖=1 𝑇𝑃𝑖 + 𝐹𝑁𝑖
𝑈𝐴 = 1
𝑁

𝑁
∑

𝑖=1

𝑇𝑃𝑖
(

𝑇𝑃𝑖 + 𝐹𝑁𝑖
) , (15)

where 𝑁 represents the number of sentiment categories, 𝑇𝑃𝑖 represents
the number of correct prediction samples for the 𝑖th category, and
𝐹𝑁𝑖 represents the number of incorrectly-predicted samples for the 𝑖th
category. It is worth noting that UA is a more reasonable metric than
WA since the uneven distribution of emotion samples has always been
an unsolved problem in speech emotion recognition tasks. There are
two reasons for this: on the one hand, UA as a class accuracy can more
effectively show the accuracy of the model under imbalanced data;
on the other hand, the accuracy of WA as a whole cannot reflect the
accuracy of each emotion class.

4.3. Parameter settings

This model is implemented based on the Pytorch [30] deep learning
framework, and the training is done on a 64-bit UBUNTU16.04 system
with E5-2598V4CPU and 4 NVIDIA TeslaV100 GPUs. We employ exper-
iments on each dataset with Leave-One-Speaker-Out (LOSO, i.e., keep
one speaker for testing and others for training) cross-validation. The
Adam with a learning rate of 𝑒−4 is used as the optimizer, the weight

−3
decay is 𝑒 to prevent over-fitting, the batch size is 32, the epoch
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Table 4
Comparison results on IEMOCAP and MSP-IMPROV.

Model Datasets

IEMOCAP MSP-IMPROV

UA (%)/WA (%) UA (%)/WA (%)

FCN [16] 63.90/70.40 –
Variable-Length [15] 64.22/71.45 –
ADAN [21] 64.51/66.92 –
CNN+LSTM [12] 68.00/65.20 –
Attention-pool [9] 68.06/71.75 –
LSTM+attention [26] 72.50/70.50 –
Multimodal [27] – 53.20/–
CGDANN [22] – 56.20/–
Ours 74.35/72.01 57.70/53.19

Note: Dash (–) indicates the corresponding work does not experiment on the dataset.

Table 5
Comparison results on EMO-DB, eNTERFACE05, and SAVEE.

Model Datasets

EMO-DB eNTERFACE05 SAVEE

UA (%)/WA (%) UA (%)/WA (%) UA (%)/WA (%)

Cascaded-attention [10] 82.10/83.30 75.60/75.80 54.75/56.50
ADAN [21] 83.31/84.49 – –
DPTM [14] 86.30/87.31 79.40/79.25 –
PQPSO [20] – – 55.00/59.38
Ours 89.02/89.50 88.65/88.64 62.26/66.45

Note: Dash (–) indicates the corresponding work does not experiment on the dataset.

is 100, the hidden neuron 𝑑𝑇 of Bi-GRU is 512 to enrich contextual
features, the window length of spectrum is 25 ms, and the filter number
of spectrum is 40 in the spatial module and 26 in the temporal module.

5. Experimental results and analysis

To ensure the fairness of the comparison results, when comparing
our proposed model with other models in terms of performance, we
will use the same datasets and evaluation metrics (UA/WA). In ex-
ploring the results of ablation experiments, only the variations in filter
quantity, sliding window length, fusion and fusion strategies, whether
or not to segment different speakers’ speech data, and the emotional
recognition results of different speakers’ speech data in cascading or
parallel structures need to be discussed. This will ensure the fairness of
the ablation experiment results.

5.1. Comparison with state-of-the-art methods

Tables 4 and 5 show the comparison results of our method with
advanced methods. The results of our method are the average results
of LOSO cross-validation. On the five datasets, our best results UA/WA
are 83.19%/80.59%, 58.58%/60.10%, 94.64%/95.65%, 100%/100%,
80.95%/83.33%, respectively. The corresponding worst results UA/WA
are 58.03%/52.05%, 49.90%/44.43%, 84.69%/83.67%, 70%/70%,
40.48%/46.67%, respectively. There is a difference between the best
and worst results, but our average result is still better than other
methods.

In more detail, since we maintain the integrity of speech and adopt
the parallel model to represent emotion from multiple perspectives,
our method can express emotion features more comprehensively than
the cascaded models using the cut input [9,10]. Compared with the
concatenate fusion model using the cut input of a 128-dimensional Mel
spectrum [12], our method improves UA and WA by 6.81% and 6.35%,
respectively, due to the reason that it is more conducive to feature
interaction than concatenate fusion.

Compared with cascaded models without using the cut input
[15,16], the performance of our model is more effective. The reason is
that parallel models can extract emotion from features through multiple
6

perspectives and express emotion more completely than cascaded mod-
els. The advantage of parallel models can also be seen in the parallel
LSTM model [26], which takes a 26-dimensional spectrum as input but
ignores emotion cues in the spatial domain. In contrast, our method
considers the spatial cues, leading to better performance.

Compared with the models of taking the converted speech spec-
trum as input (i.e., [14,20–22,27]), our method has advantages on
all datasets. This is because we keep the original speech spectrum as
input, avoiding the loss of spatial–temporal cues caused by feature set
extraction and image compression. Specifically, the work in [20,21],
and [22] performs statistical computations on speech to generate fea-
ture sets, resulting in the loss of frequency variation information in the
spatial domain. The work [14] compresses or expands the spectrum into
fixed-size images, causing the loss of context in the temporal domain.
In addition, the work [27] takes text and speech as input, requiring
additional text-modal assisted speech for emotion recognition.

5.2. Ablation analysis

To further discuss the reasons for our good results, we performed
some ablation analysis. Since the ablation results of our method on each
dataset are similar, we only show the analysis on the IEMOCAP dataset.

Fig. 5 displays the spatial module performance and temporal mod-
ule performance of our method under different filter numbers and
window lengths. In Fig. 5(a), we explore the influence of filter num-
ber on spatial feature extraction while keeping the window length
unchanged (i.e., 25 ms). It can be seen that the performance of spatial
feature extraction is not proportional to the number of filters. This is
because the filter is used to smooth noise components in speech. Too
few filters will make noise removal insufficient, while too many filters
will excessively remove useful sound components. Similarly, one can
see from Fig. 5(b) that, while keeping the number of filters unchanged
(i.e., 26), the performance of temporal feature extraction does not
improve with the increase of the window length. The main reason
is that the window length is related to framing. Too small window
length will cause time frame redundancy, whereas too large window
length will result in blurred time frame boundaries. According to these
experiments, we set the filter number of the spatial module to 40 and
the window length of the temporal module to 25 ms.

Table 6 shows the ablation results of multiple fusion module. Due to
the multiple fusion module being composed of connection fusion and
integration strategies, we analyzed the connection fusion effect of the
temporal module and spatial module, and also discussed the ensemble
effect of the temporal module and spatial module. Finally, we compared
them with the multiple fusion of the proposed model. Connection fusion
refers to the direct concatenation of temporal and spatial features into
an emotion classifier. The ensemble strategy aims to feed the temporal
and spatial features into the corresponding emotion classifier, and
then add up the outputs of each classifier. From Table 6, it can be
observed that under the benchmark of spatial domain and temporal
domain recognition performance, connection fusion can only achieve
recognition performance similar to that of spatial domain and temporal
domain. The reason is that the connection fusion splices the interme-
diate output features of the temporal module and the spatial module,
and cannot fully consider the final emotion decision of the temporal
module and spatial module. The connection fusion classifier has only
one decision and is a weak classifier. In contrast, the ensemble strategy
considers both temporal module and spatial module decisions, which
can form a strong classifier and reduce overall misclassification, thus
outperforming the temporal module and the spatial module in terms of
WA metrics. Although the ensemble strategy has the above capabilities,
it lacks intermediate fusion information in the spatial and temporal
domain, so the UA indicator does not have an advantage. The multiple
fusion module of the proposed model considers both connection fusion
and ensemble strategy, which can better achieve spatial and temporal
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Fig. 5. Performance on IEMOCAP with different filter numbers and window lengths.
Table 6
The ablation results of multiple fusion module.

Model UA (%) WA (%)

Only spatial 70.93 69.58
Only temporal 69.78 66.93
Concatenate fusion 70.81 66.47
Ensemble strategy 67.74 71.09
Multiple fusion 74.35 72.01

Table 7
Results of different speakers under different input methods.

Speaker Input methods

Cutting input Not cutting input

UA (%)/WA (%) UA (%)/WA (%)

Session1M 75.53/75.11 80.80/77.60
Session1F 63.56/64.23 69.75/70.11
Session2M 74.19/73.85 82.53/78.21
Session2F 76.23/74.16 83.19/80.59
Session3M 65.54/65.92 74.86/76.08
Session3F 64.05/66.61 73.48/73.11
Session4M 62.87/62.98 73.25/72.93
Session4F 67.17/67.26 75.01/68.66
Session5M 56.22/58.34 58.03/52.06
Session5F 67.44/63.54 72.62/70.77

Average 67.28/67.20 74.35/72.01

feature interaction. Therefore, the two evaluation indicators of multiple
fusion are better than those of connection fusion and ensemble strategy.

Table 7 shows the results of different speakers under different input
methods, to explore the advantages of not cutting input. Specifically,
the cutting input setting adopts the most commonly used 3 s seg-
mentation method in [18], where speech longer than 3 s is cut into
segments every 3 s, and speech shorter than 3 s is filled with zeros for
3 s. Each segment is assigned an emotion label of the entire speech.
It can be found that the effect of not cutting input is better in most
speakers, and the average results are higher than cutting input in
both WA and UA. The reason is that not cutting input maintains the
integrity of the speech, so the extracted emotion is more complete.
Further, Fig. 6 shows the recognition rates of various emotions of cut
input and not cutting input in the form of a confusion matrix graph,
Fig. 6(a) a confusion graph of the cutting input method, and Fig. 6(b)
a confusion graph of the not cutting input method. It can be found
7

Table 8
Results of different speakers under different structures.

Speaker Structures

Cascaded Parallel

UA (%)/WA (%) UA (%)/WA (%)

Session1M 76.02/74.40 80.80/77.60
Session1F 65.86/64.21 69.75/70.11
Session2M 76.34/71.60 82.53/78.21
Session2F 81.02/78.39 83.19/80.59
Session3M 65.78/65.84 74.86/76.08
Session3F 66.64/69.51 73.48/73.11
Session4M 60.37/62.78 73.25/72.93
Session4F 66.68/62.31 75.01/68.66
Session5M 59.23/54.25 58.03/52.06
Session5F 67.08/63.11 72.62/70.77

Average 68.50/66.64 74.35/72.01

that the not cutting input method has a higher recognition rate than
the cutting input method in all four emotion categories, and has a
greater improvement in anger and neutral emotions, narrowing the gap
in recognition rates among various emotions. This is because emotions
are not evenly distributed throughout the entire speech. Cutting the
speech into segments of the same length will result in each segment
containing incomplete emotional clues, while the not cutting input
method maintains the complete speech as input and processes zero-
filled frames to ensure that the extracted emotional clues are more
complete.

Table 8 shows the results of different speakers under different
structures. In order to explore the advantages of the parallel structure
in the proposed model, a comparison was made between the classic
cascaded structure network and the spatial–temporal parallel network
of the proposed model. Specifically, the cascaded structure network is
formed by sequentially connecting the spatial and temporal modules
in the proposed model, and the input features are consistent with
the input of the spatial module. From the table, it can be observed
that in most speakers, parallel structures perform better than cascaded
structures, as the multi-type features obtained by parallel structures can
more comprehensively express emotions. In addition, Fig. 7 analyzes
the change in emotion recognition rate of each category of cascade
structure and parallel structure from the confusion matrix to better
show the advantages of parallel structure. From the graph, it can be
seen that the emotion recognition rate of the four categories of parallel

structure is higher than that of cascade structure, especially for the



Neurocomputing 555 (2023) 126623C. Gan et al.
Fig. 6. The confusion matrix of different input methods.
Fig. 7. The confusion matrix of different structures.
Fig. 8. An example of AM sentiment score on IEMOCAP.
emotional category of sadness, which is about 11% higher than that of
cascade structure. This indicates that the cascaded structure of stacking
spatial and temporal modules in order will affect each other’s feature
extraction, while the parallel structure network can simultaneously
focus on the emotional information contained in the temporal and
spatial domains, capturing discriminative features from the temporal
and spatial domains of speech features, and can more comprehensively
express emotions.

Fig. 8 shows an example of the AM sentiment score. We randomly
selected a speech in the IEMOCAP dataset with an emotion of anger
and a duration of 6.03 s. It can be found that the sentiment score has
similar fluctuations to the speech, and becomes higher when the speech
8

amplitude value is higher, indicating that AM can observe all frames
with sound and thus focus on frames with emotion.

6. Conclusions

In this paper, a spatial–temporal parallel network without cutting
speech spectrum has been proposed for SER. Our method not only can
avoid the loss of emotion information, but also can extract multi-type
emotion features (i.e., temporal and spatial features). To obtain more
discriminative speech emotion classification performance, a multiple
fusion method has been designed for further mixing the temporal and
spatial features. Finally, several experiments on five datasets, including
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comparisons with the advanced methods and ablation analysis, have
been conducted to discuss further the reasons for our achieved good
results.

Despite the advantages mentioned above, there are two problems
with the current method. Firstly, speech emotion labels are deter-
mined by a few emotion experts, which introduces ambiguity. Different
experts may assign different emotions to the same speech samples,
making it challenging to find consistent expressions for a single emotion
label in real-life situations. Secondly, the annotation of speech samples
requires significant manpower and financial resources. Consequently,
there is a large number of unlabeled speech samples that remain
unused. Deep learning models, which offer strong generalization and
performance, typically require extensive training on massive samples,
posing challenges for the practical deployment of speech emotion
recognition systems. Therefore, future research can focus on address-
ing the ambiguity of speech emotions and utilizing unlabeled speech
data to develop more suitable speech emotion recognition systems for
practical applications.
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