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Landslide displacement forecasting using deep 
learning and monitoring data across selected sites

Abstract Accurate early warning systems for landslides are a reli-
able risk-reduction strategy that may significantly reduce fatali-
ties and economic losses. Several machine learning methods have 
been examined for this purpose, underlying deep learning (DL) 
models’ remarkable prediction capabilities. The long short-term 
memory (LSTM) and gated recurrent unit (GRU) algorithms are 
the sole DL model studied in the extant comparisons. However, 
several other DL algorithms are suitable for time series forecast-
ing tasks. In this paper, we assess, compare, and describe seven DL 
methods for forecasting future landslide displacement: multi-layer 
perception (MLP), LSTM, GRU, 1D convolutional neural network 
(1D CNN), 2xLSTM, bidirectional LSTM (bi-LSTM), and an archi-
tecture composed of 1D CNN and LSTM (Conv-LSTM). The inves-
tigation focuses on four landslides with different geographic loca-
tions, geological settings, time step dimensions, and measurement 
instruments. Two landslides are located in an artificial reservoir 
context, while the displacement of the other two is influenced just 
by rainfall. The results reveal that the MLP, GRU, and LSTM models 
can make reliable predictions in all four scenarios, while the Conv-
LSTM model outperforms the others in the Baishuihe landslide, 
where the landslide is highly seasonal. No evident performance 
differences were found for landslides inside artificial reservoirs 
rather than outside. Furthermore, the research shows that MLP is 
better adapted to forecast the highest displacement peaks, while 
LSTM and GRU are better suited to model lower displacement 
peaks. We believe the findings of this research will serve as a pre-
cious aid when implementing a DL-based landslide early warning 
system (LEWS).

Keywords Landslide hazard · Remote sensing · Landslide early 
warning · Landslide forecasting · Artificial intelligence

Introduction
Every year, landslides, a major global geohazard, result in a tre-
mendous number of fatalities and economic damage (Froude and 
Petley 2018). Predicting future landslide evolution is critical for 
risk assessment and the design of reliable early warning systems 
for landslides produced by external triggers such as rainfall, res-
ervoir and groundwater fluctuations, earthquakes, and anthropo-
genic activities (Aleotti and Chowdhury 1999). It can be difficult 
to predict how landslides will behave in the future because their 
progression typically does not adhere to a linear pattern. Several 
external elements (above all, rainfall, and water level reservoir 
variations) coordinate and impact landslide future displacements 
with varying magnitudes and intensities. Physical-based and 

data-driven techniques are the two main approaches for forecast-
ing landslide displacement (Huang et al. 2017). The physical-based 
models mainly use creep theory, laboratory tests, and physical 
characteristics determined in situ to predict the landslide behav-
ior. However, data-driven models are more widely used due to their 
straightforward methodology, precise predictions, lower costs, and 
scalability (Corominas et al. 2013). Recent breakthroughs in land-
slide displacement forecasting have demonstrated that artificial 
intelligence (AI) and, in particular, deep learning techniques are 
cutting edge. By accounting for contributing factors in addition 
to landslide displacement data, these approaches may accurately 
predict future velocity.

Landslides at the Three Gorges Reservoir have been investigated 
and utilized as benchmarks for the implementation, evaluation, and 
development of numerous AI-based techniques for landslide dis-
placement forecasting (Yao et al. 2015). Several machine learning 
(ML) models have been used to this end such as artificial neural 
networks (ANN) (Du et al. 2013), support vector machines (SVM) 
(Zhu and Hu 2012; Zhou et al. 2016; Zhu et al. 2017; Wen et al. 2017; 
Miao et al. 2018; Ma et al. 2020; Wang et al. 2020, 2022; Han et al. 
2021; Zhang et al. 2021), Gaussian process (Liu et al. 2014), and 
extreme learning machine (ELM) (Lian et al. 2015; Cao et al. 2016; 
Huang et al. 2017; Zhou et al. 2018a; Wang et al. 2019). The authors 
quite often used influencing factors in these situations which 
include previous landslide displacements, prior rainfall informa-
tion, water level of reservoirs, and water level variations. In addi-
tion, Li et al. (2019) included a wavelet analysis-Volterra filter model 
(chaotic WA-Volterra model) based on chaos theory in SVM. The 
WA-Volterra model separates the high- and low-frequency com-
ponents of cumulative displacement data. Chaos theory was used 
to recreate the spatial structure of each frequency, which was then 
used as input into the model. His paper investigates the possibility 
of chaotic characteristic identification of landslide displacements 
to be employed in machine learning.

Deep belief networks, LSTM-based architectures, gated recur-
rent unit neural networks (GRU), and other DL techniques have 
recently been employed in landslide displacement predictions 
(Yang et al. 2019; Xing et al. 2019; Li et al. 2020; Zhang et al. 2021; 
Guo et al. 2022). The relationship between landslide displacement 
and the primary triggering elements, for instance, was examined 
by Yang et al. (2019). In his paper, the periodical displacement was 
predicted using an LSTM model that considers the most crucial 
historical conditioning parameters. The LSTM model can gather 
insights from previous deformation time steps and create relation-
ships between landslide conditions at different times. The results 
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demonstrated that the LSTM model performs better than the SVM 
techniques. Wang et al. (2022) tested various ML models, includ-
ing particle swarm optimization (PSO)-extreme learning machine 
(PSO-ELM), PSO-kernel extreme learning machine (PSO-KELM), 
PSO-support vector machine (PSO-SVM), PSO-least-squares sup-
port vector machine (PSO-LSSVM), and LSTM. Their research 
found that LSTM and PSO-ELM performed superior single pre-
dictions, but PSO-KELM and PSO-LSSVM yielded higher mean 
accuracies across cases.

Although there is a large body of research that suggests meth-
odologies for landslide forecasting in extremely unique study cases 
such as the Three Gorges Reservoir landslides, few studies have 
used ML to estimate landslide displacement in different geographi-
cal, geological, and hydrogeological contexts. Based on historical 
data from landslides, rainfall, and groundwater, a new Random 
Forest-based technique for forecasting landslide velocity was pro-
posed by Krkač et al. (2017) in the largest landslide in the Republic 
of Croatia. The landslide velocity was modeled using the expected 
daily groundwater levels predicted by using the historical daily 
precipitation data. Lastly, Zhu et al. (2017) compared and evalu-
ated the performances of two different configurations of LSSVMs 
in a rainfall-sensitive slow-moving landslide located in the Sichuan 
Province, China.

This literature review shows that despite a significant amount 
of literature addressing the prediction capabilities of various 
ML-based algorithms and approaches for landslides in the Three 
Gorges Reservoir, there are few studies in which ML is utilized to 
the same end for study cases located in diverse places. However, in 
the world, a huge number of landslides are located outside reservoir 
contexts. Several critical slow-moving landslides are not located in 
reservoirs, and their behavior is particularly sensitive to rainfall 
events. Lastly, so far, the authors often evaluate the performances 
of ML algorithms to the performance of a single DL model (usually 

LSTM). However, several DL models are suited and employed suc-
cessfully in a wide range of time series forecasting tasks.

In this paper, the abovementioned research gaps are addressed 
by evaluating, comparing, and discussing the predictive capabilities 
of seven state-of-art DL algorithms, in four study cases that differ 
in terms of geographical location, influencing factors, geological 
settings, time step dimensions, and measurement sensors.

Case studies and materials
Sant’Andrea and Lamosano landslides are both located in the Dolo-
mites, an area of the Southern-Eastern Italian Alps, in the Province 
of Belluno (Veneto Region, NE Italy), in Perarolo di Cadore and 
Chies D’Alpago municipalities, respectively. The Baishuihe land-
slide is located in Three Gorges Reservoir in the Hubei province, 
Central China. The El Arrecife landslide is located within the west-
ern slope of the Rules Reservoir, in the Granada province (Southern 
Spain) (see Fig. 1).

Sant’Andrea landslide

The Sant’Andrea landslide affects the left-hand slope of the valley, 
overlooking the Boite river course, in the area just upstream of the 
Perarolo village (Fig. 2). The position of the landslide poses a signif-
icant risk to the inhabitants since a potential collapse of the unsta-
ble mass could result in temporary damming on the Boite river, 
which can cause flooding of the downstream area. The maximum 
temperature is 15 °C, while the minimum is − 7 °C. Several surveys 
were conducted over several years to gather spatially distributed 
information on the geological characteristics of the landslide area. 
The distribution of lithological units, in particular, was performed 
by combining information gathered from on-site surveys as well as 
geological and geotechnical investigations (Brezzi et al. 2021). The 

Fig. 1  The geographical location of the four different study cases investigated in this work
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Sant’Andrea landslide is a 30-m-thick deposit of clay-calcareous 
debris composed of heterogeneous materials with different grain 
sizes and geotechnical characteristics. The debris mass slides across 
the weathered part of the bedrock composed of a dolomitic lithol-
ogy and folded layers rich in anhydrides and gypsum.

The landslide activity shows an interplay of phases with slow 
displacements and accelerations that are primarily triggered by 
prolonged and intense rainfall. The characterization of the complex 
hydrogeological setting within the landslide was made possible by 
the information that was provided regarding the distribution of 
the geological units, which aids the interpretation of its behavior. 
Two circulation systems have been recognized within the unstable 
mass (Brezzi et al. 2021): a shallow groundwater flows in the upper 
layers of the debris deposits, whereas a deep one involves the upper 
part of the bedrock, mainly composed of altered and fractured gyp-
sum. However, the role of water seems to be the main triggering 
factor of slope instability. On the one hand, the water circulations 
during the rainfall events cause the acceleration of the displace-
ments. On the other hand, the active and deep circulation, coming 
from the upper part of the slope, induces slow displacements also 
in dry periods. This dynamic is related to the physical and chemical 
interaction between water and gypsum components of the upper 
part of the bedrock, as well as in the surficial debris layers, influ-
encing the mechanical properties of rock mass (Brezzi et al. 2021). 
Hydration processes cause plastic rheology of the weak gypsum 
lithology, which drives the creep-like behavior of the unstable mass 
and the wide slope instability. Moreover, the dissolution induces an 
increase in the number of voids, resulting in the development of 

karst cavities and millimeter- to centimeter-thick microcrack net 
both in the bedrock and in the altered gypsum of the fractured part. 
Consequently, the water circulation in the landslide area makes the 
mechanical behavior of the gypsum lithology of the bedrock quite 
unpredictable, leading to the hazard of a sudden collapse of the 
unstable mass.

The Sant’Andrea landslide has been monitored using a topo-
graphic system since the end of 2013. This system is composed of a 
robotic total station (RTS) and several reflective targets installed on 
the unstable slope (Fig. 2). The implementation of the RTS targets 
was prompted by the evolution of landslides as various regions 
demonstrated deterioration of the stability conditions over time. 
The P4 target was chosen for this study because it has a 4-year 
displacement time series and is situated in an area affected by sig-
nificant displacements. Figure 3 illustrates the daily differential 
displacement that was recorded by the P4 target during the period 
2014–2019. The increase in the displacement rate is strongly related 
to rainfall events and, as previously stated, the duration of the rain-
fall also affects the landslide activity. The original measured time 
step dimension is 1 h. However, we decide to use daily frequency 
since it offers benefits such as reduced noise, as daily data can 
smooth out short-term fluctuations, data aggregation, providing 
a higher-level overview of data patterns, and improved computa-
tional efficiency, as there are fewer data points to process. Lastly, 
being the forecasting range equal to one time step, daily forecasts 
are more relevant for decision-making and planning compared to 
hourly forecasts, which may be subject to short-term fluctuations 
and may not be as useful.

Fig. 2  Sant’Andrea landslide site. In the orthophoto, the targets of the topographic monitoring system are shown, as well as the boundary of 
the unstable area
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Lamosano landslide

The Lamosano landslide is located in the local village of Lamosano, 
in the Chies D’Alpago municipality (Fig. 4). This slope instability 
involves the area where several buildings have been built in the past, 
causing structural damages observed in recent years. The maxi-
mum temperature is 20 °C, while the minimum is − 1 °C. The Lam-
osano landslide is classified as a rotational slow-moving landslide 
and its volume was estimated to be roughly 4.5 ×  106  m3, currently 

moving toward a WSW direction (Teza et al. 2008). Although a com-
prehensive characterization of the landslide is not available yet, the 
geological materials involved in the movement are mostly schis-
tose clayey marls (upper layer of the bedrock), a grayish sandstone 
(lower layer of the bedrock), and a detrital cover of sandy gravel 
deposits (Pieraccini et al. 2006).

The landslide activity shows an interaction of phases with slow 
displacements and accelerations that, as previously described also 
for the Sant’Andrea case, are primarily triggered by prolonged and 

Fig. 3  Differential displacement of the selected RTS target for the monitoring of the Sant’Andrea landslide. In the same plot, the amount of 
precipitation is also reported. The time step dimension of the showed time series is 1 day

Fig. 4  Lamosano landslide site. The selected InSAR measurement point and the boundary of the unstable area are reported
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intense rainfall. As reported in Fig. 5, these peaks of intense rainfall 
are related to changes in the horizontal displacement component 
detected by the InSAR remote sensing technique.

In this study, the landslide was monitored by using the C-band 
Sentinel-1 horizontal component from 30 March 2015 to 8 February 
2020. Time series were extrapolated after processing 229 ascend-
ing and 249 descending images through the Small Baseline Subset 
(SBAS) algorithm (Berardino et al. 2002) in Sarscape software. We 
considered the horizontal component because it exhibits the most 
evident step-like movements related to rainfall events. Moreover, 
horizontal displacement is the moving component that has the 
most implications for the element at risk in the area. The time step 
dimension of the modeled time series is 11 days. This frequency is 
the smallest available for the selected landslide using the above-
described InSAR processing method.

Baishuihe landslide

The Baishuihe landslide affects the right-hand slope of the Yangtze 
valley, in the Three Gorges Reservoir. Figure 6 reports the main top-
ographical features of this slope instability. The highest elevation of 
the landslide boundary is 297 m a.s.l., with the crack acting as the 
rear barrier to the less unstable area (Song et al. 2020). The frontal 
edge is immersed in water, and its elevation is approximately 120 
to 130 m a.s.l., which is always 145 m below the Yangtze river water 
level in the reservoir. The landslide measures 500 m in length from 
north to south and 430 m in width from east to west, encompassing 
an area of 215,000  m2 with an average depth of around 30 m. The 
main sliding inclination is 20° and the volume has been estimated 
at 6.45 million  m3 (Li et al. 2010). The landslide body is mainly 
composed of silty clay and gravelly soil, which appear alternately 
and its thickness ranges from 7.5 to 37.7 m. The slip surface is mainly 
composed of gravel-containing or breccia-containing silty clay; in 
addition, some parts are full of breccia and clay. The thickness of 

the failure zone varies from 0.2 to 1.3 m with an average thickness 
of 0.7 m (Yang et al. 2019).

The landslide is located in the subtropical monsoon climate 
zone, which is characterized by substantial rainfall and distinct 
seasons. The maximum temperature is 42 °C instead the minimum 
is − 8.9 °C (Song et al. 2020), where the average temperature ranges 
between 17 and 19 °C. June through September is the flood season; 
instead, October to May is considered the non-flood season. When 
persistent and intense rainfall events occur during the flood sea-
son, the landslide deforms significantly. Consequently, precipita-
tions can be considered one of the major factors triggering the 
deformation of the Baishuihe landslide. Moreover, the water level 
in the reservoir fluctuates periodically every year. Usually, the res-
ervoir water level is maintained at about 175 m in November and 
December. From early January to May, the water level gradually 
drops from 175 to 145 m; during this period, the deformation of the 
Baishuihe increases (see Fig. 7). In June and July, the reservoir water 
level is at a low level which fluctuates slightly to about 145 m. Then, 
the reservoir water level begins to rise gradually at the end of July 
and early August. From October on, the water level rises again, and, 
at the same time, the velocity of the Baishuihe deformation slows 
down (Keqiang et al. 2008; Li et al. 2010; Miao et al. 2021). Likewise, 
the water level is an indispensable factor when studying the activity 
of the Baishuihe landslide.

Since June 2003, the Baishuihe landslide has been monitored by 
six manual GNSS monitoring stations, named XD-01, XD-02, XD-03, 
XD-04, ZG93, and ZG118 respectively (Li et al. 2008). The locations 
of the monitoring stations are reported in Fig. 6 and these allow a 
wide characterization of the landslide displacements. Middle and 
posterior areas of the landslide are the most unstable (Li et al. 2010). 
As shown respectively in Figs. 6 and 7, ZG118 has been utilized in 
this study for its comprehensive data. In addition, station ZG118 
demonstrates a notable deformation with the longest time series 
and a considerably greater displacement. The time step dimension 

Fig. 5  Differential displacement trend of the selected InSAR monitoring point of the Lamosano landslide. In the same graph, the amount of 
rainfall is also reported. The time step dimension of the showed time series is 11 days
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of the modeled time series is 1 month. This frequency is the highest 
available for the selected landslide.

El Arrecife landslide

The El Arrecife landslide affects the slope directly overlooking the 
Rules Reservoir. This landslide has been recently identified and 
characterized by Reyes-Carmona et al. (2021, 2020). It is classi-
fied as a translational landslide with a sliding surface dipping 21° 
toward N120°E, parallel to the mean orientation of the slope, while 
the landslide’s foot is affected by several smaller-scale rotational 
slides. The landslide involves an area of 473.107  m2, with a mean 
thickness of 31.1 m, and a volume of 14.7 million  m3, which makes 
the El Arrecife to be considered an extremely large landslide (see 
Fig. 8). Its most notable feature is that it lacks well-defined landslide 
morphologies (e.g., large head scarps or lateral scarps) and is dif-
ficult to identify in the landscape. Furthermore, geological variables 
such as lithology and geological structure contribute to the forma-
tion of the El Arrecife landslide. The slope is composed of phyllites, 
which are coarse-grained metamorphic rocks with a planar fabric 
and a low friction angle. Because of these characteristics, the slope 
has a high potential for instability and landsliding. As the landslide 
is situated near a reservoir, it poses a threat not only to the reser-
voir itself but also to other facilities (such as highways, viaducts, 
and powerlines) and the local inhabitants. Due to its translational 
nature, it is impossible to rule out the possibility of a critical accel-
eration of the entire landslide mass and a catastrophic failure of 
the slope. If an impulse wave is generated and the reservoir’s dam 

is breached, resulting in a downstream flash flood, this scenario 
would have catastrophic implications. Despite this, it is more likely 
that the smaller-scale rotating slides at the base of the landslide may 
cause greater damage to other infrastructures, such as the N-323 
National Road, which crosses the El Arrecife landslide.

The landslide activity exhibits a linear movement pattern with 
small accelerations in the lower sector of the unstable area which 
are related to a decrease in the water level of the Rules Reservoir. 
Two slight accelerations were observed during two periods of water 
level decline from 2017 to 2019 (Reyes-Carmona et al.), whereas 
times of no change or rise in the water level resulted in the move-
ment stabilizing or not accelerating. In contrast, rainfall seems 
unrelated to landslide accelerations since it leads to reservoir fill-
ing and, thus, relative slope stabilization. Therefore, the reservoir’s 
water level variation is the only factor that triggers the movement 
of the El Arrecife landslide, as it has a greater effect on the move-
ment than rainfall.

The landslide was first monitored through the InSAR technique 
from March 2015 to September 2018 (Reyes-Carmona et al. 2020). A 
mean surface ground displacement of 25 mm/year. and a maximum 
of 55 mm/year were observed, as well as a cumulative displace-
ment of 10 cm during that period (approx. 3.5 years). Later, the 
InSAR monitoring has been also extended to 2014, providing the 
landslide activity from December 2014 to March 2020 and result-
ing in a mean displacement of up to 20 mm/year (Reyes-Carmona 
et al. 2021). Figure 9 reports a frame of the InSAR monitoring, from 
October 2016 to March 2020, in which the relationship between the 
landslide displacement and the reservoir water table is recognized. 

Fig. 6  Baishuihe landslide site. The GNSS monitoring stations and the boundary of the unstable area are reported (Guo et al. 2022)
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Additionally, a ground penetrating radar (GPR) study has been per-
formed from 1997 to 2020, evidencing that the landslide has been 
active for the last 22 years: as a result, a vertical ground subsidence 
of up to 23 mm/year was estimated.

In this study, the landslide was monitored through the C-band 
Sentinel-1B satellite from 30 September 2015 to 13 March 2020. Time 
series with a temporal resolution of 12 days were extrapolated after 
processing 101 ascending orbit images by using the Parallel Small 
Baseline Subset (P-SBAS) algorithm (Casu et al. 2014) implemented 
in the European Space Agency’s (ESA) geohazards exploitation 
platform (GEP) (De Luca et al. 2015). The time step dimension of 
the modeled time series is 12 days. This frequency is the highest 

available for the selected landslide using the above-described 
InSAR processing.

Methodology

Data pre‑processing
In reservoir landslide displacement prediction studies using 
machine learning, cumulative landslide displacement is frequently 
divided into a trend term and a periodic component (Du et al. 2013; 
Zhou et al. 2018b; Yang et al. 2019). In these cases, the evolution-
ary tendency of the landslide is represented by a so-called trend-
term displacement, whereas a periodic-term displacement refers to 

Fig. 7  Differential displacement of the selected GNSS monitoring station in the Baishuihe landslide. In the same graph, the amount of rainfall 
is also reported, as well as the water level of the reservoir (0 corresponds to the first value of the level of the reservoir). The time step dimen-
sion of the showed time series is 1 month

Fig. 8  El Arrecife landslide site. The selected InSAR measurement point is reported, as well as the boundary of the unstable area
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variations in displacement due to periodic triggers. The two terms 
(trend and periodic displacements) are then forecasted indepen-
dently, and the final expected cumulative displacement is produced 
by combining the two predictions. However, this method works on 
the assumption that the trend term is dependent just upon itself, 
and no external trigger influences it. However, depending on the 
decomposition strategy, this assumption might not always be true. 
Moreover, by removing level fluctuations in a time series and so 
decreasing trend and seasonality, differencing can help to stabilize 
the mean of a data series, and therefore, it helps to improve the 
prediction capabilities of data-driven models (Montesino Pouzols 
and Lendasse 2010). For this reason, we detrend both the displace-
ment and reservoir water level time series by differencing. In detail, 
the value at the current time step is determined as the difference 
between the original observation and the observation at the previ-
ous time step. This is valid for all the timesteps, except the first of 
the series. By avoiding decomposition and opting for differencing 
as a detrending approach, the research aims to minimize poten-
tial uncertainties and complexities associated with decomposition 
strategies, while maintaining simplicity and effectiveness in trend 
removal from the landslide displacement time series data.

Deep learning algorithms

This paper evaluates seven cutting-edge deep learning archi-
tectures for time series forecasting and compares them. Among 
them, MLP, LSTM, GRU, and 1D CNNs are commonly used in 
several forecasting tasks. However, to the author’s knowledge, 
although 1D CNNs are quite common for several time series 
forecasting tasks (Kiranyaz et al. 2021), (Kiranyaz et al. 2021), 
such a model has never been used for landslide displacement 
forecasting. We decided to evaluate also the bidirectional LSTM 
since it has already been used for landslide displacement fore-
casting (Lin et al. 2022). Moreover, some configurations based 

on the combination of the abovementioned models are pro-
posed. For instance, the 2xLSTM model is nothing but the com-
bination of two LSTM layers. This configuration is expected 
to perform better than a single LSTM layer when dealing with 
complex problems. Another proposed model is the Conv-LSTM, 
which performs well in several time series forecasting tasks. 
Further details of the used models can be found in the Sup-
plementary materials.

Multi‑layer perceptron (MLP) (see Fig. S1) The ANN model is one of 
the most widely used models that has been effectively utilized 
in various applications, including time series modeling and fore-
casting. The appeal of ANN models stems from extrapolating the 
underlying data flow without constraints on the model structure. 
Another notable aspect of ANNs is that they are universal approxi-
mators capable of accurately approximating a wide range of func-
tions. In the literature, there are indeed a variety of ANN model 
architectures. Whereas ANNs have a similar structure, distinctions 
among different algorithms have been made based on how they 
are designed. The so-called multi-layer perceptron (MLP), a three- 
layer feed-forward network (input, hidden, and output), is the 
most widely used ANN architecture for time series forecasting  
(Khashei and Hajirahimi 2019).

Recurrent neural networks (RNNs) Three types of RNNs are used 
in this research, namely long short-term memory (LSTM), gated 
recurrent unit (GRU), and bidirectional LSTM. Traditional neural 
networks are fully linked to the input-implicit-output layer. There 
is no connection between the positions in the sequences. As a 
result, time series prediction cannot be performed using a stand-
ard neural network (Chen and Chou 2012). The recurrent neural 
network (RNN), which enables feedback in the networks (Sak et al. 
2014), retains the prior knowledge and applies it to the current 
output computation.

Fig. 9  Differential displacement trend of the selected InSAR measurement point in the El Arrecife landslide. In the same graph, the amount 
of rainfall is also reported, as well as the water level variation in the reservoir. The time step dimension of the showed time series is 2 weeks
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LSTM (see Fig. S2): A unique variety of RNNs called LSTM 
neural networks may successfully address the issue of “gradient 
explosion” (Hochreiter and Schmidhuber 1997). The forgetting 
gate, input gate, and output gate of the LSTM assure data discovery 
and long-term memory. The three gate functions offer a reliable 
nonlinear control mechanism for the input and deletion of control 
information. Following forward propagation, the backpropagation 
through time (BPTT) method transfers the accumulated error back 
in time and determines the gradient of error-associated param-
eters. Finally, the stochastic gradient descent method updates the 
weights and thresholds. Two architectures, the first with one LSTM 
layer and the second with two LSTM layers (2xLSTM), are evaluated.

Bidirectional LSTM (see Fig. S4): Even though the LSTM model 
fixes the gradient vanishing issue with RNNs, it can only learn 
knowledge from the past and cannot consider future data. Con-
cerning the training phase, landslide motion is connected to both 
past and future displacement information, which may be used as 
a supplement while training the model since the causes impacting 
it is repeated in time. Architecture-wise, Bi-LSTM has forward and 
backward LSTM layers. The backward LSTM extracts forthcoming 
data regarding the current time step while in the opposite direction 
from the forward LSTM model, which leverages the current time 
step to retrieve past information. The Bi-LSTM architecture has 
been utilized effectively in several forecasting applications, such 
as solar radiation (Peng et al. 2021), well log (Shan et al. 2021), and 
tourism demand (Kulshrestha et al. 2020).

GRU (see Fig. S3): Recurrent unit is an RNN variation that 
performs better while being more streamlined (Cho et al. 2014; 
Zhao et al. 2018). The GRU is similar to a long short-term mem-
ory (LSTM) with a forget gate, but it has fewer parameters since 
it eliminates an output gate. GRU outperformed LSTM on specific 
tasks such as audio modeling, voice signal modeling, and natural 
language analysis (Ravanelli et al. 2018).

1D convolutional neural network (Conv) (see Fig. S5) Convolutional 
neural networks (CNNs), a subset of ANNs, are widely used in a 
wide range of applications, such as image and video recognition, 

image classification, and natural language processing. CNN utilizes 
filters of comparable form to the data processed and dependent 
on the shape of the data. Because time series (Gamboa 2017) are 
one-dimensional data, 1-dimensional CNNs (Amarasinghe et al. 
2017; Kiranyaz et al. 2021) are used for the landslide displacement 
forecasting task. A conv1D layer’s output sequence is shorter 
than its input sequence. This is corrected by padding the input 
sequence with zeros at both ends, also known as the same pad-
ding. A filter is moved over the input sequence using a Conv1D 
layer. One stride means that the filter is moved across the input 
sequence one step at a time. This is the first research in which a 
1D convolutional-based architecture is used to forecast landslide 
displacement.

Conv‑LSTM model (see Fig. S6) The Conv-LSTM model used in this 
research is composed of one 1D convolutional layer, two LSTM layers, 
and one dense hidden layer. In this model, the feature extraction of the 
input data is performed by a CNN layer; then, the output values are fed 
to the LSTM and Dense layers to predict the landslide displacement 
with the extracted feature data. The combination between CNN and 
LSTM achieved the highest prediction accuracies in several forecast-
ing tasks (Xue et al. 2019; Lu et al. 2020; Livieris et al. 2020). However, 
this is the first research in which a Conv-LSTM architecture is used to 
forecast landslide displacement.

Training strategy and optimization

Present and past landslide displacement information and its trig-
gers might influence future displacements through nonlinear rela-
tionships. In this research, we use seven DL models to forecast one 
single displacement time step in the future by showing the model n 
past time steps (look back) of both displacement and trigger vari-
ables. Several look-back windows (3, 5, 7, 9, 12) are evaluated for all 
the abovementioned models across all four case studies, to define 
the best one for each study case. A visual scheme of the approach 
is shown in Fig. 10.

Fig. 10  The forecasting approach used. The models are trained to predict one single displacement time step in the future by looking at all 
the variables (differential displacement and triggers) considered for n time steps. Several look-back windows are evaluated
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The displacement time series are divided into 80% and 20% for 
training and testing, respectively. Twenty percent of the training set 
is used to monitor the model performances during training, as well 
as to create checkpoints (save model weights) corresponding to the 
lower validation loss. The division is performed temporally, meaning 
that the training set is the oldest, followed by the validation set, and 
finally the test set. All sets are further divided into small chunks of 
time series, having the length of the look-back value plus the ground 
truth of the predicted step. Meaning that if the look back is set equal 
to 3, the chunks’ length is four time steps. Huber loss was used as 
the loss function (Holland and Welsch 1977; Huang and Wu 2021). 
The Huber loss combines and optimizes both the mean square error 
(MSE) and mean average error (MAE), and it is defined as follows:

where � = 1.
Therefore, for loss values greater than � , MAE is used, while for 

lower loss values MSE is used. We reduce the importance of outliers 
by using the MAE for bigger loss values, which nevertheless results 
in a well-rounded model. At the same time, we preserve a quadratic 
function close to the center by using the MSE for the smaller loss 
values. The number of training epochs is set to 1000, while, to reduce 
tuning time, an early stopping strategy is used to stop the train-
ing when the validation loss does not decrease after 20 subsequent 
epochs. For each architecture, weights are automatically saved in the 
epoch corresponding to the lowest validation loss value.

Furthermore, the appropriate combinations of  hyper-
parameters must be used while training such deep learning 
models to optimize the model and deliver the best results. As 
a result, we iteratively train the model using a variety of com-
binations of batch sizes (9, 18, 36, 74, 144), learning rates (10e-3, 
5e-3, 10e-4, 5e-4, 10e-5, 5e-5) and the number of layer nodes (8, 
16, 32, 64, 128, 256). Therefore, for each architecture, we train 
180 different hyperparameter combinations per each look back, 
for a total of 900 combinations per architecture.

The process is built in Python programming language. All 
experiments were executed on a Windows operating system com-
puter with a 3rd Gen Ryzen Threadripper 3990X CPU and NVIDIA 
RTX 3090 GPU with 10,496 CUDA cores.

Model evaluation

After model training, the prediction models must be evaluated on an 
unseen test dataset. The prediction performance is estimated using root 
mean squared error (RMSE) (2), normalized RMSE (NRMSE) (3), and 
coefficient of determination (R2) (17), which are defined as follows:
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where P and M stand for the predicted and measured displace-
ments, respectively. M  is the mean of observed values and P refers 
to the average of the predicted displacements. The number of sam-
ples is represented by N.

The R2 statistic evaluates the connection between measured and 
predicted values. The RMSE displays the difference between actual 
and predicted values. An effective model has a low value of RMSE 
and a high value of R2.

Landslide displacement forecasting

Landslides outside artificial reservoir contexts
As stated above, few studies in which ML approaches are applied for 
landslide displacement forecasting outside reservoir contexts exist. In 
this section, we show the forecasting results of two rainfall-triggered 
slow-moving landslides. In those cases, the main factor that influences 
the landslide displacement is the groundwater level, that, in turn, is 
further conditioned by rainfall. Since for both cases groundwater level 
time series are not available, just rainfall is used as a triggering factor.

Sant’Andrea landslide
In the Sant’Andrea landslide, the above-explained complex hydro-
geological settings make it difficult to directly associate the daily 
rainfall with daily displacement. The landslide body behavior is 
heavily controlled both by the shallow and karst-deep groundwater 
circulation systems. Therefore, the same rainfall event might pro-
long landslide accelerations by evolving into two slightly temporally 
shifted groundwater flows. Since groundwater level time series data 
are not available, in this case, it is not possible to depict the exact 
time shift between rainfall and groundwater level raise. Therefore, 
we decide to feed to the model several cumulated rainfalls, from 
daily cumulate to 7 days cumulate. In this case, gray relational 
analysis (Kuo et al. 2008; Kayacan et al. 2010) is used to study the 
correlation between the derived cumulates and the landslide dif-
ferential displacement. Here, gray relational coefficient is applied 
to investigate the correlation of the cumulates. Since the coefficient 
does not show consistent correlation changes through the seven 
cumulates, we decide to feed all the derived rainfalls as model 
inputs, along with landslide differential displacement. Moreover, an 
iterative evaluation of the rainfall derivates shows that not increas-
ing the number of cumulates, nor decreasing it was improving the 
performance of the models.

Therefore, historical differential displacement and eight differ-
ent cumulates of rainfall (1 to 7 days) are used to predict the land-
slide displacement (mm) 24 h in the future. We train the models on 
4 years of data from 09 February 2014 to 15 February 2018, for a total 
of 1468 daily time steps. One entire year is chosen as the test set, for 
a total of 365 time steps, from 16 February 2018 to 15 February 2019. 
The best metrics are yielded by the MLP, LSTM, and GRU models, 
while the worse are yielded by the 1D CNN model (see Table 1).

Figure 11 illustrates the predicted values for the top three models 
at the test set’s highest peak. The peak and the start of increasing 
displacement can be accurately predicted by MLP, LSTM, and GRU. 
For the remaining models, this is not accurate. Although LSTM and 
GRU significantly underestimate the peak, MLP achieves the closest 
predictions to the peak. Figures 12 and 13 depict alternative scenar-
ios where the accelerations are milder than those in the precedent 
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cases, both in terms of the acceleration gradient and magnitude. It 
is clear from these examples how both LSTM and GRU can predict 
all of the accelerations and peaks with accuracy. Instead, MLP is 
unable to predict the peak in this instance.

Lamosano landslide
Historical horizontal differential displacement and rainfall are 
used to predict the landslide displacement (mm) 11 days in the 
future. All the variables’ time series used have 11 days as the 
dimension of the time steps. We train the models for almost 
5 years from 10 April 2015 to 03 February 2020, for a total of 161 
time steps. Almost 2 years are chosen as the test set, for a total 
of 61 time steps, from 14 April 2018 to 03 February 2020. Gener-
ally, in this study case, all models except Conv and Conv-LSTM 

yield competitive results. The best metrics are yielded by the 
MLP, GRU, and BI-LSTM models (with 3, 7, and 9 as look-back 
dimensions, respectively), while, ones more, the worse is yielded 
by the Conv-LSTM and 1D CNN models (see Table 2). However, 
evaluation scores of LSTM and 2xLSTM are close to the ones of 
the best three models.

However, we can notice substantially different predictive 
behaviors across the best three models. For instance, in the first 
displacement peak (Fig. 14), the MLP model can perfectly predict 
both the displacement peak and onset of acceleration. On the 
other hand, GRU and BI-LSTM predict correctly just the onset 
of acceleration, while they anticipate/underestimate the displace-
ment peak. However, in the second and third displacement peaks 
(Fig. 15), all three models heavily underestimate the displacement, 
while, once again, they correctly predict the onset of acceleration.

Table 1  Comparison of performance of the seven models in Sant’Andrea landslide. Values in bold emphases are the scores of the best three 
models

The three best results are in bold

Model Batch size Learning rate Nodes lags RMSE (mm) R2

MLP 36 0.005 16 3 0.706 0.5928

LSTM 144 0.005 64 12 0.704 0.5947

GRU 144 0.001 128 7 0.700 0.6000

2xLSTM 72 0.0005 32 3 0.830 0.4365

Bi-LSTM 144 0.0005 64 5 0.805 0.4700

Conv 72 0.01 32 3 0.953 0.2580

Conv-LSTM 144 0.0005 256 3 0.827 0.4415

Fig. 11  Forecasting results of the highest displacement peak by the best three models (MLP, LSTM, GRU)
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Landslides in artificial reservoirs

Numerous pieces of research show that reservoir landslide’s 
displacement is mostly influenced by reservoir water level 
changes, rainfall, and its preceding displacement (Huang et al. 
2017; Zhou et al. 2018b; Wang et al. 2019, 2020; Reyes-Carmona 

et al. 2021). Therefore, rainfall, antecedent displacement, and 
differential reservoir water level are included in the multi-
variate modeling in both the reservoir landslides investigated 
in this research, namely Baishuihe (China) and El Arrecife 
(Spain). According to Wang et al. (2022), several variables 
derived from rainfall and reservoir water level have been used 

Fig. 12  Forecasting results of the first small displacement peak by the best three models (MLP, LSTM, GRU)

Fig. 13  Forecasting results of the second small displacement peak by the best three models (MLP, LSTM, GRU)
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by researchers as model inputs. However, most of them differ 
from the previous time steps that are taken into considera-
tion while modeling. Moreover, the strategies adopted by the 
authors to select the candidate variables change from research 
to research, and therefore, different variables may be selected 
for the same case studies. We decide, therefore, to avoid a 
statistical-based selection criterion, but to select displace-
ment, rainfall, and changes in reservoir water level as monthly 
(Baishuihe) or 2 weeks (El Arrecife) information, according 
to the highest displacement time step resolution available. 
The influence of previous months’ triggers is then evaluated 
through the look-back windows. No moving cumulates are con-
sidered in this case, based on the assumption that the look-
back window of up to 12 months can get all the information 
necessary for reliable forecasting.

Baishuihe landslide
Historical monthly differential displacement, monthly rainfall, and 
monthly changes in reservoir water level are used to predict the 
landslide displacement (mm) 1 month in the future. We train the 
models for 13 years from 31 August 2003 to 31 August 2016, for a total 
of 157 monthly time steps. In this case, two entire years are chosen 
as a test set, for a total of 24 time steps, from 30 September 2016 to 
31 August 2018.

The Conv-LSTM model achieved the best forecasting perfor-
mances with 12 as the look-back window (1 year), followed by 
MLP and LSTM with 9 and 12 as the look-back window sizes, 
respectively. In this case, it is evident how Conv-LSTM outper-
forms all the other models by far, yielding 8.6 mm of RMSE and 
0.85 of R2, while the second-best model, the MLP, yielded an 
RMSE of 13.55 and an R2 of 0.65. In this case, the best look-back 

Table 2  Comparison of performance of the seven models in Lamosano landslide. Values in bold emphases are the scores of the best three 
models

The three best results are in bold

Model Batch size Learning rate Nodes Lags RMSE (mm) R2

MLP 144 0.01 32 3 2.080 0.2782

LSTM 9 0.0005 256 3 2.176 0.2097

GRU 72 0.005 16 7 2.142 0.2347

2xLSTM 144 0.005 256 12 2.152 0.2272

Bi-LSTM 144 0.005 256 9 2.070 0.2850

Conv 72 0.01 128 7 2.424 0.0198

Conv-LSTM 144 0.0001 64 3 2.257 0.1503

Fig. 14  Forecasting results of the first displacement peak by the best three models (MLP, GRU, BI-LSTM)



Landslides

Original Paper

window remains quite stable across all the architectures, ranging 
from 9 to 12 time steps (Table 3).

Figure 16 shows the predictions of the best three models for 
the unseen 2 years of the test set. This set shows two peaks, at a 
distance of 11 months. The first peak in July 2017 shows 91 mm of 
monthly differential displacement, while the second one, in June 
2018, shows a lower displacement, with a 30-mm peak. By look-
ing at the model predictions, it is evident how all the models can 
precisely predict the onset of acceleration in time, except for the 
Conv model. However, GRU and bi-LSTM anticipate and “flatten” 
the onset of acceleration of both peaks. The general tendency 
of all models is to underestimate the first peak while overesti-
mating the second one. However, Conv-LSTM shows in this case 
outstanding predictive capabilities, underestimating the first by 
19 mm while overestimating the second just by 3.5 mm, while the 
second best (MLP) instead underestimates the first by 29 mm and 
overestimates the second by 5 mm.

El Arrecife landslide
Historical differential displacement, rainfall, and changes in res-
ervoir water level with 12-day time step dimension are used to 
predict the landslide displacement (mm) 12 days in the future. We 
train the models for 3 years from 05 November 2016 to 18 May 2019, 
for a total of 72 time steps. In this case, around 1 year is chosen 
as the test set, for a total of 24 time steps, from 30 May 2019 to 13 
March 2020.

In this case, the landslide behavior is quite different from the 
previous three cases shown in the paper. For instance, the accel-
erations (and decelerations) are gentler, and the overall velocity 
of the landslide is lower. Moreover, the influence of the rainfall is 
unclear and not simple to quantify since in correspondence with 
the most intense rainfalls the reservoir water level rises, with a con-
sequent deceleration of the landslide movement. In this study case, 
all models achieve acceptable RMSE values, with GRU, MLP, and 
LSTM yielding the best scores (Table 4).

Fig. 15  Forecasting results of the second and third displacement peaks by the best three models (MLP, GRU, BI-LSTM)

Table 3  Comparison of performance of the seven models in Baishuihe landslide

The three best results are in bold

Model Batch size Learning rate Nodes Lags RMSE (mm) R2

MLP 36 0.005 128 9 13.555 0.6562

LSTM 18 0.005 96 12 14.478 0.6079

GRU 36 5.00E-05 16 9 17.909 0.4000

2xLSTM 72 0.001 96 9 14.879 0.5858

Bi-LSTM 9 0.005 128 9 15.806 0.5326

Conv 18 5.00E-05 16 9 19.811 0.2658

Conv-LSTM 36 0.005 96 12 8.672 0.8593
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Figure 17 shows the prediction of all models for the unseen test 
set. It is visible how all predictions are very similar, and they all 
fit the measured displacement. A gentle acceleration is predicted 
around 31 October 2019, when the water level is close to the local 
minimum. All the rest of the test series presents a linear behavior, 
which makes the forecasting less challenging than in the other cases.

Discussion
The results show that no model yields the best results across all 
four study cases. However, generally, MLP, LSTM, and GRU achieve 
competitive results in all four landslides, proving to be able to per-
form well in different scenarios, yielding the most consistent cross-
site predictions. Moreover, the models do not show any behavior 
dependent on the type of landslide or triggering factor of the same. 
No evident performance differences were found when modeling 
landslides inside artificial reservoirs rather than outside. The Conv 

model yielded in all cases the worst predictions. Therefore, the use 
of just convolutional layers for landslide displacement forecasting is 
found ineffective in our investigation. The BI-LSTM model yielded 
competitive predictions just in the Lamosano landslide, while the 
2xLSTM model in these four study cases did not yield competitive 
results. The Conv-LSTM model achieves the best performance just 
in Baishuihe, while MLP, LSTM, and GRU yield the best results in 
the other three cases. Although the Conv-LSTM model can outper-
form the other models in Baishuihe, its predictions in the other 
cases are quite imprecise. The explanation for this behavior could 
be found in the characteristics of the kinematic of the Baishuihe 
landslide. In fact, inside the investigation time lag, the landslide 
displacement time series shows 15 major accelerations which occur 
periodically with a yearly frequency (either in June or July). This 
is due to both the strong seasonality of the rainfall cycles as well as 
to the reservoir water levels. In such cases, we expect that the same, 

Fig. 16  Forecasting results by the best three DL models (MLP, LSTM, Conv-LSTM)

Table 4  Comparison of performance of the seven models in El Arrecife landslide

The three best results are in bold

Model Batch size Learning rate Nodes Lags RMSE (mm) R2

MLP 144 0.005 16 12 2.541 0.2418

LSTM 36 0.005 256 9 2.606 0.2023

GRU 18 0.01 128 9 2.518 0.2556

2xLSTM 18 0.01 256 5 2.733 0.1230

Bi-LSTM 9 0.01 32 7 2.658 0.1702

Conv 72 0.0005 16 3 2.775 0.0651

Conv-LSTM 18 0.001 128 9 2.617 0.1956
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or a slightly modified version of the proposed Conv-LSTM model, 
with a look-back and a kernel size of 1 year can reliably capture 
and model the periodicity of the displacement. Therefore, the com-
bination of CNN and LSTM layers represents a newly introduced 
suitable approach for displacement forecasting in landslides that 
present a strong and constant seasonality.

Reliability of DL‑based landslide displacement forecasting systems

The validation and deployment of forecasting models for land-
slide displacement forecasting tasks have been approached so 
far as a common time series forecasting problem. However, to 
successfully calibrate and validate, a reliable landslide displace-
ment forecasting model is not sufficient to check the quality of 
the predictions through the usual common metrics. When fore-
casting the landslide displacement to develop a reliable EWS or to 
support existing ones, it is fundamental that a model is capable of 
predicting both the onset of acceleration and maximum displace-
ment peaks reliably, while maintaining accurate predictions in all 
the “stable” displacement states. As seen in the results (especially 
in Sant’Andrea), similar values of RMSE and R2 do not always 
describe the same predictive behavior. R2 is used in this research 
just to compare models in the same study case (on the same set 
of data) rather than compare predictions across cases since R2 
is strictly dependent upon the set of data used. Moreover, in the 
existing literature, most of the test sets set by scientists are usually 
composed of a single acceleration. However, as proved by results in 
the Sant’Andrea and Lamosano study cases, this validation strat-
egy might have serious shortcomings since the same model might 
be suitable for stronger accelerations rather than minor ones, and 
vice versa. Although the metrics of MLP, LSTM, and GRU are simi-
lar, the predictive behavior of the networks is quite different. For 
instance, by taking into consideration the predictions related to 
the highest displacement peak in Sant’Andrea (Fig. 11), although 
all models generally tend to underestimate the displacement, the 
closest prediction to the highest peak (12.88 mm) is yielded by 

the MLP, with a difference of 3.31 mm, while GRU underestimates 
it by 6.08 mm and LSTM by 6.16 mm. By considering instead the 
minor accelerations in Figs. 12 and 13, LSTM and GRU yielded 
the closest peaks prediction, while in both cases, MLP strongly 
underestimates the first peak, while it predicts a second one where 
no real peaks are measured. For the Lamosano landslide, we chose 
three displacement peaks as the test set. In this case, several mod-
els yield reliable predictions of the first one, while they severely 
underpredict the second and third ones.

The standard deviation (STD) of the time series is calculated on 
stable measurement points/stations available for each study case to 
obtain the error margin of the measurements (see Table S1). If we 
compare the same with the RMSE yielded by our models, we can 
notice that in Sant’Andrea and El Arrecife landslides the prediction 
error is lower than the measurement uncertainty. This means that 
our models, in those cases, are quite reliable. Nevertheless, in the 
Lamosano study case, the error yielded by the model results higher 
that the error margin, confirming the poor predictions of the models.

Another interesting aspect is the relation between the time step 
dimension of the displacement time series and the modeled displace-
ment. To develop a reliable forecasting model, we believe that it is nec-
essary to have in-depth physical knowledge of the landslide we wish 
to model. The Baishuihe landslide, for instance, is modeled by using 
monthly time series. In this case, the assumption is that rainfall, water 
level, and displacement measured in the previous months contribute 
and are the only cause of the displacement in the following month. 
However, this assumption might not be true for all landslides. For 
instance, in Sant’Andrea few previous look-back days are sufficient 
to have a well-calibrated model when forecasting 1 day in the future, 
while in Baishuihe the best result is obtained with a look back of 1 year.

Contribution of DL‑based landslide displacement forecasting 
models to EWS

For landslide early warning, the model’s predictive ability is 
extremely important (Sassa 2009). However, several of the existing 

Fig. 17  Forecasting results by all models and measured differential displacement. Reservoir water level and rainfall are shown along with the 
predictions
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landslide EWS are based on the historical interaction between a 
certain landslide and its influencing factors. The most popular early 
warning method for slow-moving landslides is based on critical 
rainfall thresholds (Crosta et al. 2017; Xu et al. 2020). This technique 
is utilized extensively for sending emergency warnings because of 
its simplicity in application and interpretation as well as its depend-
ability (Du et al. 2013; Segoni et al. 2014). However, although this 
method can deliver reliable early warnings, the magnitude of the 
expected landslide displacement and the timing of the maximum 
displacement are often missing or poorly estimated. The methodol-
ogy investigated in this paper instead has the potential to deliver 
in advance both the onset of acceleration timing and the precise 
timing of the displacement peak. However, while the rainfall thresh-
olds method considers just forecasted rainfall as the only trigger-
ing variable, the investigated approach does not consider future 
covariates, and it works on the assumption that just present and 
past triggers influence future landslide behavior. Therefore, to get 
the most from such methodologies, a combination of both might be 
suggested, where the rainfall threshold approach gives alerts based 
on future rainfall forecasting data, and the DL-based forecasting 
model predicts the magnitude of the acceleration based on present 
and past measurements.

Conclusion
This study tested the efficacy of seven deep learning techniques for 
predicting landslide displacement using four different landslides 
that varied in terms of geographic location, influencing factors, 
geological settings, time step dimensions, and measurement sen-
sors and provides insights on their performance.

The study reveals that the study case had a small impact on 
how well the seven techniques performed. In fact, the models do 
not show any behavior dependent on the type of landslide or trig-
gering factor of the same. The Conv model yielded instead in all 
cases the worst predictions. Three models, MLP, LSTM, and GRU, 
demonstrated the ability to produce reliable predictions in each 
of the four scenarios. Moreover, in the Baishuihe study scenario, 
where the landslide had a high seasonality, the suggested Conv-
LSTM model outperformed the other models. In contrast, the GRU 
model performs well in Sant’Andrea and El Arrecife but is unable 
to accurately predict the displacement of the Baishuihe landslide. 
Instead, the dimensions of the look-back window are closely tied 
to the particular modeled event. MLP, GRU, and LSTM are thus 
advised while tackling a landslide displacement forecasting task. 
When the displacement exhibits a high seasonality, the combination 
of 1D CNN and LSTM layers (Conv-LSTM) must be considered. Sev-
eral look-back windows must always be considered in all scenarios. 
Finally, we advise against using 1D CNNs and bidirectional LSTMs. 
Even if the results of this work showed the reliability of using DL 
algorithms for landslide displacement forecasting, some improve-
ments are still needed before their use in operational EWS.

For instance, the support of future influencing factors (weather 
forecasting) might improve the prediction accuracy of the models, 
especially in cases in which the resolution of the time series is low 
(monthly). Nevertheless, using weather forecasting predictions as a 
covariate might introduce further uncertainties to the model since 
forecasted rainfall has per se some degree of uncertainty, that must 

be properly evaluated. Other parameters as the seasonal variations 
of deformations in response to the triggering factors, a combination 
of different meteorological data (e.g., rainfall and temperature), or 
the lithological pattern of the landmass could be evaluated. Moreo-
ver, ensemble modeling could combine the strengths of different 
prediction algorithms, allowing the models to output more accurate 
predictions. In the Sant’Andrea study case, it would be interesting 
to ensemble MLP (suitable for high displacement peaks) and LSTM 
(suitable for small displacement peaks) models, to build a model 
able to predict both stronger and more gentle accelerations. In sum-
mary, this study has shown that deep learning (DL) can be success-
fully applied to landslide early warning systems (EWS). However, 
it has also emphasized that there is no one-size-fits-all model or 
configuration that is universally optimal. Instead, a site-specific 
calibration approach should be employed for the best results.
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