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Abstract: Microservice architectures exploit container-based virtualized services, which rarely use
hardware-based cryptography. A trusted platform module (TPM) offers a hardware root for trust
in services that makes use of cryptographic operations. The virtualization of this hardware module
offers high usability for other types of service that require TPM functionalities. This paper proposes
the design of TPM virtualization in a container. To ensure integrity, different mechanisms, such as
attestation and sealing, have been developed for the binaries and libraries stored in the container
volumes. Through a REST API, the container offers the functionalities of a TPM, such as key
generation and signing. To prevent unauthorized access to the container, this article proposes an
authentication mechanism based on tokens issued by the Cognito Amazon Web Service. As a proof
of concept and applicability in industry, a use case for electric vehicle charging stations using a
microservice-based architecture is proposed. Using the EOS.IO blockchain to maintain a copy of
the data, the virtualized TPM microservice provides the cryptographic operations necessary for
blockchain transactions. Through a two-factor authentication mechanism, users can access the data.
This scenario shows the potential of using blockchain technologies in microservice-based architectures,
where microservices such as the virtualized TPM fill a security gap in these architectures.

Keywords: blockchain; containers; electrical vehicles; EOS.IO; hardware security modules; microservice
architecture; trusted platform module; virtualized environment

1. Introduction

With the rise of Industrial Internet of Things (IIoT) environments, new computing and
networking paradigms have emerged. This is due, among other things, to the fact that
new aspects of security have started to be considered. In traditional architectures, both
client–server and publish–subscribe paradigms have been dominant [1,2]. The problem
with such architectures is that there are centralized entities that play an important role
within the network. A typical architecture example that implements a centralized client–
server architecture is the publish–subscribe message queue telemetry transport (MQTT) [3]
protocol. In this model, some entities publish certain topics (publishers), and other entities
that subscribe to the same topics obtain the published information (subscribers). Both
publishers and subscribers are managed by a centralized entity called a broker. The broker
generates a point of vulnerability in the system, since denial of service (DoS) [4] attacks can
have pernicious effects on the rest of the architecture. Being centralized entities, in which
all requests are made against this entity, this type of attack can collapse it and affect its
availability; thus, as a consequence, the whole system is affected.

In addition, these protocols implement asymmetric cryptography to encrypt commu-
nications [5] and to prevent man-in-the-middle attacks [6]. This asymmetric cryptography
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is based on certificates issued by a certification authority (CA). This entity is part of what is
known as a public key infrastructure (PKI) [7]. PKIs are vulnerable, among other reasons,
because of the centralization of entities that play an important role, such as CAs. Attacks
on these entities can lead to the loss of credentials and the potential impersonation of a user
by an attacker in the system [8].

These are the main reasons why technologies such as blockchain have made a strong
entry into the IIoT world in recent times. A blockchain completely breaks the established
client–server paradigm, replacing it with a peer-to-peer paradigm, decentralizing the
network and preventing the data it contains from being modified by third parties.

Blockchain offers trust and decentralization as its main characteristics. Based on
decentralized ledger technologies (DLT) [9], blockchain distributes a database (ledger)
among the entities that belong to the network, improving the security by storing a copy of
the database in each entity. Furthermore, a blockchain offers privacy, since the hashes used
by it make it impossible to identify the data referring to a specific user and assures data
protection against other parties, by implementing access control policies. Immutability
and traceability are also important features in blockchain applications, which are achieved
through the transactions performed in the ledger by the different users. All the transactions
are stored in the ledger, and it can never be modified. Transactions change the content
of the decentralized database, so they must be approved by the entities that make up the
blockchain, according to the roles established within it. In this way, any change is notified
to the different entities, keeping the integrity of the database [10]. Finally, it is worth
mentioning the ability of some blockchain applications to run use cases. These applications
are executed through smart contracts that run on the ledger and perform actions predefined
by the users who make up the blockchain [11]. Thanks to this feature, in recent times,
blockchain networks have started to establish themselves in new fields of application, such
as IIoT [12], healthcare [13], energy [14], business [15], financial [16], and others [17–19].

The benefits of blockchain lie, in addition to decentralization, in the use of cryptogra-
phy in the transactions carried out. All transactions are signed and subsequently verified
in the blockchain. All cryptographic materials (private keys, public keys, certificates) used
to carry out the operations become of vital importance, since this is where many of the
properties of the blockchain lie. If this cryptographic material is stolen or modified, this
could have severe consequences for the integrity of the network [20].

One of the ways to effectively protect this cryptographic material is the use of hardware
security modules (HSMs) [21], which securely store the keys used in a blockchain. In this
way, as Figure 1 shows, a blockchain client that has an HSM integrated can sign transactions
using the private keys securely stored in the HSM, since these keys can never be extracted.

HSMs fulfill a very important role as the root of trust in systems where they are applied.
In fact, HSMs are used in different fields; for example, in PKIs [22], network protocols [23],
database encryption [24], digital signatures [25], and cloud services [26].

In the case of cloud services, there are different applications running on the same
hardware infrastructure (infrastructure as a service (IaaS)) where the HSMs are usually
located. These HSMs are virtualized so that different software can make use of them,
enabling providers to offer secure services to users, both at platform (platform as a service
(PaaS)) and software level (software as a service (SaaS)) [27]. This virtualization of HSMs
does not only occur in cloud services, but in any system where there is an orchestration
of services that make use of the same resources. This is the case, for example, in an IoT
gateway where different services are deployed. In fact, technologies such as edge [28] and
fog computing [29] have made process virtualization a more common concept.
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Figure 1. Blockchain with HSM.

These services can simply be placed in charge of a certain function in the system
(e.g., maintain a database or run a web server). Virtual processes have given rise to
microservice-based architectures [30], where the services are orchestrated in such a way
that, by interacting with each other, they are able to carry out the correct functionality. This
type of architecture offers a much more efficient maintenance, deployment, and reliability
than traditional architectures [31].

This article proposes an HSM virtualization microservice that makes use of a special
type of HSM, a trusted platform module (TPM). The virtualization of the TPM is carried out
using a docker container that has a REST API to access it, offering high level functionality.
In this container, different microservices delegate cryptographic operations, attesting to
the status of the container beforehand. These microservices are authenticated in the TPM
container utilizing Cognito Amazon Web Services (AWS) [32], in order to protect the
API and establishing different permissions and roles when using the TPM. Thus, in this
architecture where different microservices have to make use of cryptography, they can
access the container through an authentication system that establishes different roles
and permissions, which protects against unauthorized microservices. Finally, this article
proposes an application of this design to an electrical vehicle (EV) charging stations use
case, where the data are stored in an EOS.IO blockchain that makes use of the virtualized
TPM. The main contribution over the state of the art is the virtualized TPM with security
mechanisms (attestation and private key sealing) provided to preserve the integrity and
the security of the sensitive cryptographic material of the container, as well as the inclusion
of a mechanism based on AWS Cognito for access control.

The rest of this article is organized as follows: Section 2 describes the work previ-
ously performed regarding TPM virtualization. Section 3 presents the motivation and the
importance of using HSMs in combination with blockchain. In Section 4, the proposed
architecture design is described. Section 5 shows the application in an EV charging station
use case. Finally, Section 6 summarizes the conclusions, emphasizing the benefits and
applicability of this proposal.

2. Related Work

As a hardware resource, different cloud providers offer services where the TPM is
virtualized. This virtualization is known as virtual TPM (vTPM) and is a software-based
representation of a physical TPM [33]. The vTPM concept is oriented toward use in virtual
machines (VMs) and it provides the functionality of a physical TPM to other VMs. In order
to obtain this functionality, a vTPM is composed of a vTPM manager and different instances
of the vTPM. These instances run in the VMs and implement the full trusted computing
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group (TCG) TPM2.0 specification. The vTPM manager creates different instances and
multiplexes the requests from the VMs to the vTPM instances. The communication between
the VMs and the vTPM is implemented using a driver model compound on the client
side, running in the VM, and a server side, running in the vTPM. Figure 2 illustrates
this architecture.

Figure 2. vTPM architecture.

As can be seen, this design requires implementing different drivers in each VM, as well
as having one instance for each VM that uses the vTPM. This model does not fit properly
in a microservice-based architecture, since this type of architecture rewards modulation of
the implemented microservices and the independence of one from the other [34]. In fact,
this type of virtualization, known as hypervisor-based virtualization, differs significantly
from container-based virtualization, which is mostly used in microservice architectures,
providing a much better performance than the aforementioned type [35,36]. Figure 3 shows
the difference between the architectures.

In hypervisor-based virtualization, a hypervisor (virtual machine monitor) runs on
the hardware, enabling different VMs which share the same hardware resources; in this
way, it is possible to emulate different operating systems (OSs) within the same platform.
In container-based virtualization, the container engine utilizes kernel features of the host
OS to create isolated environments for applications; hence, applications built on this engine
share the hardware resources and the same OS, making them much lighter than those based
on a hypervisor. Each of these technologies have their own advantages and disadvantages.
Container-based virtualization has lower performance overheads. As containers are lighter
weight than VMs, it is faster to deploy and boot a container compared to a guest OS. On
the other hand, container-based virtualization has less flexibility, in the way that it only
hosts the same OS that the host platform is using [37].
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Figure 3. Hypervisor-based virtualization vs. container-based virtualization.

However, as said before, container-based virtualization brings many more benefits
than hypervisor-based virtualization for microservice architectures, since they can deploy
software applications as packets of modular and independent microservices, being much
lighter, easier to maintain, and achieving better performance [38]. Each microservice is
a container that has its own programming language, data storage, and communication
mechanisms. Container-based virtualization has had a huge impact on microservice archi-
tectures, especially in IIoT applications that perform complex and new functionalities. In
this kind of system, a flexible and agile deployment, as well as an efficiency of resources, is
needed. In addition, these systems tend to be very volatile, so good scalability is also an
important factor. In Figure 4, an example of a microservice architecture for IoT is shown.
As is shown, the different microservices interact, in order to fulfill their purposes (collect
data from different sensors, store them in a database, and offer different analysis and
visualization techniques to external users). Each microservice is in charge of a task and
communicates with the others independently. Microservices can range from managing a
database to training machine learning algorithms.

However, it is not very common in the literature to find systems based on microser-
vices that offer security aspects for IoT. In [39], the authors describe a security approach
for developing microservice-based IoT systems. This approach combined microservice
patterns, APIs, distribution of microservices, and access control policies. An attribute-
based encryption (ABE) scheme was proposed in order to deploy identity management,
authentication, and policy control in microservices.

The work proposed in [40], presented an IoT framework that incorporated security
microservices for role management, authentication, access control, and identify governance.

In [41], the authors proposed a smart surveillance system based on a microservice ar-
chitecture and blockchain technology. The communication between the mircroservices was
encrypted using advanced encryption standard (AES) [42] and Rivest–Shamir–Adleman
(RSA) [43] cryptography algorithms. The blockchain network was used to ensure the de-
centralization of the data exchanged by the different microservices, as well as to introduce
access policies to this data through smart contracts.

The work described in [44] proposed deploying different blockchain services on edge
nodes. These services were related to blockchain operations through execution of consensus
algorithms, generation of new blocks, and performing mining tasks.
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Figure 4. Example of microservice-based architecture.

In [45], the authors proposed a secure edge computing management based on mi-
croservices, with a gateway that is responsible for managing devices, data, users, and
configuration security. The gateway incorporates an API used to filter all incoming re-
quests, in order to protect the microservices running on the edge.

In [46], the security solution was a machine learning based approach. In this approach,
the microservices-based model identifies strange behaviors, observes communication pack-
ets, and intercepts malicious traffic that may potentially damage the system.

The work proposed in [47] describes a solution using a traffic monitor that runs on IoT
nodes, routers, etc. in the network. The traffic monitor intercepts the packages between the
services and identifies the communication patterns of each data transmission. In this way,
the model can classify the communication as normal or anomalous.

All of the above works offer security between microservices or prevent malicious
attacks on them through different mechanisms or policies. However, none of them offer
security at the cryptographic level, i.e., they do not provide any microservices in which
different applications use cryptographic keys, signatures, or certificate storage through a
microservice that manages this. In this article, a microservice is proposed that can be used
by others to provide keys, signatures, and other cryptographic operations related to a TPM.

3. Trusted Platform Modules in Combination with Microservice-Based Architectures

In microservice architectures, hardware security has not been addressed to date. In
this type of architecture, HSMs are absent in most of the literature. However, providing a
root of trust in the system built on top of HSMs is of vital importance.

HSMs offer a hardware root of trust, since they generate cryptographic keys using
high-entropy random number generators, and protect them through secure storage (keys
stored internally are never extracted). They offer cryptographic algorithms implemented in
hardware for encryption/decryption or signature generation and verification [48].

Within HSMs, there is a special subgroup formed by TPMs, which differ from other
HSMs, in that the methods implemented in them are standardized by the TCG [49], as
well as offering higher level mechanisms than a common HSM [50]. TPMs fit better in
virtualized architectures, since they offer mechanisms such as secure boot [51] or remote
attestation [52], which ensure system integrity at startup and during the execution period,
detecting any software modifications. Moreover, this is ideal for use on systems with OS
support, which offer virtualization support as has already discussed in the previous section
introducing vTPM [33].
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The problem, as mentioned above, is that vTPM does not perfectly fit into the philoso-
phy of microservice architectures as these are implemented in container-based virtualiza-
tion. To solve this problem, a few approaches have been presented in the literature [53–55],
which were analyzed at the time of the designing of the proposal presented in this article.

Figure 5 presents a first approach to combining TPMs with microservices [33]. In this
approach, each microservice making use of the TPM has a vTPM in the container. Therefore,
in this approach, the size of the containers may grow considerably, becoming more heavy
and less flexible than other proposals.

Figure 5. Approach with vTPM inside each container.

To make this approach lighter, one solution adopted is to move the vTPM to the
operating system level [54]. In this way, the TPM is available to different containers by
assigning a vTPM instance to a new container. The container manager asks the host OS
kernel to create a new vTPM instance and then assigns it to the new container. Figure 6
shows this scheme. In this case, the kernel must be trusted, because an attack on it can lead
to information leakage by the vTPM. To ensure a kernel is trusted, the solution taken must
extend the root of trust from the TPM to the kernel, through mechanisms such as remote
attestation or secure boot. Thus, if the kernel is considered secure, all the vTPMs attached
to it are secure as well [56]. The problem with this solution, when applied to microservice
architectures, is the lack of flexibility when deploying this system on any platform. As is
well known, microservice systems create virtualized environments that are independent of
the OS and the hardware platform implemented in the underlying layers. If this proposed
solution uses kernel modules/resources for different microservices, these microservices
will be more difficult to port and deploy with different OS architectures.

The other approach [55] that we will consider consists of dedicating a container exclu-
sively to the vTPM, i.e., creating an exclusive microservice in which different containers that
require the use of the functionalities provided by the vTPM must communicate with it.In
this way, an appropriate flexibility and portability related microservice system is achieved.
Figure 7 illustrates this solution. The difficulty of this solution is to ensure the reliability of
the container carrying the vTPM. In this sense, it is necessary to make use of the attestation
mechanisms offered by the TPM, both in the deployment of the container and during its
use. It must also be protected from malicious microservices that try to access the vTPM
with an authentication system. These aspects will be discussed in detail in the next section.
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Figure 6. Approach with vTPM in the OS kernel.

Figure 7. Approach with vTPM in a dedicated container.

Note that in this proposal any microservice system deploying a vTPM microservice will
be able to realize the functionalities offered by the TPM. In this sense, many microservices
implement cryptographic security in microservice-based systems; from an MQTT server to
a blockchain client, going through database services, using the cryptographic capabilities to
sign transactions, exchange encrypted messages using symmetric cryptography, or encrypt
and decrypt files.

However, if one digs deeper into the technical aspects, not all microservices may be
compatible with this vTPM microservice. TPMs are able to generate secure keys because
they incorporate high-entropy true random number generators (TRNGs). These are based
on an external physical phenomena, making it almost impossible for a key generated
with a TRNG to be replicated. These generated keys are used to implement public-key
cryptosystems based on elliptic curves. There are a wide variety of elliptic cryptographic
curves (ECCs), usually supported by TPMs such as the NIST standard [57] prime256v1 or
secp256k1, which is the one used in bitcoin [58] and Ethereum [59]. Since the cryptographic
operations used in microservices are performed in the TPM, these two technologies must
support the same cryptographic curves and algorithms, making this a mandatory property
when integrating these two elements.
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Instead, this type of solution allows for the possibility of abstracting the software-level
functionality of the TPM. The software implemented by the microservice and making use
of the TPM is independent and does not have to comply with any standard to make use
of the TPM. This is a differentiating element from the traditional use of TPM by external
applications, since there are software standards that are used to manage a TPM as if it were
a hardware token, as in the case of PKCS11 [60]. This standard defines an API in order to
interact with the TPM through external applications.

In this way, complete container-based virtualized systems can be built making use of
the vTPM microservice, being flexible and easily portable to any type of platform. Based on
this approach, we will proceed to explain the architecture design proposed in this article.

4. Architecture Design

The design proposed in this article is based on the third approach discussed above, in
which the TPM is virtualized in a container, and where the other containers, whether they
are on the same hardware platform or on a different one, can access it through an interface
and a communications protocol. In this way, an architecture based on microservices can
make use of cryptographic material from the TPM, creating a root of trust in this type of
architecture. The proposed design improves on the third approach by adding important
security features such as private key sealing, attestation, and access control to the vTPM, at
the cost of a negligible loss of performance.

Architectures that implement blockchain microservices use cryptography with great
frequency, since these applications base their reliability on the cryptographic operations
they perform. This is the case with transactions; the messages sent to the blockchain
and signed by the sender. This signature is carried out through a private key that is
usually generated and stored in software. Through the use of this microservice, the keys
are generated inside the TPM and all cryptographic operations are performed inside it.
Thus, the external microservice that makes use of it will only receive the results of these
cryptographic operations. In this way, the keys are securely stored internally, as this
prevents physical attacks such as probing [61] or side channel attacks, timing attacks [62],
or fault induction techniques [63]. In this way, and thanks to the TPM, hardware attacks
are mitigated; however, the architecture proposed in this article involves different aspects
that must be addressed in terms of security.

The vTPM container must offer security mechanisms that prevent an attacker from
modifying the container and injecting malicious code inside it, and the microservices
that make use of the vTPM container must follow access policies that establish different
permissions and authorizations when performing functionalities within the vTPM. For
example, a blockchain client may have permission to perform cryptographic signatures
in the TPM, but may not have permission to generate cryptographic keys. It is logical
that this operation is available to other microservices with more authority, such as a
blockchain administrator.

In order to solve this issue, the vTPM microservice implements a secure attestation
functionality for the microservices that make requests, so that when a microservice is going
to make a request to it, the microservice first performs an attestation to check that the vTPM
is correct and has not been modified. In addition to this, a secure deployment must be
performed to prevent any process from interfering in the deployment and causing its failure
or any malicious code injection during the deployment. In relation to the protection of the
microservice from the use of other microservices without permissions, an authentication
service based on Cognito AWS [32] is used, which, using different policies, establishes
different access rights to other microservices that have been previously registered with it.

In the following sections these two aspects will be explored, but first we will proceed
to explaining the proposed virtualization of the vTPM in a container.
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4.1. Virtualization

The vTPM built in this proposal is inside a container and must communicate with
others through external APIs. Typically, TPMs are the hardware base of different applica-
tions that are built on top of it. These applications use different APIs implemented in the
middleware in order to use the TPM functionalities. As was said before, PKCS11 is one of
these APIs.

The software used in the TPM is standardized by the TCG and is composed of diverse
software: from the lower functionality used to manage the TPM resources, to the higher
level functionalities through Python libraries. Figure 8 illustrates the different software
components enabling the use of the TPM, which are

• TPM2 Access Broker and Resource Management Daemon (ABRMD) [64]: This soft-
ware module is formed of two different parts: the access broker and the resource
management. The access broker manages the synchronization between the processes
that use TPM simultaneously, while the resource manager manages the TPM context in
a similar way to the OS memory manager. TPMs generally have very limited memory,
thus TPM data (objects, sessions and sequences) need to be swapped from the TPM to
the memory, to allow the TPM commands to be executed. ABRMD works on the Unix
hardware device representation of the TPM (/dev/tpm0 and /dev/tpmrm0).

• TPM2 Software Stack (TSS) [65]: The TSS is a compound of the following layers, from the
highest level of abstraction to the lowest: feature API (FAPI), enhanced system API (ESAPI),
system API (SAPI) and the TPM command transmission interface (TCTI). All these APIs
offer TPM functionalities to applications written on it. These APIs are implemented in
C and C++, which means a low portability and compatibility with external applications,
which is why there are different libraries that are built on top of the TSS.

• TPM2 Tools [66]: This provides a set of bash binaries which interact with the different
functionalities of the TSS.

• TPM2 Python [67]: This provides a Python API in order to access the TSS.
• TPM2 OpenSSL [68,69]: This implements a provider and an engine for OpenSSL v3.0,

making the TPM accessible for OpenSSL API and command line tools.
• TPM2 PKCS11 [70]: This offers a PKCS11-based API, in order to make the TPM

accessible as a hardware token.

Figure 8. TPM software.
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All of this software is essential to make the TPM work; however, many of the bindings
mentioned are redundant for each other and can be bypassed for certain applications. For
example, an application built in Python will use the libraries provided in this language
for the use of the TPM, and it will not be necessary to include the command line tools. To
avoid incompatibilities between applications built on top of this type of software and to
make it more flexible, a REST API has been created on top of the software described above.
This API only uses TPM2-Tools and OpenSSL bindings in order to interact with the TPM.
In this way, the virtualized software inside the container is reduced and the TPM can be
accessed by external microservices that make use of the cryptographic operations offered
by the TPM through the REST API. Figure 9 shows the complete vTPM architecture, where
the main component is the docker container, which has all the software modules required.

Figure 9. vTPM architecture.

The REST API is an express server built with NodeJS. This REST API implements an
authentication mechanism through Cognito AWS, which will be discussed in Section 4.3.
This container uses volumes to store the identifiers of the private keys created through the
API, and depending on the different permissions and roles established through Cognito
AWS, the keys will be created in different volumes. These identifiers are used to access the
private keys that are stored inside the TPM. The application built in NodeJS is in charge
of calling the underlying software (TPM2-Tools and OpenSSL bindings), which in turn
communicates with the TPM through the software stack discussed above.

Therefore, the REST API is responsible for providing functionality to the container
from the point of view of an external application, so that this API has different entry points,
in which each performs one or more operations within the TPM. The entries available in
the API are the following:

• Create key: This operation generates a private key. The name of the key is generated
randomly following a binary large object (BLOB) format. This BLOB is given as a
return message of the operation. The private key is stored internally in the TPM, but
the identifier named with the BLOB is stored in a volume.

• Signature generation: The signature process inside the TPM is performed using this
entry point. The input parameters are the BLOB identifying the private key that will
make the signature and the hash that will be signed.

• Export public key: This entry point returns the public key associated with a private
key identified with a BLOB.
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• Signature verification: This operation verifies the signature using the public key. The
entry point receives the signature, the hash, and the BLOB identifying the private key.
The return value is a boolean indicating the success of the verification.

• Get random: Returns a random value using the TRNG into the TPM. The input
parameter is the length in bytes of the random value requested.

• Encrypt: This operation encrypts using the private or public key, depending on the
algorithm chosen in the input parameters, for a string given.The return value is the
encrypted string.

• Decrypt: This operation does the inverse process to the previous operation, decrypting
a given string in the input parameters.

• Hash: This computes a hash, following the algorithm given in the REST function input
parameters. The return value is the hash computed in hexadecimal format.

In addition to these operations, there are other mechanisms that perform attestation
and integrity validation of the microservice, since all these vTPM functionalities would be
useless if an attacker intervened and accessed the microservice, modifying it and redirecting
this information to another microservice and impersonating it, or even creating fakes BLOBs
for the keys. These mechanisms will be explained in the next section.

4.2. Attestation and Data Sealing of the vTPM Microservice

To ensure the correct operation of the deployed microservice, different checks of the
microservice status must be performed. These checks are the most important security
aspects in the container, since the trustworthiness of the operations executed in the vTPM
microservice may collapse due to an attack on the integrity of the container and, therefore,
on the TPM functionalities.

The underlying idea is to ensure that the microservice running inside the container al-
ways provides the results it should, ensuring the immutability and integrity of the container,
and transmitting that confidence to the client microservices that use that microservice. The
first step to achieving this is to obtain a secure deployment on the platform where you
want to make use of the microservice. To do this, it must be ensured that the underlying
hardware and software do not contain any foreign elements that could be exploited in the
future as a security flaw. In this sense, part of the responsibility lies with the hardware
resource provider (PaaS), since if there is malicious middleware or a backdoor in any
hardware component, all the hardware security mechanisms that are built at higher layers
will be useless.

The next step is the deployment and the integration of the platform (continuous
integration and continuous development (CI/CD)). In this regard, there are tools that
check the security of the container and perform tests on it. They also check the containers
for known vulnerabilities in real time and warn about them so that they can be fixed
immediately [71]. This could even be deployed through a secure script, in which it is
launched through checks of an external TPM that verifies that the script is correct and has
not been modified by any external processes. In addition, a check of the system on which
the script will be launched can be performed, as well as the different binaries used for the
deployment. However, these mechanisms are external to the inner workings of the vTPM
microservice and are therefore not the subject of this article’s in-depth study; each vendor
is responsible for offering their own mechanisms, as exist for traditional containers with
microservices that are not necessarily dedicated to security.

What is of interest in this article, and where the fundamentals of the security related
operation of this container are based, is the checking of the vTPM during the execution of
the container. During this time, a possible lack of integrity of this container is unavoidable,
some OS or even remote process can obtain access to this container through a backdoor or a
software bug. The container software cannot be shielded, since, as a container, it is running
in memory zones within a hardware platform where there is an OS and different containers
or external processes. For this reason, the information of the vTPM must be restricted and
can only be released if an integrity check has previously been performed on the container,
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and if this check is valid. In contrast to the container data, this information can be shielded
because it is stored inside the vTPM. In this sense, when an external microservice makes a
request to the vTPM microservice, it must “unlock” this information, so that it can be sent
to the external microservice.

TPM2.0 provides mechanisms to carry out this functionality. Moreover, during the
execution time, it can perform measurements of different elements of the operating system
and the rest of the software, to check the status of these components. These measurements
are stored in special TPM registers called platform configuration registers (PCRs) [51].
Depending on the value of these registers, the TPM will unlock the information required
by the client microservice (the generation of a signature or the use of a private key). The
PCRs are used both for the request that a microservice makes when using the TPM and
for unsealing the data contained in the TPM measuring the state of the container during
execution. The first is known as attestation of the container by the TPM, and the second is
known as the sealing process.

4.2.1. Container Attestation

The objective of the PCRs is to measure the software state of the platform. TPM2.0
has 24 PCRs, each of which has a predefined value at the reset state. These PCR values
change after performing different measurements of the OS kernel and file system. The
operation that makes these values change is called the extension and the resulting value
is obtained by concatenating the incoming data-digest with the current value at the PCR
index, hashing the concatenated data, and replacing the PCR index value.

To check the state of the container, several of the PCRs are used by extending them
with hashes from different files in the container, e.g., binaries installed inside the container
or from the REST API code.

Figure 10 shows the process that allows a client container to perform the attestation
and subsequent verification. If this verification is satisfactory, the client container will
perform operations that it deems appropriate on this container, such as the creation of keys
or obtaining random numbers. In this way, by making sure that the state of the vTPM
container is correct, the client knows that the operations performed on it are reliable.

Figure 10. Container attestation mechanism.
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Going deeper into the mechanism of attestation, the client sends a secret to the vTPM,
this being secret randomly generated in the client and avoiding reply attacks [72]. The
vTPM provides the hashes to different files in the container and extends the PCR values
chosen by the vTPM, which are indicted in the vTPM policies. All the PCR values used
in the operation are hashed following a combination predefined by the TPM, and this
results in a single data hash. This final hash is signed using an attestation identity key
(AIK) and the result is sent back to the container client, which verifies the signature and
the hash. This verification process depends on the TPM provider, which owns the TPM
and knows the state in which the hash returned by the vTPM is correct. In addition, it
has a certificate issued from the AIK that serves to verify the signature. Therefore, when
the microservice is deployed, the TPM provider must be responsible for providing both
the attestation validation certificate and the correct hash for verification to the container
client. This information may be made available through a microservice offered by the TPM
provider or sent to client containers that make use of the vTPM microservice. PCRs are
protected by different mechanisms offered internally by the TPM, implementing policies
and session authorization [50] in order to make some modifications of these registers.
Therefore, an attacker who wants to maliciously manipulate PCRs must first have obtained
these credentials or authorization rights that are owner by the TPM itself.

Thus, this mechanism requires measurement of the container software prior to de-
ployment. During this measurement, the TPM provider assumes that the container has
not been modified, and its functionality is uncorrupted. When it is redeployed within a
microservice architecture, all microservices that make use of it should have the original
measurement available for verification. Thus, every time a microservice wants to access
the vTPM microservice, it will know that the container status is the one certified by the
provider. The same mechanism can be used by the owner of the hardware platform to
check the integrity of the hardware, providing a proof that the platform is not corrupted
and that the microservices can be deployed securely.

In conclusion, PCR values are reported in a signed attestation quote, permitting a
external container to determine the vTPM container software’s trust state through a valid
authenticity and integrity proof being offered by the TPM provider.

4.2.2. Private Key Sealing

When a microservice uses a vTPM, the container stores the private keys it generates in
a container volume. Actually, they are not the private keys, since these are stored inside the
physical TPM, but they are files that work as identifiers of these keys; with access to these,
it is possible to make use of the private key stored inside the TPM. These files are identified
with a BLOB that is randomly generated at key creation. When a key is created, the API
returns the BLOB to the client microservice.

However, storing this type of material in a container volume is dangerous, since a
container volume is a file system that is shared with the host OS. If it is compromised by
attackers, they can access these files and obtain these key identifiers. This is the reason why
key identifiers stored within a volume must be protected. To solve this problem, this paper
proposes to make use of a sealing process that incorporates the TPM. In this process, a file
is sealed using the state of certain PCRs of the TPM. Once sealed, the file cannot be used
until it is unsealed again by setting the indicated PCRs to the value they had at the time of
sealing. The Figure 11 shows the sealing and unsealing processes.

The client sends a secret in a request to generate a private key. This secret, which
is actually an 8-digit password, is in charge of establishing the combination of PCRs to
be extended and in what order to perform the sealing. The secret is decoded, and the
8 digits are divided into four two-digit numbers, which are transformed into module 24,
corresponding to one of the PCRs of the TPM. The order of extension is established, starting
with the most significant number of the secret and ending with the least significant.
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Figure 11. Sealing and unsealing processes.

In this way, the private key is created and sealed with the contents of the PCRs. The
content of these PCRs reflects the state of the container; thus, the key is sealed with a
password imposed by the client and with the state of the container when the key is created.

The generation of the key operation creates a BLOB that is returned to the client; so
that, in subsequent API calls that make use of that private key, the key can be referenced.
For example, as illustrated in Figure 11, in the export public key operation the client must
send the BLOB of the private key, which can be used to export the public key, and the secret,
in order to unseal the private key. If the secret results in a correct extension of the PCRs
and the PCRs contain the same value for the container as when it generated the key, the
private key will be unsealed and the operation exporting the corresponding public key will
be performed.

Thus, through the PCRs of the TPM, the integrity of the deployed container and its
contents can be ensured; on the one hand, through measurements that are verified by
the provider, and on the other hand, through passwords that serve to unlock sensitive
material stored inside the container. In conclusion, for each operation that the client wants
to perform in the vTPM microservice, and to ensure the reliability of the data obtained,
first, the client must attest that the integrity is the one insured by the provider and, second,
the private keys must be unlocked for use through a password that the client knows and
that only works if the state of the container is the same as when that key was created.

Once the integrity of the container has been ensured during the use of the mecha-
nisms explained above, it only remains to explain how to protect it from unauthorized
microservices.

4.3. Cognito Amazon Web Service

Cognito AWS is a service that provides access management, authorization, and au-
thentication of entities. Through user pools, registered containers are managed according
to established policies, whereby different roles and permissions can be set. Thanks to this,
secure and restricted access to the REST API exposed in the vTPM container is guaranteed.

The mechanism for ensuring this is shown in Figure 12. When a container wants to
access the vTPM microservice, it must first register within an user pool. This process is
performed using a username and password, and then, the container will be in the user pool
and will have the rights to authenticate subsequently.

When authenticating, the container must use the username and password used in the
registration. Once this has been done, Cognito AWS returns a token, which is used from
now on, until the time of use expires, in all operations performed by the container on the
vTPM microservice. When a request is made with this token, the vTPM microservice checks
if it is valid and what permissions this token has associated with it (e.g., permission to
create keys or to sign). Permissions are established through a series of associated attributes
indicating the operations that the token is potentially capable of performing, such as
signing, extracting a public key, or generating a random number.
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Figure 12. Authentication process with Cognito AWS.

If the token used in the request is invalid, either because it has expired or it is a fake
token, the transaction will not be carried out; similarly, when the client container wants to
carry out an operation for which it does not have the required permissions.

Each user pool has different permissions that are given according to the operations
that the microservice performs. That is, if a blockchain client microservice needs to make
use of signing, the user pool where it registers will only allow this operation; however, a
blockchain administrator microservice must be able to generate private keys for clients,
in this case, the user pool where it registers will allow the creation of keys in the vTPM
microservice. It must be emphasized that the microservices registered in the user pool must
be carried out through the pool administrator, who knows in advance that the registered
microservice is reliable.

In addition, as each user pool has specific permissions associated with it, it makes
sense that the clients that are registered in that user pool share the same volume in the
container. Thus, a group of containers that perform blockchain operations, for example,
share the same keys generated in the same volume, as these keys are used for the same
purpose. It would not make sense, for example, for these keys to be shared with an MQTT
client microservice. Thus, in this way, independent microservices do not share the same
space, avoiding the possible mixing of private keys in the volumes.

In this way, through Cognito AWS, the API and the functionalities offered are pro-
tected against containers that are not authorized to use it, thus protecting it against possible
attacks by malicious containers. In addition, setting permissions between different con-
tainers and separating the volumes used between different user pools provides better
modularity of the functionalities offered, by separating the keys generated by the container
between microservices.

Thanks to Cognito AWS and the attestation and sealing mechanisms of the private
keys, a robust container that is secure against possible attacks on the system where it
is deployed is achieved, ensuring correct functionality and detecting any unauthorized
intrusions into the system.

Finally, a point to take into consideration is that the use of this type of architecture
introduces a loss of performance related to the security mechanisms and the fact of using
a virtualization platform; any virtualized system introduces a loss of performance in
the runtime, and it is always faster to run a code closer to the hardware than in higher
abstraction layers; introducing overheads in the system calls through the different layers of
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virtualization. The only way to mitigate this as much as possible is to optimize the code
running in the container.

5. Electrical Vehicle Charging Station Use Case

The potential offered by this microservice concept is easily exploitable in different use
cases; furthermore, taking advantage of the cryptographic operations that the container
posses through API is ideal for use with blockchain applications, which make intensive
use of cryptographic mechanisms: key generation, signing, or signature verification. There
have been many implementations of blockchain in the energy field [73–75], showing the
potential of this technology.

One of these cases is EV charging stations. EVs are becoming more common and
charging stations are an expanding infrastructure, especially in urban areas. Thus, the
connection between electric vehicles and blockchain technology is promising [76]. The
microservice-based architecture proposed in this article in this case offers a charging station
geolocation service, where all usage is collected in a decentralized blockchain database,
preserving privacy and offering data integrity of the records. This system is shown in
Figure 13. On the one hand, the information related to the EV charging stations is stored
in the blockchain using a NodeJS API. The data collected are the geographical position of
the charging station, the energy supplier of the station, the power it supplies, the type of
vehicle that can be connected, and the kind of energy source from which the offered power
is generated. This kind of data are stored in the registration process of the charging stations
and are immutable until a blockchain transaction modifies them, e.g., if the type of energy
changes from a renewable to a nonrenewable source. Through a charging station finder mi-
croservice, the user enters search criteria, which are the distance to the station, the estimated
charging time, the money available, and the type of energy source. If the charging station
ceases to be operational, it will send a revocation certificate to the blockchain, until it is
operational again by re-registering within the network. User privacy is guaranteed through
the blockchain, as it provides anonymity for the transactions made. Only the user identifier
appears in these transactions, which is a cryptographic identifier based on a cryptographic
hash function. With this information, the system offers the user different charging points
that suit his preferences. In addition, the system has a history record microservice, which
allows the user to query all the energy charges performed in the system. This microservice
provides private information, such as a record of bank transactions, money spent, time
spent, and charging stations used; thus, this must be protected through an authentication
system based on Cognito AWS and a hardware token. Both this microservice and the
blockchain client make use of this Cognito-based authentication system. As explained
in Section 4.2, the blockchain client must be authenticated in Cognito AWS, in order to
use the vTPM microservice. The blockchain client is in charge of sending information to
the blockchain, as well as querying it. Both the information related to the EV charging
stations and the information related to the charges made by the users are sent through the
blockchain client to the blockchain network in the form of transactions previously signed
by the vTPM microservice. This blockchain client microservice is an EOS.IO node.

In this way, it is possible to track the energy usage of a user, as well as all vehicles that
have been charged at a given charging station. These records are immutable thanks to the
blockchain. The system is deployed on a platform that has a TPM, which is virtualized
through the vTPM microservice following the mechanisms discussed in Section 4.2.

In the following sections the two main parts of this systems will be explained: the
blockchain client that makes use of the vTPM, and the hardware token authentication
system with Cognito AWS (two-factor authentication).
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Figure 13. EV charging microservice-based architecture.

5.1. EOS.IO

EOS.IO [77] is a blockchain designed for deploying and executing decentralized
applications or so-called smart contracts. This blockchain is designed to prioritize smart
contract performance. EOS.IO uses a variation of the proof-of-stake algorithm known
as delegated proof-of-stake (DPoS).This consensus algorithm regulates all the processes
related to staking tokens, voting, vote decay, vote recording, producer ranking, and inflation
pay. Smart contracts are written in C++, being the code compiled and then deployed in an
EOS.IO virtual machine.

The EOS.IO client consists of the following three modules:

• Cleos: This is the command line tool that connects to the API exposed by Nodeos and
manages the wallet, account, keys, transactions, and smart contracts.

• Nodeos: This functions as the central daemon that manages the EOS.IO network and
can be configured as a node to produce blocks, which are be able to sign blocks.

• Keosd: This is in charge of storing and generating the keys.

EOS.IO is the blockchain microservice in charge of performing the necessary operations
with the vTPM microservice and it is ideal for applications where good performance is
required, this being the main reason why it has been chosen for this use case. In this
scenario, instead of using Keosd as the key manager, the vTPM API is used.

It should be noted that, in the architecture depicted in Figure 13, only one EOS.IO node
is shown, but additional EOS.IO nodes may appear in the use case that make use of the
vTPM. It has been represented in this way for simplicity. Therefore, this EOS.IO node (or
nodes) is externally connected to other nodes in a distributed network. This network can
be scaled considerably in the system once deployed; typically, blockchain networks tend
to have scalability issues once deployed in potentially large systems. In this case, EOS.IO
introduces different types of scalability (horizontal and vertical), as well as data access.
As for vertical scalability, EOS.IO improves performance by introducing enhancements to
the Nodeos component. To improve the horizontal scalability, EOS.IO leverages the use
of various abstraction layers for smart contracts. These abstraction layers allow multiple
types of blockchain systems to easily use these smart contracts in a efficient way. Regarding
data access, scalability is implemented to authenticate transactions that query and read
history and state data, minimizing the exchange of data between entities.

The EOS.IO node authenticates with Cognito AWS in the vTPM microservice for
use of cryptographic operations such as key generation and transaction signature. The
NodeJS microservice provides the operation that EOS.IO will perform. If the operation is a
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transaction, the NodeJS script will provide the data as well. The transactions add data to
the ledger, which can be either related to EV charging station information (geographical
location, supplier, etc.) or to an energy charge (power supplied, money spent, bank
details, etc.). The transaction is made with the corresponding data and signed by the
vTPM microservice; before that, the blockchain client must check the status of the vTPM
microservice, making an attestation and checking the values obtained with those provided
by the cloud operator. In addition, in order to perform the signature, it must unseal the
private key that was identified with the BLOB obtained in its generation. The transaction
is sent to the blockchain and is approved by different nodes in the blockchain following
the consensus algorithm implemented in EOS.IO. When using the geographical location
of the charging station or the payment history microservice, they generate a query to the
blockchain through the blockchain client. These microservices never write to the ledger, so
operations performed on the blockchain are simply queries.

In this way, through one or more blockchain nodes running on the system that makes
use of the vTPM microservice, data are stored on the blockchain, maintaining an immutable
record of it and allowing building smart contracts that execute some processing logic. In
addition, note that in order to be able to rely on these smart contracts, they must be verified
by minimizing the risk of faults and bugs [78].

5.2. Two-Factor Authentication

The proposed mechanism for user authentication follows the same scheme as the one
used in Section 4.3. This mechanism allows users who need to authenticate with the system
to do so through a two-factor authentication system that is more secure than the traditional
one. In this sense, the user carries a USB hardware token, where the user’s private keys are
securely stored. The authentication is performed through Cognito AWS.

In this scenario, user pools have different roles assigned to the users, e.g., for clients
with special permissions as network administrators. In addition, the user pools assign
roles depending on the functionalities assigned to the users. In this way, user pools have a
similar functionality to the microservices authentication use case seen in Section 4.3.

The registration and authentication mechanism is shown in Figure 14. The user
registers and logs into the system through a web interface. At registration, the user enters
his/her name and password in the web form. This name and password must have been
previously stored in the user pool in order to allow the registration of the user, this step
is performed prior to registration through a different means (e.g., by e-mail to the system
administrator). When the registration process starts, the web interface generates a challenge,
which is sent to the hardware token. In the hardware token, the public and private key pair
is created. Using the private key, the challenge is signed and sent to the Cognito user pool.
The pool stores the user’s attributes (name, email, etc.), user ID, and public key.

At this point, the user can log into the system. To do so, in this process, the user enters
his/her username and password. These data are checked in Cognito AWS, to see if the user
has already been registered, if so, Cognito AWS sends a challenge to the hardware token.
This challenge is signed with the private key on the token and sent to Cognito AWS, which,
using the previously stored public key, is able to verify the signature and check that the
authenticating user is really who they claim to be. In this process, both challenge creation
and challenge verification operations are performed through lambda functions deployed in
Cognito AWS.

After this process, Cognito AWS sends a token to the user that will be used to authenti-
cate with the web interface until the token expires. Through this token, the user can access
the microservices that the token allows, with this token being associated with the user and
the user pool that contains it. A token issued to a user belonging to the administrators’ user
pool will have more access rights to special functionalities (e.g., only administrators can
create keys) than a normal user.
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Figure 14. User authentication process with Cognito AWS.

In this way, a secure and robust authentication system is achieved, with different user
roles, protecting the system from unauthorized access and storing the credentials securely
in hardware.

6. Conclusions

Blockchain technologies are gaining prominence and are increasingly being used. In
particular, in microservice-based architectures, the use of blockchain microservices opens
up a wide range of possibilities for this type of architecture. The use of cryptography that
powers blockchains is an important aspect in addressing and offering microservices of this
type, improving the security of microservice-based architectures.

The use of microservices that offer cryptography through a virtualization of a hardware
security module, such as the TPM, allows the hardware root of trust to be extended to other
applications. This is why it is important to create a virtualization of this type of hardware
resource. Through the virtualization proposed in this article, the vTPM microservice is
capable of offering the functionalities that a TPM provides to other microservices, such as
blockchain clients. Thanks to this microservice, the security of the rest of the microservices
is increased, as the cryptographic operations are delegated to the vTPM.

On the other hand, this microservice must be secure and maintain its integrity in both
deployment and use. Attestation mechanisms ensure that the container is not modified by
external entities. This mechanism, through special TPM registers such as PCRs, performs
different measurements inside the container, checking that the libraries, binaries, and the
rest of the source code have not been modified since the initial state, which is supposed to
be a secure state. In addition, private key identifiers are stored in container volumes that
are protected through a sealing mechanism. Using this mechanism ensures the integrity of
these identifiers and their usability by owners, as these identifiers can only be unlocked
through a password or secret that unseals the identifier using the TPM’s PCR. In addition
to these integrity mechanisms, this container is protected with an authentication system
based on Cognito AWS, which establishes permissions and roles for other containers to
access the vTPM microservice. This protects against unauthorized access by untrusted
third party microservices.

As a potential application of this proposal, a use case applied to EV charging sta-
tions was described, where all the information related to payments is sent to an EOS.IO
blockchain, which makes use of the vTPM by signing the transactions and generating
the keys used. The information stored on the blockchain is immutable, and all recorded
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information is accessed by users who use a two-factor authentication mechanism to gain
access to sensitive information.

The future of blockchain microservices lies in the integration and virtualization of
hardware security elements. This proposal has potential applications in the energy sector,
such as EV charging stations, and helps these technologies to reach a higher level of
maturity, without forgetting the hardware security that is required.
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Abbreviations
The following abbreviations are used in this manuscript:

ABE Attribute-Based Encryption
ABRMD Access Broker and Resource Management Daemon
AES Advanced Encryption Standard
AIK Attestation Identity Key
API Application Interface
AWS Amazon Web Services
BLOB Binary Large Object
CA Certification Authority
CI/CD Continuous Integration and Continuous Development
DLT Decentralized Ledger Technologies
DoS Denial of Service
DPoS Delegated Proof of Stake
ECC Elliptic Cryptographic Curve
ESAPI Enhanced System API
EV Electrical Vehicles
FAPI Feature API
HSM Hardware Security Modules
IaaS Infrastructure as a Service
IIoT Industrial Internet of Things
MQTT Message Queue Telemetry Transpor
OS Operating System
PaaS Platform as a Service
PCR Platform Configuration Register
PKCS Public Key Cryptographic Standard
PKI Public Key Infrastructure
RSA Rivest-Shamir-Adleman
SaaS Software as a Service



Energies 2023, 16, 4285 22 of 24

SAPI System API
TCG Trusted Computing Group
TCTI TPM Command Transmission Interface
TPM Trusted Platform Module
TRNG True Random Number Generator
TSS TPM Software Stack
VM Virtual Machine
vTPM virtual TPM
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