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A B S T R A C T   

Integrating artificial intelligence with food category recognition has been a field of interest for research for the 
past few decades. It is potentially one of the next steps in revolutionizing human interaction with food. The 
modern advent of big data and the development of data-oriented fields like deep learning have provided ad-
vancements in food category recognition. With increasing computational power and ever-larger food datasets, 
the approach’s potential has yet to be realized. This survey provides an overview of methods that can be applied 
to various food category recognition tasks, including detecting type, ingredients, quality, and quantity. We 
survey the core components for constructing a machine learning system for food category recognition, including 
datasets, data augmentation, hand-crafted feature extraction, and machine learning algorithms. We place a 
particular focus on the field of deep learning, including the utilization of convolutional neural networks, transfer 
learning, and semi-supervised learning. We provide an overview of relevant studies to promote further de-
velopments in food category recognition for research and industrial applications.   

1. Introduction 

Throughout history, the multi-facet relationship between human-
kind and the food we consume has changed countless times. How food is 
stored, transported, processed, and consumed today vastly differs from 
that of the 20th century [1,2] and is unimaginable for hunter-gatherers 
of the Paleolithic period [3]. Similarly, how we interact with food in the 
next century may be beyond our imagination. However, from sickles and 
plows to automated harvesters; from drying and salting to refrigerated 
containers; the evolution of our interaction with food correlates with 
improvements in efficiency, where higher efficiency results in higher 
yield and availability for consumption. In our pursuit of ever-increasing 

efficiency, the next step may be the inclusion of artificial intelligence 
(AI) and “centaurs”, i.e., AI-aided humans [4] between humans and 
food. 

Food category recognition covers a range of tasks in the food “life 
cycle” of cultivation, processing, storage, delivery, and consumption. 
These tasks include (1) food quality and ingredients detection and (2) 
food type and quantity detection. Quality and ingredient detection are 
most relevant to food production, where identifying food quality and 
contents allow for filtering low-quality and substandard products [5–7]. 
Type and quantity detection are commonly applied in the delivery of 
food and in the process of individual consumption, i.e., consuming the 
right food in a measured quantity to prevent allergens and control 
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nutritional intake [8,9]. 
From the food production perspective, which includes aspects of 

cultivation, processing, storage, and transport, technological advances 
paired with the socio-economic phenomenon of industrialization and 
globalization have made food production incredibly efficient. The re-
ality supports this claim since human food production can sustain most 
of our 80 billion population. However, efficiency differs in different 
countries and regions due to varying socio-economic scenarios, and even 
in highly mechanized and automated processes, many roles are both 
subjective and labor intensive. Both characteristics impact the overall 
efficiency of the food production process. 

A potential future solution to this problem is using data-oriented 
artificial intelligence, where integration with robotics can reduce 
labor costs and well-adjusted algorithms are less prone to intra- 
personnel and inter-personnel bias. The requirement for manual in-
teractions in the food ”life-cycle” is not limited to the production pro-
cesses but is also predominant in any individual’s interaction with food. 
The prime scenario is diet control, as introduced in the prior survey by 
Zhu [10]. An imbalance in the human diet can cause obesity and is 
linked to a number of chronic diseases, including hypertension, dia-
betes, heart diseases, and multiple cancers [11]. The significant im-
provements in living standards from the 20th to 21st century, especially 
in first-world countries, have led to a significant climb in the percentage 
of the population that is overweight or obese [12]. An intuitive solution 
to a balanced diet is tracking and quantifying nutritional intake, often 
through mobile applications [9]. However, the current applications are 
inefficient and often require significant manual input. 

Data-oriented artificial intelligence, especially deep learning, pro-
vides a potential solution to this problem through high-performing 
computer vision models, e.g., faster and more accurate food logging 
into diet monitoring applications, food safety, and quality detection. 
Data-orient artificial intelligence has gained significant attention after 
the plateau of innovations in general AI and expert systems. A charac-
teristic of this more specified and targeted approach to AI is the signif-
icantly overparameterized models that rely on large, annotated datasets. 
This approach to AI has shown significant advancements in speech 
recognition [13], natural language processing [14], and computer vision 
[15]. 

However, the gap between research and practical application in 
many interdisciplinary fields, e.g., medicine, is the availability of quality 
data and annotations. The lack of data poses the problem of learning in 
the high-dimensional low sample size, which leads to overfitting and 
lack of generalization. Over-fitting occurs when a model provides de-
cision boundaries too close to the available training data, causing an 
empirical performance gap between train and test results. The lack of 
data can also potentially cause an implicit difference between the dis-
tribution of the small test set and real-world data, resulting in high bias 
error and low generalizability to real-world applications. 

Increasing food consumption is paired with the significant amount of 
data we produce in the food domain. Major contributing factors include 
our interactions with the internet and social media [16], e.g., food 
snapshots and health applications. At the same time, mass industrial 
food production also provides opportunities for data collection by the 
producers [17]. Most data available will be without annotation, but 
annotation costs are generally lower than in fields like medicine, e.g., 
everyday tasks like labeling food types and cuisines can be done with 
little or no expert knowledge [18]. If the data is utilized ethically, we can 
likely find sufficient data for training data-oriented AI. In this survey, we 
include an extensive survey of datasets available for food category 
recognition, focusing on tasks of recognizing processed foods, vegeta-
bles, and fruits. Grouped based on the food type and cuisines, we 
included 51 datasets that were published from 2009 to 2022. In datasets 
produced in recent years, we observe an evident increase in sample size 
and the number of categories, along with more attention to food nutri-
tion and geographical information. 

Multiple challenges exist in learning from food-based data, especially 

food images. These challenges include the lack of spatial uniformity that 
enables clear identification of differences [9], e.g., since food varies 
greatly in shape, color, and form, no geometric structure or pattern 
exists to identify differences quickly. Many types of food also lack rigid 
structures and can be displayed in a range of different states [19], 
causing significant variances between data sources and within the same 
category. Significant challenges exist in data collection, where access to 
the abundance of data on the internet provides no guarantee of consis-
tency in data view and quality. 

A potential solution to this problem is using preprocessing to provide 
more data and more variations of data to minimize the impact of the 
above challenges on our data-oriented algorithms and models. These 
processing methods can be generalized as data augmentation [20]. 
Under the assumption that the test sets provide a close estimate of the 
real-world distributions, data augmentation aims to reduce the distance 
between train and test sets through various image transformations. 
These transformations include geometric transforms, noise injection, 
photo-metric transforms, image mixing, and deep learning-based 
methods. This survey provides an in-depth survey of these trans-
formations with examples of common food images. 

After data collection and augmentation, the natural problem is 
extracting information provided by the dataset and its relevant trans-
formations. Modern machine learning research has two predominant 
approaches: classical hand-crafted features and deep feature extraction 
[21]. Hand-crafted features are features constructed with a priori 
knowledge of the underlying task. In this survey, the target task of a 
model or algorithm is most often the classification of food images. 
Relevant features to this target class often include color, texture, and 
shape. In this survey, we cover standard feature extraction methods, e. 
g., color histograms for color features, histograms of oriented gradients 
for shape, and Gabor filters for texture features. We also include 
scale-dependent wavelet transforms; and scale-invariant feature trans-
forms for invariance to resolution, illumination, and orientation. These 
methods cover the most common forms of hand-crafted features for food 
image data and can provide the basis for classification with either ma-
chine learning algorithms or neural networks. 

Traditional machine learning algorithms [22] is the standard method 
for food category recognition before the 2010s and the rise of deep 
learning and large image datasets. Common methods we surveyed 
include support vector machine, logistic regression, K-nearest neigh-
bors, K-means, tree-based methods, etc. The algorithms are grounded in 
statistics and probability theory and provide good performance for small 
datasets with hand-crafted features. However, the dependence of 
hand-crafted features on a priori knowledge limits its application to 
experts with domain knowledge in the food category recognition task. 
This scenario also increases the specificity of a feature extraction and 
classification pipeline, limiting its limits to the application and transfer 
to other domains. For example, a pipeline for the classification of apples 
may differ greatly from a pipeline for the grain quality measurement due 
to the difference between the task-specific features that may be 
included. A potential alternative to this approach is the deep learning 
approach, which uses neural networks for automated feature extraction. 

In recent years, deep learning has risen to become a large field in the 
machine learning domain. It implements universal approximators of 
neural networks [23], a modern development of the perceptron pro-
posed by Rosenblatt [24]. With chain-rule-derived gradient computa-
tion and back-propagation [25], the neural networks can be efficiently 
trained with a data-oriented approach. The sheer number of neurons 
coupled with vision-oriented architectures like convolutional layers 
enables neural networks to abstract latent feature representations with 
minimal manual interference. An example of recent works by Aguilar 
[26] has applied this method in food category recognition. Convolu-
tional neural networks (CNN), like the model proposed by Teng [27], are 
the most common architecture in the field. The features extracted by 
CNN often show a hierarchy of low to high-level features that extend 
from lines, dots, or edges to objects or characteristic shapes [28]. CNN 
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usually consists of standard components of the convolution layer, 
padding, pooling, and various activation functions and regularization 
methods. This survey includes detailed descriptions of these components 
and their application. In extension, we survey the most commonly 
applied deep learning method in the field of food category recognition, 
transfer learning, and a field of study with great potential, 
semi-supervised learning. 

With the popularity of deep neural networks in interdisciplinary 
research, common challenges exist in practical applications [29]. These 
challenges include the availability of data and relevant labels. Transfer 
learning is the field of study for the transfer of knowledge across do-
mains [30]. Current computer vision success is based on the ImageNet 
hierarchical database, which contains millions of annotated images 
[31]. While large quantities of food images are potentially available, the 
dataset for specific tasks, e.g., classification of a particular food cate-
gory, may be limited. A potential solution to this problem is the transfer 
of knowledge across domains - transfer learning [30]. 

In image classification applications, transfer learning is commonly 
implemented through the transfer of model structure, weights, or pa-
rameters for classification in different feature spaces and distributions. 
Neural networks with transferred parameters have outperformed the 
same neural networks with randomized parameters in convergence, thus 
reducing the need for time-consuming hyperparameter searches [32]. 
We include an overview of the application of transfer learning to food 
category recognition and common pre-trained neural networks utilized 
in these processes. 

The abundance of potential data for food category recognition 

presents both great opportunity and challenge. One potential approach 
to utilizing these potential data is through semi-supervised learning, 
which is an approach that lies between unsupervised and supervised 
learning. Based on the basic assumptions of the data and its manifold 
[33], semi-supervised learning aims to learn from both labeled and 
unlabeled data. This approach is especially applicable to many fields of 
food category recognition, where unlabeled data are potentially abun-
dant. This survey uses the most commonly applied semi-supervised 
methods, including generative and diffusion modeling, consistency 
regularization, pseudo-labeling, and graph-based methods. 

Prior surveys focused on food processing [10], food recognition for 
mobile applications, and volume estimation [9]. In this survey, we 
provide a more generalized view of food category recognition that in-
cludes applications throughout the food “life-cycle” and encompasses a 
range of recognition tasks, including food quality identification and food 
ingredients detection. This survey identifies the key impacts of this field 
of study, including the macro impacts of automation of the food industry 
with more efficient human labor and reduction of human error; and the 
micro impacts of food personification for better dietary health of 
individuals. 

The survey is structured as follows: Section 2 will introduce the 
datasets, Section 3 will present existing food-oriented machine vision 
systems, Section 4 will present preprocessing through the lens of data 
augmentations, Section 5 will present a survey of hand-crafted features, 
which the traditional machine learning approaches will follow in Sec-
tion 6. We will move toward deep learning from the traditional machine 
learning approach: Section 7 will present the essential CNN components, 

Fig. 1. Taxonomy of this survey.  
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Section 8 will introduce the common practice of transfer learning, and 
Section 9 will present semi-supervised learning as a potential pathway 
toward the future. Section 10 surveys the application of deep learning 
methods in practice, and we conclude the survey in Section 11. A tax-
onomy of the survey can be found in Fig. 1. 

This survey is highly related to the journal Information Fusion. 
Numerous reasons for this case include: many food imaging vision sys-
tems can be fused, as shown in Section 3. Various data augmentation 
methods in Section 4 are commonly fused to create a more powerful 
hybrid fusion technique. Hand-crafted features in Section 5 can be fused 
to generate more efficient features. Traditional machine learning tech-
niques in Section 6 can be fused to create more effective classifiers. 
Convolutional neural networks in Section 7 can be fused to improve 
classification by combining the strengths of multiple models. Pretrained 
models in Section 8 can be fused by combining the knowledge learned 
from different tasks. Fusion is inherent in semi-supervised learning, in 
Section 9, where we combine the information from labeled and unla-
beled data to improve the performance of food category recognition 
models. 

2. Datasets 

Data has always been one of the key points to driving AI-based Food 
Recognition research. Different training data may lead to different 
training results. No matter the target, food image datasets are needed to 
evaluate the performance of the proposed algorithms. To this end, the 
above research work either uses existing datasets or introduces new 
datasets. Therefore, we hope to survey the existing datasets. This can 
help us select the appropriate dataset to improve the model’s perfor-
mance when doing research. 

A clear and targeted single-category dataset may have better training 
effects for specific tasks. For example, a single-category of fruit dataset 
may achieve better training results for classifying fresh fruits. For 
example, Dhiman et al. (2021) [34] used a special citrus dataset to train 
a model for citrus quality classification. Chen, X. et al. (2017) [18], Chen 
et al. (2012) [35], and Chen et al. (2016) [36] successfully classified 
Chinese food, the most diverse and complex dishes, using the special 
Chinese food dataset. Tatsuya Miyazaki et al. (2011) [37] and Matsuda 
et al. (2012) [38] also contributed complete datasets to the identifica-
tion of Japanese food. 

On the other hand, when training in-depth learning models, the use 
of diverse and multi-categories datasets can better support widespread 
use and also support the migration performance of models. Using multi- 
categories data can improve the validity and accuracy of the data and 
make the model more generalizable to other datasets. In addition, a 
variety of datasets can better detect how a model behaves in exceptional 
situations. In this way, the neural network model can work more widely, 
accurately, and reliably to achieve the desired results. For example, Min 
et al. (2019) [39] and Min et al. (2020) [40] have contributed several 
datasets in this direction in order to continuously improve model 
performance. 

In addition, Zhou et al. (2016) [41] have made full use of the cor-
relation between different data, such as using geographic information, 
restaurant classification, and other non-food third-party information to 
assist in food classification. Or use ingredients as additional supervision 
information to improve the accuracy of food classification and even 
predict the nutrient content of food [42,43]. 

In general, at present, we can divide the existing datasets into single- 
category datasets and multi-categories datasets according to their data 
characteristics. Single-category datasets usually only contain foods from 
one cuisine, and these foods usually have certain similarities in the form 
or use of ingredients. This single-category dataset can maximize the 
recognition accuracy of a proprietary model in a specific area. However, 
a single-category of the dataset may have some limitations, such as 
regional and cultural differences or the use of different food forms and 
ingredients. This is also a particularly important reason for the multi- 

categories datasets, which can cover different regions, cultures, forms, 
and ingredients, thus improving the accuracy of model recognition and 
migration performance. 

In general, we can divide the existing datasets into single-category 
datasets and multi-categories datasets according to their data charac-
teristics. Single-category datasets usually only contain foods from one 
cuisine, and these foods usually have certain similarities in the form or 
use of ingredients. This single-category dataset can maximize the 
recognition accuracy of a proprietary model in a specific area. However, 
a single-category of the dataset may have some limitations, such as 
regional and cultural differences or the use of different food forms and 
ingredients. This is also a particularly important reason for the multi- 
categories datasets, which can cover different regions, cultures, forms, 
and ingredients, thus improving the accuracy of model recognition and 
migration performance. 

2.1. Single-category datasets 

2.1.1. Western food 
FNDDS [44]: Bosch et al. (2011) [44] collected a large dataset on 

American food. This dataset includes about 7000 dishes in 11 categories. 
The image of each dish also includes the weight of various ingredients in 
the images, as well as the nutritional components. The dataset provides 
three interrelated data components: an image database containing data 
generated from food images, an experimental database containing data 
related to nutrition research and image analysis results, and an 
enhanced version of the nutrition database containing nutrition and a 
visual description of each food. 

ETHZ Food-101 [45]: Bossard et al. (2014) [45] collected a 
real-world food dataset by downloading images over the Internet. These 
downloaded images contain labels for the location and type of food. The 
dataset contains 101,000 real-world images of 101 of the most popular 
dishes. 750 training images and 250 test images were randomly selected 
for each class. The image of the training set is cleaned up by additional 
manual effort, reducing errors and interference. However, the image of 
the training set is not cleaned up, which improves the robustness of the 
model. 

FOOD201 [46]: Myers et al. (2015) [46] randomly selected 50,374 
images from the food101 dataset for artificial semantic labeling. After 
combining similar semantics, the new dataset, called the 
Food201-MultiLabel dataset, contains 201 food categories. The dataset 
is divided into 35,242 training images and 15,132 test images according 
to the proportion of food101. About 12 K of the images are semantically 
segmented at the pixel level. This part of the data is called the 
Food201-segmented dataset. Therefore, this dataset can be used in both 
food classification and food segmentation studies. 

2.1.2. Chinese food 
ChineseFoodNet [18]: Chen et al. (2017) [18] collected 19.4 GB 

images of Chinese food from the Internet. Each image in the dataset is 
manually tagged to remove the error tags that corrected the original 
data. This dataset contains 185,628 images of 208 food categories. Im-
ages in the dataset maintain the original appearance of the image 
without any processing. The dataset is divided into training sets (145, 
066), validation sets (20,254), and test sets (20,310) at a scale of 8:1:1. 

Chen [35]: Chen et al. (2012) [35] built a food recognition platform 
through the Internet and collected 5000 images of food from mobile 
phones. This dataset contains 50 popular Chinese food categories, each 
with 100 images. The dataset was randomly divided into five groups 
through five-fold cross-validation: one group was retained as validation 
data, and four groups were used as training data. 

Vireo-Food 172 [36]: Chen et al. (2016) [36] believed that since the 
number of ingredients is far less than food categories, identifying in-
gredients takes more time for network migration and expansion than 
identifying dishes. Training the model to learn the mutual but fuzzy 
relationship between ingredient recognition and food classification can 
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improve the model’s ability to deal with zero-shot retrieval problems. 
They obtained 172 categories of food images from two Chinese food 
websites. More than 100 images larger than 256 × 256 were collected 
in each class. The ingredients in the image were labeled by ten house-
wives. This dataset yielded 1041 images with 353 ingredient tags, with 
an average of 3 ingredients per image. On average, there were 640 
positive samples in each food class and 745 positive samples in each 
ingredient. 

ChinaMartFood-109 [47]: Ma et al. (2022) [47] collected 10,921 
images of 109 kinds of food from the Chinese market. This dataset not 
only includes the classification of food but also includes the classifica-
tion of 23 nutrients, covering 18 major food groups. 

2.1.3. Fast food 
PFID [48]: Chen et al. (2009) [48] collected 101 classes of fast food 

from 11 popular fast food chains. These examples were expanded in a 
restaurant environment and a laboratory-controlled environment. The 
dataset consisted of 4545 still images, 606 stereo images, 30,3360 mo-
tion structure videos, and 27 privacy-preserving videos of volunteer 
eating events. Each instance of each class consists of four packaged still 
images and four unpacked images in the dining room environment, six 
still images in the laboratory environment, two sets of stereo images 
along the long and short sides of the object, and a 360-degree video of 
the food on the turntable. 

2.1.4. Japanese food 
Food50 [49]: Taichi et al. (2009) [49] collected 5000 images of food 

shared by netizens from the Internet. The image cuts out the area where 
the target food is located to obtain a clear target food image. The dataset 
contains 5000 images from 50 popular Japanese foods. On average, each 
food class contains 100 images. 

Food85 [50]: Hoashi et al. (2010) [50] collected 85 kinds of food 
popular in Japan on the Internet. 100 images were collected for each 
class. The dataset has 8500 images in total. These images place the food 
in the center of the image by clipping. Some food classes may not be 
included in other comprehensive datasets. This dataset is very helpful 
for training food recognition models used in Japan. 

Foodlog [37]: Tatsuya Miyazaki et al. (2011) [37] collected daily 
food images uploaded by users through a public Web service called 
FoodLog. Users from Japan upload these images and basically represent 
Japanese daily food. Nutritionists label the images according to five 
classes: grains, vegetables, meat/beans, fruits, and dairy products. Each 
image shows the average calories provided by the food for each person. 
The dataset contains 6512 images in total, of which 5512 images are 
used as a training set, and the other 1000 images are used as a test set. 

UEC-FOOD-100 [38]: Matsuda et al. (2012) [38] collected 9060 
images of Japanese food. These images contain a total of 100 kinds of 
food. There is at least one food sample in each image. Each food sample 
is manually marked with a binding box. The test set consists of 1200 
images containing only one food sample and 500 images containing a 
total of 1200 food sample points. The rest of the images are training sets. 

UEC-FOOD-256 [51]: Kawano et al. (2014) [51] continued to collect 
more images based on the UEC-FOOD-100 dataset and proposed the 
UEC-FOOD-256 dataset. This dataset contains 256 food classes. 
Compared with the UEC-FOOD-100 dataset, the paper gives this dataset 
a download link. 

FLD [52]: Yu et al. (2018) [52] downloaded all food images in the 
past two years from the foodlog website. These images were uploaded by 
users in Japan. The dataset contains not only 623,956 images, including 
1,508,171 food uploaded by more than 20,000 ordinary users, but also 
the owner ID and timestamp of each image. The dataset includes 1870 
general food classes defined by the system and 97,457 other food classes 
defined by the user. The dataset is divided into two subsets. The first 
subset FLD-469 consists of 469 main classes by default of the system, 
with 500 images for each class. Another subset of FLD-CLS consists of 
209,700 images, including the first 300 food records from 699 

user-defined classes. 
SuShi-50 [53]: According to the Sushi Guide, Qiu et al. (2019) [53] 

collected a fine-grained food dataset from the Internet that contains 50 
different types of sushi. Each class has more than 50 images. The dataset 
contains 3963 images, half of which are test sets, and the other side is 
training sets. 

2.1.5. Food of other nationalities 
Indian Food Database [54]: Pandey et al. (2017) [54] collected a 

special dataset for Indian food. This dataset includes 50 kinds of food 
that are popular in India. Each class contains 100 images. The same class 
of food may vary in color, texture, shape, and size because Indian food 
lacks any common layout. Eighty images from each class were randomly 
selected as training sets, and 20 were test sets. 

Pakistani Food Dataset [55]: Tahir et al. (2020) [55] collected a new 
dataset for Pakistani food. This dataset contains a total of 100 foods. A 
total of 4928 images were collected, of which 4448 were training sets, 
and 480 were test sets. The high degree of food similarity in Pakistan 
makes this dataset more difficult to train than other datasets. 

Rice dataset [56]: Stütz et al. (2014) [56] collected a dataset about 
rice. The dataset contains only images of rice. These images are tagged 
with the quality of the rice and the energy contained in the rice tagged 
by a nutritionist. This dataset is used to identify the quality and energy of 
rice. 

THFood-50 [57]: Termritthikun et al. (2017) [57] collected 50 
popular Thai food images from the Internet. Each Thai food contains 
about 200 to 700 images. The resolution of the image is uniformly 
adjusted to 256 × 256 pixels. 90% of the images in the dataset are in the 
training set, and the remaining 10% are in the test set. 

Turkish-Foods-15 [58]: Güngör et al. (2017) [58] collected a large 
number of images of Türkiye’s food from the Internet. These images 
include a total of 15 Türkiye dishes. Each class contains at least 500 
images. 

2.1.6. Raw vegetables and fruits 
Fruits 360 [59]: Mureşan et al. (2018) [59] obtained 38,409 images 

containing 60 kinds of fruits by recording the fruits on the low-speed 
rotating motor and extracting screenshots. All the images are centered 
on fruit with white background. The fruit in the image is accurately 
segmented and extracted and scaled to a 100 × 100 size 
background-free image. This is a large and abundant dataset which can 
well train a robust fruit classification model. 

VegFru [60]: Hou et al. (2017) [60] collected a dataset of fresh 
vegetable and fruit images in 2017. VegFru is a huge dataset containing 
vegetables and fruits closely related to everyone’s daily life. It contains 
more than 160,000 images in total. VegFru classifies vegetables and 
fruits according to their edible characteristics and divides 160,731 im-
ages into 25 classes and 292 subclasses. In VegFru, there are 91,117 
vegetable images and 69,614 fruit images. Images of vegetables and 
fruits are placed separately, so VegFru can also be divided into two 
datasets, Veg200 for vegetables and Fru92 for fruits. The number of 
images per subclass ranges from 200 to 2000. The first 100 images in 
each subclass are used for training sets, the next 50 images are verifi-
cation sets, and the rest images are test sets 

FruitVeg-81 [61]: Waltner et al. (2017) [61] collected 15,630 images 
of 81 different fruits and vegetables by taking photos of fresh fruits and 
vegetables and collecting online images. This dataset has a wide variety 
of classes and a huge number of images. This data is completely open 
access and an important dataset in the field of food classification. 

HyperspectralFruVeg [62]: Using a hyperspectral camera, Steinbr-
ener et al. (2019) [62] record 2700 images of 13 different kinds of fruits 
and vegetables with 16 spectral bands from 470 to 630 nm camera. This 
is the first hyperspectral dataset of fruit and vegetable images. The 
recorded images of 16 frequency bands are spliced into one image in 
order in the form of a grayscale. The recorded images are cut to 256 ×
256 for easy training. Of these cropped images, 700 were randomly 
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selected as the verification set. The rest 2000 images are used as training 
sets. 

FruitNet [63]: This dataset was collect by Meshram et al. (2022) 
[63]. This dataset used three kinds of photographic equipment to 
photograph six common fruits in India from July to October: apple, 
banana, guava, lime, orange, and pomegranate. The dataset is divided 
into three folders: Good quality fruits, Bad quality fruits, and Mixed 
quality fruits. Each folder contains all six classes of fruits. The dataset 
has 19,526 images. Among them, the class of Good quality has 11,664 
images, the class of Bad quality has 6778 images, and the class of Mix 
quality has 1074 images. The size of the image is 256 × 256. 

Citrus Fruits [34]: Dhiman et al. (2021) [34] collected this dataset for 
citrus quality classification. The dataset collected 4136 from online 
sources and annotated by domain experts. The dataset contains four 
classes in total: health, Low Severity, middle Severity, and high Severity. 
There are 1466 images in the health class, which are divided into 1173 
in the training set and 293 in the test set. The other three classes are 
basically about 700 training set images and 200 test set images. This 
dataset focuses on the quality of citrus. It is a detailed dataset related to 
food safety. 

Fruits yield [64]: Behera et al. (2021) [64] collected a dataset on 
fruits from the different farming sites of Sambalpur and Sundargarh 
districts of Odisha, including five Indian fruits, namely mango, apple, 
orange, pomegranate, and tomato. The dataset has 1000 images taken 
on-site for training, including 200 images in each class, with a standard 
resolution of 800 × 600. In addition, a total of 100 images, with 20 
images of each class in 5 different classes taken on-site, are used for the 
test set. 

XiaotangshanVeg [65]: This dataset focuses on vegetable diseases 
collected by Zhou et al. (2021) [65]. The data includes 4284 images in 6 
classes: tomato health, tomato powdery mildew, tomato early blight, 
cucumber health, cucumber powdery mildew, and cucumber downy 
mildew. The data collected the field images of plants in Xiaotangshan 
base at three different time periods: morning (7:00–8:00), noon 
(11:00–12:00), and evening (17:00–18:00). These images are divided 
into training, validation, and test subsets at a ratio of 7:2:1. Images in the 
dataset include simple images with obvious disease characteristics and 
difficult images with mixed target and background. 

2.2. Multi-categories datasets 

TADA [42]: This is a very early dataset. Mariappan et al. (2009) [42] 
collected 306 images in 2009, of which 50 were food replicas, and 256 
were real food. Food replicas are images taken under specific conditions, 
such as placing food on a white plate on a black and white colored 
checkerboard pattern tablecloth. Tablecloths are used as benchmarks for 
estimating food. White plates are used to help split food. 17 images were 
used for training and 33 for testing. The image of the training set con-
tains only one sample, and the image of the test set contains 2–3 sam-
ples. There are 32 food classes. For real food, 11 images are training sets, 
and 245 images are test sets. Half of the real food was taken under good 
lighting, while the other side was taken under poor lighting. 

UNCIT-FD889 [66]: Farinella et al. (2015) [66] collected 889 
different dishes from different nationalities, such as Italy, Britain, 
Thailand, India, and Japan, in four years. The dataset contains 3583 
images in total, all of which are taken from real food. Each dish includes 
nearly four images from different perspectives or lighting. Since each 
dish has multiple presentation methods, building a more accurate food 
recognition model may be possible. 

UPMC Food-101 [67]: After referring to ETHZ Food-101, Xin et al. 
(2015) [67] collected a comprehensive food dataset. This dataset in-
cludes 101 classes of food and 90,840 images in total. The number of 
images in different classes ranges from 790 to 956. In addition, 93,533 
images in the dataset contain the original HTML source page. Another 
86,574 images with text descriptions. Compared with other food101 
datasets, the images of the UPMC Food-101 dataset no longer come from 

a single class of food but include food from different cuisines. 
UNIMIB2015 [68]: Ciocca et al. (2015) [68] collected photos of the 

dishes before and after meals of 1000 people in real scenes. Each group 
of images includes 3 random dishes. The dataset includes 15 different 
categories of dishes. All photos are captured by an automated camera. 
Through the detection of the tray, the specific dish images were obtained 
from the original photos. All 2000 images have been manually anno-
tated, including the ground truth for dish classification and the ground 
truth for residual estimation. Of the total 2000 images, 600 images are 
used as training sets, and the remaining 1400 images are test sets. 

Dishes [69]: Herranz et al. (2015) [69] collected images from 187 
restaurants and 701 unique food categories from a city on the Internet. 
More than 15 images are obtained for each dish, 10 of which are used as 
training sets. This dataset is innovative and hopes to link the classifi-
cation of dishes, recognition of restaurants, and geographic information 
features. 

Menu-Match [70]: Beijbom et al. (2015) [70] collected a group of 
real dining images from three local restaurants and built a dataset for 
classifying dishes and identifying nutrient elements. They chose an 
Italian restaurant, a Chinese restaurant, and a soup restaurant. The 
dishes are randomly selected by customers and photographed by pho-
tographers from multiple angles. Finally, they collected 646 images of 
41 dishes. And 1386 food ingredients are annotated from these images. 
Nutritionists have provided near-real nutritional markers. Therefore, the 
dataset contains accurate nutrition information and real food images. 

UNIMIB2016 [71]: Ciocca et al. (2017) [71] collected the 
UNIMIB2016 dataset on the basis of UNIMIB2015 in order to improve 
the model’s ability to identify multiple foods. The images are from the 
canteen of Milan University. The image is captured by mobile phone. 
They collected a total of 1442 images that had passed the quality in-
spection stage. After removing overly blurred images and duplicate 
photos, this dataset has 1027 images with trays. These images include 73 
food classes and a total of 3616 food samples. Compared with 
UNIMIB2015, UNIMIB2016 has added more fast-food images of can-
teens. In addition, many images also add interfering objects that do not 
belong to food, such as mobile phones, wallets, and keys. 

Food-975 [41]: Zhou et al. (2016) [41] collected 37,885 food images 
from 6 restaurants in order to study ultra-fine grain image recognition. 
They hope that the neural network model can tell which restaurant these 
dishes come from from the subtle differences in images. These images 
contain a total of 975 different dishes. 4951 photos from a controlled 
environment and 351 images from a specific website constitute a com-
plex test set to test the robustness of the model. Finally, the dataset 
contains a three-tier hierarchy. The top layer is a nutritional classifica-
tion table based on 51 food ingredients; In the middle layer are 781 
different kinds of dishes created by aggregating restaurant labels; At the 
bottom layer are 975 fine-grained labels. 

Food500 [72]: Merler et al. (2016) [72] collected a huge food dataset 
to enable neural network models to learn as many food classifications as 
possible. They have collected over 150 K effective food images world-
wide via the Internet. These images contain 508 different foods from 
different countries. An average of 292 frontal images were taken from 
each class. The smallest class has 26 images (yellow corn chips), and the 
largest class has 489 images (gulab jaamun). Despite a large number of 
images, each image has been labeled manually by three groups of la-
belers, reducing the probability of mislabelling. This huge open-source 
dataset is good for training a food classification model. 

Food11 [73]: Singla et al. (2016) [73] collected an 11-classes food 
dataset by using and modifying the major food classes defined by the 
United States Department of Agriculture (USDA): bread, dairy products, 
desserts, eggs, fried food, meat, noodles/noodles, rice, seafood, soup, 
and vegetables/fruits. This dataset combines images from existing 
datasets with images of food on the web. For each class, the images in 
the dataset contain a wide variety of ingredients to make training more 
difficult. This dataset contains 16,643 images, of which 9866 images are 
training sets, 3430 images are validation sets, and the remaining 3347 
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images are test sets. 
Food5K [73]: This dataset collects 5000 images from other publicly 

available datasets. These include 2500 images of food and 2500 images 
of people and other non-food items. There are 3000 images for the 
training set, of which 1500 are food images, and 1500 are non-food 
images. The test and validation sets have 1000 images, respectively, 
including 500 food and 500 non-food images. The dataset attempts to 
add a large number of non-food images that are visually similar to food 
images, thus increasing the difficulty of classification tasks. 

UNCIT-FD1200 [74]: Farinella et al. (2016) [74] collected a dataset 
consisting of 4754 food images to study the food monitoring system. In 
order to show more geometric and photometric changes in the entire 
dataset, each plate of food was photographed from multiple angles many 
times. The dataset is divided into eight categories: appetizer, main 
course, second course, single course, side dish, dessert, breakfast, and 
fruit. Specifically, the dataset contains a total of 1200 images of different 
dishes. These images come from different dishes of different national-
ities, for example, Britain, Japan, India, Italy, Thailand, etc. 

Instagram 800k [75]: Rich et al. (2016) [75] collected a super huge 
dataset from the images they shared on Instagram. By studying the 
relationship between images and text on Instagram posts, the dataset 
can be used to understand the relationship between the content of the 
real image taken and the label. The dataset collects images with 
food-related labels from October 2014 to March 2015 for two different 
periods (winter and spring). The dataset contains images of the 43 most 
popular food-related labels on Instagram. The dataset also contains 
image-related metadata such as favorites, reviews, titles, GPS locations, 
and tags. The dataset consists of a total of 808,964 images. 

EgocentricFood [76]: In real life, food is not necessarily in the center 
of the image. Bolaños et al. (2016) [76] improve the accuracy of food 
classification by simultaneously locating and identifying food. Using the 
wearable camera Narrative Clip, the dataset collected 5038 images from 
9 different classes (glass, cups, cans, jars, cups, bottles, plates, food, and 
baskets). The image was labeled with 8573 boundary box annotations by 
manual annotation. This is the first image dataset to be used for locating 
and identifying food-related objects. 

FOOD524DB [77]: Ciocca et al. (2017) [77] are concerned about the 
drawbacks of existing datasets in terms of the number of food classes or 
the number of images in a single class. By combining and collating 
existing Food50, Food-101, UECFOOD-256, and VIREO datasets, they 
obtained a very large Multicategory food dataset of 247,636 images. The 
dataset reduced the total number of food classes by combining duplicate 
classes describing approximations to 524. Each class contains more than 
100 food images. There are 241 classes that contain 100 to 199 images, 
58 classes that contain 200 to 499 images, 113 classes that contain 500 
to 999 images, and the remaining 112 very popular food classes that 
contain more than 1000 images. 

ISIA Food-200 [39]: Min et al. (2019) [39] built a vocabulary of food 
classes through the "food list by ingredients" in Wikipedia. Then they 
collected 197,323 images on the Internet according to the vocabulary. 
The images were divided into 200 food classes and 319 visible in-
gredients. Each food class has more than 500 images. The dataset is 
divided into the training set, verification set, and test set at the rate of 
6:1:3. 

FoodX-251 [78]: Kaur et al. (2019) [78] collected a total of 251 food 
classes, including 158k images collected from the Internet. 12k images 
are verification sets, 28k images are test sets, and the remaining 118k 
images are training sets. All images are labeled manually. These food 
classes are similar in fine-grained and visual terms, such as different 
types of cakes, sandwiches, puddings, soups, and pastries. The dataset 
includes 15 different types of cakes and 10 different types of pasta. This 
dataset can be used to train the model to recognize different types of 
food with similar appearances. 

FoodAI-756 [79]: Sahoo et al. (2019) [79] collected a large number 
of popular food in Singapore through the Internet. The dataset defines 
152 "superclasses" representing common types of food and beverage, 

including beer, fried rice, roast chicken, ice cream, etc. These super-
classes are further subdivided into 756 kinds of food. There are at least 
500 images (65,855 images in total) collected for each of the 100 visual 
foods in 8 classes (such as India, China, desserts, Malay, etc.). In general, 
there are 756 visual foods in this dataset, including about 400,000 im-
ages. Each food has at least 174 images and a maximum of 2312 images. 
The training set contains 377k images, the verification set contains 7.5k 
images, and the best test set contains 38k images. 

ISIA Food-500 [40]: Min et al. (2020) [40] summarized the most 
representative 500 food classes from 4943 food classes in the network 
and existing datasets. There are 399,726 images in the dataset, with an 
average of 800 images in each class. The food classes in this dataset 
include oriental and western cuisines. According to the GSFA standard, 
the foods in our dataset and the existing typical dataset are mainly 
concentrated in 11 classes: meat, grains, vegetables, fish, fruits, dairy 
products, baked goods, fat, candy, beverages, and eggs. Compared with 
other datasets, the ISIA food-500 has added classes such as dairy prod-
ucts and beverages. The class tag of the dataset is represented by more 
than two words and connected with "-", such as "pea-soup". 

Food2K [80]: Min et al. (2021) [80] collected more than 1 million 
images containing 2000 classes. Compared with existing food recogni-
tion datasets, Food2K exceeds them by an order of magnitude in terms of 
classes and images. This is a new and challenging benchmark for 
developing new food visual models. With the help of experts in the food 
field, they defined 12 superclasses, such as bread and meat. Then this 
superclass was subdivided into food material classes, such as pork and 
beef. Finally, they obtained 1710 kinds of oriental food and 290 kinds of 
western food. 

Allrecipes [43]: Gao et al. (2020) [43] built a large-scale dataset 
containing food nutrition data from the formula-sharing platform All-
recipe.com. The dataset contains 68,768 users, 45 630 recipes, 33 147 
ingredients, and 1093 845 interactions. Each recipe in the dataset has a 
corresponding nutritional fact bar that provides calorie information. A 
total of 52,821 images from 27 different food classes were included in 
the dataset, of which 60% were training sets, 10% were validation sets, 
and the remaining 30% were test sets. The images of the test set contain 
interactive information. 

MAFood-121 [81]: Aguilar et al. (2019) [81] collected a food image 
data collection dish, cuisine, and classes from the Internet that contains 
three levels. The cuisine level is the largest base, with a total of 11 
cuisines. Eleven traditional dishes are selected for each cuisine. Each 
dish belongs to at least one of the ten food classes: bread, eggs, fried 
food, meat, noodles/pasta, rice, seafood, soup, dumplings, and vegeta-
bles. The dataset consists of 121 dishes. Each dish has a maximum of 250 
images. There were 21,175 images in the dataset, 72.5% for training, 
12.5% for validation, and 15% for testing. Cuisine and dish can only take 
one value per image, while classes have multi-annotations. 

FoodBase [82]: Popovski et al. (2019) [82] randomly selected 1000 
semantic annotations of recipes with semantic tags from the Hansard 
corpus and post-processed the annotated semantic tags to generate the 
FoodBase dataset. Foodbase has collected 274,053 food entities in five 
classes (namely "appetizer/snack", "breakfast/lunch", "dessert", "dinner" 
and "drink"), and 13,079 unique food entities. 

2.3. Summary of datasets 

We investigated 51 datasets from 2009 to 2022 and classified them 
according to the food categories contained in the datasets. The specific 
classification and statistics are recorded in Table 1, and sample images 
of some representative datasets are listed in Fig. 2. Half of the datasets 
are multi-categories datasets. The single-category dataset mainly in-
cludes Chinese, Japanese, fast, and fresh vegetables and fruits. Among 
them, the number of datasets for Japanese food is the largest. Although 
there is no single-category dataset of French food and Italian food, the 
two most famous cuisines. However, we can find the data of these two 
cuisines from several large-scale multi-categories datasets. 
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Table 1 
Summary of datasets.  

Name Food Category NI NC Raw/ 
cooked 

Annotation type Collecting Method Public Time 

FNDDS [44] American 7000 11 cooked classification camera &existing food 
databases 

√ 2011 

ETHZ Food-101 [45] American 100,000 101 cooked classification Internet √ 2014 
FOOD201 [46] American 50,374 201 cooked classification & segmentation existing food databases √ 2015 
ChineseFoodNet [18] Chinese 185,628 208 cooked classification Internet √ 2012 
Chen [35] Chinese 500 50 cooked classification phone & Internet × 2 

012 
Vireo-Food 172 [36] Chinese 110,241 172 cooked ingredient recognition Internet √ 2016 
ChinaMartFood-109 [47] Chinese 10,921 109 cooked classification & nutrient element 

identification 
Internet √ 2022 

PFID [48] Fast Foods 1388 15 cooked classification camera √ 2009 
Indian Food Database  

[54] 
Indian 5000 50 cooked classification Internet √ 2017 

Food50 [49] Japanese 5000 50 cooked classification Internet × 2 
009 

Food85 [50] Japanese 8500 85 cooked classification Internet × 2 
010 

Foodlog [37] Japanese 6512 2000 cooked classification &energy regression Acquired from user √ 2011 
UEC-FOOD-100 [38] Japanese 14,361 100 cooked classification Internet × 2 

012 
UEC-FOOD-256 [51] Japanese 25,088 256 cooked classification Internet √ 2014 
FLD [52] Japanese 3,007,157 1195 cooked classification phone √ 2018 
Sushi-50 [53] Japanese 3963 50 cooked classification Internet √ 2022 
Pakistani Food Dataset  

[55] 
Pakistani 4928 100 cooked classification Internet & existing food 

databases 
√ 2020 

Rice dataset [56] rice - 1 cooked Energy regression Acquired from user × 2 
014 

THFood-50 [57] Thai 2500 50 cooked classification Internet √ 2017 
Turkish-Foods-15 [58] Turkish 7500 15 cooked classification Internet √ 2017 
Fruits 360 [59] Fruits 38,409 60 raw classification camera √ 2018 
Fruits yield [64] Fruits 1000 5 raw classification camera × 2 

021 
FruitNet [63] Fruits 19,526 6 raw classification camera √ 2022 
Citrus Fruits [34] Fruits 4136 4 raw classification Internet × 2 

022 
XiaotangshanVeg [65] Vegetables 4284 6 raw classification camera √ 2021 
VegFru [60] Vegetables & Fruits 160,731 292 raw classification Internet √ 2017 
FruitVeg-81 [61] Vegetables & Fruits 15,630 81 raw classification Internet √ 2017 
HyperspectralFruVeg  

[62] 
Vegetables & Fruits 2700 13 raw classification camera √ 2019 

TADA [42] Artificial and Generic 
Food 

256 11 cooked classification camera √ 2009 

UNCIT-FD889 [66] MC 3583 899 cooked classification phone √ 2014 
UPMC Food-101 [67] MC 90,840 101 cooked Classification Internet √ 2015 
UNIMIB2015 [68] MC 2000 15 cooked recognition and leftover 

estimation. 
phone √ 2015 

Dishes [69] MC 117,504 1173 cooked dishes classification, restaurant 
identification 

Internet √ 2015 

Menu-Match [70] MC 646 41 cooked classification & nutrient element 
identification 

Internet √ 2015 

UNIMIB2016 [71] MC 1027 73 cooked classification camera × 2 
016 

Food-975 [41] MC 37,785 375 cooked classification camera × 2 
016 

Food500 [72] MC 148,408 508 cooked classification Internet × 2 
016 

Food11 [46] MC 16,643 11 cooked classification existing food databases √ 2016 
UNCIT-FD1200 [74] MC 4754 1200 cooked classification phone √ 2016 
Instagram 800k [75] MC 808,964 43 cooked Classification & geographic 

information 
Internet √ 2016 

EgocentricFood [76] MC 5038 9 cooked food localization and recognition camera √ 2016 
Food5K [73] MC 5000 - cooked classification Internet & existing food 

databases 
√ 2016 

FOOD524DB [77] MC 247,636 524 cooked classification Existing food databases √ 2017 
ISIA Food-200 [39] MC 197,323 200 cooked classification Internet √ 2019 
FoodX-251 [78] MC 158,846 251 cooked classification Internet √ 2019 
FoodAI-756 [79] MC 400,000 756 cooked classification Internet & existing food 

databases 
× 2 

019 
Allrecipes [43] MC 52,821 27 cooked classification & nutrient element 

identification 
Internet √ 2019 

MAFood-121 [81] MC 21,175 121 cooked classification Internet √ 2019 
FoodBase [82] MC 274,053 13,079 cooked classification Internet & existing food 

databases 
√ 2019 

(continued on next page) 
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There is also a kind of fresh vegetables and fruits dataset in the 
single-category datasets. The classification of vegetables and fruits is of 
great significance in agriculture and retail trade. In addition to the basic 
classification of vegetables and fruits, the dataset of vegetables and fruits 
also cares about the maturity and quality of vegetables and fruits. This is 
the focus that other cooking datasets lack: food safety. 

In recent years, datasets contain more and more images and more 
and more types of images. Rich data categories and quantities can better 
help us train a sufficiently flexible neural network model. Multi- 

categories datasets can provide more information to help the model 
classify the categories accurately to improve the accuracy and effec-
tiveness of the model. In addition, the use of multi-categories datasets 
can effectively reduce the overfitting of the model to specific categories, 
thus reducing the system risk of the model under abnormal conditions. 
Therefore, Multi-categories datasets are particularly important in 
training machine learning models, which can better help us improve the 
accuracy and robustness of the models. 

In addition, multi-categories datasets also pay more and more 

Table 1 (continued ) 

Name Food Category NI NC Raw/ 
cooked 

Annotation type Collecting Method Public Time 

ISIA Food-500 [40] MC 399,726 500 cooked classification Internet & existing food 
databases 

√ 2020 

Food2K [80] MC 1,036,564 2000 cooked classification Internet & existing food 
databases 

√ 2021 

(MC = multi-categories; NC = number of classes; NI = number of images) 

Fig. 2. Sample images from a few food datasets.  
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attention to food nutrition information and restaurant geographic in-
formation and also collect and analyze relevant consumer behavior, 
restaurant service quality, and other information so as to better explain 
the various factors affecting food classification and better help us un-
derstand the identification and analysis of food categories. 

3. Food-oriented machine vision system 

With the advances in deep learning and machine learning methods, a 
food-oriented machine vison system (MVS) is becoming increasingly 
significant to certain the delivery of products with high quality in terms 
of accurate packaging, food quality, and security. The food-oriented 
machine system will be able to capture the food information from 
different aspects, including size, dimensions, shape, surface, appear-
ance, etc. Then, the captured data will be analyzed for monitoring 
purposes with the aim of reducing human labor and improving accuracy 
while reducing human errors. 

The machine vision system should include cameras and data pro-
cessing units to make next-stage decisions, as shown in Fig. 3. The 
captured data should be of the high quality that the data processing unit 
can process. So basically, the food-oriented MVS system contains two 
parts: (1) Data acquiring and (2) data processing units. Their roles are 
described in Table 2. 

3.1. Stereo system, remote sensing, and hyperspectral imaging 

A stereo system is a type of camera with two or more lenses that 
capture images for each lens [83,84]. It is mainly to mimic human 
binocular vision. The distance between cameras is similar to the distance 
between someone’s eyes. It will therefore provide the depth information 
- the distance of an object to the camera together with the 2D image data 
to form the 3D data [85,86]. Compared to the traditional 2D camera, the 
stereo system is able to improve the accuracy of reconstructing 
real-world subjects [87]. With the advanced computing power, the 
stereo system is becoming increasingly popular for object recognition 
and environment modeling. For example, the stereo camera is popularly 
used in vehicle-to-vehicle distance estimation [88], hearing research 
[89], estimating the length composition of fish [90], etc. Nowadays, 
stereo cameras can be implemented by simply mounting cameras in 
pairs or one camera and one lens. 

Remote sensing detects the physical object at a distance, for example, 
from satellites, aircraft, etc., by measuring the reflected and emitted 
radiation. Remoting sensing has been widely applied in many different 
fields, including geography [91,92], military [93,94], planning [95–97], 
economic development [98–100], commercial [101–103], and agricul-
ture [104–106]. There are two different types of remoting sensing 
methods: active remote sensing and passive remote sensing. Their dif-
ferences are shown in Table 3. 

Different from traditional imaging methods that assign each pixel by 
primary colors (red, blue, and yellow), Hyperspectral image (HIS) is to 

analyze a wide range of spectrum of light. It is to divide the light that 
strikes each pixel into many different spectral bands to describe the 
collected information. HIS is developed by NASA’s Jet Propulsion Lab-
oratory in the late 1970s. It has become increasingly important in many 
different research fields in recent years. For example, Wieme et al. 
(2022) [107] stated that HIS could work as an effective imaging tool for 
assessing fruit, vegetables, and mushrooms. Porebski et al. (2022) [108] 
conducted a study to analyze the contribution of color imaging and 
hyperspectral imaging for texture classification. 

3.2. X-Ray, thermal imaging, MRI, and additional imaging 

X-Ray imaging is a painless imaging method that utilizes a pene-
trating form of high-energy electromagnetic radiation. John Hall- 
Edwards in Birmingham, England, on 11 January 1896, the first time 
used the X-ray for clinical conditions. He radiographed the hand of an 
associate with a needle stuck in. Then, on 14 Feb 1896, he first used the 
x-ray in a surgical operation. Nowadays, X-Ray has been widely used for 
the detection of bone fractures [109,110], dental problems [109,111], 
some types of injuries, pneumonia [112,113], some types of tumors 
[114,115], food inspection [116,117], etc. The food X-ray inspection 
system is mainly designed for the end of line quality control or to check 
the quality of the raw materials for further processing. It will help to 
detect the smallest contaminants and make sure the product will comply 
with all major food safety standards. Matsui, T. et al. (2022) [118] 
developed an automatic detection model based on X-ray imaging and 
image processing for stem end rots of ‘Hass’ avocado fruit. 

Thermal imaging is to record the subject’s temperature as it emits 
infrared energy and then assigns the temperature a shade of color, 
therefore, helping to visualize the heat which is not visible to human 
eyes [119,120]. The thermal camera is equipped with a heat sensor 
capable of detecting tiny temperature differences [121,122]. Therefore, 
the thermal camera is to collect the objects’ infrared radiation and then 
creates an image based on the collected information to improve the 
visibility of objects in a dark environment. 

Thermal imaging has been applied to many different research fields. 
McGinnis et al. (2022) [123] developed new thermal imaging to detect 
the microvasculature during surgery to implement real-time image 
acquisition. Sarhadi et al. (2022) [124] applied machine learning for 
damage detection in glass-epoxy composite materials based on thermal 
imaging. There are many other fields where thermal images are applied, 
including documenting and quantifying disease activity in rheumatoid 
arthritis (RA) [125], automatic detection, segmentation, and classifica-
tion of breast lesions from thermal images [126], etc. Thermal imaging 
has also emerged as a powerful non-destructive measurement technique Fig. 3. Typical machine vision system.  

Table 2 
Parts of a food-oriented MVS system.  

Part Role 

Data 
acquiring 

The data-acquiring system determines the type and quality of the 
captured data. 
To certain the effectiveness of the output, the data-acquiring system 
should be of certain standards to ensure the captured data is valid. 

Data 
processing 

The data processing unit plays an important role as to process the 
captured data and then making the next stage decision.  

Table 3 
Active remote sensing versus passive remote sensing.  

Type Definition Examples 

Active Active remote sensing is first to emit 
energy and then with a sensor to collect 
the energy reflected from the target 

RADAR and LiDAR 

Passive Passive remote sensing is to detect the 
radiation emitted by the object/ 
surrounding areas 

charge-coupled devices, 
radiometers, and infrared  
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in the food industry [127]. 
Magnetic resonance imaging (MRI) is a noninvasive method widely 

used in clinical to examine organs, tissues, and skeletal systems [128, 
129]. It produces high-resolution images of the inside of the body that 
help diagnose a variety of problems [130]. MRI scanners employ strong 
magnetic fields, magnetic field gradients, and radio waves to form im-
ages of the organs in the body [131,132]. During the imaging process, 
radio waves are sent from the MRI machine, moving atoms in the object 
out of their original position. Afterward, the atoms return to their 
original position and send back radio signals while the radio waves are 
turned off [133,134]. Therefore, the computers will convert the received 
signals into an image of the part of the object examined. MRI is widely 
used in clinical medicine and biomedical research. 

Meanwhile, MRI also allows the visualization of the structure of food 
noninvasively and enables the determination of the characteristics or 
texture of the food as a non-destructive imaging method. For example, 
Nagata et al. (2016) [135] developed an outdoor MRI system to measure 
the sap flow in a living tree. Collewet et al. (2022) [136] used 
Multi-exponential MRI T2 to classify and characterize fruit tissues. 
Winisdorffer et al. (2015) [137] employed MRI to investigate the water 
status and distribution at the subcellular level in whole apple fruit. 

Some imaging methods can be used to obtain information about the 
target subjects. For example, Cai et al. (2023) [138] utilized Raman 

scattering spectroscopic imaging for the Characterization and recogni-
tion of citrus fruit spoilage fungi. Zou et al. (2022) [139] investigated 
Mass spectrometry imaging (MSI) as a tool for food microbiology. Verdú 
et al. (2023) [140] proposed to use of laser scattering imaging combined 
with CNNs for the modeling of the textural variability in a vegetable 
food tissue. 

4. Preprocessing: data augmentation 

Food image datasets are commonly small in size, which will raise the 
problem that weakens the classification models’ generalization compe-
tence, which stands for the so-called ‘performance gap’ of a classifier 
assessed on the test set Stest and training set Strain. This Chapter expatiates 
the definitions and techniques of DA, an effectual image-domain method 
to alleviate overfitting. 

4.1. Small-size dataset and its solutions 

For a small-size dataset (SSD) [141], as the training set is small, the 
model has fewer samples to learn from, thus increasing the risk of 
overfitting [142]. Fig. 4(a) shows the performance curve where the 
overfitting takes place at the 7th epoch. We can clearly spot that the test 
error Etest starts to increase at 7-th epoch while the training error Etrain 

Fig. 4. Illustration of SSD and its solutions. (a and b) training and test performance curves. (c) SMOTE, (d) common solutions, (e and f) DA reduces d(Strain, Stest).  
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remains to diminish. Fig. 4(b) shows two favorite performance curves, in 
which both the curves of Etrain and Etest drop till Epoch 10. 

There are three types of classical solutions to SSD problems: (i) data 
generation (DG), (ii) regularization, and (iii) ensemble learning (EL) 
[143]. DG makes artificial data from a sampled data resource. Random 
oversampling is a robust method used to create multiple copies of some 
of the minority classes. The oversampling can be carried out more than 
once (2x, 5x, 10x, etc.). The synthetic minority over-sampling technique 
(SMOTE) [144] belongs to a representative DG method. For example, we 
take a sample A from the minority class and select its k nearest neigh-
bors, N(A) = {B1,B2,…, Bk}. We randomly select one neighbor sample 
from the k neighbor samples N(A). Suppose we pick up B1. SMOTE first 
draws a line V from sample A to B1. V is defined as V = B1 − A. Then, an 
artificial sample S is made by, 

S = A + β × V, (1)  

where β ∈ [0, 1] is a random amount, obeying the uniform distribution. 
Fig. 4(c) gives an illustration of the concept of SMOTE. The red circle 

stands for point A, which has k = 5 samples around it, each sample is 
with the shape of a square. The neighborhood is represented by a big 
green circle. The algorithm randomly selects a sample B1, which is 
represented as a yellow square. Assuming β = 0.6, the sample S is rep-
resented as a sapphire diamond. 

Regularization is largely used for the regularizing models’ weights 
[145]. It makes the model to be more ‘simpler’. Suppose a measure of the 
magnitudes of the weighs of a model M is denoted as w(M), the large 
weights will create the model M unsteady. Assume the stability of M is 
denoted as s(M), we have w↑⇒s↓. The reason is slight changes in the 
inputs yield big changes in the output for large-weight models. In 
contrast, small weights are considered more regular (viz., less special-
ized), thus, making the corresponding model more stable. w↓⇒s↑. 

Regularization has two types: explicit regularization and implicit 
regularization [146]. The first one explicitly adds a penalty or constraint 
term to the optimization problem. The latter is all other regularization 
forms, such as early stopping, outlier removal, etc. EL approaches [147] 
employ various models to attain superior predictive performance to any 
individual model. 

As shown in Fig. 4(d), DA is a method that works out SSD problem 

from its root, Strain. The augmented data by DA stand for a more all- 
inclusive training set. Accordingly, DA helps minimize the distance d 
between Strain and Stest , namely, d(Saug,Stest) < d(Strain,Stest).

Fig. 4(e) illustrates the decrease of d(Strain, Stest) after DA, in which 
each dot stands for a sample food image. It indicates Strain cannot 
envelop the qualities of the Stest . Hence, the model based on the Strain may 
overfit. Fig. 4(f) illustrates the area of Strain is distended by data 
augmentation, now the augmented training set Saug cover the area of 
Stest . So, we can conclude that d(Saug, Stest) is now less than the original 
d(Strain, Stest) with the help of data augmentation. 

4.2. Safe and unsafe DA 

DA is commonly used for food category classification. The reason is 
that food image collection is rather costly and labor demand. Further, 
DA is also able to help food detection and semantic segmentation. 

The safety of DA is another worthy aspect. Assume there is an image 
I, and its corresponding correct label is L. The definition of a safe DA 
Dsafe is: L[Dsafe(I)] = L(I). Namely, a safe DA is label-preserving. How-
ever, in other instances, the unsafe DA Dunsafe changes the labels as 
L[Dunsafe(I)] ∕= L(I). 

The definition of safe or unsafe DA is domain-dependent [20], and its 
accurate determination requires expertise and knowledge. For example, 
after comparing Fig. 5(a and b), we can conclude rotation is safe for the 
gammon steak. However, after comparing Fig. 5(c and d), we find 
rotation is unsafe for digit recognition, as six will be recognized as nine 
after a 180-degree rotation. 

Meanwhile, the safe or unsafe of some DAs is also amount- 
dependent. Suppose we have the fries image, shown in Fig. 5(e). The 
injection of a small quantity of noise is safe, as shown in Fig. 5(f), but the 
injection of a huge quantity of noise is unsafe for the same fries image, as 
spotted in Fig. 5(g). 

4.3. Geometric transforms 

Geometric transformations (GTs) are prevalent DA resolutions to 
enlarge the number of images in Strain. The benefit of GT is its simplicity. 
The weakness is (i) surplus storage memory, (ii) additional computation 

Fig. 5. Illustration of safe and unsafe DA. (a and b) a safe 180-degree rotation, (c and d) an unsafe 180-degree rotation, and (e-g) Noise injection may be safe or 
unsafe depending on the noise amount. 
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cost, and (iii) extra training period. GT should be examined wisely 
because a number of GTs possibly will change the images’ labels. 

4.3.1. Flipping, scaling, rotation, shear, and cropping 
With flipping, we reflect the raw image I along a specified line, 

obtaining a mirror image of I. Flipping is one of the easiest and most 
clear-cut DA methods. Vertical flipping (VF) is less prevalent than hor-
izontal flipping (HF) [148]. Tests on CIFAR-10, ImageNet, and other 
food datasets demonstrate the efficiency of flipping. Flipping results are 

unsafe on datasets, for example, MNIST or SVHN, because those two 
datasets contain transcripts and numerals. Fig. 6(a) displays an original 
rice image, Fig. 6(b) shows the horizontal flipping result, and Fig. 6(c) 
shows the vertical flipping result. 

Scaling is a linear transform that either enlarges or shrinks the image 
by a scaling factor s which applies the same degree in both directions. 
Assume the pair of coordinates (POC) of the raw pixel is [x1,y1], and the 
POC after the shear transform is [x2,y2], the scaling is defined as 

Fig. 6. Illustrations of geometric transforms. (a) original image, (b and c) horizontal and vertical flipping, (d-f) scaling with various s values, (g) raw rice image with 
blue grid lines, (h and i) rotation results, (j and k) horizontal and vertical shear, (l) crop schematic, (m) Cropped image from the blue rectangle, (n) Cropped image 
from the green rectangle, (o) Translations along various directions, (p and q) translation results, (r-u) displacement fields and distorted images. 
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[x2, y2, 1] = [x1, y1, 1] ×

⎡

⎣
s 0 0
0 s 0
0 0 1

⎤

⎦. (2) 

When s = 1. Scaling returns an identical image. When s > 1, scaling 
is called dilation. When s < 1, scaling is called contraction. Fig. 6(d-f) 
show the scaling result with s = 0.8, s = 1, and s = 1.2, respectively. 
Note here blue grid lines are added for better vision. 

Rotation DA is the movement of I around a given point. Frequently, a 
clockwise rotation corresponds to a negative rotation angle r, whereas 
an anticlockwise rotation corresponds to a positive rotation angle r. 

In the DA circumstance, I rotates around the central pixel [149]. 
Small-angle rotations, for example, r within [− 15∘,15∘] are normally safe 
for numeral and transcript recognition, whereas a large-angle rotation 
such as within [− 90∘,90∘] might cause unsafety, viz., the labels are no 
more maintained. The definition of rotation is below: 

[x2, y2, 1] = [x1, y1, 1] ×

⎡

⎣
cos(r) − sin(r) 0
sin(r) cos(r) 0

0 0 1

⎤

⎦. (3) 

Fig. 6(g) displays the raw rice image with blue grid lines. Fig. 6(h and 
i) show the rotation DA results with r of 20∘ and − 20∘, respectively. 

Shear DA relocates every pixel in a preset direction by an amount, 
which is proportional to its signed distance from the line passing 
through the origin and parallel to that direction [150]. There are two 
commonly available shear mapping: horizontal shear (HS) and vertical 
shear (VS). The HS is defined as 

[x2, y2, 1] = [x1, y1, 1] ×

⎡

⎣
1 0 0

zhs 1 0
0 0 1

⎤

⎦, (4)  

where zhs stands for the HS factor. VS is defined as: 

[x2, y2, 1] = [x1, y1, 1] ×

⎡

⎣
1 zvs 0
0 1 0
0 0 1

⎤

⎦, (5)  

where zvs is the VS factor. Fig. 6(j and k) show the corresponding cognate 
HS and VS outcomes. 

In the traditional food category classification field, cropping DA is an 
effectual utensil to take patches out from a large or mixed-size image. 
The following classification AI models are operated on the patches 
{P1, P2,…} other than the raw image itself I. Specifically, cropping DA 
takes out the patches with a preset size out of I [151,152]. 

Fig. 6(l) displays the crop DA schematic, in which two squares (blue 
and green) mark out the areas to be cropped. Fig. 6(m and n) display the 
patches (P1, P2) within the blue and green squares. 

4.3.2. Translation and elastic distortion 
A translation moves every pixel by the same distance along the same 

angle [153]. The translation DA is generally exercised in food category 
classification. The food naturally gathers food images in nearly flaw-
lessly centered places, necessitating the following classification algo-
rithms to predict similarly centered food images. 

By means of the translation DA [154], the dataset is added by other 
translated images (food not centered). The trained classifier is more 
reliable and can predict capably on other images in which foods are not 
centered. 

If images are shifted outwards of the raw image coordinate, there are 
missing values vm. Therefore, it is necessary to fill in vm with either a 
constant or random noise nrand. 

vm =

⎧
⎨

⎩

0
255
nrand

, (6)  

where 0 and 255 stand for black and white, respectively. 

Fig. 6(o) displays an image from which the translation DA can 
displace it along various directions. Fig. 6 (p and q) show two translation 
DA results with the translation parameters of [30, 40] and [-40, -30], 
respectively. 

The disparity between translation and cropping is (i) cropping DA 
reduces the image size, and (ii) translation DA preserves the image size. 
If the raw image size is [W0,H0], then the size after cropping is [Wcrop,

Hcrop] and the size after translation is [Wtran,Htran], we have 
{

Wtran = W0,Htran = H0
Wcrop < W0,Hcrop < H0

. (7) 

Elastic distortion uses the displacement field (DF) [155] to generate 
the distorted image. Fig. 6(r and t) show two DFs [156] and Fig. 6(s and 
u) show the corresponding two distorted images. It is easily spotted that 
the brim of the bowl in the original image is straight, but the brims of the 
bowl in the distorted images are now zigzag. 

4.4. Noise injection 

Noise injection stands for adding noise to the training images to 
make the training of the classification model more robust. Scholars often 
use the probability density function (PDF) to describe the distribution of 
the noise. 

4.4.1. Gaussian noise 
The Gaussian noise [157] model is frequently utilized to replicate 

thermal noise. The PDF of the univariate Gaussian noise G is defined: 

pG(x) =
1
̅̅̅̅̅̅̅̅̅̅
2πσ2

√ e−
(x− μ)2

2σ2 , − ∞ < x < +∞, (8)  

where μ symbolizes the mean and σ2 symbolizes the variance [158]. For 
input training images, x means the gray-level of added noise [159]. The 
noise-injected image is written as y = I + G, where I is the original 
image, and G ∼ pG(x) is the added Gaussian noise image. Fig. 7(a) dis-
plays the original gammon image. Fig. 7(b-d) displays the Gaussian 
noise-injected image with σ2 = 0.01, 0.02, and 0.05, respectively. 

4.4.2. Salt-and-pepper, speckle, and Poisson noises 
The salt-and-pepper noise (SPN) [160] stays another category of 

image noise frequently used in DA. The operation of salt-and-pepper is 
two steps. First, it assigns each pixel a random probability value p(i, j)
from a uniform distribution of the interval [0, 1]. The noise injected 
image y is defined as 

y(i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Np p(i, j) <
γ
2

Ns
γ
2
≤ p(i, j) < γ

I(i, j) γ ≤ p(i, j)

, (9)  

where Ns = 255 or the maximum grayscale value, standing for the salt 
noise, and Np = 0 denoting the pepper noise. γ stands for the noisy 
density, a factor symbolizing how many percentages of all pixels are 
contaminated with SPN. 

The SPN [161] does not influence the entire image but alters parts of 
the original pixels. Fig. 7(e-g) illustrates an example of salt-and-pepper 
noise injection with the noisy density values assigned as 0.05, 0.1, and 
0.2, respectively. 

Speckle noise (SN) is multiplicative [162] and frequently triggered 
by poor information channels. Since it is multiplicative with the raw 
images, the noise takes place with the image where pixel values I(i, j) are 
nonzero and vanishes where the values of I(i, j) are zero. SN is modelled 
as 

y = I + NmI + Na, (10)  
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where I stands for the noise-free raw image. y is the noise-injected 
image. Nm and Na mean the multiplicative noise and additive noise, 
respectively [163]. If there is no additive noise, then Eq. (10) degrades 
to y = I+ NmI. Suppose the variance of the speckle noise is denoted by 
σ2, then three examples of speckle noise with the values of 0.05, 0.1, and 
0.2 are given in Fig. 7(h-j). 

Poisson noise (PN) obeys the Poisson process P(λ). 

P(λ) =
λke− λ

k!
. (11) 

The mean of P(λ) is λ. PN is caused by the uncertainty [164] related 
to the measurement of light, intrinsic to (i) the quantized mechanism of 
light and (ii) the independence of photon recognitions [165]. For 
example, if a pixel of the input image has a value of 20, then the value of 
the related output pixel is produced from a Poisson distribution P(λ)
with λ = 20. An example of PN injected image is show in Fig. 7(k). 

4.5. Photometric transforms 

Photometric transforms, identified as color space transform [166], 
are to operate the grayscale values of a grayscale image or the RGB 
values of a color image. The straightforward photometric transform 
technique is adding or subtracting a constant value, C1 or C2, to increase 
or decrease the image’s pixel values, making it lighter or dimmer. The 
equation is: 

{
y1 = I + C1
y2 = I − C2

, (12)  

where C1 means a constant value to be added while C2 means a constant 
value to be subtracted. y1 and y2 represent the brightened and darkened 
images, respectively. 

Fig. 8(a) shows a garlic bread image, Fig. 8(b) presents the bright-
ened image by adding C1 = 30 to the original image, and Fig. 8(c) 
presents the darkened image by subtracting C2 = 30 from the raw 
image. 

4.5.1. Gamma correction and color jittering 
Gamma correction [167] is a nonlinear process regulating the raw 

image’s gray-scale or RGB values. Using the power-law formula, we can 
define GC as: 
⎧
⎪⎪⎨

⎪⎪⎩

yo = C × yγ
i

yi ∈ [0, 1]
yo ∈ [0, 1]

, (13)  

where yi and yo represent the input and output grayscale values, 
assuming yi and yo are normalized to the extent of [0, 1]. Furthermore, 
C = 1 helps to reserve the grayscale extent. 

There are two vital thoughts: (i) Eq. (13) turns to the gamma 
compression DGC

com when γ < 1; and (ii) Eq. (13) turns to the gamma 

Fig. 7. Illustration of noise injection. (a) raw image, (b-d) Gaussian noise injection, (e-g) salt-and-pepper noise injection, (h-j) speckle-noise injection, (k) Poisson 
noise injection. 
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expansion DGC
exp when γ > 1 [168]. Fig. 8(d-f) present three results of 

DGC
com, i.e., γ = (0.25,0, 5, 0.75), respectively. Fig. 8(g-i) present three 

other results of DGC
exp with γ = (1.5,2,3), respectively. 

Color jittering (CJ) changes the color values in the raw image by 
adding or subtracting a random value for each channel [169]. Another 
way is to make changes to the brightness, contrast, saturation, and hue 
channels. The advantage of CJ is it brings in randomness alterations to 
all the RGB channels; thus, CJ aids the manufacture of bogus color 
images. 

Suppose the raw image is I, whose range is [0, 1]. We randomly 
generate three random numbers (cr, cg, cb) ∈ [ − R, + R]. The R is the 
maximum value of random numbers. Usually, it can be set as R = 0.2. 
The CJ operation is defined as: 

⎧
⎨

⎩

yr = fN(Ir + cr)

yg = fN
(
Ig + cg

)

yb = fN(Ib + cb)

, (14)  

where the subscript (r, g, b) stand for the red, green, and blue channels. 
fN is the normalization function to make sure the value is within the 
range of [0,1]. That is 

fN(x) =

⎧
⎨

⎩

0 x < 0
x 0 ≤ x ≤ 1
1 x > 1

. (15) 

Fig. 8(j-o) displays six CJ results of the original image in Fig. 8(a). 

Fig. 8. Illustration of photometric transforms. (a) raw image, (b and c) simple photometric transform, (d-i) Gamma correction, (j-o) six OJ examples, (p) blurry 
image, (q) sharpened image, (r-w) PatchShuffle images. 
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4.5.2. Sharpening, blurring, and PatchShuffle transform 
Kernel filters are employed to sharpen and blur raw images as DA 

methods. The kernel filter method slides an n × n kernel along the raw 
image with either a Gaussian blur [170] filter fG or an unsharp masking 
[171] filter fU. Unsharp masking [172] is an image sharpening method. 
Its name derives from that the method uses an unsharp negative image 
to create the final sharpened image. The definition of kernel filter 
method is: 
{

yG = I ⊗ fG
yU = I ⊗ fU

, (16)  

where yG and yU stand for the blurry and sharpened images. Obviously, 
fG produces a blurry image, whereas fU produces a sharpened image. 
Fig. 8(p and q) display yG and yU obtained by the filters fG and fU, 
respectively. 

Instinctively, yG helps the following classifiers better fight back the 
blur attack (motion, Gaussian, average, etc.) through the test. yU in-
troduces more contrast and edge minutiae for food category classifica-
tions. Both fG and fU kernels are popular in DA. 

Kang, G. et al. (2017) [173] proposed a novel PatchShuffle transform 
(PST) technique. Within each minibatch, each image I is divided into 
nonoverlapped patches {bij}, and each patch bij undertakes a trans-
formation so that pixels of the patch bij are shuffled. The authors have 
steered tests with various filter sizes n and various swapping probabil-
ities pswap. 

Assume the raw image is I with a size of N× N. Let I be divided into a 
patch matrix B with nonoverlapped patches B = {bij}, 

I↦B =

⎡

⎢
⎢
⎣

b11 b12 ⋯ b1,N/n
b21 b22 ⋯ b2,N/n
⋮ ⋮ ⋱ ⋮

bN/n,1 bN/n,2 ⋯ bN/n,N/n

⎤

⎥
⎥
⎦, (17)  

where bij stands for the patch at i-th row and j-th column of B. 
The PST works on each patch as follows: 

cij = pr
ij × bij × pc

ij, (18)  

where cij denotes the transformed patch, pr
ij and pc

ij stand for the row and 
column permutation matrixes, respectively [174]. The authors’ simu-
lation results exhibited that the optimal hyperparameter is the combi-
nation of n = 2 and pswap = 0.05. Hence, the final PatchShuffled image is 
C = {cij}. Fig. 8(r-w) displays the PST results with n = 2,⋯,7. Kang, G. 

et al. (2017) [173] report PST can be harnessed on not only raw input 
images but also feature maps. 

4.6. Image mixing 

The above transformation techniques (geometric transforms, noise 
injection, and photometric transforms) are all single-image DA methods. 
This section discusses some new techniques for handling more than one 
image. 

4.6.1. SamplePairing and mixup 
Inoue, H. (2018) [175] proposed the SamplePairing method, syn-

thesizing new training data from one image by randomly overlaying 
another image selected from the training set. Shortly, SamplePairing 
calculates the pixel-wise average of two patches or images. 

Assuming an image D of Class 1 (C1), and another randomly chosen 
image E of Class 2 (C2). SamplePairing DA firstly produces two patches 
(F,G) from the image pair (D, E) by (i) random cropping and (ii) random 
horizontal flipping, as shown in Fig. 9(a). 
{

D ̅̅̅→Patch F
E ̅̅̅→Patch G

(19) 

The Class 2 label (C2) is cast off. Afterward, the patch pair (F,G) is 
blended to produce the mixed patch H by pixel-wisely averaging the 
intensities of the patch pair. 

H(i, j)
⏟̅̅ ⏞⏞̅̅ ⏟

C1

=

⎡

⎢
⎣F(i, j)
⏟̅̅⏞⏞̅̅⏟

C1

+G(i, j)
⏟̅̅ ⏞⏞̅̅ ⏟

C2

⎤

⎥
⎦

/

2. (20) 

The mixed patch H is then employed for network training. Inoue, H. 
(2018) [175] stated that SamplePairing is able to produce M2 new data 
from M-sized sample dataset [175]. Fig. 9(b-d) shows the image pair of 
the rice and the dam. Fig. 9(d) displays the synthesized image with the 
label “Rice”. 

Zhang, H. et al. (2018) [176] presented a data-agnostic DA tech-
nique, mixup. In their method, the parameter ω ∈ [0,1] is initiated, 
meanwhile one-hot encoding is employed to exploit the information of 
classes of both images. Assuming (A,B) stands for the two randomly 
chosen images, the mixup image, and label C and tC are obtained as: 
{

C = ω × A + (1 − ω) × B
tC = ω × tA + (1 − ω) × tB

, (21) 

Fig. 9. Illustration of SamplePairing. (a) Schematic of SamplePairing, (b-d) A SamplePairing illustration of mixing the image pair of C1 = Rice and C2 = Dam.  
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where (tA, tB) are labels of Sample A and Sample B. Concisely, mixup 
stretches out Strain by linearly interpolating two randomly chosen sam-
ples (A,B). Fig. 10(a and b) display two randomly chosen samples: Rice 
and Swan. Fig. 10(c-i) show the mixup outcome with ω = 0.2,⋯,0.8. 

4.6.2. Nonlinear mixing and random erasing 
Summers, C. et al. (2019) [177] expanded linear combination to a 

nonlinear mixing method. Supposing θ ∈ [0,1] is a random hyper-
parameter, the vertical concatenation (VC) mingles the top θ fraction of 
the image A and the bottom (1 − θ) fraction of the image B, rather than 
pixelwise average. Assume (W,H) are the width and height of the image 
A, (w, h) are the width and height index, respectively, the VC output is 
defined: 

CVC(w, h) =
{

A(w, h) h ≤ θH
B(w, h) otherwise . (22) 

The horizontal concatenation (HC) is defined: 

CHC(w, h) =
{

A(w, h) w ≤ θW
B(w, h) otherwise . (23) 

Mixed concatenation (MC) combines HC and VC. That is, suppose 
there are 0 ≤ θ1, θ2 ≤ 1 two random hyperparameters, then 

CMC(w, h) =

⎧
⎪⎪⎨

⎪⎪⎩

A(w, h) h ≤ θ1H ∧ w ≤ θ2W
B(w, h) h ≤ θ1H ∧ w > θ2W
B(w, h) h > θ1H ∧ w ≤ θ2W
A(w, h) h > θ1H ∧ w > θ2W

. (24) 

Random column interval (RCI) chooses a random column interval. 
That interval part of the image A is substituted with the corresponding 
part of image B. Random row interval (RRI) carries out the same oper-
ation along the row direction. The random row (RR) chooses each row at 
random from either image A or B. The RR technique is considered as a 
higher frequency of VC. In the same way, we are able to infer the random 
column (RC) technique. Random square (RS) cuts out a random square 
from image A, and fills in the square with the cognate region from image 
B. Random pixel (RP) samples every pixel independently from images A 
and B. Fig. 10(j-r) display the results of nine nonlinear mixing DA 
techniques. 

Zhong, Z. et al. (2020) [178] proposed the random erasing (RE) 
technique that randomly picks a rectangle region and deletes its pixels, 
and fills in with random values (RVs). The RE is suitable to win image 
recognition jobs related to occlusion, meaning several patches of the 
objects are clogged. RE compels the following AI models to learn global 
features from the unclogged patches. 

Practically, RE randomly chooses an n × m patch p from an image A. 
It then fills the patch p with either 0 s, 255 s, or mean pixel value pm, or 
RVs r. The patch fill (PF) procedure is written as: 

Fig. 10. Illustration of mixup and nonlinear mixing. (a and b) two raw images, (c-i) mixup results, (j-r) nonlinear mixing results.  
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p(w, h)=PF

⎧
⎪⎪⎨

⎪⎪⎩

0
255
pm

r(w, h)

, (25)  

where 0 and 255 stand for black and white. Two parameters of RE are (i) 
the selection of PF and (ii) the size of the patches. The best PF method 
has been verified to be RVs. Fig. 11(a) displays the rice image. Fig. 11(b- 
c) display the two RE examples, which the observer can recognize it is a 
rice image. 

RE is not permanently “safe”. In digit recognition jobs, if the top 
patch is erased, then figure “7” looks like “1”. RE is not safe in more fine- 
grained jobs. For example, (i) tumor grade classification, the RE could 
clog the tumor. (ii) vehicle identification, the AI model’s performance is 
impaired if RE blocks the brand part of vehicles. Therefore, some 
guarantee-goal schemes are implemented to pledge the “safety” of the 
RE-augmented dataset. 

4.7. Deep learning-based DA: adversarial training and generative 
adversarial network 

Adversarial training (AT) endeavors to trick AI models with deceitful 
data [179,180]. The adversarial attack contains a rival network, which 
gains knowledge of deceitful DA images, which triggers wrong classifi-
cations in its rival classification network [181,182]. Supposing there is 
an image A of class C1, the user adds a minor amount of noise to it ε × N, 
where ε is a minor value, usually ε < 0.01. The noise is fabricated 
intentionally. The summation result B falls into another class C2. 

A⏟⏞⏞⏟
C1

+ ε × N = B⏟⏞⏞⏟
C2

. (26) 

Suppose sc stands for the confidence score, Fig. 12(a) displays an 
image A marked as “bread” with sc = 80.1%. After the perturbation 
noise, shown in Fig. 12(b), by DeepFool [183] is added, the noised image 
B is labelled by AI models as “Steak” with sc = 99.9%, as shown in 
Fig. 12(c). 

The AT is effective in solving weak points in conventional AI models. 
Therefore, the trained AI models are more reliable and resilient to at-
tackers. AT cannot improve the test performance. However, it improves 
the performance of AI models working on adversarial examples, viz., 
enhancing the safety and sturdiness of trained AI models. 

The generative adversarial network (GAN) [184,185] entails two 
neural networks (NNs) competing in a zero-sum contest, in which one 
NN’s gain is the other NN’s loss. There are numerous generative models 
that presently work; however, GAN provides prominent functioning in 
terms of both quality and computation promptness [186,187]. Two 
natural examples of GAN are (i) a predator and prey and (ii) a rivalry 
between police (Discriminator D) and a counterfeiter (Generator G). 

In the second example, both parties are advancing their perfor-
mances; hence, the counterfeiter knows how to create travel documents 
that are arduous to identify by the police. This procedure is shown in 
Fig. 12(d). The triumph of the G renders it potent for generative 
modeling. Thus, GANs are verified to be effectual in DA. Goodfellow 

et al. (2014) [188] presented the earliest GAN based on multilayer 
perceptron to manage MNIST handwritten digit-image recognition. The 
width of its image is W = 28, so it contains W × W × 1 = W2 = 784 
pixels. At present, the pictures in food datasets are of finer resolution 
and more intricate than those in the MNIST dataset. Therefore, several 
variants of GANs are nowadays universally operated in the food cate-
gory classification field. 

5. Hand-crafted features 

5.1. Color histogram 

Color, texture, and shape are the most widely used visual features in 
image recognition tasks. Color is one of the most important features of 
food recognition [189]. Especially in specific situations like 
pre-processed foods with the same shape (such as shredded Potatoes and 
Carrots). It is almost impossible to distinguish foods without color in-
formation in such scenarios. 

The color histogram is a common representation of color information 
in images. Digital colorful images usually consist of three channels: R, G, 
and B [190]. Pixel values of each channel represent the levels of one of 
three colors: red, green, or blue. Based on that, color histograms are 
three separate histograms representing the corresponding channels’ 
brightness distribution [191]. 

The advantage of the color histogram is its robustness to image 
rotation and translation, and after normalization, the color histograms 
are also unaffected by changes in image scale [192]. However, the color 
histogram also has some drawbacks. Firstly, the color histogram of an 
image describes the statistical characteristics of the color of the image 
and ignores information about the spatial distribution of the pixels 
[193]. Two images with a small difference in color histogram but a large 
difference in the spatial distribution of colors may describe very 
different things. In addition, the image color quantization process may 
quantize visually different colors into the same color interval, or visually 
similar colors may be quantized into different intervals [194]. More-
over, the feature vector obtained from the color histogram usually has 
high dimensionality [195]. In response to these problems, many 
improved methods of histogram algorithms have been proposed in 
recent years.  

• By using the main colors of the image as samples to construct a color 
histogram of the image and ignoring those color intervals with small 
values, the improved histogram is less sensitive to image noise. 

• The local cumulative histogram method and the method of con-
structing fuzzy histograms are used to improve the efficiency of 
constructing color histograms. 

Due to the specific scenarios that may exist for food classification 
tasks and the advantages of the color histogram as a color feature rep-
resentation, many studies on food classification have used color histo-
grams as features to represent the color information of food images. 
Fig. 13(b-d) illustrate an example of univariate RGB color histograms 

Fig. 11. Examples of RE.  
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extracted from a cupcake image sample, Fig. 13(a), from the Food101 
dataset. 

Although univariate RGB color histograms can indicate the distri-
bution of colors in the image by counting red, green, and blue colors 
separately, this approach cannot capture the correlation among the red, 
green, and blue colors. To be specific, when these three colors are mixed 
additively at different proportions, more colors are generated. For 
example, when blue is zero, equal proportions of red and green give a 
pure yellow, more red than green gives an orange-yellow color, and so 
on. 

Univariate RGB color histograms can only reflect the distribution of 
red, green, and blue colors but cannot reflect the distribution of colors 
generated by mixing these three colors. Therefore, there is an alternative 
type of color histogram called the multivariate color histogram. It counts 
the distribution of different colors in the image when the red, green, and 
blue colors are mixed to give a complete picture of an image’s color 
distribution. Fig. 13(e) illustrates an example of the multivariate RGB 
color histogram with 6 × 6 × 6 bins. Each bin is a 3D cube, visualized 
as a circular marker corresponding to a color generated by mixing 
different proportions of red, green, and blue colors. The radius of each 

marker is proportional to the histogram count of the corresponding 
color. 

5.2. Histogram of oriented gradient 

The directional density distribution of gradients or edges can well 
describe the appearance and shape of a local target in an image [196]. 
The Histogram of Oriented Gradients (HOG) is a feature descriptor 
widely used in vision-based tasks, which consists of a histogram of the 
local gradient directions of the image [197]. HOG operates locally on the 
image and is more robust to image geometry and optics changes [198]. 
For better robustness against illumination changes and shadows, the 
local histogram can be normalized by contrast over a larger image area 
(called a range or block). Specifically, the density of each histogram in 
the corresponding block is calculated, and then all cells in the block are 
normalized according to this density. There are five main steps in the 
process of extracting HOG from an image, as shown below:  

• In order to reduce the effect of illumination factors, the global image 
needs to be normalized and equalized. It is usually done using 

Fig. 12. Illustration of adversarial training and GAN.  

Fig. 13. Univariate and multivariate RGB color histograms.  

Y. Zhang et al.                                                                                                                                                                                                                                   



Information Fusion 98 (2023) 101859

21

gamma correction or calculating each pixel value’s square root or 
logarithm for each color channel. Gamma correction can effectively 
reduce local shadows and lighting variations in the image. As the 
color information is of little use to the HOG calculation process, the 
image is usually first converted to a grayscale image. The gamma 
correction of the raw image IR is defined as: I(x, y) = IR(x, y)γ

, where 
(x, y) are coordinates of a pixel, and γ is a customizable number. 
When γ > 1, the contrast of the high grey areas of the image is 
enhanced, and the visual effect is a darkening of the image. When γ 
< 1, the contrast is enhanced in the lower grey areas of the image, 
and the visual effect is brightening.  

• The gradients in the horizontal and vertical directions of the image 
are calculated, and the gradient direction value is calculated for each 
pixel position to capture the contour information and further atten-
uate the effect of light intensity. The gradients calculation process for 
the pixel I(x, y) of input image I is shown in Eq. (27). 

gh(x, y) = I(x + 1, y) − I(x − 1, y),
gv(x, y) = I(x, y + 1) − I(x, y − 1), (27)  

where gh(x, y) represents the horizontal gradient and gv(x, y) is the 
vertical gradient of the pixel I(x, y) in input image I, respectively. On 
this basis, the gradient amplitude ∇g and the gradient direction 
value α of the pixel (x, y) can be calculated by Eq. (28). 

∇g(x, y) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

gh(x, y)2
+ gv(x, y)2

√

,

α(x, y) = tan− 1
(

gv(x, y)
gh(x, y)

)

.

(28)    

• The image is divided into small, non-overlapping spatial regions 
(cells). Then a gradient direction histogram is computed in each cell 
to produce an encoding sensitive to local image content while 
remaining weakly sensitive to small changes in position and 
appearance. Also, the gradient angle range is divided into a fixed 
number of bins. Based on these bins, the gradient direction histogram 
is constructed for each cell using the gradient size as weights.  

• Calculate the normalization. This step combines several cells into a 
larger block, and the HOG of the block is obtained by concatenating 
the histograms of all the cells in the block. Here, the blocks may 
overlap, and the local domain information can be used effectively. 
Due to local illumination variations, the gradient intensity varies 
over a very large range. Calculating normalization over a larger 
spatial area (block) allows further compression of illumination, 
shadows, and edges to provide better invariance. Common normal-
ization methods are L1 normalization (L1-norm), square root of L1 
normalization (L1-sqrt), and L2 normalization (L2-norm), which can 
be defined as Eq. (29). 

vL1− norm =
v

||v||1 + ε,

vL1− sqrt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅v
||v||1 + ε

√

,

vL2− norm =
v

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

||v ‖
2
2 + ε2

√ ,

(29)  

where ε is a small constant.  
• Collect the HOGs from all blocks and combine these HOGs to form 

feature vectors. 

HOG is often used as a local texture feature of an image, which can 
effectively display information about the edges, contours, and shapes of 
objects in a local area of the image. Fig. 14 shows an example of HOG. 

5.3. Gabor features 

In image processing, the Gabor features can describe the texture 
information of images. It uses a Gabor filter to superimpose a window 
function on the frequency domain signal to describe the signal’s local 
frequency information. Since the frequency and direction of the Gabor 
filter are similar to that of the human visual system [199], the Gabor 
feature is widely considered suitable for texture representation and 
discrimination. In the spatial domain, a two-dimensional Gabor filter is a 
two-dimensional Gaussian function modulated by the complex sinusoid, 
which can be defined as the product of the complex sinusoid and a 
two-dimensional Gaussian function. 

The prerequisite for extracting Gabor features is converting a two- 
dimensional image signal from the spatial domain to the frequency 
domain utilizing the Fourier transform (FT). The essence of the FT is to 
transform any function into a combination of sine waves of different 
frequencies [200]. In this way, signals in the spatial domain, such as 
image signals, can be converted to the frequency domain. Furthermore, 
the superposition of multiple waves in the spatial domain is represented 
in the frequency domain as a number of scattered points. Thus, problems 
that are complex in the spatial domain become relatively simple in the 
frequency domain. It makes the FT an important tool that can be used in 
image processing. The two-dimensional FT can be defined as Eq. (30). 

f̂ (u, v) =
∫+∞

− ∞

∫+∞

− ∞

f (x, y)e− i2π(ux+vy)dxdy, (30)  

where (x, y) refers to the spatial domain coordinates and (u, v) to the 
corresponding frequency domain coordinates. The complex sinusoid can 
be defined as s(x, y) = ei(2π(ux+vy)+P), where P represents the phase of the 
sinusoid. 

The two-dimensional Gaussian function with the consideration of 
rotation is given by Eq. (31). 

Fig. 14. An example of a histogram of oriented gradient (HOG). As HOG considers gradient information representing edge and shape characteristics, the color in the 
image is not important for calculating HOG. So, we first convert the raw image (a) to a grey-scale (b) image and then calculate the HOG (c). 
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ωr(x, y) = Ke
− π

(

(x− x0)
2
r

σ2
x

+
(y− y0)

2
r

σ2
y

)

, (31)  

where σx and σy are the scaling parameters in the two directions. (x0, y0)

is the centroid of the Gaussian function (peak). K is a constant, repre-
senting the scale of the magnitude of the Gaussian function. r represents 
the rotation operation. (x − x0)r and (y − y0)r are calculated as shown in 
Eq.s (32). 

(x − x0)r = (x − x0)cosθ + (y − y0)sinθ,
(y − y0)r = − (x − x0)sinθ + (y − y0)cosθ, (32)  

where θ is the rotation degree of the Gaussian function. The two- 
dimensional Gabor filter is calculated by multiplying the Gaussian 
function with the complex sinusoid, as shown in Eq. (33). 

G(x, y) = ωr(x, y)s(x, y) = Ke
− π

(

(x− x0)
2
r

σ2
x

+
(y− y0)

2
r

σ2
y

)

ei(2π(ux+vy)+P). (33) 

The frequency distribution of each pixel in the image and its vicinity 
can be obtained by convolving the image with a Gabor filter of different 
frequencies. Since texture features are usually frequency-dependent, the 
Gabor filter is often used to extract texture features. 

Gabor filters are often used to extract texture features in images. 
Fig. 15 shows examples of applying different Gabor filters to the cup 
cake image sample. 

5.4. Scale-invariant feature transform 

A central problem in image recognition tasks is recognizing the same 
target at different resolutions, under different illumination, in different 
orientations, etc. The usual solutions to this problem are based on corner 
or edge recognition, but these methods are often less resilient to envi-
ronmental changes. Scale Invariant Feature Transform (SIFT) can 
extract local features from images. 

SIFT was first introduced by Lowe, D. G. (1999) [201] and refined by 
Lowe, D. G. (2004) [202]. It extracts the location, scale, and orientation 
invariants of key points detected at a spatial scale. SIFT features are 
based on corners, edges, bright spots in dark regions, dark spots in light 
regions, etc. Therefore, they are, to some extent, robust to illumination 
changes or noise and can remain undistorted by scale, orientation, and 
light changes. They are also robust to changes in noise [203]. The SIFT 
feature extraction process can be divided into four steps: (1) scale-space 
extrema detection, (2) key point localization, (3) orientation assign-
ment, and (4) key point description. 

SIFT searches for key points on different scale spaces obtained by 2D 
Gaussian functions and identifies potential interest points invariant to 
scale and rotation based on the difference-of-Gaussian (DoG). Eq. (34) 
defines the scale space, L(x,y,σx, σy), which is calculated by convolving a 
simple 2D Gaussian function ω with the input image IR. 

L(x, y, σ) = ω(x, y, σ) ∗ I(x, y), (34)  

where ∗ stands for the convolution operator. ω can be defined as Eq. 
(35). 

ω(x, y, σ) = 1
2πe−

x2+y2

2σ2 . (35) 

A series of scale-space images can be obtained by repeatedly 
convolving the input image with a two-dimensional Gaussian variable 
scale function. The adjacent scale-space images can then be subtracted 
to calculate the DoG using Eq. (36). 

D(x, y, σ) = (ω(x, y, kσ) − ω(x, y, σ)) ∗ I(x, y), (36)  

where k is a constant multiplicative factor. A pixel in a DoG image is 
compared to its 26 neighboring pixels (8 neighboring pixels in the same 
DoG image and 18 neighboring pixels in two DoG images at the adjacent 
scale). If the current pixel is the largest or smallest of all neighboring 
pixels, the pixel is selected as a candidate key point. 

Once a candidate key point is identified, the location and scale of the 
key point can be determined by fitting to its nearby data, and the key 
point can be selected based on its contrast and edge response (key points 
with low contrast or not well localized along an edge can be rejected). 

The assignment of orientations is primarily based on the image’s 
local gradient direction, with one or more directions assigned to each 
key point location. Eqs. (37) and (38) show how the gradient magnitude 
and orientation are calculated, respectively. 

m(x, y) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(L(x + 1, y) − L(x − 1, y))2
+ (L(x, y + 1) − L(x, y − 1))2

√

,

(37)  

where L(x, y) is the scale of the image sample, and m(x, y) is the gradient 
magnitude of an image sample at the L(x, y) scale. 

θ(x, y) = tan− 1
(

L(x, y + 1) − L(x, y − 1)
L(x + 1, y) − L(x − 1, y)

)

, (38)  

where θ(x, y) is the gradient orientation of an image sample at the L(x, y)
scale. 

Ultimately, the image’s local gradients are measured at chosen scales 
around each key point in the neighborhood. The scale, orientation, and 
location are transferred to a representation that is robust to illumination 
or viewpoint change to some extent by assigning them to key points. 
Then Feature description for local image regions can be calculated by 
sampling the local image intensities around key points at an appropriate 
scale and then using the normalized correlation to match these regions. 

The SIFT features rely on local key points on the target item. 
Therefore, they are independent of the direction and size of the influence 
(noise, illumination change, etc.). Fig. 16 shows the key points extracted 
from the raw and transformed images and matches the key points in the 
raw image and key points in the transformed image. It can be seen that 
the key points can be easily matched even after the complex changes. 

5.5. Wavelet 

Fourier transform (FT) is a transform that can convert a signal from 
the time domain to the frequency domain. As the domain to which a 
signal belongs changes, so does the perspective of how things are pre-
sented. Some complex signals in the time domain become simpler when 
transformed into the frequency domain, so FT is widely used in signal 

Fig. 15. Examples of extracting image texture features by Gabor kernels. Different kernel rotation degrees (θ) are used for each of the four images.  
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analysis [204]. The one-dimensional FT can be defined as F (w) =

∫∞

− ∞ 

f(t)e− i2πwtdt, where the variable w represents frequency, t represents 
time and e− iwt is the complex function. 

The FT assumes that a periodic signal contains multiple frequency 
components and that any signal f(t) can be synthesized by summing 
multiple basis functions. It uses a set of trigonometric functions as 
orthogonal bases for the linear transformation of the original function. 
Its physical meaning is, therefore, the projection of the original function 
onto each set of basis functions. Although the FT can simplify complex 
problems by converting time domain signals to the frequency domain, it 
also has drawbacks. The FT usually only captures the frequency 
composition of a signal but not the time of occurrence and spatial in-
formation of these frequencies. 

As a result, the Fourier-transformed frequency information cannot be 
located at different times or in different spaces [205]. It makes it 
possible for different non-stationary signals in the time domain to 
overlap in the frequency domain [206]. One solution to this problem is 
the short-time FT (STFT) [207], which decomposes the time domain 
signal into multiple short-time signals along the time axis and assumes 
that the frequency does not vary with time, thus segmenting the signal to 
locate it. However, the window’s width in STFT is fixed [208], with 
large windows resulting in low time resolution and difficulty obtaining 
details in the time domain and small windows resulting in 
low-frequency resolution [209]. As a result, it makes signal analysis 
inflexible and difficult to combine frequency and time resolution. 

The wavelet transform obtains frequencies while localizing the FT by 
replacing the basis function from an infinitely long trigonometric 
function with a finite and decaying wavelet basis function [210]. In 
addition, the wavelet transform is used to analyze multiscale signals 
using variable-size windows [208]. The continuous wavelet transform of 
a function f(t) can be defined as 

W(a, τ) =
∫∞

− ∞

f (t)ψ∗
a,τ(t)dt, (39)  

where ψa, τ(t) is a scaled and translated version of a mother wavelet ψ(t)
with scale a and translation τ (a > 0, τ ∈ R), and ψ∗

a, τ(t) is the conjugate 
complex of ψa, τ(t). If ψa,τ(t) is not a complex function, then the conju-
gate complex operation has no effect. The scaled and translated wavelet 
ψa,τ(t) can be defined as Eq. (40). 

ψa,τ(t) =
1̅
̅̅
a

√ ψ
(t − τ

a

)
. (40) 

The discrete wavelet function can be obtained by defining a wavelet 

function with discretized scale a = cm and discretized translation τ =

nbcm, where m,n ∈ Z, b ∕= 0, and c > 1. A scaled and translated wavelet 
function can be defined as Eq. (41). 

ψm,n(t) =
1̅̅
̅̅̅

cm
√ ψ

(
t − nbcm

cm

)

= c− m
2 ψ(c− mt − nb),

(41)  

where c− m
2 is used to regularise the function. By taking a0 to be 2 and b to 

be 1, the function can be further reduced to a binary wavelet to obtain an 
orthogonal basis function [211]. The simplified formula is shown in Eq. 
(42). 

ψm,n(t) = 2− m
2 ψ(2− mt − n). (42) 

The scaling function (a.k.a., the father wavelet) can also produce 
wavelets. It is interrelated with the mother wavelet [212]. Eq. (43) 
presents the general and normalized form of the scaling function. 

φ(t) =
∑

n
hn2− m

2 φ(2− mt − n). (43) 

The mother wavelet can be described as Eq. (44) according to the 
relationship between itself and the scaling function. 

ψ(t) =
∑

n
gn2− m

2 φ(2− mt − n), (44)  

where hn and gn in Eqs. (43) and (44) are refinement coefficients known 
as quadrature mirror filters (QDFs). Different families of wavelets have 
different QDFs, which can be categorized into high-pass filters (gn) and 
low-pass filters (hn). The relationship between gn and hn can be described 
as gn = (− 1)nh1− n, which is derived through Fourier analysis using 
orthogonality [213]. More details can be found in [214] and [215]. 

The human visual system is adaptive to the varying sizes of objects in 
an image. Depending on the distance between the observer and the 
object, it can acquire different representations of the object. At greater 
distances, the observer sees the overall outline of the object, while at 
closer distances, the observer sees the details of the object. It is equiv-
alent to decomposing an image at different scales. A similar decompo-
sition process can be achieved by applying a wavelet transform to the 
image, called two-dimensional discrete wavelet decomposition. Fig. 17 
(a) illustrates the wavelet transform process. 

The two-dimensional discrete wavelet decomposition starts with a 
wavelet transform of every row of the raw image to gain the L (low- 
frequency component) and H (the high-frequency component) of the 
raw image in the horizontal direction. And then, a wavelet transform is 
applied to every column of the transformed data to obtain LL (low-fre-
quency components of the raw image in both the horizontal and vertical 
directions), LH (the low-frequency component in the horizontal 

Fig. 16. An example of SIFT feature detection 
and description. The colorful lines in the images 
are to match the key points between grayscale 
images and flipped or transformed images. 
Image pairs (a) and (c) illustrates all key points 
and matches; (b) and (d) illustrates the subset of 
matches for visibility. The transformation 
applied in (c) and (d) is affine transform, 
including scale with scale factors 1.3 for the x- 
axis and 1.1 for the y-axis, counter-clockwise 
rotation of 90 degrees, and translation along 
the x-axis and y-axis.   
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direction and the high-frequency component in the vertical direction of 
the raw image), HL (the high-frequency component in the horizontal 
direction and the low-frequency component in the vertical direction of 
the raw image), and HH (high-frequency components in both the hori-
zontal and vertical directions). 

The decomposition process results in LL, HL, LH, and HH, repre-
senting the approximate image, the vertical edge features, the horizontal 
edge features, and the diagonal features, respectively. The decomposed 
image is obtained by inverting each column of the transformed data with 
a discrete wavelet and then each row with a one-dimensional discrete 
wavelet. Fig. 17(b) illustrates the two-dimensional wavelet decomposi-
tion and reconstruction process. Fig. 17(c) illustrates an example of a 3- 
level wavelet decomposition on the cupcake image. 

6. Traditional machine learning 

Traditional machine learning algorithms were predominant in food 
category classification a decade ago. However, these algorithms are still 
worth investigating because they are better for small datasets than deep 
models. Meanwhile, traditional machine learning approaches are faster 
to converge and more interpretable than deep learning methods as they 
are mainly developed on statistical analysis and probability estimation. 

Moreover, traditional machine learning models are still evolving to 
improve their generalization performance continuously. Traditional 
machine learning models are usually built upon handcrafted features, 
but they are more likely to be adapted with automated features from 
deep models nowadays. All the machine learning approaches fall into 
two types: supervised methods or unsupervised ones, depending on the 
training supervision conditions. In this section, we will briefly review 
the famous machine learning algorithms. 

6.1. Support vector machine and logistic regression 

Support vector machine (SVM) can be the most well-known machine 
learning method for binary-class classification problems in supervised 
learning, which was proposed by CORTES, C. et al. (1995) [216]. The 

core idea behind the vanilla SVM is simple: it aims to find the separation 
hyperplane with the maximum margin between both classes, as is shown 
in Fig. 18(a). For a training set T = {(x1, y1), (x2, y2), (x3, y3),…,

(xn, yn)} where yi ∈ {+ 1, − 1}, its classification hyperplane in the 
feature space can be expressed as wTx+ b = 0, where w =

(w1,w2,w3,…,wd)
T decides the direction of the hyperplane, and b is the 

offset. Therefore, if the hyperplane can classify all the training samples 
correctly, that is: 
{

wTxi + b ≥ +1, yi = +1
wTxi + b ≤ − 1, yi = − 1 . (45) 

Then, the sum of the distances between the hyperplane and the 
support vectors from both classes can be computed using D = 2

‖w‖
. The 

training objective of an SVM is to find the hyperplane with the maximum 
D, which can be expressed as 

max
w,b

2
‖ w ‖

s.t.yi
(
wTxi + b

)
≥ 1, i = 1, 2,…, n.

(46) 

This is the basic SVM, which can be solved by its dual problem and 
the sequential minimal optimization efficiently. Then, SVM was 
improved to solve linear-inseparable problems with kernel functions. 
The samples can be mapped into higher dimension spaces where they 
can be separated linearly if the original feature dimension is finite. SVM 
can also be error-tolerated with the soft margin. 

Logistic regression (LR) is a linear regression algorithm for binary- 
class classification in supervised learning [217]. In Logistic regression, 
all the samples are mapped into the interval [0,1] so that the samples 
with output values over 0.5 are classified as one class, and all the others 
can be classified as the other class. For a training set T = {(x1, y1),

(x2, y2), (x3, y3),…, (xn, yn)} where yi ∈ {0,1}, Logistic regression using 
sigmoid function can be written as LR(x) = 1

1+e− (wTx+b).

LR training is to obtain the best w and b. There are many methods to 
solve this problem, such as maximum likelihood estimation and cross 
entropy-based loss function. 

Fig. 17. Illustration of wavelet transform and wavelet decomposition.  
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6.2. k-nearest neighbors, K-means, and fuzzy C-means 

The k-nearest neighbors (k-NN) is a supervised-learning algorithm 
that is easy to understand and implement [218]. Unlike other algo-
rithms, k-NN does not come up with a classification model. Instead, it 
just stores the entire training set during the training stage. 

In the testing stage, for a testing sample, its k nearest neighbors in the 
training set will be obtained based on their distances, such as Euclidean 
distance. Then, the label of the testing sample is generated based on the 
majority voting on the labels of its k nearest neighbors. A toy instance is 
demonstrated in Fig. 18(b). k-NN is fast to train, but its testing may 
require more time and memory when the dataset gets larger or the 
dataset is of higher dimension. 

K-means is a basic clustering algorithm in unsupervised learning 
[219]. Without the labels of the samples, K-means works with merely the 
feature vectors in the latent space. Initially, K clustering center points 
are randomly generated. Then, every training sample is grouped into 
one center point based on the distances between the training sample and 
the center points. Afterward, the center points will be updated using the 
training samples in their groups. This grouping and updating will be 
repeated until the maximum iteration times or the center points do not 
change anymore. K-means is effective in finding the distribution pat-
terns in the latent feature space. However, it requires manual inter-
vention to define the value of K, which is vital for the algorithm because 
different values of K can generate different results. 

K-means is a hard clustering method, which means every sample can 
only be classified into one group. However, there are many fuzzy defi-
nitions in our lives without strict borders, so there can be overlapping 
areas among different groups. To this end, fuzzy C-means (FCM) are 
proposed, which can be seen as the generalized form of K-means [220]. 
A degree vector for each training sample is introduced to estimate the 
probability that it belongs to each group. Therefore, FCM can be defined 
as 

min
u,v

∑N

i=1

∑C

j=1
um

ij ‖xi − vjAptCommand2016;2

s.t.
∑C

j=1
uij = 1, uij ≥ 0.

(47)  

in which N is the number of training samples, C is the number of clusters, 
xi denotes the ith sample vector, vj means the jth center point, uij denotes 
the membership degree that the ith sample belongs to the jth center point, 
and m>1 stands for the fuzzy degree. The above equation can be solved 
using quadratic programming conveniently. However, FCM may fail 
when there are too many training samples, or the dimension of samples 
is high. 

6.3. Bayesian network, decision tree, and random forest 

The Bayesian network, also called the belief network, is a directed 
acyclic graphical model based on probabilities [221]. The directed 
acyclic graph in a Bayesian network is used to describe the dependence 
relationship among the attributes. Once the structure of the graph is 
determined, training becomes easy for the Bayesian network. It just 
scans all the training samples and calculates the conditional probabili-
ties for every node in the network. 

Unfortunately, the structure of the graphic model is unknown in real- 
world applications. The score-searching algorithm is often employed to 
get the structure. Specifically, a score function is introduced to estimate 
the matching degree of the graph structure and the training samples. 

A decision tree is a famous classification model which works with a 
tree architecture [222]. There is a root, several internal nodes, and 
several leaves in a decision tree. In this model, the final decision can be 
made using a series of sub-decisions. On every internal node, it makes 
tests on the attributes to divide the samples into sub-groups. The final 
results can be found on the leaves. To estimate the purity of the samples 
in one sub-group, scholar leverage information entropy which can be 
expressed as 

Fig. 18. Illustration of traditional machine learning models. (a) support vectors and classification hyperplanes, (b) an example of k-NN, (c) an example of a decision 
tree, (d) An example of a random forest, (e) A single-hidden layer feedforward structure, (f) the structure of an RVFL. 
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E(D) = −
∑C

i=1
pilog2pi, (48)  

in which D is the current sub-group of samples, C is the total number of 
classes in D, and pi denotes the ratio of the ith class of samples in D. The 
training of a decision tree is to minimize the entropies of the samples in 
the leaves. A toy example of a decision tree is shown in Fig. 18(c). 

The random forest is an ensemble learning model developed based 
on decision trees [223]. In a random forest, a set of decision trees are 
trained independently. For instance, the entire training set is divided 
into n groups of data with the same size to train n decision trees inde-
pendently and individually. Then, in the testing phase, the predicted 
labels of testing samples can be obtained by majority voting or averaging 
on the output labels from the decision trees. 

A graph of the random forest is presented in Fig. 18(d). The training 
set can also be divided by the attributes. That is, every decision tree is 
trained with a sub-set of all the attributes. Parallel training can be 
implemented for the random forest to accelerate the training. However, 
the performance of the random forest is dependent on the decision trees. 
If the decision trees are poorly designed and trained, the random forest 
cannot produce satisfactory results. 

6.4. BP neural network, extreme learning machine, and random vector 
functional link 

Inspired by the activation of neurons in human brains, artificial 
neural networks are invented [224]. There are various shallow neural 
networks available, but the back propagation neural network (BPNN) 
can be the most important model [225]. In the early time, the perceptron 
was proposed, but it can only be used to solve linear-separable problems 
because a perceptron only consists of two layers (the input layer and 
output layer). 

To overcome this problem, BPNN is presented typically with a single- 
hidden layer feedforward structure, as is shown in Fig. 18(e). The acti-
vation function in networks is used to provide non-linearity. The sig-
moid function is often used in BPNNs, which is expressed as f(x) = 1

1+e− x.

Given a training set S = {(x1,y1), (x2,y2), (x3,y3),…, (xn,yn)}, the 
output of the BPNN is denoted as O = (o1, o2,…, on)

T. Then, the training 
mean squared error can be written as err = 1

n
∑n

i=1‖yi −

oiAptCommand2016;2.
Then, all the parameters in the BPNN can be updated using the 

gradient descent strategy. With a pre-defined learning rate η, the 
updating of whl for sample (xk, yk) can be computed using the chain rule 
as 

Δwhl = − η ∂err
∂whl

= ηok
l

(
1 − ok

l

)(
yk

l − ok
l

)
bh. (49) 

The input weights vdh can be updated with 

Δvdh = ηxdbh(1 − bh)
∑l

j=1
whjok

j

(
1 − ok

j

)(
yk

j − ok
j

)
. (50) 

The biases can be updated similarly. The updating of the parameters 
will repeat until the termination condition is met. Back propagation is 
the most widely used method to train artificial neural networks, and it is 
also applied in training deep networks. 

Extreme learning machine (ELM) offers a different way to train the 
structure in Fig. 18(e) [226]. Instead of the tedious iterations to update 
the parameters in BPNNs, ELM presented a close-formed solution to 
determine the parameters. Initially, the input weights v and hidden 
biases b = (b1, b2,…, bq)

T are assigned with random values, which will 
remain fixed during the training procedure. Then, the output matrix of 
the hidden layer H can be calculated with the input vectors from the 
training set. Finally, the output weights w can be determined by 
pseudo-inverse: w = H†Y, where Y = (y1, y2,…, yn)

T is the label matrix 

and Hy is the Moore-Penrose inverse of H. The ELM can converge faster 
than BPNN, and the input features are randomly mapped into the hidden 
layer without training, which is beneficial for the generalization of the 
network [227]. 

The structure of a random vector functional link (RVFL) is different 
from conventional feedforward neural networks [228], as shown in 
Fig. 18(f). Besides the traditional links between layers, an extra 
connection links the input layer with the output layer directly. See the 
connections in red in Fig. 18(f). The training algorithm of RVFL is similar 
to ELM, as both of them belong to random neural networks. The only 
difference is that the output matrix of the hidden layer in the RVFL 
should be concatenated with the original input features before 
computing the pseudo-inverse. The short-cut connections in an RVFL 
can be very useful if the input features are already discriminant. 

7. Convolutional neural networks 

With the continuous progress of computer technology, convolutional 
neural networks (CNNs) are currently paving new avenues for image 
processing. They have been proven to have abilities to achieve great 
success in image processing [229]. CNNs attract a sea of attention from 
various fields, such as medical science, agriculture production, etc. In 
recent years, many scholars applied CNNs to food category recognition 
[230]. 

In contrast to other food category recognition methods used for many 
years, CNNs are characterized by a significantly increased number of 
successive layers. CNNs can reveal higher-level features and hierarchical 
relationships with the added layers. The increasing layers of neural 
networks could require more training time and computational costs. 
Many studies have demonstrated that CNNs with increased depth could 
enhance image processing for food category recognition. A typical 
feature map-based framework of the CNN (VGG16) is displayed in 
Fig. 19. 

7.1. Convolution, padding, and pooling 

CNNs are composed of different layers. The input layer is the initial 
layer, such as food images. The end layer is the output, e.g., the pre-
dicted food category. The hidden layers are after the input and output 
layers [231]. The convolutional layer is one of the most significant 
hidden layers. There are multiple optimizable filters in the convolu-
tional layers. Convolution is essentially the sliding of the filter on the 
layer and calculating the filter dot product and the values of layers 
[232]. 

The results calculated by dot product are named feature maps [233]. 
The convolution operation is shown in Fig. 20(a). The feature maps 
would be the input for the next layer, such as another convolutional 
layer, pooling layer, and so on. The feature maps extracted from deeper 
convolution layers usually have higher concepts and more abstract 
patterns [234]. Therefore, the successive convolutional layers could 
contribute to the CNNs learning subtle features. 

The calculation step of convolution is shown as follows O =
⌊

I− R+2q
e

⌋
+ 1, where the input size and output size are I × I and O× O, 

respectively. The filter size is R× R, and the stride and padding are 
represented as e and q. ⌊⌋ is the floor function. 

There are some limitations to the convolutional layers. First, the 
image size would be reduced after the convolution operations [235]. 
The input and output sizes of the convolution operation are shown in 
Fig. 20(a). The image size could be very small by several convolution 
operations. Second, after the input image is convolved with the convo-
lution filter, some values are lost, only some pixels are convolved at the 
edges, and much information at the edges of the image is lost. 

To settle these problems, some researchers first add padding to the 
original matrix, that is, add a few values on the matrix boundary to 
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increase the size of the original matrix. An example of padding is pre-
sented in Fig. 20(b). The input size is the same as the output size by the 
convolution with one-pixel thick zero-padding. 

After several convolutional layers, the feature maps are commonly 
down-sampled using the pooling operations. There are some advantages 
to pooling operations: The feature map size is reduced while keeping 
discriminant information, and it can detect more abstract information 
and thereby condense semantic features. Like the convolutional opera-
tion, the filter size and stride are assigned before pooling operations. 
Several different pooling operations are available and popular in recent 
research. In this paper, three popular pooling operations are shown in 
Fig. 20(c), which are max pooling [236], average pooling [237], and 
stochastic pooling [238]. 

PR is pooling region in the feature map, and l is the index of each 
element. Max pooling obtains the maximum value of the feature map by 
step. The formula of max pooling (Mpooling) is given as follows: 

Mpooling = max(bl), l ∈ PR. (51) 

Average pooling averages the values of the feature map by step. The 
formula of average pooling (Apooling) is shown as follows: 

Apooling =

∑
l∈PR

bl

|PR|
, (52)  

where |PR| represents the number of elements for the |PR|. 
Stochastic pooling (Spooling) selects the map based on the probability 

map G = (g1,g2…gl,…). The formula of gl is 

gl =
bl

∑
l∈PR

bl
. (53) 

The outputs are obtained from the multinomial distribution. The 
formula of stochastic pooling is given as follows: 

Spooling = bn, n ∼ (g1, g2…gl,…). (54)  

7.2. Activation functions 

The nonlinearity of CNNs can be increased by adding the activation 
function [239]. The output signal could be a simple linear function 
without the activation function. The complexity and mapping ability of 
the results learned by linear equations from data are limited, far less 
than those obtained by nonlinear equations. Some common activation 
functions are selected in CNNs. 

The formula of the sigmoid function [240] is sigmoid(x) = 1
1+e− x. The 

formula of the tanh function [241] is presented below: 

tanh(x) =
ex − e− x

ex + e− x. (55) 

The formula of the ReLU function [242] is written as below: 

ReLU(x) =
{

x, x > 0
0, x ≤ 0 . (56) 

The equation of the leaky ReLU (LReLU) function [243] is defined 
below: 

Fig. 19. The feature map-based framework of VGG16.  

Fig. 20. Illustration of convolution and pooling.  
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LReLU(x) =
{

x, x > 0
0.01x, x ≤ 0 . (57) 

The formula of the PReLU function [244] is given below: 

PReLU(x) =
{

x, x > 0
ax, x ≤ 0 , (58)  

where a is very small. These common types of activation functions and 
figures are concluded in Table 4 and Fig. 21. Some other variants of 
activation functions are discussed in Table 5. 

7.3. Batch normalization and dropout 

The distribution may change as the depth of the network increases. 
The distribution may be close to two extremes close to the upper or 
lower limits of the interval. One of the reasons for this phenomenon is 
the slow convergence speed during training. In this case, the gradient 
may disappear in the backpropagation, which could cause a slow 
convergence problem during CNN model training. 

Batch normalization (BN) was proposed to address this problem 
[252]. The method to distribute the output value of each layer to a 
normal distribution with a mean value of 0 and variance of 1 is BN. This 
not only can avoid this problem but also accelerate the training speed. 
The equations of BN are presented as follows: 

First, the data is defined as X = [x1,x2,…,xn]. Second, the mean value 
of this data is calculated as φB = 1

n
∑n

i=1xi. Third, the variance is shown 
as ϑB = 1

n
∑n

i=1(xi − φB)
2
. Then, the normalization is performed as fol-

lows: 

x′

i =
xi − φB̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ϑB

2+ ∈
√ , (59)  

where ∈ is greater than 0 to guarantee that the denominator is greater 
than 0. 

Finally, the network nonlinearity is increased by introducing two 
parameters: yi = αx′

i + β, where α and β are the scale parameter and shift 
parameter, respectively. 

Dropout means randomly ‘discarding’ some neurons in the network. 
This is to reduce the problem of overfitting [253]. Dropout is to 
randomly select some neurons in the network and set the output of these 
neurons to 0. Based on this method, the overfitting problem could be 
inhibited. The standard neural network and the dropout-applied 
network are presented in Fig. 22. 

8. Transfer learning 

Deep learning has gained much attention from researchers in recent 
years and has become the master algorithm in a wide range of appli-
cations, such as image recognition, machine translation, speech recog-
nition, and medical image analysis. However, in some domains, the 
amount of labeled data is limited because of the high cost of data 
annotation and difficulties in data acquisition. This can affect the model 
performance as the deep learning models can suffer from the overfitting 
problem. Deep learning models require sufficient data to learn of 
extracting meaningful features from the input. In recent years, transfer 
learning has been widely used to overcome the problem caused by 

insufficient data. This technique allows deep learning models to transfer 
knowledge learnt from one domain to the other domain, as shown in 
Fig. 23. 

The initial domain for gaining prior knowledge is referred to as a 
source domain. The domain where the models are adapted is referred to 
as a target domain. Knowledge learnt from the source domain represents 
the weights of the model. Then the pre-trained mode is adapted to the 
target domain to perform a new learning task. 

This section reviews current popular pre-trained convolutional 
neural networks (CNNs) widely used in transfer learning. These net-
works are pre-trained on a large-scale dataset, such as ImageNet before 
their weights are transferred to a target domain. The architectures of 
these networks show the design trend from designing deeper and more 
complex architectures to focusing on striking a balance between accu-
racy and complexity, from the manual design by human experts to an 
automatic pattern. 

8.1. AlexNet, VGG and SqueezeNet 

CNNs gradually became dominant across various computer vision 
tasks after AlexNet considerably outperformed the previous state-of-the- 
art approaches on the ImageNet LSVRC-2010 dataset and won the 
ILSVRC-2012 competition in 2012. AlexNet contains eight learnable 
layers, including five convolutional layers and three fully-connected 
layers [15]. Max-pooling layers are applied after some of the convolu-
tional layers to reduce the dimensionality of feature maps. A final 
softmax function following the last fully-connected layer generates a 
prediction distribution for classes. 

Adopting the non-saturating nonlinearity, rectified linear units 
(ReLUs), in AlexNet makes the network training several times faster than 
its alternatives using tanh units. AlexNet contains 60 million parameters 
[254,255]. To deal with the overfitting problem, the authors introduce 
data augmentation to enlarge the dataset artificially. In addition, 
dropout is applied in the network during training. Other techniques 
applied to AlexNet leading to performance improvement include local 
response normalization and overlapping pooling. The ground-breaking 
results on ILSVRC achieved by AlexNet have opened a new paradigm 
for computer vision tasks and spurred more and more research in the 
field of deep learning. 

Simonyan, K. et al. (2014) [256] further pushed the depth of con-
volutional networks by introducing the VGG architecture, addressing an 
important aspect of CNN architecture design: the depth. The VGG ar-
chitecture consists of a stack of convolutional layers with 3 × 3 filters 
and three fully-connected layers at the network’s end. Moreover, 1 × 1 
convolutional filters are also adopted to transform the input channels 
linearly. The non-linear ReLUs are used to introduce nonlinearity to the 
network. Different from AlexNet, the VGG architecture does not contain 
local response normalization, which could increase memory re-
quirements and computational costs [257,258]. 

There are a few convolutional layers followed by max-pooling layers. 
The VGG16 and VGG19 are two representatives of the VGG architecture 
that consist of 13 and 16 convolutional layers, respectively. The archi-
tecture of VGG16 is illustrated in Fig. 19. Compared to AlexNet, the 
VGG16 is a huge network with many parameters which takes more time 
to train. Nevertheless, it highly outperforms previous methods in the 
ILSVRC-2012 competition and competes for the classification task 
winner in the ILSVRC-2014 competition. 

Since the success of AlexNet, CNNs have gained more and more in-
terest from researchers. Various CNN architectures are proposed to 
handle image recognition and classification. Given an accuracy level, 
there can be seen multiple CNNs of different architectures can be able to 
achieve that requirement. However, most research focuses on improving 
the model performance, while the compact design of CNN architecture is 
rarely explored. 

A small CNN architecture with fewer learnable parameters has 
several advantages over its cumbersome equivalents: more efficient 

Table 4 
The comparison of activation functions.  

Activation function Speed of convergence Output range 

sigmoid low (0, 1) 
tanh low (− 1, 1) 
ReLU Fast [0, +∞) 
LReLU Fast (− ∞, +∞) 
PReLU Fast (− ∞, +∞)  
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communication in distributed training, less bandwidth required to 
export models for over-the-air updates, and more feasible deployment 
on resource-limited hardware. Iandola, F. N. et al. (2016) [259] inves-
tigated the impact of CNN architectural designs on model size and 
performance and proposed SqueezeNet with 50 × fewer parameters than 
AlexNet and performs on par with AlexNet on ImageNet. 

To equip SqueezeNet with a small CNN architecture and competitive 
accuracy, Iandola, F. N. et al. (2016) [259] designed three main stra-
tegies: 1) use 1 × 1 filters to replace 3 × 3 filters to reduce the pa-
rameters; 2) reduce the channels of features maps to 3 × 3 filters, 
thereby reducing the channels of filters; 3) delay the down-sampling 

Fig. 21. Comparison of five common activation functions.  

Table 5 
Other variants of activation functions.  

Name Equation Output range 

SReLU [245] 
SReLU(x) =

⎧
⎨

⎩

tu + bu(x − tu), x ≥ tu
x, tu > x > tl

tl + bl(x − tl), x ≤ tl 

(-∞, + ∞) 

ELU [246] 
ELU(x) =

{
x, ifx ≥ 0

β(ex − 1), if x < 0 
β = 1 

(-∞, ∞) 

SELU [247] 
SELU(x) =

{
γx, if x > 0

γβ(ex − 1), if x ≤ 0 
γ ≈ 1.0507,β ≈ 1.6733 

(≈ − 1.76.+ ∞)

Softplus [248] Softplus(x) = log(1 + ex) (0, +∞) 
Softsign [249] Softsign(x) =

x
1 + |x|

(-1,1) 

SLU [250] 
SLU(x) =

⎧
⎪⎨

⎪⎩

x, if x ≥ 0

2log
[
(ex + 1)

2

]

, if x < 0 

(-2log2, +∞) 

EliSH [251] 

ELiSH(x) =

⎧
⎪⎨

⎪⎩

x
1 + e− x , x ≥ 0

ex − 1
e− x + 1

, x < 0  

(-1, +∞)  

Fig. 22. Illustration of dropout.  

Fig. 23. Knowledge transferred from a source domain to a target domain (S 
means source, and T means target). 

Fig. 24. Organisation of convolution filters in the Fire module.  
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operations to maintain large feature maps for most convolutional layers 
that help achieve higher classification accuracy. These strategies are 
implemented in the Fire module, as shown in Fig. 24. 

A Fire module contains a squeeze convolution layer and an expand 
convolution layer. All filters in the squeeze layer are of the size 1 × 1, 
which implements the strategy of replacing 3 × 3 filters. The expand 
layer contains a mix of 1 × 1 and 3 × 3 filters. To limit the number of 
input channels corresponding to the second strategy, Iandola, F. N. et al. 
(2016) [259] set the squeeze layer as fewer filters than the expand layer. 

The SqueezeNet is constructed by stacking a standalone convolu-
tional layer, 8 Fire modules, and a final convolutional layer [260,261]. 
The number of filters in each Fire module increases along the network. 
Dropout is applied after the last Fire module to solve the overfitting 
problem. The total quantity of parameters in SqueezeNet is 1.2 million, 
50 × fewer than AlexNet. The model size of SqueezeNet can be further 
compressed to 510 × smaller than AlexNet, while it achieves the 
equivalent accuracy. 

8.2. Inception 

Although directly increasing neural networks’ depth and width can 
potentially improve their model performance, it can inevitably lead to a 
dramatic increase in computation and memory requirements. In addi-
tion, with a larger number of parameters, networks tend to suffer from 
the overfitting problem, especially when the amount of training data is 
limited. These issues can be solved by replacing the fully connected 
architecture with a sparsely connected architecture, even inside the 
convolution operations. To find an optimal local sparse structure that 
can be repeated to construct a network, Szegedy, C. et al. (2015) [262] 
proposed the Inception module to approximate the optimal local sparse 
structure in CNNs. In contrast to the conventional convolutional layer, 
where filters of the same size are applied, the Inception module in-
troduces multiple filter sizes within a layer, as depicted in Fig. 25(a). 
Additionally, a parallel max-pooling path is added to the module. 

To reduce computations, the computationally intensive 3 × 3 and 5 
× 5 convolutions are followed by 1 × 1 convolutions. Feature maps 
produced from multiple paths are finally concatenated [263,264]. An 
Inception network is a network constructed by stacking Inception 

modules upon each other with max-pooling layers occasionally inserted. 
Typically, GoogLeNet is an incarnation of the Inception network, a 
22-layer deep network consisting of nine Inception modules. GoogLeNet 
is equipped with auxiliary classifiers during network training to 
encourage discrimination in the low-level layers and attain extra 
gradient signals for better model training. 

To scale up CNNs in efficient ways while maintaining high-quality 
network architectures, Szegedy, C. et al. (2016) [265] further revised 
the original Inception module under four design principles, as shown in 
Table 6. 

Three different improved Inception modules are designed with the 
above design principles imposed, as shown in Fig. 25(b-d). The version 
on the left is obtained using two 3 × 3 convolutions to replace each 5 ×

5 convolution in the original Inception module, as suggested by the third 
design principle. The version in the middle represents Inception modules 
after the spatial factorization into asymmetric convolutions. The version 
on the right represents Inception modules with expanded activation 
dimensions of filters. 

Based on the three types of improved Inception modules, the authors 
of [265] proposed a new architecture, termed Inception-v3, that consists 
of multiple convolutional layers followed by improved Inception mod-
ules, a batch-normalized auxiliary classifier as a side branch, and a final 
classifier regularised via label smoothing. The depth of Inception-v3 
reaches 42 layers, while its computational cost is still much less than 
that of VGG architecture. 

Fig. 25. Illustration of Inception module. (a) The overview, (b-d) Improved Inception modules introduced in Inception-v3.  

Table 6 
Four design principles of the improved Inception module.  

Design 
Principle 

Content 

I avoid representational bottlenecks 
II promote high-dimensional representations 
III perform a spatial aggregation over low dimensional embeddings 

without loss of information 
IV balance the width and the depth of the network in terms of the 

computational budgets  
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8.3. Xception, ResNet, and DenseNet 

Chollet, F. et al. (2017) [266] reformulated the Inception module in 
Inception-v3 as a large 1 × 1 convolution followed by a set of 3 × 3 
convolutions that perform on non-overlapping proportions of the output 
channels, as illustrated in Fig. 26(a). This reformulation is based on the 
Inception hypothesis that separately looking at cross-channel correla-
tions via 1 × 1 convolutions and spatial correlations via n ×n convo-
lutions could make the learning process more efficient. An extreme form 
of an Inception module uses a 3 × 3 convolution to separately map the 
spatial correlations in each channel, as shown in Fig. 26(b). 

With a stronger hypothesis that the mapping of cross-channel cor-
relations and spatial correlations can be completed separately, Chollet, 
F. et al. (2017) [266] proposed an architecture, termed Xception, that is 
constructed by a linear stack of Inception modules of the extreme form 
with residual connections around them. This architecture outperforms 
Inception-v3 on both the ImageNet and JFT datasets. 

CNNs can be used to extract features of different levels from the input 
images. A network with more layers is expected to extract richer fea-
tures. However, with the increase in the network depth, deeper models 
become difficult to train. Training deeper neural networks suffers from 
gradient vanishing and gradient exploding. In addition, the problem of 
performance degradation is observed on CIFAR-10 and ImageNet as the 
network depth of a “plain” network increases [267]. These problems 
have limited the design of deeper models expected to gain accuracy from 
the increased depth. 

He, K. M. et al. (2016) [267] addressed the degradation problem by 
making layers fit a residual mapping. This can be realized by introducing 
shortcut connections between layers called identity mapping, as shown 
in Fig. 27(a). Formally, a building block based on the residual mapping 
is defined as 

y = F (x, {Wi}) + x, (60)  

where x represents the input of the building block, y represents the 
output, and the function F (⋅) denotes the residual mapping to be learnt. 
The introduction of identity mapping does not require any parameters. 
Therefore, it does not increase the computation complexity. Instead, it 
solves the problems of vanishing and exploding gradients, allowing the 
design of greatly increased depth [268,269]. With the introduction of 
shortcut connections, the gradients can be directly backpropagated from 
the loss function to the preceding layers [270,271]. They make the 
deeper networks more easily optimized than those constructed by sim-
ply stacking layers without skip connections. 

A family of Residual Networks (ResNets) can be created by varying 
the number of residual building blocks. The shortcut connections allow a 
ResNet to reach a depth of over 100 layers without optimization diffi-
culty. In addition, the greatly increased depth result in accuracy gains. In 
terms of the model complexity, a 152-layer ResNet still has 2 × lower 
complexity than VGGNets, while achieving better performance. 

The shortcut connections introduced in ResNet help alleviate the 
gradient vanishing problem. These short paths can also preserve infor-
mation about the input through many layers. To ensure maximum 

information flow along the network, Huang, G. et al. (2017) [272] 
adopted a dense connectivity pattern to connect layers within a building 
block. Specifically, all layers are connected directly in a way that each 
layer obtains the output feature maps learnt from preceding layers, as 
illustrated in Fig. 27(b). 

In other words, the input for previous layers is also fed into the layers 
ahead. This can help to preserve the feed-forward nature and alleviate 
the information-vanishing problem. On the other hand, with a dense 
connectivity pattern, the gradients can be more easily back-propagated 
from the loss function throughout the network. The dense connectivity 
pattern allows the re-use of features learnt from preceding layers, 
thereby reducing the number of parameters used to re-learn redundant 
feature maps. 

Different from ResNets, feature maps from preceding layers are 
concatenated instead of summation before they are passed into a layer 
[273,274]. For the l-th layer, it receives l sets of feature-map from pre-
ceding layers. The feature maps learnt by the l-th are passed on to 
subsequent layers. Within a building block that consists of L layers, there 
are Nc connections, where Nc =

L×(L+1)
2 .

A DenseNet is constructed by multiple building blocks linked by 
transition layers and a classifier, as illustrated in Fig. 27(c). Transition 
layers are introduced to down-sample the size of feature maps and 
reduce the dimensionality, improving model compactness. The dense 
connectivity pattern allows a deep DenseNet to yield better performance 
with the increasing number of parameters without the problem of per-
formance degradation. 

8.4. MobileNet and ResNeXt 

There can be seen that much effort has been made to achieve higher 
classification accuracy by making networks deeper and more complex. 
However, these advances may not efficiently balance the trade-off be-
tween performance and model complexity. In real-world scenarios, 
recognition tasks are often performed on platforms with limited 
computational resources, such as mobile devices and robotics. Mobile 
and embedded vision applications require the network architecture to 
be small and computationally efficient. Howard, A. G. et al. (2017) 
[275] presented a family of efficient network architectures called 
MobileNets for mobile applications that runs on a computationally 
limited platform. 

MobileNet is primarily built on depthwise separable convolutions 
[276], where a standard convolution is factorized into a depthwise 
convolution and a pointwise convolution, separately learning spatial 
correlations and cross-channel correlations [277]. As illustrated in 
Fig. 28, instead of using a single filter of size Dk × Dk × M, M filters of 
size Dk × Dk × 1 are applied to the input, with each filter convolving 
with one channel of the input. 

The depthwise convolution generates M feature maps with the same 
depth as the input. The pointwise convolution applies 1 × 1 convolu-
tion to the feature maps a depthwise convolution produces to learn 
cross-channel correlations. By replacing a standard convolution with a 
depthwise separable convolution, the computation can be reduced by 
Rc, where 

Fig. 26. Reformulations of the simplified Inception module.  
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Rc =
1
N
+

1
D2

K
, (61)  

where N denotes the number of channels in the output maps. For 
example, 3 × 3 depthwise separable convolutions use around nine times 
less computation than standard 3 × 3 convolutions. 

The architecture of MobileNet comprises one standard convolution 
at the beginning, a series of consecutive depthwise separable convolu-
tions as the network backbone, followed by an average pooling layer and 
a fully-connected layer. To further reduce the model size and the latency 
of MobileNet, two hyperparameters, width and resolution multiplier, 
are introduced to thin a network at each layer. All these techniques 
allow customizing a MobileNet for efficiently trading off accuracy and 
model size. 

Increasing the network depth and width are two common directions 
for improving model performance. With a deeper architecture, a model 
can extract richer information from the input. Extending the width of the 
network improves the expressiveness of neural networks. Xie, S. N. et al. 
(2017) [278] presented an architecture dubbed ResNeXt constructed by 

repeating multi-branch building blocks of the same topology. This ar-
chitecture explores a new network dimension called cardinality, which 
refers to the total number of paths within a building block, as shown in 
the left diagram in Fig. 29. Experiments in [278] showed that the model 
capacity could be increased more effectively by increasing the cardi-
nality of ResNeXt than the network depth or width. 

Similar to the Inception modules, the building block of ResNeXt 
adopts a split-transform-merge strategy. The main difference is that each 
path representing a transformation in a building block of ResNeXt is of 
the same topology, as illustrated in Fig. 29(a). A set of transformations of 
the same topology are first aggregated within the building block. A skip 
connection is added to summate aggregated and input feature maps. 

Fig. 29(b-c) shows two equivalent formulations of the building block. 
ResNeXt comprises a convolution layer followed by a max-pooling layer 
at the beginning, a stack of multi-branch building blocks, and a global 
average pooling layer followed by a fully-connected layer. Compared to 
a ResNet-50, a ResNeXt-50, shown in Fig. 29(c), has slightly fewer pa-
rameters while achieving better model performance. Compared to the 
Inception modules, it only needs to set a few hyper-parameters about the 

Fig. 27. Illustration of ResNet and DenseNet.  

Fig. 28. The depthwise convolution and the pointwise convolution within a depthwise separable convolution.  

Fig. 29. Equivalent implementations of building blocks of ResNeXt with cardinality = 32. Each layer is represented in a box as (input channels, filter size, and 
output channels). 
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building blocks as they are of the same topology. 

8.5. ShuffleNet and NASNet 

Despite the tremendous success achieved by CNNs, most models are 
huge in size and of a large number of parameters, making it unfeasible to 
deploy them on mobile devices with very limited computational re-
sources. ShuffleNet is a computation-efficient CNN architecture 
designed to pursue the best accuracy with limited computational bud-
gets [279]. This architecture greatly reduces computational costs while 
maintaining model performance by utilizing two operations: 
group-pointwise convolution and channel shuffle. 

Although depthwise separable convolutions and group convolutions 
have been widely used to replace standard convolutions in state-of-the- 
art extremely small networks such as ResNeXt to trade off model per-
formance and computational cost, the expensive 1 × 1 convolutions 
are not taken into account, which introduces considerable computation 
complexity. In ShuffleNet, pointwise group convolutions are performed 
on 1 × 1 layers to reduce the computation complexity [280,281]. 

Fig. 30(a-c) illustrates a channel shuffle operation between two 
stacked group convolutions. Fig. 30(a) demonstrates two stacked group 
convolutions where the outputs of a group only relate to that certain 
group of channels in the input. As the outputs of different groups are 
independent, the side effect is that information flow is blocked among 
channels. This is solved by shuffling channels between two group con-
volutions, as shown in the middle and the right diagram of Fig. 30(b and 
c). 

The shuffle channel operations allow information to flow across 
feature channels of different groups. The ShuffleNet unit is designed 
based on the channel shuffle and group convolution, as shown in Fig. 30 
(d). This building unit has two branches. One branch is a shortcut path 
equipped with an average-polling layer. The second branch composes of 
a 1 × 1 pointwise group convolution whose output channels are shuf-
fled, a 3 × 3 depthwise convolution followed by a 1 × 1 pointwise 
group convolution. 

Feature maps of two branches are finally concatenated to form the 
output of a ShuffleNet unit. Pointwise group convolutions with channel 
shuffle allow the units to be computed efficiently and encode more in-
formation. The ShuffleNet architecture is constructed with a standard 
convolutional layer followed by a max-pooling layer, a stack of Shuf-
fleNet units, and a global pooling layer followed by a classifier at the end 
of the network. 

NASNet is an architecture with high transferability found on the 
CIFAR-10 dataset using neural architecture search methods [282]. 
Specifically, reinforcement learning is utilized to search for the best 
convolutional cells within a pre-defined search space that can be 
repeated to construct a NASNet network. Experiments in [282] 
demonstrated that a NASNet with the best architecture of convolutional 
cells found on the CIFAR-10 dataset can outperform contemporary 
published works on ImageNet. 

NASNet composes of two types of generic convolutional cells that are 
repeated many times along the network: (1) Normal Cell that returns a 

feature map of the same dimension as the input; and (2) Reduction Cell 
that returns a feature map with the height and the width reduced by a 
factor of two. The architecture of the best Normal Cell and Reduction 
Cell found on CIFAR-10 are illustrated in Fig. 31(a and b). 

The input of a convolutional cell comes from the outputs of two 
preceding cells, denoted as hi and hi− 1, respectively. Each cell contains 
five blocks, each composed of two primitive operations (green) and a 
combination operation (blue). A primitive operation takes as input a 
hidden state from hi, hi− 1 or the hidden states generated from other 
blocks. The number of convolutional cells and the number of initial 
convolutional filters in a NASNet network are manually predetermined 
according to the scale of a classification problem and the computational 
demands. This property allows for generating a set of models that meet 
different computational budgets. 

8.6. MnasNet and EfficientNet 

Significant efforts can be seen to balance the trade-offs between ac-
curacy and latency for mobile models either by manually designing the 
network architecture or by neural architecture search methods [275, 
278,279,282]. In contrast to these works, Tan, M. X. et al. (2019) [283] 
presented an automated mobile neural architecture search (MNAS) 
approach that directly incorporates real-word inference latency 
measured on mobile devices into the search objective to identify an 
optimal model striking a proper balance between accuracy and latency. 

MNAS defines a factorized hierarchical search space where a CNN is 
partitioned into a series of unique pre-defined blocks, and operations 
and connections are searched for per block based on a set of choices. This 
encourages layer diversity which is beneficial to achieving high accu-
racy and less latency. Reinforcement learning searches for optimal so-
lutions in the hierarchical search space. Especially a recurrent neural 
network (RNN) acts as a controller in the search framework that samples 
a set of models from the search space. Accuracy and latency for each 
sampled model are obtained by training and then running it on mobile 
phones. These two metrics are used to calculate the multi-objective 
reward for updating the controller’s parameters, finding an optimal 
model maximizing the expected reward. 

A representative architecture MnasNet-A1 found by the automated 
approach is illustrated in Fig. 32(a). Its components, MBConv3, 
MBConv6, and SepConv, are shown in Fig. 32(b-d). MnasNet-A1 consists 
of a standard convolutional layer, a sequence of blocks of three different 
structures, and a classifier. Layer diversity in MnasNet leads to better 
trade-offs between accuracy and latency than other models constructed 
by stacking a single type of layer throughout the network [283]. 

The conventional practice of scaling CNNs for performance im-
provements involves manually scaling the network depth, width, and 
resolutions. However, this process needs tedious manual tuning to strike 
a good balance between accuracy and efficiency. 

Tan, M. X. et al. (2019) [284] first empirically quantified the rela-
tionship exiting among network depth, width, and resolution and pro-
posed an effective compound model scaling method that uniformly 
scales these three dimensions of a given network, leading to accuracy 

Fig. 30. Illustration of ShuffleNet. (a-c) Channel shuffle for group convolutions, (d) Architecture of the ShuffleNet unit.  
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gains. The compound model scaling method can be formulated as d =

αϕ, w = βϕ, r = γϕ, α ≥ 1, β ≥ 1, γ ≥ 1, where d , w, r are depth, width, 
and resolutions, α, β, γ are constants determined by grid search, and ϕ 
denotes the compound coefficient to uniformly scale three dimensions. 
EfficientNet is a mobile-size baseline network on which the effectiveness 
of the compound model scaling method is evaluated. This architecture is 
found by a multi-objective neural architecture search within the same 
search space in Ref. [283]. The architecture of the baseline network 
EfficientNet-B0 is shown in Fig. 32(e). 

Similar to MnasNet, EfficientNet-B0 composes of a convolutional 
layer at the beginning, a sequence of blocks, and a final convolutional 
layer followed by a pooling and a classifier [285,286]. Based on the 
amount of additional available resources, the baseline network is scaled 
up with different values of coefficient ϕ, generating a family of networks 
called EfficientNets. The scaled network EfficientNet-B7 performed on 
par with GPipe [287] on ImageNet with 8.4x fewer parameters and 6.1x 
lower inference latency. 

9. Semi-supervised learning 

Over the last decade, deep learning-based techniques have been 
developed in a wide variety of domains, and it is common sense that 
deep learning models heavily rely on large-size datasets with ground- 
truth labels [288]. However, assigning labels for all the datasets is 
laborious and costly, especially in some domains which need sufficient 
domain knowledge to annotate the labels for the unlabeled data [289, 
290]. For example, in medical image analysis, the annotation process 
needs lots of annotators to label the image and annotators with confident 
domain knowledge to ensure the correctness of assigned labels [291, 
292]. Many efforts try to address this problem with semi-supervised 
learning (SSL)-based methods. 

SSL is a paradigm that can retrieve semantic knowledge from limited 
labeled data and unlabeled instances. For all the SSL-based methods, all 
the data should contain underlying semantic knowledge or features 
[293,294]. Then the SSL-based methods can utilize all the labeled or 
unlabeled data points to extract meaningful data features. If some data 
instances cannot provide underlying semantic knowledge, these data 

Fig. 31. Architecture of the best convolutional cells found on CIFAR-10.  

Fig. 32. Illustration of (a) MnasNet-A1 architecture, (b-d) MBConv3, MBConv6, and SepConv, (e) EfficientNet-B0 baseline network.  
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points are useless for the SSL-based methods [295,296]. 
Based on this obligatory condition, the SSL-based methods can easily 

obtain related algorithms and model architectures from existing super-
vised learning and unsupervised methods. Recently, the SSL-based 
method has attracted lots of attention [297]. It provides a promising 
way to explore semantic knowledge from unlabeled examples and al-
leviates the situation that some domains only have limited labeled im-
ages [298,299]. 

In the problem setting of semi-supervised learning, we assume that 
there are two group datasets: labeled and unlabeled datasets denoted as 
D = {DL, DU}. Here, the D represents the entire dataset, DL = {xi}

L
i=1 

denotes limited labeled data with ground-truth labels YL = {yi}
L
i=1, and 

DU = {xi}
U
i=1 is unlabeled data. By comparing the quantities of labeled 

and unlabeled instances, we assume L≪ U that the quantity L of labeled 
data is far less than U of the unlabeled data. During the training process 
of SSL, we aim to minimize the loss function as Eq. (62) shows, 

L ssl =
∑

x∈DL ,y∈YL

L s(x, y, θ) + α
∑

x∈DU

L u(x, θ) + β
∑

x∈D
R (x, θ). (62) 

It consists of three parts: supervised loss L s for each example, un-
supervised loss L u and a regularization term R . θ represents the 
trainable parameters, and α, β ∈ R are larger than zero. 

There are two evaluation criteria for SSL-based methods. The first 
one requires the SSL-based method should outperform the supervised 
learning methods with limited labeled data. Secondly, the performance 
improvement corresponds to the increased portion of labeled training 
instances. In conclusion, both improved gaps should show the effec-
tiveness of the proposed SSL-based approach [300]. 

SSL mainly includes smoothness assumption and manifold assump-
tion (Also known as cluster assumption, structure assumption, or low- 
density separation assumption). In the last decade, SSL-based methods 
have succeeded dramatically in many domains. By analyzing most SSL- 
based methods, we divided existing works into four categories, as Fig. 33 
(a) shows: generative models, consistency regularization methods, 
pseudo-labeling methods, and graph-based methods. We will explain the 
concepts of these categories in the remaining subsections and illustrate 
the related works of the corresponding method. 

9.1. Generative models 

Generative models belong to unsupervised learning, which aims to 
extract the underlying data distributions from unlabeled data [301]. The 
outputs of the generative model are representations of underlying data 
distribution (The representation can be a data feature, label, or new 
instances), then integrating these outputs with a supervised 
learning-based method to build an SSL framework. With the develop-
ment of deep learning techniques, we summarize all the generative 
models into four types, as Fig. 33(b) shows: generative adversarial 
networks (GANs), variational auto-encoders (VAEs), diffusion models, 
and flow-based models. This chapter mainly introduces the concept of 
GANs, VAEs, and diffusion models. These methods are commonly used 

in many applications. 

9.1.1. Generative adversarial networks (GANs) 
GANs is first proposed by Goodfellow, I. et al. (2020) [302], aiming 

to map the data into high-dimensional distributions implicitly. It can be 
used in both semi-supervised and unsupervised learning-based methods. 
Since it was proposed in 2014, it has been applied in many different 
domains. Moreover, it has already developed in many different tasks, 
such as image restoration [303], image-to-image translation [304], 
image generation [305], image editing [306], domain transfer [307], 
and so on. 

The classic generative adversarial network contains two parts named 
as discriminator and generator. The generator denotes by G, which aims 
to generate fake instances from gaussian noise z. The discriminator de-
notes by D, and the inputs of the discriminator are original or synthetic 
images. The goal of the discriminator is to distinguish whether the input 
is a real or fake image. When the images generated by the generator 
cannot distinguish by the discriminator, we define that the generator is 
well-trained and has enough ability to generate synthetic images. The 
entire training process of the generative adversarial network can be 
regarded as a min-max two-person zero-sum game. The generator at-
tempts to minimize the value V, and the discriminator attempts to 
maximize the value V. The objective of the game can be described as Eq. 
(63), 

min
θ

max
φ

V(Gθ,Dφ) = Ex− pdata [logDφ(x)] + Ez− p(z)[log(1 − Dφ(Gθ(z)))], (63)  

where the generator tries to decrease the probability of the discriminator 
correctly classifying the fake images. This probability represents by the 
log[1 − Dφ(Gθ(z))] with respect to its parameters θ. During the training 
process, the discriminator will try to improve the ability to get the 
correct predictions denoted by the logDφ(x) with respect to its parame-
ters φ, and x represents the real data instance. The general architecture 
of the generative adversarial network depicts in Fig. 34(a). 

Fig. 34(b) shows some food examples generated by ChefGAN [308]. 
These generated images can be regarded as an additional training 
dataset to improve the performance of the SSL-based method. Another 
work presented by Fei, Z. H. et al. (2021) [309] uses CycleGAN to pre-
dict the position and geometry of fruits. Their method can boost the 
domain adaption process and reduce labeling costs. 

9.1.2. Variational auto-encoders (VAEs) 
VAE is one type of generative model that integrates autoencoders 

with generative latent-variable models to reconstruct the input data 
instances [310–312]. The typical VAEs include two parts: the encoder 
and the decoder. The encoder will transform the input data x to the 
latent feature representation z, then the decoder will reconstruct the 
original input x to the x′ . Fig. 35(a) depicts the standard architecture of 
VAEs. It trains the model by maximizing the variational lower bound. 

Here, we denote the encoder qθ(zx) with parameters θ, and decoder 
pϕ(xz) with parameters ϕ. Then the loss function of VAEs can be 

Fig. 33. The taxonomy of (a) SSL methods and (b) generative models.  
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described as Eq. (64), which represents a negative log-likelihood with a 
regularization term. In Eq. (64), − Ez∼qθ(z|xi)[logpϕ(xi|z)] is a negative log- 
likelihood for the data point xi, it aims to force the decoder to recon-
struct the input data. The KL(qθ(z|xi)‖ p(z)) is a Kullback-Leibler 
divergence which evaluates the loss between the encoder q and the 
decoder p. 

li(θ,ϕ) = − Ez∼qθ(z|xi)

[
logpϕ(xi|z)

]
+ KL(qθ(z|xi)‖ p(z)) (64)  

9.1.3. Diffusion models 
The diffusion model formulates a new paradigm in generative 

models and shows an impressive performance in computer vision tasks. 
The diffusion model consists of two parts, as Fig. 35(b) shows: forward 
and reverse diffusion. In the forward diffusion part, the original data x0 
will gradually be perturbed by adding gaussian noise within different 
steps. In the reverse diffusion part, the model will try to gradually 
recover the data feature by removing the gaussian noise from the orig-
inal data. Since introducing the diffusion model, it has been widely used 
for generating various high-quality data samples. However, the infer-
ence time of the diffusion model is very slow due to the huge number of 
steps during the sampling process. 

The diffusion model has three categories shown in Table 7. The 
diffusion models have been applied in different computer vision tasks, 
such as image generation [313,314], image-to-image translation [315], 

and image editing [316]. Moreover, the latent data features generated 
by the diffusion model can also be used in discriminative tasks like 
classification, segmentation, and object detection. 

9.2. Consistency regularization methods 

The manifold and smoothness assumption are vital foundations of 
consistency regularization methods. The loss function of the consistency 
regularization includes a consistency regularization term which in-
dicates the pre-defined constraints. The basic rationale behind the 
consistency regularization term is that the model outputs are consistent 
when the noise or perturbation is added to the same data instances or 
models [317]. There mainly includes two categories of consistency 
regularization methods: input variations and model variations. An 
intuitive illustration of these methods is shown in Fig. 36(a and b). 

Input variations focus on generating different augmented data based 
on the same input instance. Then apply the consistency regularization 
with different versions of the same inputs. Here, we mainly introduce 
five different types of input variations: basic image manipulations, 
random augmentation, adversarial perturbation, MixUp, and automated 
augmentation [300]. The most basic strategy is applying different image 
manipulations, such as flipping, color augmentation, random cropping, 
translation, and noise injection. 

Apart from these basic data manipulations, random augmentation is 
also a widely used data augmentation technique. It adds the gaussian 
noise first, then applies jittering to the input data. The representative 
work using the random augmentation is Π-model [318], which uses the 
random data augmentation on the input data and then decreases the 
consistency regularization of the outputs from the two models. Adver-
sarial perturbation aims to change the perditions of the model by adding 
adversarial noises to the input data, and adversarial noise can help SSL 
methods to explore the underlying semantic knowledge of unlabeled 
data. Adding adversarial noise can change the predicted labels or the 
predictive confidence [319]. MixUp [176] produces a weighted com-
bination of different image pairs. Given two data instances and their 
labels denoted by (xn, yn) and (xm,ym), a weighted combination of image 

Fig. 34. Illustration of GAN.  

Fig. 35. The architectures of VAE and diffusion model.  

Table 7 
Three categories in diffusion models.  

Abbreviation Term Role 

DDPMs Denoising diffusion 
probabilistic models 

Use latent variables to predict the 
probability distribution. 

NCSNs Noise-conditioned 
score networks 

Use score matching to train a shared 
model to evaluate the score function for 
the perturbed data distribution with 
different noise levels. 

SDEs Stochastic differential 
equations 

A generalization over denoising diffusion 
probabilistic model and noise- 
conditioned score network  
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pairs is described as Eqn. (65) 
{

x̂ = θxn + (1 − θ)xm
ŷ = θyn + (1 − θ)ym

, (65)  

where the (x̂, ŷ) denotes the new synthetic training example. Auto-
mated augmentation can explore the data itself to generate potential 
data augmentation strategies and produce strong-augmented data in-
stances. It can efficiently reduce the cost of designing domain-specific 
data augmentation [320–322]. 

Model variants apply consistency regularization by different model 
designs, such as parameter settings, model architectures, and model 
weights. Here we introduce two types of methods for the model variants: 
stochastic perturbation and ensembling. 

Stochastic perturbation modifies the model’s parameters by adding 
perturbed noise or dropout layers [323]. For instance, Ladder Network 
will add gaussian noises in the training process [324], Pseudo-Ensemble 
[323], and Virtual Adversarial Dropout [325] use dropout to minimize 
the consistency regularization term. 

Ensembling methods try to get consistent predictions from different 
models and data augmentations. For example, Temporal Ensembling 
[326] and Mean Teacher [327] compute the exponential moving 
average (EMA) by concatenating different models during the training 
process. 

Consistency regularization methods can retrieve useful information 
from unlabeled data by maintaining the prediction variants under the 
different input variants and model variants. During training, the model 
can learn more robust feature representations by optimizing the con-
sistency regularization loss. It only needs variations added to the 
training data instead of cost on the annotations. 

9.3. Pseudo-labeling methods and graph-based methods 

Pseudo-labeling methods try to generate pseudo-labels for the un-
labeled data, which can be regarded as additional training data with 
labels. These methods differ from consistency regularization methods, 
which aim to get consistent predictions based on various constraints, but 
the pseudo-labeling methods highly rely on our confidence in pseudo- 
labels. There are two types of pseudo-labeling models: disagreement- 
based models and self-training models. 

Disagreement-based models will train several learners to exploit the 
unlabeled data and try to maintain the max disagreement among the 
different learners [328]. Some works are based on the 
disagreement-based mechanism, such as Co-training [329] and 
Tri-training [330]. Co-training [329] assumes that each data instance 
has two complementary views, and these views for all the data instances 
are enough to train two classifiers. Then, two classifiers are used to 
predict unlabeled data on both views and give the pseudo-labels to the 
most confident instance until all the unlabeled data are iterated. 
Tri-training trains three classifiers with three training datasets generated 
by the bootstrap sampling. In detail, Tri-training [330] uses labeled data 
with output smearing [331] to generate three training datasets, then 
train three initial classifiers with different training datasets. 
Pseudo-labels were obtained by making predictions on these classifiers 
with unlabeled data. The pseudo-label is regarded as confident when the 

consistency of two models checks it, and the confident instance adds to 
the training dataset of the third model. The third model uses an 
augmented dataset to predict the final outputs. 

Self-training models generate pseudo-labels by training an unsu-
pervised learning-based classifier and then assigning the pseudo-labels 
for unlabeled instances. These models can be regarded as a data 
augmentation process to expand existing limited labeled images. One of 
the self-training models is Noise Student [332], which contains a teacher 
and student model based on knowledge distillation. Firstly, the teacher 
model trains on the labeled data and produces pseudo-labels for all the 
unlabeled data. Then a larger student model will combine the labeled 
and pseudo-labeled data for training. 

During the training process, multiple data augmentations are 
implemented to improve the robustness of the model. Another work of 
self-training models is EnAET [333], which ensembles different 
Auto-Encoding Transformations to improve the model’s performance. 
The well-trained EnAET model can generate meaningful feature repre-
sentations, which can generate pseudo-labels for unlabeled data. Apart 
from the methods mentioned above, contrastive learning-based methods 
can also generate pseudo-labels to utilize unlabeled data, such as 
SimCLR [334], SimSiam [335], and DINO [336]. 

Graph-based methods assume that data instances can be mapped into 
a weighted graph where the graph nodes represent the data instance, 
and the edge describes the similarity between the nodes. In detail, if all 
the labeled and unlabeled samples are mapped into the weighted graph, 
the labels of unlabeled data can predict by the positions of labeled data 
because the neighboring data points are more likely to have the same 
label based on the smoothness assumption. 

Graph-based methods can be divided into two types: transductive 
learning and inductive learning [337]. Transductive learning methods 
propagate the labels for unlabeled data by exploring the feature repre-
sentation on the labeled data. Related works for transductive learning 
are Gaussian Fields and Harmonic Functions (GFHF) method [338], the 
Local and Global Consistency (LGC) algorithm [339], sparse 
representation-based methods [340], low-rank model [341], and so on. 

Inductive learning methods using labeled and unlabeled data to train 
the classifier also work for the out-of-samples, i.e., it initially builds a 
graph based on the labeled and unlabeled data, then propagates the 
label of the out-of-sample (unseen data) based on the existing graph. 
Related works of inductive learning methods are BGDH [342], SSDH 
[343], and AELP-WL [344]. 

10. Deep-learning applications in food category classification 

Food is intimately connected to human health; however, food 
recognition can often be time-consuming and expensive. Applying deep 
learning to food recognition can effectively alleviate this issue, making 
food recognition more accessible and less costly. This section reviews 
research on food image recognition based on deep learning from three 
perspectives: food category classification, food quality identification, 
and food ingredient detection. 

Fig. 36. Consistency regularization methods based on (a) the input variations and (b) model variations.  
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10.1. Food category classification and quality identification 

Accurate and rapid classification of food products can effectively 
promote an automated food industry, encourage healthy eating habits, 
and assist patients with illnesses requiring specific food contraindica-
tions or individuals with particular food allergies in identifying foods 
quickly. With the rapid advancement of technology, electronic devices 
capable of displaying images are present in numerous aspects of human 
life and production, and the acquisition of food images has become fast 
and affordable. The abundant information in image data can reflect 
color, shape, texture, volume, and various other characteristics that aid 
in classifying food products. It makes images an important form of data 
for food classification and is widely employed in research on food 
classification tasks. Compared with traditional image classification 
methods, deep learning-based food image classification techniques can 
automatically extract complex features from food images, significantly 
reducing the dependence of image-based food classification on food 
experts. Consequently, numerous deep learning-based food image clas-
sification methods have been proposed recently. 

McAllister, P. et al. (2018) [345] used two different pre-trained CNN 
models (ResNet-152 and GoogleNet Inception) to extract features from 
food images and five common classifiers (Naive Bayes, SVM polynomial, 
SVM RBF, ANN, and Random Forest) to classify the extracted features 
for different kinds of food. The datasets used for the experiments are 
Food-5k, Food-11, RawFooT-DB, Food101, UNICT-Caltech, where 
UNICT-Caltech is only used for model evaluation, and the other datasets 
are also used for the training of the model. By mixing and matching CNN 
models for feature extraction with machine learning classifiers, training 
and evaluating these models on different datasets, several sets of ex-
periments were constructed to comprehensively assess the feasibility of 
such methods for food classification tasks. Among all the experiments 
conducted, the combination of ResNet-152 for feature extraction and 
ANN for feature classification achieved the highest performance with a 
98.8% accuracy in the binary classification (Food class and Non-Food 
class) on the Food-5k dataset. This combination also achieved accu-
racies higher than 90% in most other experiments. The study demon-
strates that combining pre-trained models with machine learning 
classifiers is practical in food image classification tasks. 

Based on cognitive uncertainty analysis, Aguilar, E. et al. (2022) [26] 
proposed a food image classification method called Forward Step-wise 
Uncertainty-Aware Model Selection (FS_UAMS). This approach selects 
the optimal combination of CNN models for optimal performance while 
avoiding the high computational resource requirements associated with 
traditional model selection methods such as random or exhaustive 
search. They replaced the outputs of two classical CNN models, ResNet 
50 and InceptionV3, with a missing layer with a probability of 0.5 and an 
output layer with softmax activation. Moreover, the integrated learning 
models constructed based on the two modified models were trained and 
evaluated using three food image datasets (MAFood121, UECFood256, 
and VIREO172). The research experiments compared the proposed 
method with traditional model selection methods (validation set-based 
and random selection methods). The experimental results showed that 
the proposed method performs similarly or better than the traditional 
method on all three datasets, achieving 73.01% accuracy on UEC-
Food256, 89.26% on VIREO172, and 88.95% accuracy on MAFood121. 
The validation set-based model selection method obtained a slightly 
higher performance on only UECFood256 (73.10%). 

Yu, Z. Y. et al. (2021) [346] proposed a novel method for identifying 
hybrid okra seeds by combining deep learning techniques with hyper-
spectral imaging. Their study is divided into two aspects, one is used to 
classify mixed okra seeds, and the other is to explore the effect of 
different okra varieties on the model’s performance. The experiment 
used a database from the Zhengjiang Institute of Agricultural Science in 
China to collect 18 species of okra seeds with 18,931 stable states in 
2017. Their experiments compared two deep learning neural network 
models, CNN and stacked sparse auto-encoder (SSAE), and two 

traditional machine learning, extreme learning machine (ELM) and back 
propagation neural network (BPNN). The experiments showed that both 
deep learning methods exhibit higher precision performance than 
traditional machine learning methods. More specifically, a CNN model 
achieves the best performance among all experiments in the research 
with a test accuracy of 93.79%. 

Zhang, W. D. et al. (2020) [347] proposed a framework called a wide 
hierarchical subnetwork-based neural network (WI-HSN) to classify 
food types based on images based on a supervised subnetwork model of 
feature encoding and pattern classification. The framework consists of 
two subnetwork neural nodes (SNN), an entry SNN and an exit SNN. 
With one entry SNN and one exit SNN as the initialization structure, new 
entry SNNs and exit SNNs are added gradually with iterations to ensure 
the model is suitable for tasks of different complexity. In addition, the 
authors also proposed a batch-by-batch scheme with a parallelism 
learning strategy to reduce the learning cost. The proposed method is 
trained and evaluated on five different food image datasets (UEC-
Food100, Food101, Food251m, Food251a, and UECFood256). 
Compared with other common classifiers, WI-HSN achieved the best 
performance in classification tasks on several datasets, with the highest 
performance on the Food101 dataset with an accuracy of 90.8% and an 
average accuracy of 78.2% across the five datasets. 

Food quality identification is a crucial task that significantly impacts 
human dietary health. However, traditional food quality testing 
methods often have drawbacks, the most important of which is the high 
cost. It makes food quality detection a challenge in the food industry 
when the number of food samples has increased dramatically. The 
automatic feature extraction nature of deep learning techniques makes it 
possible to obtain accurate food quality inspection results at a relatively 
low cost. Therefore, many studies have proposed various deep learning- 
based food quality inspection methods. 

Zhou, J. et al. (2023) [5] proposed a deep learning framework based 
on double-layer rough-refinement optimization to achieve standardized 
and consistent food quality identification. The proposed model in-
troduces the idea of multi-objective optimization to optimize the to-
pology of the deep neural network and uses a meta-heuristic algorithm 
to optimize the global weight parameters of the neural network. They 
trained and evaluated the model on a wine quality dataset from the UCI 
machine learning database and a rice cake dataset. The wine quality 
dataset covers two types of wine (white wine and red wine). Each sample 
in the wine quality dataset has 11 physicochemical properties as features 
and sensory data based on the sommelier’s rating on a ten-point scale (0 
for very poor and 10 for very good) as the label. The rice cake dataset 
includes six raw material indicators and six product indicators. The 
proposed method has achieved accuracies of 93.73% for the red wine 
quality identification task, 89.77% for the white wine quality identifi-
cation task, and an MSE(10− 2) (the average mean squared error divided 
by 10− 2) of 0.010 for the task of rice cake quality identification. The 
experimental results showed that the proposed method is competitive 
with the traditional food quality evaluation methods and has general 
applicability for the quality evaluation of different food products. 

Kazi, A. et al. (2022) [6] used two traditional structures of CNN 
(AlexNet and VGG-16) and a 50-layer residual CNN (Resnet-50) to 
classify a six-class (fresh apples, fresh bananas, fresh oranges, rotten 
apples, rotten bananas, and rotten oranges) fruit image dataset con-
sisting of three different species (bananas, apples, and oranges) and two 
different states (fresh and rotten). The research experiments showed that 
the Resnet-50 model performs best in classifying fruit images with an 
accuracy of 99.7%, compared to the AlexNet model (97.74%) and the 
VGG-16 model (99.3%). The authors suggested that this is because the 
shortcut design of the residual network allows deeper network layers, 
which can effectively avoid the negative impact of a large number of 
network layers on the overall performance while learning more and 
deeper features. 

Pradana-Lopez, S. et al. (2021) [7] used a pre-trained ResNet-34 
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based on transfer learning techniques to perform the food quality 
identification task on a custom coffee image dataset. The objective is to 
detect the presence of an impurity in these coffees and the ability of the 
deep learning model to discriminate between adulterants of different 
particle sizes to control the coffee quality. The proposed method can 
effectively identify adulterations of ground Arabica and Robusta coffee 
with chicory and barley, with an accuracy of 98.6%. 

10.2. Food ingredients detection 

Processed foods often contain a wide range of ingredients, and even 
the same dish may have different combinations. Identifying food in-
gredients is important for human health, not only to ensure a balanced 
diet but also to consider the sensitivity of specific populations to 
particular foods. Ideally, food ingredients can be quickly identified by 
acquiring food images from electronic devices such as cell phones or 
computers. Deep learning, a technique that automatically extracts fea-
tures and quickly outputs detection results, is widely used for food 
ingredient detection. 

Tahir, G. A. et al. (2021) [348] proposed a food image analysis 
method based on transfer learning by combining MobileNetV3 and 
snapshot ensembles. The framework of the model is divided into two 
parts, first identifying whether the input image is a food image and then 
performing food ingredients detection on the identified food image. This 
framework uses transfer learning to reduce the computational cost and 
the chance of generating generalization errors. The distributed structure 
of the framework utilizes the association between two sub-problems to 
effectively solve the drawback that transfer learning can only solve a 
single problem but not an associated problem. Their research used five 
image datasets, Food/Non-Food, Food101, UECFood100, UECFood256, 
and Malaysian food, in which the Malaysian food dataset was extended 
to a new dataset (MF-145) for ingredient detection. The experimental 
results showed that the ensemble model outperformed or was similar to 
the three separate models on all five data sets. The proposed ensemble 
model achieves up to 99.12% accuracy on the Food/Non-Food classifi-
cation task. It achieves a Hamming loss of only 0.0070 on the food in-
gredients detection task, which is only 0.0004 higher than MobileNetV3 
but achieves a precision of 83.81%, 3.16% higher than MobileNetV3. 

Chen, J. J. et al. (2021) [349] comprehensively analyzed two food 
composition recognition methods, (1) a multi-task learning-based 
method that uses global features in food images to identify both food 
types and ingredients, (2) a method that uses regional features in food 
images to identify food ingredients, firstly by identifying ingredients in 
local images and then by pooling the recognition results from different 
regions as the final recognition results. The results showed that using 
multi-scale image processing to compensate for the loss of image context 
is not very effective. In addition, the recognition of food types is based 
on image-level features. In contrast, the recognition of food ingredients 
is mostly based on local-level features, and these two different levels of 
features conflict with each other regarding learning objectives. The 
multi-task learning-based approach requires complex network struc-
tures to optimize both problems to prevent performance degradation. In 
addition, the paper extended the Chinese cuisine dataset VIREO172 with 
172 categories into a larger food data set with 251 categories and 406 
food ingredient labels, named VIREO251. 

Wang, Z. L. et al. (2022) [350] proposed a multi-task learning 
framework that simultaneously identifies food categories and predicts 
their composition. This framework uses a food composition dictionary to 
acquire visual regions in an image related to food composition and an 
attention mechanism to enhance the features of these visual regions. In 
addition, a graph of semantic and visual representations of food in-
gredients was constructed to model the relationship between food in-
gredients. The nodes are the visual components, and the edges are the 
semantic similarities between the component words. A graph convolu-
tional neural network was used to learn the constructed graph and to 
aggregate semantic features with visual features. Three food datasets 

were used: the Western food dataset Food101, the Chinese food dataset 
Vireo Food-172, and the mixed food dataset ISIA Food-200. The effec-
tiveness of the proposed approach was further demonstrated using 
component assignment graphs and attention graphs. 

Table 8 shows recent research on applying deep learning techniques 
to various food image recognition tasks. The best evaluation perfor-
mance column records only the best performance for the corresponding 

Table 8 
A survey on deep learning-based food recognition methods.  

Authors Year Task Type Dataset Best Evaluation 
Performance 

McAllister, P. 
et al. (2018)  
[345] 

2018 Food Category 
Classification 

Food-5k ACC: 98.8% 
(Binary) 

Food-11 ACC: 91.34% 
(11-class) 

RawFooT-DB ACC: 99.28% 
(68-class) 

Food101 ACC: 64.98% 
(101-class) 

UNICT-Caltech ACC: 97.50% 
(Binary) 

Aguilar, E. et al. 
(2022) [26] 

2022 Food Category 
Classification 

MAFood121 ACC: 88.95% 
(121-class) 

UECFood256 ACC: 73.10% 
(256-class) 

VIREO172 ACC: 89.26% 
(172-class) 

Yu, Z. Y. et al. 
(2021) [346] 

2021 Food Category 
Classification 

Custom okra 
seeds 

ACC: 93.79% 
(18-class) 

Zhang, W. D. 
et al. (2020)  
[347] 

2020 Food Category 
Classification 

UECFood100 ACC: 87.7% 
(100-class) 

Food101 ACC: 90.8% 
(101-class) 

Food251m ACC: 61.6% 
(251-class) 

Food251a ACC: 66.4% 
(251-class) 

UECFood256 ACC: 83.1% 
(256-class) 

Zhou, J. et al. 
(2023) [5] 

2022 Food Quality 
Identification 

Wine Quality 
(Red Wine) 
Wine Quality 
(White Wine) 

(Error 
Tolerance =
1.0) 
ACC: 93.73% 
ACC: 89.77% 

Glutinous Rice 
Cake 

MSE(10− 2): 
0.010 

Kazi, A. et al. 
(2022) [6] 

2022 Food Quality 
Identification 

Custom fruit 
dataset 

ACC: 99.7% 

Pradana-Lopez, 
S. et al. 
(2021) [7] 

2021 Food Quality 
Identification 

Custom coffee 
dataset 

ACC: 98.6% 

Tahir, G. A. 
et al. (2021)  
[348] 

2021 Food 
Ingredients 
Detection 

MF-145 F1-score: 
86.03% 
Hamming Loss: 
0.0070 

Chen, J. J. et al. 
(2021) [349] 

2021 Food 
Ingredients 
Detection 

VIREO251 Micro-F1: 
83.06% 
Macro-F1: 
72.00% 

UECFood100 Micro-F1: 
68.95% 
Macro-F1: 
49.36% 

Wang, Z. L. 
et al. (2022)  
[350] 

2022 Food 
Ingredients 
Detection 

ISIA Food-200 Micro-F1: 
64.74% 
Macro-F1: 
62.61% 

Food101 Micro-F1: 
91.51% 
Macro-F1: 
90.82% 

VIREO172 Micro-F1: 
74.34% 
Macro-F1: 
59.56%  
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task of each research listed in the task type column. For some research 
articles that report performance on multiple subsets of datasets, only the 
performance on the evaluation dataset is listed. 

11. Conclusion 

Developing and deploying deep learning and AI systems to task food 
category recognition is a large field of potential innovation and impact 
in the 21st century. In this survey, we provided a survey of the current 
techniques and methods used for various applications in food category 
recognition, including food quality and ingredients detection and food 
type and quantity detection. The techniques and methods cover each 
stage of constructing an AI system, including data collection, data 
augmentation, hand-crafting features, and methods for recognition. 
Recognition, which is most formulated in classification tasks, can be 
achieved through both traditional machine learning and deep learning 
approaches. The survey lies in the intersection between deep learning, 
computer vision, and food science, providing an overview of existing 
methods and insights for developing new recognition systems. 

We place a particular focus on the most commonly applied approach 
of transfer learning and the approach that will allow the utilization of 
potentially abundant unlabeled data: semi-supervised learning. For the 
open challenges detailed by Zhu, L. L. et al. (2021) [10] in a prior survey 
that focuses on food processing, our survey primarily focuses on the 
development of ever higher-performing computer vision algorithms for 
the more general task of food category recognition in all stages of the 
food ”life-cycle.” 

The remaining open challenges include integrating sensory infor-
mation, e.g., smell [10]. Sensory information may provide more direct 
information regarding food ingredients and quality than images, while 
this survey focuses on computer vision methods. AI systems’ efficiency 
and size are other challenges we do not address. The survey focused on 
deep learning with deep neural networks, which may be difficult to 
integrate into mobile applications. The final challenge that remains to be 
addressed is the integration with robotics [10,24], the natural step 
forward when a reliable recognition system is available. Future devel-
opment in the direction of these challenges has the potential to revo-
lutionize the relationship between humankind and food. 
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