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Efective decision-making requires well-founded optimization models and algorithms tolerant of real-world uncertainties. In the
mid-1980s, intuitionistic fuzzy set theory emerged as another mathematical framework to deal with the uncertainty of subjective
judgments and made it possible to represent hesitancy in a decision-making problem. Nowadays, intuitionistic fuzzy multi-
objective linear programming (IFMOLP) problems are a topic of extensive research, for which a considerable number of solution
approaches are being developed. Among the available solution approaches, ranking function-based approaches stand out for their
simplicity to transform these problems into conventional ones. However, these approaches do not always guarantee Pareto
optimal solutions. In this study, the concepts of dominance and Pareto optimality are extended to the intuitionistic fuzzy case by
using lexicographic criteria for ranking triangular intuitionistic fuzzy numbers (TIFNs). Furthermore, an intuitionistic fuzzy
ε-constraint method is proposed to solve IFMOLP problems with TIFNs. Te proposed method is illustrated by solving two
intuitionistic fuzzy transportation problems addressed in two studies (S. Mahajan and S. K. Gupta’s, “On fully intuitionistic fuzzy
multiobjective transportation problems using diferent membership functions,” Ann Oper Res, vol. 296, no. 1, pp. 211–241, 2021,
and Ghosh et al.’s, “Multi-objective fully intuitionistic fuzzy fxed-charge solid transportation problem,” Complex Intell Syst, vol.
7, no. 2, pp. 1009–1023, 2021). Results show that, in contrast with Mahajan and Gupta’s and Ghosh et al.’s methods, the proposed
method guarantees Pareto optimality and also makes it possible to obtain multiple solutions to the problems.

1. Introduction

Modern societies depend every day to a greater extent on
the use of intelligent automated or semiautomated
technologies to, e.g., drive productivity in assembly lines,
control communication systems, perform surveillance,
and process large volumes of fnancial transactions [1].
With the advent of artifcial intelligence paradigms,
automated decision-making (ADM) systems began to
undergo considerable development, and they are cur-
rently being deployed in public and private sectors. An
ADM system uses computation to aid or replace orga-
nization decisions, judgments, and/or policy

implementations that impact opportunities, access, lib-
erties, rights and/or safety [2]. Important constituents of
these systems are their underlying optimization models
and algorithms. However, to act like human experts do
when making decisions, to understand the context in
which decisions are to be made, and to deal with real-
world uncertainties, conventional optimization models
and algorithms are not sufcient. In fact, ethical concerns
about the use of ADM systems have been raised and the
need for regulation has general consensus [3].

Zadeh [4] conceived the fuzzy set theory as a theory for
modeling uncertainty due to subjective judgments, in which
the concept of grade of membership of an element in a set
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has a central role. Atanassov [5] introduced the intuitionistic
fuzzy set (IFS) theory as a generalization of Zadeh’s [4]
theory and considered along with the concept of grade of
membership to that of nonmembership. In this way, hesi-
tancy can be quantifed and included in a decision-making
process. Both theories were soon applied to optimization
under uncertainty and gave birth to fuzzy linear pro-
gramming (FLP) and intuitionistic fuzzy linear pro-
gramming (IFLP) (see [6–8]).

In recent years, FLP problems, in which the parameters
and/or decision variables take on fuzzy numbers, have re-
ceived a lot of attention and several solution approaches
have been proposed [9]. A widespread approach for solving
such problems is to transform them into conventional
(nonfuzzy) ones by using linear ranking functions [9]. Tose
ranking functions, however simple to apply, have a major
drawback, that is, they may transform diferent fuzzy
numbers into the same real number. Two implications
clearly arise. First, in FLP, such a transformation does not
guarantee uniqueness of optimal objective values [10].
Second, in connection with the frst implication, in the
multiobjective case, using linear ranking functions does not
always guarantee Pareto optimality [11]. To resolve these
drawbacks, lexicographic ranking criteria have been sug-
gested for the single-objective and multiobjective cases.
Tese criteria use multiple indices hierarchically to compare
fuzzy numbers and, under very few assumptions, can
guarantee unique optimal objective values and Pareto op-
timality [11]. Hashemi et al. [12] proposed a two-phase
lexicographic approach to solve FLP with symmetric LR-
type fuzzy numbers. Kaur and Kumar [10] developed
a lexicographic method for solving FLP problems, with
trapezoidal fuzzy numbers, which have only fuzzy equality
constraints. Ezzati et al. [13] introduced a lexicographic
method for solving FLP problems with triangular fuzzy
numbers, in which fuzzy inequality constraints are trans-
formed into fuzzy equality constraints by means of fuzzy
slack or surplus variables. However, although such an ap-
proach is valid in the nonfuzzy case, it may produce in-
feasible solutions in the fuzzy case. In [14], a method similar
to that of Ezzati et al. [13] was proposed for solving FLP
problems with LR-type fuzzy numbers and with only fuzzy
equality constraints. Das et al. [15] used a lexicographic
criterion for ranking trapezoidal fuzzy numbers and pro-
posed a method for solving FLP problems with fuzzy
equality and inequality constraints. However, Das et al.’s
[15] method does not handle fuzzy inequality constraints
correctly. All the previously mentioned methods were later
generalized in [16], where a method to solve FLP problems
with fuzzy equality and inequality constraints, LR-type fuzzy
numbers, and arbitrary lexicographic ranking criteria was
proposed. For the multiobjective case, Yang et al. [17]
proposed a method for solving FLP problems with triangular
fuzzy numbers and with only fuzzy equality constraints.
Teir method, however, does not produce multiple Pareto
optimal solutions. In [11], an ε-constraint method was
developed that guarantees Pareto optimality with respect to
lexicographic ranking criteria and produces multiple Pareto
optimal solutions.

Among the available approaches for solving IFLP
problems, linear ranking function-based approaches also
stand out for their simplicity, and are gaining popularity in
the nonlinear case as well (see [18, 19]). Recently, in [20, 21],
several methods were proposed to solve intuitionistic fuzzy
multiobjective transportation (IFMOT) problems. However,
the drawbacks of linear ranking functions were not
addressed by the authors.

In this study, we take a step towards a future in-
corporation in ADM systems of optimization models and
algorithms that efectively handle nonprobabilistic un-
certainty. Specifcally, we focus on solving intuitionistic
fuzzy multiobjective linear programming (IFMOLP)
problems, in which uncertainty in the data is represented
by triangular intuitionistic fuzzy numbers (TIFNs). We
do not thoroughly review the many available methods to
solve such problems. Instead, since linear ranking
functions are being frequently used to solve IFMOLP
problems, so new methods based on their use are being
proposed for the nonlinear case as well, and we believe
that researchers should be made aware of the drawbacks
of linear ranking function-based approaches. Conse-
quently, our main purpose is to demonstrate that using
linear ranking functions to solve IFMOLP problems does
not always guarantee Pareto optimality. To this aim, we
make the following contributions:

(i) Te concepts of dominance and Pareto optimality
are extended to the intuitionistic fuzzy case by using
lexicographic criteria for ranking intuitionistic
fuzzy numbers

(ii) An intuitionistic fuzzy ε-constraint method is de-
veloped to solve IFMOLP problems. Tis method
generalizes previous results introduced in [11]

(iii) Two IFMOT problems previously addressed by
Mahajan and Gupta [20] and Ghosh et al. [21] are
solved to illustrate the advantages of the proposed
method

Te rest of the article is organized as follows. Section 2
presents some basic defnitions concerning intuitionistic
fuzzy numbers. Section 3 in brief describes a lexicographic
method for solving IFLP problems that guarantees solutions
with unique objective values. Section 4 presents the main
results of this study (intuitionistic fuzzy dominance and
Pareto optimality in terms of lexicographic ranking criteria,
and the proposed intuitionistic fuzzy ε-constraint method).
Te proposed intuitionistic fuzzy ε-constraint method is
demonstrated in Section 5 by solving two IFMOTproblems.
A comparison with Mahajan and Gupta’s [20] and Ghosh
et al.’s [21] methods is carried out in this section as well.
Possible extensions of the proposed method to other un-
certain environments are discussed in Section 6. Concluding
remarks and future research lines are provided in Section 7.

2. Basic Definitions

Tis section presents basic defnitions taken from Mahajan
and Gupta [20] and Ghosh et al. [21].
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Defnition 1. An intuitionistic fuzzy set 􏽥A
I in X is defned as

an object of the following form:

􏽥A
I

� x, μ􏽥A
I (x), ]􏽥A

I (x)􏼒 􏼓 | x ∈ X􏼚 􏼛, (1)

where the functions μ􏽥A
I : X⟶ [0, 1] and ]􏽥A

I : X⟶ [0, 1]

defne the degree of membership and the degree of non-
membership of the element x ∈ X, respectively, and for
every x ∈ X, we have

0≤ μ􏽥A
I (x) + ]􏽥A

I (x)≤ 1. (2)

Te degree of hesitation of x ∈ X in the set 􏽥A
I is given by

π􏽥A
I (x) � 1 − μ􏽥A

I (x) − ]􏽥A
I (x). (3)

For the sake of simplicity and brevity in the exposition,
we restrict the subsequent discussion to TIFNs, but our
results can be easily extrapolated to the more general LR-
type intuitionistic fuzzy numbers by simply adopting the
defnitions and arithmetic operations given by Singh and
Yadav [22].

Defnition 2. A TIFN 􏽥aI � (a1, a, a2; a1, a, a2), where
a1 ≤ a1 ≤ a≤ a2 ≤ a2, is an intuitionistic fuzzy set, whose
membership and nonmembership functions are given as

μ􏽥a
I (x) �

x − a1

a − a1
if a1 ≤ x≤ a,

a2 − x

a2 − a
if a< x≤ a2,

0 otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

]􏽥aI (x) �

a − x

a − a1
if a1 ≤x≤ a,

x − a

a2 − a
if a< x≤ a2,

1 otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Te set of all TIFNs is denoted byT(R). Figure 1 shows
a graphical representation of a TIFN.

Defnition 3. A TIFN 􏽥aI � (a1, a, a2; a1, a, a2) is non-
negative, which is denoted by 􏽥aI ≥ 0, if a1 ≥ 0.

Defnition 4. Let 􏽥aI � (a1, a, a2; a1, a, a2) and
􏽥b

I
� (b1, b, b2; b1, b, b2) be the two TIFNs, and k be any real

number. Ten, the arithmetic operations are defned as
follows:

(i) Addition: 􏽥aI ⊕ 􏽥b
I

� (a1 + b1, a + b, a2 + b2; a1 + b1,

a + b, a2 + b2)

(ii) Subtraction: 􏽥aI⊖ 􏽥b
I

� (a1 − b2, a − b, a2 + b1;

a1 − b2, a − b, a2 − b1)

(iii) Multiplication: 􏽥aI ⊙ 􏽥b
I

� min a1b1, a1b2, a2b1, a2b2􏼈 􏼉, ab, max a1b1, a1b2, a2b1, a2b2􏼈 􏼉;
min a1b1, a1b2, a2b1, a2b2􏽮 􏽯, ab, max a1b1, a1b2, a2b1, a2b2􏽮 􏽯

􏼐 􏼑

(iv) Scalar multiplication: k × 􏽥aI � (ka1, ka, ka2; ka1,

ka, ka2) if k≥ 0, and k × 􏽥aI � (ka2, ka, ka1;

ka2, ka, ka1) if k< 0.

Defnition 5. Let 􏽥aI � (a1, a, a2; a1, a, a2) and
􏽥b

I
� (b1, b, b2; b1, b, b2) be the two TIFNs. We say 􏽥aI � 􏽥b

I
if

and only if a1 � b1, a � b, a2 � b2, a1 � b1, and a2 � b2.

Defnition 6. Let 􏽥aI � (a1, a, a2; a1, a, a2) and
􏽥b

I
� (b1, b, b2; b1, b, b2) be the two TIFNs. We say 􏽥aI ≤ 􏽥b

I
if

and only if a1 ≤ b1, a≤ b, a2 ≤ b2, a1 ≤ b1, and a2 ≤ b2.

Defnition 7. Let 􏽥aI � (a1, a, a2; a1, a, a2) ∈ T(R). Ten, the
accuracy function f: T(R)⟶ R is defned in terms of the
parameters of 􏽥aI as f(􏽥aI) � (a1 + a2 + 4a + a1 + a2)/8.

3. Method for Single-Objective Case

In this section, we briefy describe the lexicographic method
proposed in [23] for solving IFLP problems. Tis method is
necessary because the solution strategy consists in transforming
the IFMOLP problem into a single-objective one. We begin
with the defnition of a lexicographic order on T(R) [23].

Defnition 8. Let ft: T(R)⟶ R (for t � 1, . . . , 5) be
linear functions of the parameters of any TIFNs 􏽥aI and 􏽥b

I
,

with nonsingular coefcient matrix. Furthermore, let ≤ Lex

denote the lexicographic order relation onR5.We say that 􏽥aI

is less than 􏽥b
I

(denoted by 􏽥aI≺􏽥bI
) if

(ft(􏽥aI))t�1,...,5< Lex(ft(
􏽥b

I
))t�1,...,5, and 􏽥aI is less than or

equal to 􏽥b
I

(denoted by 􏽥aI≼􏽥bI
) if

(ft(􏽥aI))t�1,...,5< Lex(ft(
􏽥b

I
))t�1,...,5 or (ft(􏽥aI))t�1,...,5

� (ft(
􏽥b

I
))t�1,...,5.

Remark 1. Te functions ft: T(R)⟶ R (for t � 1, . . . , 5)
must be chosen such that they capture, as accurately as
possible, the characteristics a decision-maker takes into
account for comparing TIFNs.

Example 1. We consider the TIFNs 􏽥pI � (0, 1, 2; 0, 1, 2) and
􏽥qI � (0, 1.5, 2; −2, 1.5, 2), and the lexicographic ranking cri-
terion is determined by f1(􏽥aI) � (a1 + a2 + 4a + a1 + a2)/8,
f2(􏽥aI) � a, f3(􏽥aI) � a1, f4(􏽥aI) � a2 − a1, and f5(􏽥aI) � a2.
By using Defnition 8, we have (ft(0, 1, 2; 0, 1, 2))t�1,...,5 �

(1, 1, 0, 2, 2) and (ft(0, 1.5, 2; −2, 1.5, 2))t�1,...,5
� (1, 1.5, 0, 2, 2). Since (1, 1, 0, 2, 2)< Lex(1, 1.5, 0, 2, 2), i.e.,
(1, 1, 0, 2, 2) is lexicographically less than (1, 1.5, 0, 2, 2);
hence, we conclude that 􏽥pI≺􏽥qI.

3.1. IFLPModel and a Lexicographic SolutionMethod. Let 􏽥cI
j,

􏽥b
I

i and 􏽥aI
ij ∈∈T(R) (for i � 1, . . . , m and j � 1, . . . , n) de-

note the constant TIFNs and 􏽥xI � (􏽥xI
j)j�1,...,n variable TIFNs.

International Journal of Intelligent Systems 3



Ten, by using Defnitions 4, 5, and 8, the IFLP problem is
formulated as

min 􏽥z
I

􏽥x
I

􏼐 􏼑 � 􏽘
j

􏽥c
I
j ⊙ 􏽥x

I
j,

s.t. 􏽥a
I
i 􏽥x

I
􏼐 􏼑 � 􏽘

j

􏽥a
I
ij ⊙ 􏽥x

I
j ≼, �,≽{ }􏽥b

I

i for i � 1, . . . , m.
(5)

Let us denote by I≼, I≽, and I� the index sets of the
≼ − type, ≽ − type and equality constraints of problem (5),
respectively. By using Defnitions 5 and 8, IFLP (5) is
transformed into the lexicographic optimization problem as
shown by the following equation:

lexmin ft 􏽥z
I

􏽥x
I

􏼐 􏼑􏼐 􏼑􏼐 􏼑
t�1,...,5

s.t.

ft 􏽥a
I
i 􏽥x

I
􏼐 􏼑􏼐 􏼑􏼐 􏼑

t�1,...,5 ≤ Lex, ≥ Lex􏼈 􏼉 ft
􏽥b

I

i􏼒 􏼓􏼒 􏼓
t�1,...,5

for i ∈ I≼ ∪ I≽,

ai1 􏽥x
I

􏼐 􏼑 � bi1, ai 􏽥x
I

􏼐 􏼑 � b1, ai2 􏽥x
I

􏼐 􏼑 � bi2,

ai1 􏽥x
I

􏼐 􏼑 � bi1, ai2 􏽥x
I

􏼐 􏼑 � bi2 for i ∈ I�.

(6)

To handle the lexicographic constraints, the following
transformation was proposed in [23] using binary variables,

and the small and large positive constants ϵ and L,
respectively:

lexmin ft 􏽥z
I

􏽥x
I

􏼐 􏼑􏼐 􏼑􏼐 􏼑
t�1,...,5

s.t.

−L 􏽘
t−1

k�1
yik + ϵyit ≤ft

􏽥b
I

i􏼒 􏼓 − ft 􏽥a
I
i 􏽥x

I
􏼐 􏼑􏼐 􏼑≤ Lyit for i ∈ I≼ and t � 1, . . . , 5,

−L 􏽘
t−1

k�1
yik + ϵyit ≤ft 􏽥a

I
i 􏽥x

I
􏼐 􏼑􏼐 􏼑 − ft

􏽥b
I

i􏼒 􏼓≤ Lyit for i ∈ I≽ and t � 1, . . . , 5,

yit ∈ 0, 1{ }for i ∈ I≼ ∪ I≽ and t � 1, . . . , 5,

ai1 􏽥x
I

􏼐 􏼑 � bi1, ai 􏽥x
I

􏼐 􏼑 � b1, ai2 􏽥x
I

􏼐 􏼑 � bi2,

ai1 􏽥x
I

􏼐 􏼑 � bi1, ai2 􏽥x
I

􏼐 􏼑 � bi2 for i ∈ I�.

(7)

Theorem 1. Problems (5) and (7) are equivalent.

Proof. See (16, 23).

Optimal solutions to problem (7) can be obtained by
using the lexicographic method used for conventional
multiobjective optimization [24]. □

0

1

a1 a a2 a2a1

μaI νaI

Figure 1: Graphical representation of a TIFN.
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4. Intuitionistic Fuzzy ε-constraint Method

In this section, a lexicographic method for solving IFMOLP
problems is developed. Tis constitutes a generalization of
the previous results from [11].

Let us consider the IFMOLP problem as

min 􏽥z
I
r 􏽥x

I
􏼐 􏼑􏼐 􏼑

r�1,...,p ≥ 2 � 􏽘
j

􏽥c
I
rj ⊙ 􏽥x

I
j

⎛⎝ ⎞⎠

r�1,...,p

s.t. 􏽥a
I
i 􏽥x

I
􏼐 􏼑 ≼, �,≽{ }􏽥b

I

i for i � 1, . . . , m.

(8)

Te solution strategy will be to scalarize problem (8), i.e.,
to transform it into an IFLP problem whose optimal solution
is Pareto optimal for the multiobjective case, but, frst, we
need the following fundamental defnitions:

Defnition 9. Let ≼ be given as in Defnition 8 and 􏽥X
I denote

the set of all feasible solutions to IFMOLP problem (8). A
solution 􏽥xI ∈ 􏽥X

I is said to dominate 􏽥yI ∈ 􏽥X
I if

􏽥zI
r(􏽥xI)≼ 􏽥zI

r(􏽥yI) for r � 1, . . . , p, with at least one strict
inequality.

Example 2. We consider two feasible solutions to an
intuitionistic fuzzy biobjective linear programming problem
denoted by 􏽥xI and 􏽥yI, with values in the objective functions
􏽥zI
1(􏽥xI) � (1, 2, 3; 0, 2, 4), 􏽥zI

2(􏽥xI) � (0, 1, 2; 0, 1, 2), 􏽥zI
1(􏽥yI)

� (1, 2, 3; 0, 2, 4), and 􏽥zI
2(􏽥yI) � (0, 1.5, 2; −2, 1.5, 2). We as-

sume that the decision-maker ranks TIFNs according to the
lexicographic criterion determined by f1(􏽥aI) � (a1 + a2+

4a + a1 + a2)/8, f2(􏽥aI) � a, f3(􏽥aI) � a1, f4(􏽥aI) � a2 − a1,
and f5(􏽥aI) � a2. Ten, by using Defnition 9, we have, for
the frst objective function, f1(􏽥zI

1(􏽥xI)) � f1(􏽥zI
1(􏽥yI)) � 2,

f2(􏽥zI
1(􏽥xI)) � f2(􏽥zI

1(􏽥yI)) � 2, f3(􏽥zI
1(􏽥xI)) � f3(􏽥zI

1(􏽥yI))

� 1, f4(􏽥zI
1(􏽥xI)) � f4(􏽥zI

1(􏽥yI)) � 2, and f5(􏽥zI
1(􏽥xI))

� f5(􏽥zI
1(􏽥yI)) � 4; and this clearly happens because

􏽥zI
1(􏽥xI) � 􏽥zI

1(􏽥yI). However, for the second objective func-
tion, we have f1(􏽥zI

2(􏽥xI)) � f1(􏽥zI
2(􏽥yI)) � 1, and

f2(􏽥zI
2(􏽥xI)) � 1<f2(􏽥zI

2(􏽥yI)) � 1.5; hence, according to

Defnition 8, 􏽥zI
2(􏽥xI)≺􏽥zI

2(􏽥yI). So, we have 􏽥zI
1(􏽥xI) � 􏽥zI

1(􏽥yI)

and 􏽥zI
2(􏽥xI)≺􏽥zI

2(􏽥yI); and consequently, 􏽥xI dominates 􏽥yI.

Defnition 10. A solution 􏽥xI ∈ 􏽥X
I is said to be Pareto op-

timal if there does not exist another 􏽥yI ∈ 􏽥X
I such that 􏽥yI

dominates 􏽥xI.
Without loss of generality, we may scalarize problem (8)

as follows:

min 􏽥w
I
,

s.t.

􏽥w
I ⊕ 􏽘

r≠ 1
λr × 􏽥s

I
r � 􏽥z

I
1 􏽥x

I
􏼐 􏼑⊕ 􏽘

r≠ 1
λr × 􏽥p

I
r ⊕ 􏽥M

I
,

􏽥z
I
r 􏽥x

I
􏼐 􏼑⊕􏽥sI

r � 􏽥ϵIr ⊕ 􏽥p
I
r for r � 2, . . . , p,

􏽥s
I
r≼􏽥p

I
r,􏽥s

I
r ≥ 0, 􏽥p

I
r ≥ 0 for r � 2, . . . , p,

􏽥a
I
i 􏽥x

I
􏼐 􏼑 ≼, �,≽{ }􏽥b

I

i for i � 1, . . . , m.

(9)

In problem (9), 􏽥wI, 􏽥sI
r, and 􏽥pI

r are the auxiliary variables,
λr are the positive real constants, and 􏽥ϵIr are the TIFNs that
bound the possible values of the objective functions 􏽥zI

r(􏽥xI)

for r � 2, . . . , p; this is similar to the conventional (non-
fuzzy) ε-constraint method [24]. On the other hand, the
TIFN 􏽥M

I
� (−m/2, 0, m/2; −m, 0, m), where m is a big

positive constant, has no implication in the optimization
process because it is a constant, but it does serve a special
purpose that is clarifed in the following. Equation
􏽥wI ⊕􏽐r≠1λr × 􏽥sI

r � 􏽥zI
1(􏽥xI)⊕􏽐r≠1λr × 􏽥pI

r is not always satis-
fed, i.e., there may not exist 􏽥wI such that this equation is
satisfed for optimal values of 􏽥sI

r, 􏽥pI
r, and 􏽥xI. Adding 􏽥M

I to
the right-hand side in order to obtain 􏽥wI ⊕􏽐r≠1λr × 􏽥sI

r �

􏽥zI
1(􏽥xI)⊕􏽐r≠1λr × 􏽥pI

r ⊕ 􏽥M
I resolves this issue.

Notice that, according to Defnitions 2, 4, and 5,
equation 􏽥wI ⊕ 􏽥aI � 􏽥b

I
, with 􏽥wI � (w1, w, w2; w1, w, w2),

􏽥aI � (a1, a, a2; a1, a, a2), and 􏽥b
I

� (b1, b, b2; b1, b, b2), is sat-
isfed if and only if w1 � b1 − a1 ≤w1 � b1 − a1 ≤w �

b − a≤w2 � b2 − a2 ≤w2 � b2 − a2. As the following exam-
ple shows, this is not always accomplished.

􏽥w
I ⊕ (0, 2, 3; 0, 2, 4) � (1, 2, 5; −1, 2, 7)⟶ 􏽥w

I
� (1, 0, 2; −1, 0, 3). (10)

We notice that 􏽥wI does not satisfy, e.g., the condition
w1 ≤w (the frst component must be less than or equal to the
second one); hence, 􏽥wI is not a well-defned TIFN.

However, if we add 􏽥M
I

� (−m/2, 0, m/2; −m, 0, m) to the
right-hand side of 􏽥wI ⊕ 􏽥aI � 􏽥b

I
, we get the inequalities w1 �

−m + b1 − a1 ≤w1 � −m/2 + b1 − a1 ≤w � b − a≤w2 �

m/2 + b2 − a2 ≤w2 � m + b2 − a2. It can be seen that, by
choosing m that is positive and big enough, all inequalities
are satisfed regardless of the values of 􏽥aI and 􏽥b

I, and 􏽥wI is
now well-defned.

Theorem  . Let (􏽥xI,􏽥sI
2, . . . ,􏽥sI

p, 􏽥pI
2, . . . , 􏽥pI

p, 􏽥wI) be an optimal
solution to problem (9), with λr > 0 for r � 2, . . . , p. Ten, 􏽥xI

is a Pareto optimal solution to problem (8).

Proof. (By contradiction) Let us suppose that
(􏽥xI,􏽥sI

2, . . . ,􏽥sI
p, 􏽥pI

2, . . . , 􏽥pI
p, 􏽥wI

x) is an optimal solution to
problem (9), but 􏽥xI is not a Pareto optimal solution to
problem (8). Ten, there exists 􏽥yI ∈ 􏽥X

I such that
􏽥zI

r(􏽥yI)≼ 􏽥zI
r(􏽥xI) for r � 1, . . . , p, with at least one strict
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inequality. Let Q � r: 􏽥zI
r(􏽥yI)≺ 􏽥zI

r(􏽥xI), r � 1, . . . , p􏼈 􏼉 be the
set of indices of the strict inequalities. We have, for all
r ∈ Q/ 1{ }, that 􏽥zI

r(􏽥yI) ⊕ 􏽥sI
r≺􏽥z

I
r(􏽥xI)⊕􏽥sI

r � 􏽥ϵIr ⊕ 􏽥pI
r; hence

􏽥zI
r(􏽥yI)⊕ 􏽥sI

r≺􏽥ϵ
I
r ⊕ 􏽥pI

r, and we can choose 􏽥mI
r≺􏽥n

I
r to obtain

􏽥zI
r(􏽥yI)⊕􏽥sI

r ⊕ 􏽥nI
r � 􏽥ϵIr ⊕ 􏽥pI

r ⊕ 􏽥mI
r for r ∈ Q/ 1{ } and 􏽥mI

r � 􏽥nI
r for

the equalities. Tus, it follows that (􏽥yI,􏽥sI
2 ⊕ 􏽥nI

2, . . . ,􏽥sI
p

⊕ 􏽥nI
p, 􏽥pI

2 ⊕ 􏽥mI
2, . . . , 􏽥pI

p ⊕ 􏽥mI
p, 􏽥wI

y) is a feasible solution to
problem (9). Furthermore, we have that

􏽥w
I
x ⊕ 􏽘

r≠ 1
λr × 􏽥s

I
r � 􏽥z

I
1 􏽥x

I
􏼐 􏼑⊕ 􏽘

r≠ 1
λr × 􏽥p

I
r ⊕ 􏽥M

I
,

􏽥w
I
y ⊕ 􏽘

r≠ 1
λr × 􏽥s

I
r ⊕ 􏽘

r≠ 1
λr × 􏽥n

I
r � 􏽥z

I
1 􏽥y

I
􏼐 􏼑⊕ 􏽘

r≠ 1
λr × 􏽥p

I
r ⊕ 􏽘

r≠ 1
λr × 􏽥m

I
r ⊕ 􏽥M

I
.

(11)

Adding 􏽥zI
1(􏽥xI) to both sides of the second equation, we

get

􏽥z
I
1 􏽥x

I
􏼐 􏼑⊕ 􏽥w

I
y ⊕ 􏽘

r≠ 1
λr × 􏽥s

I
r ⊕ 􏽘

r≠ 1
λr × 􏽥n

I
r � 􏽥z

I
1 􏽥y

I
􏼐 􏼑⊕ 􏽥z

I
1 􏽥x

I
􏼐 􏼑⊕ 􏽘

r≠ 1
λr × 􏽥p

I
r ⊕ 􏽘

r≠ 1
λr × 􏽥m

I
r ⊕ 􏽥M

I
. (12)

Upon substitution, we get

􏽥z
I
1 􏽥x

I
􏼐 􏼑⊕ 􏽥w

I
y ⊕ 􏽘

r≠ 1
λr × 􏽥s

I
r ⊕ 􏽘

r≠ 1
λr × 􏽥n

I
r � 􏽥z

I
1 􏽥y

I
􏼐 􏼑⊕ 􏽥w

I
x ⊕ 􏽘

r≠ 1
λr × 􏽥s

I
r ⊕ 􏽘

r≠ 1
λr × 􏽥m

I
r. (13)

By simplifying, we get

􏽥z
I
1 􏽥x

I
􏼐 􏼑⊕ 􏽥w

I
y ⊕ 􏽘

r≠ 1
λr × 􏽥n

I
r � 􏽥z

I
1 􏽥y

I
􏼐 􏼑⊕ 􏽥w

I
x ⊕ 􏽘

r≠ 1
λr × 􏽥m

I
r.

(14)

Since 􏽥mI
r≺􏽥n

I
r for all r ∈ Q/ 1{ }, 􏽥mI

r � 􏽥nI
r for the equalities,

and λr > 0 for r � 2, . . . , p, then we have that

􏽥z
I
1 􏽥x

I
􏼐 􏼑⊕ 􏽥w

I
y≺􏽥z

I
1 􏽥y

I
􏼐 􏼑⊕ 􏽥w

I
x. (15)

Now, if 1 ∉ Q (meaning 􏽥zI
1(􏽥xI) � 􏽥zI

1(􏽥yI)), we get
􏽥wI

y≺􏽥w
I
x; thus contradicting the fact that

(􏽥xI,􏽥sI
2, . . . ,􏽥sI

p, 􏽥pI
2, . . . , 􏽥pI

p, 􏽥wI
x) is an optimal solution to

problem (9). On the other hand, if 1 ∈ Q (meaning
􏽥zI
1(􏽥yI)≺􏽥zI

1(􏽥xI)), we have 􏽥zI
1(􏽥yI)⊕ 􏽥wI

y≺􏽥z
I
1(􏽥xI)

⊕ 􏽥wI
y≺􏽥z

I
1(􏽥yI)⊕ 􏽥wI

x. Hence, 􏽥zI
1(􏽥yI)⊕ 􏽥wI

y≺􏽥z
I
1(􏽥yI)⊕ 􏽥wI

x, which

also contradicts the fact that (􏽥xI,􏽥sI
2, . . . ,􏽥sI

p, 􏽥pI
2, . . . , 􏽥pI

p, 􏽥wI
x) is

an optimal solution to problem (9). □

5. Illustrative Examples

We present in this section two examples to illustrate the
proposed method. Te examples are taken from Mahajan
and Gupta [20] and Ghosh et al. [21]. A comparison with
their methods is carried out as well. Calculations were
performed by using YALMIP toolbox [25] version 20180413
and Octave 5.2.0 on a computer with an Intel® Core™ i3-
4005U @ 1.70GHz× 4 and 4GB RAM running Ubuntu
20.04.3 LTS. Te lexicographic method from Section 3 was
used with ϵ � 10− 4 and L � 104, and m was set to 104 in the
proposed ε-constraint method. Results are presented up to
three decimal places.

Table 1: Data of the IFMOT problem of Mahajan and Gupta [20].

D1 D2 D3 Supply

S1 Cost (4, 6, 8; 2, 6, 10) (5, 7, 9; 3, 7, 11) (6, 8, 10; 4, 8, 12) (20, 24, 28; 18, 24, 32)Delay time (3, 6, 9; 0, 6, 12) (7, 10, 13; 4, 10, 16) (10, 15, 20; 5, 15, 25)

S2 Cost (7, 9, 11; 5, 9, 13) (12, 14, 16; 10, 14, 18) (10, 12, 14; 8, 12, 16) (15, 18, 24; 12, 18, 30)Delay time (8, 12, 16; 4, 12, 20) (10, 14, 18; 6, 14, 20) (12, 16, 20; 8, 16, 24)
Demand (16, 18, 22; 14, 18, 24) (8, 12, 16; 6, 12, 20) (11, 12, 14; 10, 12, 18)
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5.1. Transportation Problem of Mahajan and Gupta. Let us
consider the IFMOT problem presented as Example 2 by
Mahajan and Gupta [20]. Te problem consists of two
sources (S1 and S2) and three destinations (D1, D2, and D3),
in which the demand at each destination must be satisfed,
and the total transportation costs and delay times must be
minimized (see Table 1). Te problem is formulated as the
intuitionistic fuzzy biobjective linear programming problem
as shown in the following equation:

min 􏽥z
I
1 􏽥x

I
􏼐 􏼑, 􏽥z

I
2 􏽥x

I
􏼐 􏼑􏼐 􏼑 � 􏽘

i,j

􏽥c
I
ij ⊙ 􏽥x

I
ij, 􏽘

i,j

􏽥t
I

ij ⊙ 􏽥x
I
ij

⎛⎝ ⎞⎠,

s.t.

􏽘
j

􏽥x
I
ij � Supplyi for i � 1, 2,

􏽘
i

􏽥x
I
ij � Demandj for j � 1, 2, 3,

􏽥x
I

� 􏽥x
I
ij􏼐 􏼑≥ 0 for i � 1, 2 and j � 1, 2, 3.

(16)

In IFMOT problem (16), 􏽥cI
ij and 􏽥t

I

ij denote the unitary
cost and delay time of transporting 􏽥xI

ij units from source i to
destination j, respectively.

By using Mahajan and Gupta’s [20] method with the
ranking function given in Defnition 7 and linear membership
functions, the solution to problem (16) is
􏽥xI
11 � (12, 12, 13.062; 12, 12, 13.062), 􏽥xI

12 � (8, 12, 12.373;

6, 12, 12.373), 􏽥xI
13 � (0, 0, 2; 0, 0, 6), 􏽥xI

21 � (4, 6, 8.937;

2, 6, 10.937), 􏽥xI
22 � (0, 0, 3.062; 0, 0, 7.062), and

􏽥xI
23 � (11, 12, 12; 10, 12, 12), with values in the objective

functions 􏽥zI
1(􏽥xI) � (226, 354, 556.25; 132, 354, 806.25) and

􏽥zI
2(􏽥xI) � (256, 546, 763.875; 112, 546, 1161.75).
We will try to improve Mahajan and Gupta’s [20] results

by using the proposed method. To this aim, we formulate the
IFLP problem as

min 􏽥w
I
,

s.t.

􏽥w
I⊕λ2 × 􏽥s

I
2 � 􏽥z

I
1 􏽥x

I
􏼐 􏼑⊕λ2 × 􏽥p

I
2⊕ 􏽥M

I
,

􏽥z
I
2 􏽥x

I
􏼐 􏼑⊕􏽥sI

2 � 􏽥ϵI2⊕􏽥p
I
2,

􏽥s
I
2≼􏽥p

I
2,􏽥s

I
2 ≥ 0, 􏽥p

I
2 ≥ 0,

􏽘
j

􏽥x
I
ij � Supplyi for i � 1, 2,

􏽘
i

􏽥x
I
ij � Demandj for j � 1, 2, 3,

􏽥x
I

� 􏽥x
I
ij􏼐 􏼑≥ 0 for i � 1, 2 and j � 1, 2, 3,

(17)

where λ2 � 0.01 and 􏽥ϵI2 � (256, 546, 763.875; 112,

546, 1161.75). To compare TIFNs, we resort to the lexico-
graphic ranking criterion determined by the linear functions
f1(􏽥aI) � (a1 + a2 + 4a + a1 + a2)/8, f2(􏽥aI) � a, f3(􏽥aI)

� a1, f4(􏽥aI) � a2 − a1, and f5(􏽥aI) � a2.
Te frst function is Mahajan and Gupta’s [20] accuracy

function, the second is the modal value of the TIFN 􏽥aI, the
third and fourth are the left endpoint and length of the
support of μ􏽥a

I , i.e., cl x | x ∈ R, μ􏽥a
I (x)> 0􏽮 􏽯 � [a1, a2], re-

spectively, and the last one is the right endpoint of the
support of 1 − ]􏽥aI , i.e., cl x | x ∈ R, ]􏽥aI (x)< 1􏽮 􏽯 � [a1, a2].

On solving IFLP problem (17) with the lexicographic
method from Section 3, we get 􏽥xI

11 �

(2.159, 2.159, 2.159; 2.159, 2.159, 2.159), 􏽥xI
12 � (8, 12, 16;

6, 12, 20), 􏽥xI
13 � (9.840, 9.840, 9.840; 9.840, 9.840, 9.840) ,

􏽥xI
21 � (13.840, 15.840, 19.840; 11.840, 15.840, 21.840), and

􏽥xI
23 � (1.159, 2.159, 4.159; 0.159, 2.159, 8.159), with values in

the objective functions 􏽥zI
1(􏽥xI) � (216.159, 344.159, 536.159;

122.159, 344.159, 774.159) and 􏽥zI
2(􏽥xI) � (285.521, 505.

203, 824.884; 121.840, 505.203, 1224.565). Comparing both
solutions, we have, for the frst objective function,

0 200 400 600 800 1000 1200

1

Proposed ε-constraint method

Mahajan and Gupta's method

Figure 2: Intuitionistic fuzzy cost obtained with the proposed
method and Mahajan and Gupta’s method.

0 200 400 600 800 1000 1200

1

Proposed ε-constraint method

Mahajan and Gupta's method

Figure 3: Intuitionistic fuzzy delay time obtained with the pro-
posed method and Mahajan and Gupta’s method.
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f1(216.159, 344.159, 536.159; 122.159, 344.159, 774.159) � 378.159

<f1(226, 354, 556.25; 132, 354, 806.25) � 392.062,
(18)

and, for the second objective function, we have

f1(285.521, 505.203, 824.884; 121.840, 505.203, 1224.565) � 559.703

� f1(256, 546, 763.875; 112, 546, 1161.75) � 559.703,
(19)

but

f2(285.521, 505.203, 824.884; 121.840, 505.203, 1224.565)

� 505.203

<f2(256, 546, 763.875; 112, 546, 1161.75) � 546.

(20)

Tis means that the solution obtained with the
proposed method dominates the solution obtained with
Mahajan and Gupta’s [20] method. Consequently,
Mahajan and Gupta’s [20] method does not guarantee
Pareto optimal solutions. Figures 2 and 3 depict the
values of the objective functions, and it is noticeable in
the fact that the proposed method produced results with
lower total cost and delay time.

Furthermore, as Table 2 shows, the proposedmethod can
produce multiple Pareto optimal solutions. Tis is also an
advantage over Mahajan and Gupta’s [20] method.

5.2. Transportation Problem of Ghosh et al. Let us consider
the intuitionistic fuzzy three-objective fxed-charge solid
transportation problem presented by Ghosh et al. [21]. Te
problem consists of two sources (S1 and S2) and two des-
tinations (D1 and D2), in which the demand of fruits at each
destination must be satisfed using the two types of con-
veyances (C1 and C2), and the total transportation costs,
deterioration and the transportation times must be mini-
mized (see Table 3). Te problem is formulated as the
intuitionistic fuzzy three-objective linear programming
problem which is represented as

FP GP ε-C (No. 1) ε-C (No. 2)
0

1000

2000

3000

4000

5000

6000

7000

8000

IFP

1st objective
2nd objective
3rd objective

Figure 4: Values of the objective functions (in terms of the frst comparison index) obtained with Ghosh et al.’s [21] methods and the
proposed method.
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min 􏽥z
I
1 􏽥x

I
􏼐 􏼑, 􏽥z

I
2 􏽥x

I
􏼐 􏼑, 􏽥z

I
3 􏽥x

I
􏼐 􏼑􏼐 􏼑 � 􏽘

i,j,k

􏽥c
I
ijk ⊙ 􏽥x

I
ijk⊕􏽥f

I

ijk ⊙ y1ijk, yijk, y2ijk; y1ijk, yijk, y2ijk􏼐 􏼑􏼒 􏼓|,⎛⎝

s.t.

􏽘
i,j,k

􏽥d
I

ijk ⊙ 􏽥x
I
ijk, 􏽘

i,j,k

􏽥t
I

ijk ⊙ y1ijk, yijk, y2ijk; y1ijk, yijk, y2ijk􏼐 􏼑⎞⎠,

􏽘
j,k

􏽥x
I
ijk ≤ Supplyi for i � 1, 2,

􏽘
i,k

􏽥x
I
ijk ≥Demandj for j � 1, 2,

􏽘
i,j

􏽥x
I
ijk ≤Capacityk for k � 1, 2,

y1ijk �
1 if x1ijk > 0,

0 otherwise,
􏼨 yijk �

1 if xijk > 0,

0 otherwise,
􏼨 y2ijk �

1 if x2ijk > 0,

0 otherwise,
􏼨

y1ijk �
1 if x1ijk > 0,

0 otherwise,
􏼨 y2ijk �

1 if x2ijk > 0,

0 otherwise,
􏼨

􏽥x
I

� 􏽥x
I
ijk � x1ijk, xijk, x2ijk; x1ijk, xijk, x2ijk􏼐 􏼑􏼐 􏼑≥ 0 for i � 1, 2, j � 1, 2 and k � 1, 2.

(21)

In IFMOT problem (21), 􏽥cI
ijk, 􏽥f

I

ijk, 􏽥d
I

ijk, and 􏽥t
I

ijk denote
the unitary cost, fxed-charge, deterioration rate, and time of
transporting 􏽥xI

ijk units of fruits from source i to destination j

using the conveyance k, respectively. Two conveyances are
used, one of type C1 with capacity (200, 240,

260; 180, 240, 280) and the other of type C2 with capacity
(200, 230, 250; 180, 230, 270).

Ghosh et al. [21] used the linear ranking function
f(􏽥aI) � (2a1 + 2a2 + 34a + a1 + a2)/20 to transform the
problem into a conventional multiobjective one, which was

solved by using three diferent methods: fuzzy linear pro-
gramming (via Zimmermann’s [26] approach), intuitionistic
fuzzy linear programming (via Angelov’s [8] approach), and
goal programming. In what follows, we present the results
obtained when the proposed method is used.

By using the proposed intuitionistic fuzzy ε-constraint
method, the IFMOT problem (21) is transformed into
a single-objective problem as represented by the following
equation:

min 􏽥w
I
,

s.t.

􏽥w
I ⊕ λ1 × 􏽥s

I
1 ⊕ λ2 × 􏽥s

I
2 � 􏽥z

I
3 􏽥x

I
􏼐 􏼑⊕ λ1 × 􏽥p

I
1 ⊕ λ2 × 􏽥p

I
2 ⊕ 􏽥M

I
,

􏽥z
I
1 􏽥x

I
􏼐 􏼑⊕􏽥sI

1 � 􏽥ϵI1 ⊕ 􏽥p
I
1,

􏽥z
I
2 􏽥x

I
􏼐 􏼑⊕􏽥sI

2 � 􏽥ϵI2 ⊕ 􏽥p
I
2,

􏽥s
I
1≼􏽥p

I
1,􏽥s

I
2≼􏽥p

I
2,􏽥s

I
1 ≥ 0, 􏽥p

I
1 ≥ 0,􏽥s

I
2 ≥ 0, 􏽥p

I
2 ≥ 0,

􏽘
j,k

􏽥x
I
ijk ≤ Supplyi for i � 1, 2,

􏽘
i,k

􏽥x
I
ijk ≥Demandj for j � 1, 2,

􏽘
i,j

􏽥x
I
ijk ≤Capacityk for k � 1, 2,

y1ijk �
1 if x1ijk > 0,

0 otherwise,
􏼨 yijk �

1 if xijk > 0,

0 otherwise,
􏼨 y2ijk �

1 if x2ijk > 0,

0 otherwise,
􏼨

y1ijk �
1 if x1ijk > 0,

0 otherwise,
􏼨 y2ijk �

1 if x2ijk > 0,

0 otherwise,
􏼨

􏽥x
I

� 􏽥x
I
ijk � x1ijk, xijk, x2ijk; x1ijk, xijk, x2ijk􏼐 􏼑􏼐 􏼑≥ 0 for i � 1, 2, j � 1, 2

and k � 1, 2.

(22)

Table 4 shows two Pareto optimal solutions to IFMOT
problem (21) obtained by solving its scalarized version IFLP
problem (22) with the lexicographic ranking criterion

determined by f1(􏽥aI) � (2a1 + 2a2 + 34a + a1 + a2)/20
(this is the same linear ranking function used by Ghosh et al.
[21]), f2(􏽥aI) � a, f3(􏽥aI) � a1, f4(􏽥aI) � a2 − a1, and
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f5(􏽥aI) � a2, with λ1 � λ2 � 0.01,
􏽥ϵI1 � (1858, 3218, 5122; 1262, 3218, 6084) and
􏽥ϵI2 � (280.3, 392.8, 531.8; 212.1, 392.8, 632.4) (solution no.
1), and 􏽥ϵI1 � (1410, 2740, 4530; 870, 2740, 5440) and
􏽥ϵI2 � (279, 383 , 523; 211, 383, 622) (solution no. 2). Figure 4
depicts the values of the objective functions in terms of the
frst comparison index. It can be noticed that the proposed
method improves in both solutions almost all values of the
objective functions obtained with Ghosh et al.’s [21]
methods. In fact, solutions nos. 1 and 2 are not dominated.
In contrast, solution no. 2 dominates those obtained with
Ghosh et al.’s [21] methods. Te reader is encouraged to
verify these claims by using the ranking criteria and Ghosh
et al.’s [21] data. For example, the solution obtained by
Ghosh et al. [21] via Zimmermann’s [26] approach with
linear membership functions (FP in Figure 4) is compared to
solution no. 2 as shown in the following equation:

f1 􏽥z
I
1ε−C

􏼐 􏼑 � 5567.5<f1 􏽥z
I
1FP

􏼐 􏼑 � 6860.5,

f1 􏽥z
I
2ε−C

􏼐 􏼑 � 772.95<f1 􏽥z
I
2FP

􏼐 􏼑 � 789.05,

f1 􏽥z
I
3ε−C

􏼐 􏼑 � 69.85<f1 􏽥z
I
3FP

􏼐 􏼑 � 87.3.

(23)

Terefore, according to Defnition 9, we conclude that
the solution obtained with the proposed method dominates
the one obtained with Ghosh et al.’s [21] method. Similarly,
we would conclude the same about the other solutions.

6. On the Extension of the Proposed Method to
Other Uncertain Environments

Several authors have solved optimization problems in which
uncertainty in the data is modeled by using diferent ex-
tensions of Zadeh’s [4] fuzzy sets (see, e.g., [22, 27–29], and
[30]). To extend the proposed ε-constraint method to those
uncertain environments, we must use the appropriate
arithmetic operations in each case, choose a lexicographic
ranking criterion that adequately captures the decision-
maker’s preferences, and derive the appropriate value for
the constant 􏽥M

I in problem (9). For example, if the un-
certainty were to be modeled with LR-type intuitionistic
fuzzy numbers, then Singh and Yadav’s [22] arithmetic
operations could be used along with the lexicographic
ranking criterion proposed in [23] and 􏽥M

I
� (0, m/2,

m/2, m, m)LR. If, on the other hand, the uncertainty were best
represented by trapezoidal intuitionistic fuzzy numbers,
then the arithmetic operations for those numbers [27], the
lexicographic ranking criterion proposed by Lakshmana
Gomathi Nayagam et al. [31], and 􏽥M

I
� (−m/2, −m/

4, m/4, m/2; −m, −m/3, m/3, m) could be used with the
proposed ε-constraint method. A similar approach would be
followed with Pythagorean fuzzy numbers [30].

7. Conclusions and Future Work

In this article, we proposed an intuitionistic fuzzy
ε-constraint method for solving IFMOLP problems, in
which uncertainty in the data is represented by TIFNs. In
doing so, we extended recent results from [11] to the

intuitionistic fuzzy environment. Te proposed method was
illustrated by solving two IFMOTproblems addressed in the
recent literature. On the basis of the present study, we
conclude the following:

(i) Linear ranking function-based methods do not al-
ways guarantee Pareto optimal solutions to
IFMOLP problems

(ii) Te proposed intuitionistic fuzzy ε-constraint
method guarantees Pareto optimality in terms of
lexicographic ranking criteria

(iii) Mahajan and Gupta’s [20] and Ghosh et al.’s, [21]
methods cannot produce multiple solutions

(iv) Te proposed method can produce multiple Pareto
optimal solutions, which is a valuable feature for
analyzing alternative solutions in practical decision-
making

A limitation of the proposedmethod is that it uses binary
variables to handle lexicographic constraints. Tis feature
certainly increases the computational burden and is a dis-
advantage with respect to Mahajan and Gupta’s [20] and
Ghosh et al.’s, [21] methods. Terefore, research studies
must continue to develop more efcient approaches for
handling lexicographic constraints, and testing is needed on
large-scale problems to gain insights on the true efciency of
the proposed method. In this regard, hybridization with
metaheuristic algorithms seems to be a promising research
line to explore.

We hope that, along with the numerical demonstrations,
the methodological aspects for dealing with IFMOLP
problems using lexicographic ranking criteria discussed in
this study will motivate researchers to extend our results to
other uncertain environments, such as those modeled with
interval-valued fuzzy sets [28], interval-valued intuitionistic
fuzzy sets [29, 32], and Pythagorean fuzzy sets [30]. Tis
topic and intuitionistic fuzzy nonlinear optimization are
lines of work that we may explore in the future. We will
defnitely focus on developing a library in a programming
language with wide support for scientifc calculations, such
as Python or R, to reach more application areas, ease
comparison with alternative methods from the literature,
carry out efciency analysis in large-scale problems, and to
develop ADM systems in areas of economic interest, such as
transportation and tourism.
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[11] B. Pérez-Cañedo, J. L. Verdegay, and R. Miranda Pérez, “An
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[25] J. Löfberg, “YALMIP: a toolbox for modeling and optimi-
zation in MATLAB,” in Proceedings of the IEEE International
Conference on Computer Aided Control Systems Design, Tai-
pei, Taiwan, September 2004.

[26] H.-J. Zimmermann, “Fuzzy programming and linear pro-
gramming with several objective functions,” Fuzzy Sets and
Systems, vol. 1, no. 1, pp. 45–55, 1978.

[27] A. Ebrahimnejad and J. L. Verdegay, “A new approach for
solving fully intuitionistic fuzzy transportation problems,”
Fuzzy Optimization and Decision Making, vol. 17, no. 4,
pp. 447–474, 2018.

[28] A. Ebrahimnejad, J. L. Verdegay, and H. Garg, “Signed dis-
tance ranking based approach for solving bounded interval-
valued fuzzy numbers linear programming problems,” In-
ternational Journal of Intelligent Systems, vol. 34, no. 9,
pp. 2055–2076, 2019.

[29] E. Fathy, “A new method for solving the linear programming
problem in an interval-valued intuitionistic fuzzy environ-
ment,” Alexandria Engineering Journal, vol. 61, no. 12,
pp. 10419–10432, December 2022.

[30] M. Akram, I. Ullah, and M. G. Alharbi, “Methods for solving
LR-type pythagorean fuzzy linear programming problems
with mixed constraints,” Mathematical Problems in Engi-
neering, vol. 2021, Article ID 4306058, 29 pages, 2021.

[31] V. Lakshmana Gomathi Nayagam, S. Jeevaraj, and
P. Dhanasekaran, “A linear ordering on the class of Trape-
zoidal intuitionistic fuzzy numbers,” Expert Systems with
Applications, vol. 60, pp. 269–279, 2016.

[32] M. Malik and S. K. Gupta, “Goal programming technique for
solving fully interval-valued intuitionistic fuzzy multiple
objective transportation problems,” Soft Computing, vol. 24,
no. 18, pp. 13955–13977, 2020.

14 International Journal of Intelligent Systems

https://www.britannica.com/technology/automation
https://www.britannica.com/technology/automation



