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Whole blood DNA methylation analysis
reveals respiratory environmental traits
involved in COVID-19 severity following
SARS-CoV-2 infection

Guillermo Barturen 1 , Elena Carnero-Montoro1, Manuel Martínez-Bueno1,
Silvia Rojo-Rello2, Beatriz Sobrino3,4, Óscar Porras-Perales 3,4,
Clara Alcántara-Domínguez 5, David Bernardo6,7 &
Marta E. Alarcón-Riquelme 1,8

SARS-CoV-2 infection can cause an inflammatory syndrome (COVID-19) lead-
ing, inmany cases, to bilateral pneumonia, severe dyspnea, and in ~5%of these,
death. DNAmethylation is known to play an important role in the regulation of
the immune processes behind COVID-19 progression, however it has not been
studied in depth. In this study, we aim to evaluate the implication of DNA
methylation in COVID-19 progression by means of a genome-wide DNA
methylation analysis combined with DNA genotyping. The results reveal the
existence of epigenomic regulation of functional pathways associated with
COVID-19 progression andmediated by genetic loci. We find an environmental
trait-related signature that discriminatesmild from severe cases and regulates,
among other cytokines, IL-6 expression via the transcription factor CEBP. The
analyses suggest that an interaction between environmental contribution,
genetics, and epigenetics might be playing a role in triggering the cytokine
storm described in the most severe cases.

SARS-CoV-2 virus infection has affected millions of people during the
last years worldwide. Most infected SARS-CoV-2 individuals remain
asymptomatic or with mild symptoms that do not require hospitali-
zation (~81%), while in others, the virus causes a disease called COVID-
19 that primarily affects the lungs leading, in many cases, to bilateral
pneumonia, severe dyspnea and in ~5% of the infected individuals,
death1,2.

Several genetics, transcriptomics, and proteomics molecular
studies have been performed to date, disentangling important
pathogenic molecular mechanisms of the disease3–13. In summary,
SARS-CoV-2 infects the cells expressing surface receptors ACE2 and
TMPRSS26 causing cell damage due to its replication and release
from the host cell. This process triggers in the surrounding cells the
production of pro-inflammatory cytokines and chemokines
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(including IL-1, IL-6, IL-8, IL-10, TNF and interferon inducible
molecules, among others), which establishes a pro-inflammatory
response mediated by the accumulation of specific immune cells4.
In severe cases, an overproduction of cytokines is observed in lung
tissues, known as cytokine storm, thus provoking an over-response
of the immune system and causing tissue damage. In the most
critical cases, the cytokine storm spreads to other organs leading to
multi-organ failure and death. Currently, the molecular mechan-
isms and the pathophysiology behind COVID-19 progression are
largely studied and well established, but it is still unclear what
makes some individuals develop the severe illness. In this sense,
underlying genetic variation7,8,10 and the presence of various
comorbidities have been identified as risk factors, such as diabetes,
obesity, hypertension, chronic lung disease or even neurological
disorders14,15. Also, life style habits that might be causing the pre-
vious conditions have been also related to COVID-19 illness as
smoking, as well as age, sex or ethnicity16,17. However, it is unclear
how these comorbidities, environmental and demographic condi-
tions together with genetics, predispose and regulate the mole-
cular mechanisms behind COVID-19 severity.

In order to shed light into themolecular relationship between risk
factors and the regulation of the mechanisms behind the COVID-19
severity, here we present a DNA methylation EWAS (epigenome wide
association analysis) combined with DNA genotyping for 473 and 101
SARS-CoV-2 lab positive and negative tested individuals, respectively,
recruited in two independent clinical centers. In addition to the study
of the epigenetic regulation of COVID-19 pathogenic mechanisms, the
DNA methylation changes associated with COVID-19 progression, and
their genetic regulation were put in context by comparing the results
with DNA methylation changes occurring in systemic autoimmune
diseases (SADs), and with GWAS (genome wide association analysis)
and EWAS catalogues that collectmultiple traits described as potential
COVID-19 severity risk factors.

Results
COVID-19 severity is associated with impaired blood cell pro-
portions and epigenetic activation of the innate immune
response
Main blood cell type proportions were deconvoluted from the
methylomes, showing a significant increase in neutrophil proportions
associated with severity of the disease (Fig. 1a and Supplementary
Fig. 1A, B). This imbalanced neutrophil proportion has been already
shown in COVID-19 severity progression, and has been proposed as an
early prognostic signature1. Besides cell proportion differences, sig-
nificant differences in age and sex between groups were found in the
discovery dataset (Wilcoxon testp-value < 0.05 for age in severe group
compared to mild and negative individuals, and Fisher’s exact test p-
value < 0.05 for sex proportion in severe group compared with mild
group). Methylation plates did not show batch bias, instead the largest
bias observed was between cohorts and therefore were analyzed
separately (Supplementary Fig. 1B, D). Based on these results, differ-
ential methylation analyses included as covariates: sex, age and the six
major deconvoluted cell proportions.

Differential analyses were performed by pairs and longitudinally,
after translating groups’ severity into a numerical scale (severity ana-
lysis, hereafter). We identified 530 CpGs differentially methylated in at
least one regression model, and confirmed in the replication cohort.
Out of these, 43 DMCs were found in the severe-negative comparison,
347 in the mild-negative, 20 in severe-mild and 257 in the severity
analysis (significant DMCs can be consulted in the Supplementary
Data 1).We observed a high degree of sharing betweenDMCs obtained
in different comparisons (Fig. 1b), except for the severe-mild DMCs
which did not overlap with any of the other analysis results. These
specific DMCs from the severe-mild analysis were hypermethylated in
the severe condition. Overall, 24 DMCs, annotated into 17 different

genes were shared between severe-negative, mild-negative and with
the severity analyses (Fig. 1b, c), which give a general idea of the epi-
genetic contribution to the progression of COVID-19. Most of the
shared signatures are related to the activation of the viral defense type
I interferon inducible genes (OAS1-OAS2 hypermethylated and PARP9-
DTX3L, IFIT3, IRF7, TRIM22,MX1 hypomethylated), the hyperactivation
of B and T lymphocytes (CD38, EPSTI1, LAT hypomethylated), and
others, such as EDC3, known to interact with ACE218.

The influenceof comorbidities on the resultswas testedby adding
all comorbidity categories with a Fisher’s exact test p-value < 0.05
(between at least two groups either in the discovery or the replication
cohort) in the linearmodels. Thesewere asthma, chronic heart disease,
hypertension and current smokers out of 14 tested. All DMCs remained
significant at a p-value below 5e-06 in the meta-analysis. The statistics
for both discovery and replication models as well as for the meta-
analysis showed a high correlation with an R-squared correlation ~ 1
and a p-value below 2.2e-16 (see Supplementary Fig. 1E–G).

DMCs localization enrichment analysis showed that hyper-
methylated changes related to SARS-CoV-2 infection are more prone
to occur outside CGIs, particularly in introns. For the hypomethylated
sites, these occur in enhancers (Supplementary Fig. 2A). These geno-
mic regions are known to be hot-spots of DNA methylation changes19.
However, most of the DMCs found in these analyses colocalize around
the TSS (Transcription Start Site) and/or in the 5′-UTR of the nearest
gene (Supplementary Fig. 2B), due to the EPIC array probe selection.
This probes’ preferential location facilitates the interpretation of the
results, as hypermethylation and hypomethylation in 5′-end regions of
the genes aremostly related to the inactivation and activation of gene
expression, respectively20,21.

COVID-19 disease DNA methylation changes in neutrophils,
B-lymphocytes and CD8+ T-lymphocytes regulate functional
pathways related with autoimmune diseases and viral defenses
Functional enrichment analyses based on Reactomepathway database
were performed taking into consideration the groups compared and
the direction of the effects. An enrichment of hypomethylated signals
at interferon-inducible genes, herein called IFN signature, and enrich-
ment of hypermethylated signals at genes involved in FCGR phago-
cytosis and CD209 signaling (DC-SIGN) was observed when positive
SARS-CoV-2 were compared to negative SARS-CoV-2 individuals
(Fig. 2a). These pathways were also enriched in a probe-oriented
enrichment pathway analysis, which considers known biases in EWAS
array-based technologies22 (Supplementary Fig. 3). The activation of
IFN signature genes is related with an active viral infection and in
particular with SARS-Cov-2 infection9. However, at DNA methylation
level the impaired interferon response between mild and severe cases
found at the transcriptional level5 could not be observed (Supple-
mentary Fig. 4). This suggests that exhaustion of the interferon sig-
nature might be controlled at a different regulatory level.

We performed interaction analysis between deconvoluted cell
proportions and severity groups to identify which blood cell types are
contributing to the epigenetic signatures. Our results suggest that
interferon associated hypomethylation changes were mainly due to
neutrophils and CD8+ T-lymphocytes (Fig. 2b), while hypermethyla-
tion changes were primarily occurring in B-lymphocytes. (Fig. 2b). This
in turn, might be related to the inactivation of CD209 signaling
(Fig. 2a). CD8+T-lymphocytes also showed a number of significant
hypermethylated interactions (Fig. 2b) that may be related with the
inactivation of FCGR3A phagocytosis-related genes in these cells
(Fig. 2a). Lastly, in the severe-mild analysis,methylation changes of the
PIP3 activated AKT signaling pathway differentiated severe from mild
COVID-19 patients (Fig. 2a). Genes related with this pathway were
hypermethylated in severe cases compared with mild COVID-19 cases,
being CD8+T-lymphocytes the major contributors to these chan-
ges (Fig. 2b).
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In order to validate the activation or inactivation of the enriched
pathways as revealed by the DNA methylation changes, Reactome
pathways’ activity was estimated based on single-cell RNA-Seq infor-
mation from publicly available analyses11,12. The analysis was focused
on the cell-types that mostly contribute to the DNA methylation
changes: CD8+T-lymphocytes, B-lymphocytes and neutrophils, as
revealed from the interaction results (Fig. 2b). In general, molecular
pathway activities follow the DNA methylation changes at early sam-
pling time points, which corresponds with our recruited cohorts. That
is, the pathways that show hypomethylation in certain group(s) of
individuals coincide with a higher transcriptome activity compared
with the hypermethylated groups, at least in the cell-types in which the
change has been predicted to occur (Supplementary Fig. 5). For
example, the FCGR3A phagocytosis pathway activity is decreased with
the severity of the disease in CD8+T-lymphocytes,while the interferon
signaling activity is increased with severity. Certainly, at the tran-
scriptome level, the interferon exhaustion signature associated with
severe cases, not previously seen at the DNA methylation level (Sup-
plementary Fig. 4), can be appreciated for B-lymphocytes and CD8+T-
lymphocytes.

Finally, enrichment analyses were performed to assess to which
other phenotypes or diseases the COVID-19 DMCs can be associated.
For that, we used the informationgathered in the EWASAtlas catalog23.
Except for severe-mild DMCs, the other 3 comparisons showed DNA
methylation changes in CpGs that were previously associated with
different autoimmune conditions, allergic conditions, and an asthma
related trait (as fractional exhaled nitric oxide test), but also with dif-
ferential respiratory related environmental exposures (air pollution
and polybrominated biphenyl exposure) and/or comorbidities that
reflect lifestyle habits such as body mass index, smoking or alcohol
consumption (Fig. 2c).

Respiratory environmental related epigenetic changes differ-
entiate severe and mild COVID-19 patients and mild COVID-19
cases from systemic autoimmune disorders
Significant DMCs from all the differential analyses performed were
clustered together based on their methylation profile grouped by
COVID-19 severity and divided into the two recruited cohorts (Fig. 3a).
Hierarchical clustering reveals that aside from the significant values
obtained in the linear regression models, not all trends of DMCs

Fig. 1 | COVID19 severity correlates with an increase in blood neutrophil pro-
portion and epigenetic changes in genes related with the innate immune
response. aMethylomedeconvoluted blood cell proportions are plotted by cohort
(left panel discovery, right panel replication) and group (blue, 47 and 54 negative
SARS-CoV2 lab tested individuals for discovery and replication; yellow, 269 and 91
positive individuals with mild symptoms for discovery and replication and red, 98
and 15 positive individuals with severe symptoms for discovery and validation).
Paired differences were assessed by means of linear regression analysis (age and
sex were included as covariates) and significance values plotted by pairs
(.p-value < 0.05, *p-value < 0.01 and **p-value < 1e-5). The center line denotes the

median value, the box contains 25th to 75th percentiles of the dataset and the whis-
kers extend up to ± 1.5*IQR. b Venn diagram with the number of significant shared
DMCs across the differential analysis performed (the number of annotated genes
are included in parentheses). c Combined manhattan plots are shown for the dif-
ferential analysis that share DMCs, hypermethylated and hypomethylated DMCs
are divided into upper and lower side of the manhattan plot respectively. Genes
annotated for the shared DMCs are depicted, including, in parentheses their co-
localization with the annotated gene (TSS, Transcription Start Site: Body, gene
body). Severe vs negative (blue), mild vs negative (green), severe vs mild (yellow)
and pseudotime longitudinal analysis (red).
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methylation changes are exactly replicated in both cohorts. Thus, 4
DMC modules were obtained based on the hierarchical clustering
whereDNAmethylation changeswere stable: S.Ho, composedbyCpGs
with a hypomethylation profile along COVID-19 severity; S.He, char-
acterized by a hypermethylation profile along COVID-19 severity;
M.Ho, in which hypomethylation events are observed in mild as
compared with severe cases; and M.He, in which hypermethylation
occurs in mild as compared with severe cases. In order to give further
robustness to the results, CpGs reliability withinmodules was assessed
by means of the reliability metric defined by Sugden et al.24 and the
log2 fold-changes between groups were compared with a recently
published dataset25. The reliability metric of the CpGs within modules
S.Ho, S.He and M.He were significantly higher than the overall CpGs
reliability (2.3e-10, 3.4e-04 and 1.3e-12 Kolgomorov-Smirnov p-values,
respectively (Supplementary Fig. 6A). And the log2 fold-changes were
replicated in the external cohort (positive correlation p-values below
1e-05, Supplementary Fig. 6B–D). However, the M.Ho module showed
low reliability values and the methylation changes were not replicated
in the external cohort. Thus, this module was discarded from further
analyses.

In summary, Reactome pathway enrichment analysis on the 3
modules (Fig. 3b, Supplementary Fig. 7) replicated the previous
enrichments found for the DMCs grouped in the linear regression
analysis (Fig. 2a). Interestingly, a new additional pathway appeared to
be enriched in the S.He module, related with potential therapeutics
for SARS, which suggests that several of the proposed therapeutic
targets for SARS infection are based on the activation of hyper-
methylated molecular pathways during the course of the COVID-19
disease.

On the other hand, EWAS Atlas catalog enrichments were per-
formed by modules, revealing that autoimmune and asthma related
traits were mostly enriched in S.Ho and S.He modules, while the dif-
ferential respiratory environmental related traits were enriched in the
M.He module (Fig. 3c). The M.He module is hypermethylated in mild
COVID-19 cases as compared with severe cases and negative controls,
suggesting that differential respiratory environmental exposures
might play a protective role against severe COVID-19 progression,
upon SARS-CoV-2 infection.

TFBS motif analysis reveals specific TFBS motifs enriched for the
different modules (Fig. 3d). S.Ho module was mainly enriched in
interferon regulatory TFBSs, in line with the Reactome pathway
enrichment results. Among the other results, the enrichment of the
CEBP motif in the M.He module stands out. CEBP is a transcription
factor related with the inflammatory immune response through its
cooperation with IL-6, and stimulating the transcription of different
pro-inflammatory cytokines26.

Given the potential relationship between the COVID-19 affected
molecular pathways and autoimmune disorders, DNA methylation
profiles were compared between COVID-19 and the systemic auto-
immune disease PRECISESADS collection27, which includes DNA
methylation information from seven SADs (Fig. 3e). Both, severe and
mild related DNA methylation changes correlated with systemic
autoimmune disorders for S.He module, having a slightly higher
intensity in severe COVID-19 patients. S.Ho module correlations were
also significantly positive, except for the RA and SSc comparison with
mild cases, which presented no significant correlations. In general,
contrary to SLE and pSjS, RA and SSc patients do not express the IFN
signature enriched in S.Homodule28. Thus, this result might be related
with the presence of two signatures contributing to this module, one
related with the interferon, which highly correlates with most inter-
feron related SADs, and another one that correlates between severe
COVID-19, RA and SSc. In order to further investigate the differential
correlation between SADs in this particular module, the strongest
interferon-related hypomethylated CpGs found in SADs and COVID
patients (logFC < −0.25) were removed from the correlation analyses
(annotated in TRIM22-TRIM5, PARP9-DTXL3, RUNX1, IFIT3, IRF7, EPSTI1,
MX1 and ADAR genes). The resulting correlation after discarding these
CpGs showed a dramatic reduction in interferon related SADs, while
correlations of severe cases with RA and SSc were preserved (Sup-
plementary Fig. 8). This suggests that the remaining CpGs (annotated
in genes such as CCDC61, CD38, FAM38A, LAT, TREX1 or NFAT5, among
others) differentially contribute to similarities between COVID-19
progression and SADs, some of them regulating the activation and
differentiation of T and B lymphocytes. On the other hand, M.He
module showed a strong correlation for severe, and a strong anti-
correlation with mild cases, thus differentiating mild cases from SADs.

Fig. 2 | COVID19 DNA methylation changes regulate autoimmune related
functional pathways and associate with environmental respiratory related
traits. a Top 10 significant reactome database pathways (two-tailed hypergeo-
metric p-value <0.01) are shown by differential analysis. b Number of DMCs with
significant interactions for each deconvoluted cell-type proportion (red, B-cells;
blue, CD4 + T-cells; orange, CD8+ T-cells; purple,monocytes; blue, neutrophils and

green, NK-cells) are split into hypermethylated (upper panels) and hypomethylated
(lower panel) and divided into the differential analysis. c EWAS traits enrichments
(two-tailed hypergeometric p-value < 1e-10) for each differential analysis are shown
(MethBank database). Severe vs negative (blue), mild vs negative (green), severe vs
mild (yellow) and pseudotime longitudinal analysis (red).
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Specific hypermethylation in mild cases shows a minor genetic
contribution, while meQTLs are enriched in SNPs associated
with environmental traits
As the specific mild hypermethylated changes (M.He) were mainly
associated with environmental traits, we next interrogated whether
there is genetic contribution behind these epigenetic changes, and
how genetics contribute to the DNA methylation modules. In this
sense, DNAmethylation heritability was calculated for each CpG in the
modules. Two independent methods showed high agreement in her-
itability estimation (Supplementary Fig. 9A), so for the subsequent
analysis, the variance decomposition model was selected. Genetic
contribution to methylation variability was shown to contribute dif-
ferentially between modules, being larger in S.Ho and S.He than in the
M.He module (Fig. 4a). This is in agreement with the larger environ-
mental contribution to M.He shown by EWAS trait enrichments.
Additionally, covariates suchas SARS-CoV-2 infection, age, and sex, did
not modify the genetic contribution to the DNA methylation changes

(Supplementary Fig. 9B).On the contrary, S.Ho and S.Hemoduleswere
significantly modified by SARS-CoV-2 infection, while M.He variation
might be driven by other covariates or environmental factors that,
unfortunately, were not recorded in these cohorts (Supplemen-
tary Fig. 9C).

In order to investigate deeper into the genetic contribution on
the DNA methylation changes observed during COVID-19 progres-
sion, cis-meQTLs (methylation quantitative trait loci) were assessed
(significant results can be consulted in Supplementary Data 1). Linear
regressionmodels were independently fit for each group (FDR < 0.05
for at least one group), showing that nearly 50% of the CpGs in each
module were associated with at least one SNP (Supplementary
Fig. 9D). In total, 7899 unique meQTLs were significant for at least
one of the groups, composed of 7548 SNPs and 175 CpGs (out of 352
DMCs) with an average of 45 ± 84 SNPs by CpG. This suggests that
nearly half of the DNA methylation changes found are being regu-
lated by large blocks of SNPs in cis.MeQTLswere classified according

Fig. 3 | Epigenetic changes in CpGs associated with environmental respiratory
traits differentiate COVID19 progression and mild cases from autoimmune
disorders. a Hierarchical clustering of methylation DMCs for both discovery and
replication cohorts (Ward’s hierarchical agglomerative clustering with Pearson
correlation as distance is used). Individual methylation values are averaged by
severity from severe cases (top), mild cases (middle) to negative lab tested SARS-
CoV2 (bottom). The annotations in the upper part of the plot refer to the analysis to
which each CpG is differentially methylated (black). Four CpG modules highly
replicated between cohorts, were selected from the hierarchical clustering: S.Ho
(blue, hypomethylated with the severity), S.He (red, hypermethylated with the
severity) and M.He (yellow, hypermethylated in mild compared with severe

patients and healthy controls). b Reactome significant pathways by CpG module
(two-tailed hypergeometric p-value < 0.01) are shown. c MethBank EWAS trait
enrichment by CpGmodule (two-tailed hypergeometric p-value < 1e-10) are shown.
d Significant overrepresentation of transcription factor binding site prediction
(HOMER, two-tailed hypergeometric p-value < 0.001) is depicted by CpG module.
e Average log2FC Pearson correlations between COVID19 severity groups and
seven different systemic autoimmune conditions (SLE Systemic lupus erythema-
tosus, RA Rheumatoid arthritis, pSjS Primary Sjögren’s syndrome, SSc Systemic
sclerosis, MCTD Mixed connective tissue disease, PAPs Primary antiphospholipid
syndrome, UCTD Undifferentiated connective tissue disease). DMCs are grouped
by CpG modules.
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to the significance of the SNP-CpG association by group, and labelled
as follows: a meQTL was considered as mild-specific, when the sig-
nificant association (p-value < 0.05) was only found in COVID-19 mild
cases, or positive specific, when bothmild and severe cases showed a
significant association (Fig. 4b). MeQTLs classification showed a
differential genetic regulation by module (Fig. 4c), where methyla-
tion changes following COVID-19 progression (S.Ho and S.He mod-
ules) were enriched in meQTLs shared by all the groups (common
mQTLs). This suggests that the genetic regulation of these DNA
methylation changes does not depend on the severity of the disease
but are a general regulatory mechanism. On the other hand, meQTLs
in theM.Hemoduleweremostly identified as group-specificmeQTLs,
with a large fraction of mild and positive specific ones. The genetic
regulation specificity of M.He is also supported by significant dif-
ferences in the normalized MAF (each group minor allele frequency
divided by all groups’ minor allele frequency) for the mild and
positive specific meQTLs (Fig. 4d). MAFs showed a higher frequency
in positive specificmeQTLs inmild and severe groups as compared to
negative individuals, while themild specificmeQTLs showed a higher
MAF in mild cases. Surprisingly, MAF differences were found
between mild as compared to severe and negative individuals for

common and positive specificmeQTLs in S.Homodules, whichmight
indicate a differential genetic regulation also for mild individuals for
the S.Ho signature (Fig. 4d).

The enrichment by module of the significant meQTLs was tested
for SNPs previously known to be associatedwith different traits. In this
sense, meQTLs trait enrichments were performed considering the
GWAS catalog database29 and the COVID-19 associated SNPs from the
COVID-19 Host Genetics Initiative7,8. The results showed a strong
enrichment of SNPs associated with COVID-19 and interferon related
autoimmune diseases (systemic lupus erythematosus) in the meQTLs
regulating the S.Homodule while SNPs associated with non-interferon
related autoimmune diseases were observed in the S.He module
(Fig. 4e). On the other hand, M.He meQTLs were enriched with envir-
onmental related SNPs (Fig. 4e), mimicking the enrichments shown
above for the EWAS catalog. Interestingly, two different COVID-19
GWAS regions were regulating the S.Ho and S.He modules. In the case
of the S.Ho module, its cis-meQTLs are composed of SNPs at the
3p21.31 GWAS peak, found to be associated with severe, hospitalized,
and in general SARS-CoV-2 lab positive tested patients compared with
the general population7,8. While the S.Hemodule was enriched in SNPs
located at the 8q24.13 GWAS peak, only found to be statistically

Fig. 4 | Genetics contributes differentially toprogressive andmild specific DNA
methylation changes. a Genetic contribution in terms of the fraction of the var-
iance explained (heritability, h2) of individual CpG methylation changes is shown
by DNA methylation module. Statistical differences are assessed by means of two-
tailed Wilcoxon test p-values. b Three significant meQTLs regulating DNA methy-
lation levels are showndividedby severity group and genotype. From left to right, a
commonmeQTL for all three severity groups in the S.Homodule, a positive specific
meQTL and a mild specific meQTL for M.He module are depicted. c Fraction of
meQTL categories are plotted by module and for all significant DMCs together.
d Normalized MAFs for the largest meQTL categories (common meQTLs, positive
specific meQTLs and mild specific meQTLs) represented in at least three modules

(S.Ho, S.He and M.He) are shown divided by severity group. Two-tailed Wilcoxon
test p-values were calculated between severity groups. e Enrichment of GWAS
catalog and COVID-19 Host Genetics Initiative associated SNPs are shown by CpG
module (two-tailed hypergeometric p-value < 1e-10). MeQTL analyses were per-
formed on 101 negative SARS-CoV2 lab tested individuals, 360 positive individuals
with mild symptoms and 113 positive individuals with severe symptoms. In the
boxplots, the center line denotes the median value, the box contains 25th to 75th

percentiles of the dataset and the whiskers extend up to ± 1.5*IQR. S.Ho module is
depicted blue, S.He in red andM.He in yellow. Severe, mild and negative individual
groups are colored in red, yellow and blue respectively.
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significant in hospitalized COVID-19 patients compared to the general
population8.

Discussion
The EWAS of SARS-CoV-2 infection reveals the regulation by DNA
methylation of important functional pathways related with COVID-19
progression. It also reveals specific epigenetic differences between
severe and mild patients. Differentially methylated CpG sites were
shared between severe and mild cases, mainly associated with the
activation of interferon signaling pathway and the hyper-activation of
B andT lymphocytes. These pathways have been previously associated
with COVID-19 severity in transcriptome studies9,30, showing in this
study that the regulation of these pathways is being mediated by
epigenetic changes at the promoter level of the implicated
genes (Fig. 1).

In addition to the DMCs shared between the differential analyses,
the pathway enrichment analysis for the individual regression models
showed the epigenetic dysregulation of specific pathways such as
CD209 signaling (DC-SIGN), the FCGR-mediated phagocytosis path-
way and AKT signaling in specific blood cell-types (Fig. 2), however the
latter was enriched in low reliable probes, and thus discarded from
further analyses (Supplementary Fig. 6). CD209 is primarily expressed
in dendritic cells and B-lymphocytes, and its interaction with CD209L,
expressed in SARS-CoV-2 target tissue endothelial cells, has been
described to facilitate the entry of the virus31. Thus, hypermethylation
and the consequent under-expression of the CD209 signaling pathway
might be playing a protective role during SARS-CoV-2 infection.
Additionally, CD209 activation has been shown to promote
B-lymphocyte survival32. However, this process does not seem to be
occurring in SARS-CoV-2 infection as shown by the B-lymphocyte
depletion observed in the deconvolution analysis (Fig. 1a). The FCGR
phagocytosis pathway is involved in the antibody-antigen complex
clearance and the antibody dependent cellular mediated cytotoxicity.
CD8+T-lymphocytes expressing FCGR3A (CD16) have been described
to acquire natural killer (NK) cell-like functional properties, thus con-
tributing to their cytotoxic functionality, increased for instance, in
chronic hepatitis C virus infections33. Recently, suppression of cyto-
toxic activity has been described on CD8+T-lymphocytes and NK-cells
from severe COVID-19 patients34, which in light of our DNA methyla-
tion results might be impaired, as could be explained by the DNA
hypermethylation of genes of the FCGR3A phagocytosis pathway that
we observe. Based on our results, these two pathways seem to be
associated with the progression of the disease, showing significant
DNAmethylation changes along its course. Other important genes, not
annotated in these pathways, were found to show methylation differ-
ences, as for example EDC3. Interestingly, hypermethylation of EDC3 in
severe cases might be mediating the overexpression of the ACE2
protein in SARS-CoV-2 patients, thus favoring infection6. EDC3 is a
component of a decapping complex that promotes removal of the
monomethylguanosine (m7G) cap from mRNAs, being therefore an
important proteinduringmRNAdegradation. Its interactionwithACE2
has been experimentally validated and shown through STRING inter-
action network18.

In addition to the COVID-19 EWAS results, considering that our
cohort is barely below EWAS size standards35, and in order to filter out
potential false positive results, DMCs were grouped by hierarchical
clustering and filtered by cohorts’ similarity, reliability and replication
with an external cohort (Fig. 3 and Supplementary Fig. 6). Three
modules of co-regulated CpGs were found, where two of them were
enriched in the functional pathways previously described. CD209 and
FCGRphagocytosis pathways (S.Hemodule) are hypermethylatedwith
the severity of the disease, and both severe and mild cases, perfectly
correlate with DNA methylation changes observed in SADs. Hypo-
methylation along COVID-19 severity (S.Ho module) was composed of

two signatures, an interferon related signature which correlates with
interferon related systemic autoimmune diseases (as MCTD, SLE or
pSjS) at both severe and mild cases, and a T and B lymphocyte acti-
vation signature, which correlates mainly with non-interferon related
SADs (RA and SSc) for severe cases. The third module M.He, specifi-
cally hypermethylated in mild cases, is of particular interest. Severe
DNA methylation changes as compared with negative controls were
highly correlated with autoimmune conditions, while mild changes
were negatively correlated. Additionally, and in contrast to the other
CpG modules, the CpGs of M.He were not related with autoimmune
but with respiratory environmental conditions. Further analyses on
this module revealed an enrichment in transcription factor binding
sites (CEBP, PU.1, ISL1 and CREB), which are known to positively reg-
ulate the levels of cytokines26,36,37 related with COVID-19 severity4 such
as, IL-6, IL-1α, IL-1β, IL-12 and other pro-inflammatory cytokines con-
taining a cAMP-responsive elements38 (Fig. 3d). Interestingly, IL-1α has
been proposed as an early marker of poor prognosis4. The CEBP
transcription factor has an important role regulating IL-6 and IL-1β
expression, whose elevated levels have been associated with severe
complications of COVID-19 disease. The hypermethylation on M.He
CpGs suggests a differential binding activity of these transcription
factors in mild cases compared to the severe cases and the negative
controls, in a module where DMCs are enriched in respiratory envir-
onmental traits. Altogether, our results suggest the existence of a
relationship between environmental exposure and the protection
against cytokine storm associated with the most critical outcomes of
COVID-19 disease.

The genetic regulation of COVID-19 associated DNA methylation
changes was also studied, finding important differences between
modules (Fig. 4). In addition to a lesser genetic contribution to the
DNA methylation changes in M.He module, the meQTLs associated to
this module showed more group specificity than the S.Ho and S.He
modules. Importantly, GWAS catalog enrichments for the meQTLs
showed again a predominance of environmental traits related SNPs for
the M.He module, which reinforces the idea of the importance of the
environmental exposure during the regulation of its DNA methylation
changes.

This study is an in depth EWAS comparing SARS-CoV-2 RT-PCR
positive and negative individuals from a functional perspective. Pre-
vious EWAS had predictive purposes25,39,40, having found in those stu-
dies a strong interferon signature which correlated with the
progression of the disease and also discriminated between positive
and negative SARS-CoV-2 individuals. In our results, this interferon-
related signature showed an important epigenetic regulation of
autoimmune-related functional pathways during COVID-19 progres-
sion that might differentiate severe from mild COVID-19 cases, as
shown in previous EWAS. Some of these autoimmune-related path-
ways presentedDNAmethylation differences between severe andmild
cases with lower genetic contribution, but with higher genetic speci-
ficity than changes that progress with the severity of the disease.
Interestingly, these specific epigenetic changes were mainly related
with environmental traits in terms of DNA methylation sites and the
SNPs regulating these sites. Thus, in light of the results, the interaction
between specific genetic variation and different environmental expo-
sures or life habits might be dysregulating, via DNA methylation
changes, autoimmune-related functional pathways which are, in turn,
associated with worsening of SARS-CoV-2 infection. Despite the rela-
tionship between environmental exposure and COVID-19 severity
suggested in previous epidemiological studies, this is thefirst time that
this relationship is supported by genetic and epigenetic molecular
information, thus, contributing to the understanding of the disease at
the molecular level. Of special importance is the association of these
environmental-related DNA methylation changes with the cytokine
storm typical of the most severe COVID-19 cases.
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Methods
Study design and cohorts
Whole blood samples from SARS-CoV-2 RT-PCR negative (101) and
positive lab tested individuals (473) were obtained from two clinical
centers (Hospital Clínico Universitario de Valladolid, discovery cohort
and Hospital Regional Universitario de Málaga, replication cohort).
Negative PCR individuals had no obvious evidence of infection at
sampling andnoneof themwere admitted to thehospital. The regional
ethical committees fromAndalucía (Comité Coordinador de Ética de la
Investigación Biomédica de Andalucía) and from Valladolid (COMITÉ
DE ÉTICA DE LA INVESTIGACIÓN CON MEDICAMENTOS ÁREA DE
SALUD VALLADOLID) approved the protocols and gave their ethical
approval for this study and all recruited individuals signed the
informed consent prior to recruitment. Whole blood was sampled
upon arrival to the emergency ward, within a week after first symp-
toms. Discovery and replication cohorts were recruited between
March-April 2020 and August-October 2020, respectively. Individuals
were classified based on the WHO clinical ordinal scale41 (Supple-
mentary Table 1): PCR negative individuals (uninfected, 0 scale), mild
PCR positive individuals (ambulatory or hospitalized with mild symp-
toms, 1–4 scales), and severe PCR positive individuals (hospitalized
with severe symptoms or died, 5–8 scales). The defined groups
between cohorts were sex balanced, but slightly significant differences
were found in terms of age (Table 1).

Genomic analysis
DNA extraction. DNA was extracted from whole blood samples by
means of the QIAamp DNA Blood Mini kit and the automatic platform
QIAcube Connect. Afterwards, DNA quality was validated and nor-
malized using the NanoDrop 2000c and the Qubit4.

Genotyping. DNAwas normalized to 200–400 ng and genotypedwith
Illumina’s Infinium GSA-24.v3.0 BeadChip (Illumina catalog number
20030771), following manufacturer’s recommendations. Markers with
genotyping rate > 99%, minor allele frequency > 1% and a p-value for
Hardy-Weinberg Equilibrium > 1e-06 were selected. Samples showing
genotyping rate < 98%, inconsistencies between reported and genetic
sex and extreme heterozygosity values (−0.2 < Fhet < 0.2) were
eliminated. The kinship coefficient was calculated for each pair of
samples and one member of each pair with a value > =0.2 was
removed. Based on a set of Ancestry Informative Markers (markers
which maximize the allelic frequencies across 1000Genomes popula-
tions), individuals with non-European ancestry components were
eliminated. The resulting dataset from this quality control process was
imputed in the Michigan Imputation Server42, using Minimac4 and
1000Genomes as reference panel43. After subsequent filtering of the
imputation result we obtained a working dataset consisting of
504 samples andmore than 9.5 million markers. Quality control of the
genotyped data was performed with Plink2.044.

Methylome profiling. DNAmethylation information was profiled with
the Illumina’s Infinium MethylationEPIC BeadChip (Illumina catalog
number WG-317-1003), after sample normalization to 500ng and

bisulfite conversionwith EZ-96 DNAMethylation Kit, as recommended
by themanufacturer.Methylomeswerequality controlled by genotype
concordance (> = 0.8) using shared SNP probes between platforms
(genotypeswere extracted after imputation butwithout post filtering),
sex prediction agreement (outliers > 5 standard deviations), signal
from noise detection p-value < 0.1 andminimumnumber of beads (>3)
that passed thedetectionp-value, being the last two criteria applied for
both, probes and samples. Additionally, sexual chromosomes, cross-
reactive probes and probes with overlapping SNPs from dbSNP v.14745

were discarded. Methylation beta values were normalized bymeans of
functional normalization. After quality control, 574 samples and
768,067 probes were selected. The entire process was performed with
minfi and meffil R packages46,47.

Statistical analysis
Statistical analyses were performedwith R software environment 4.1.3.
Heatmaps were plotted by means of pheatmap R package and other
plots by means of ggplot2 R package, color scales and palettes were
obtained from ggsci R package.

Deconvolution of cell proportions. Iterative hierarchical procedure
implemented in EpiDISH R package48 was used to estimate the main
blood cell type proportions from methylome information with the
robust partial correlation method49. Whole blood cell type reference
panel includes: neutrophils, monocytes, B-lymphocytes, CD4 +T-
Lymphocytes, CD8+T-Lymphocytes and natural killer cells.

Differential and interaction analysis. Differential methylation ana-
lyses were performed by linear regression models, including age, sex
and deconvoluted cell-proportions as covariates. Linear regression
models including interaction terms between the groups of interest and
deconvoluted cell proportions, were used to estimate the specific cell
type(s) where the methylation changes occur, as proposed by Zheng
et al.50. Methylation changes and interactions were considered sig-
nificant at nominal p-values below 0.01 in discovery and replication
datasets, and below a genome wide significant level of 5e-08 in the
meta-analysis of both cohorts. Meta-analyses were performedwith the
restricted maximum likelihood (REML) method and fixed effects
implemented in metafor R package51.

Enrichment, correlation and co-localization analysis. DMCs (Differ-
entially methylated CpGs) and/or genes that co-localized with them,
based on the Illumina annotation (ilm10b4.hg19 R package), were
analyzed. Functional pathway analysis was performed against Reac-
tome Pathway Database52 using ReactomePA R package53 (genes cov-
ered by the 768,067 selected probes were set as background). CpG
probe-oriented analysis was performed by means of the gsameth
function from the missMethyl R package54. EWAS trait enrichments
were tested within the EWAS Atlas database23. PRECISESADS
methylomes27 from seven SADs (SLE, systemic lupus erythematosus;
RA, rheumatoid arthritis; pSjS, primary Sjögren’s syndrome; SSc, sys-
temic sclerosis;MCTD,mixed connective tissue disease; PAPS, primary
anti-phospholipids syndrome and UCTD, undifferentiated connective

Table 1 | Cohorts’ demographic and clinical information

Discovery (10 Technical Batches) Replication (3 Technical Batches)

# Age Sex Hospitalized Deceased # Age Sex Hospitalized Deceased

Negative 47 63 ± 21 20 (43%) — — 54 67 ± 20 27 (50%) — —

Mild 269 67 ± 15* 126 (47%) 216 (80%)* — 91 61 ± 18* 48 (53%) 87 (96%)* —

Severe 98 76 ± 14* 59 (47%) 98 (100%) 84 (86%) 15 64 ± 18* 7 (47%) 15 (100%) 10 (67%)
#Number of individuals, age average± standard deviation (Age), number and percentage of males (Sex), hospitalized individuals (Hospitalized) and deceased individuals (Deceased) are shown by
severity group and cohort. *Discovery and replication cohorts showed significant differences in terms of age in mild and severe groups (two-tailed Mann-Whitney U test p-value < 0.05) and also in
terms of numbers of hospitalized mild symptoms patients (two-tailed Fisher exact test <p-value 0.05).
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tissue disease) were used to compare with COVID-19 epigenetic
changes. In order to compare both datasets, the PRECISESADS and the
COVID-19, the methylation value of each probe was normalized by
calculating the log2 fold-change with PRECISESADS healthy controls
and PCR negative individuals, respectively. TFBS (transcription factor
binding site) motif enrichment analysis was performed with HOMER
software55 using a size of 200nucleotides and including as background
the CpGs interrogated with the EPIC array.

Molecular pathway activity analysis. Single-cell RNA-Seq datasets
were obtained from Schulte-Schrepping et al.12 (BD Rhapsody system
dataset, including neutrophils) and Ren et al.11 (10x Genomics chro-
mium dataset, not including neutrophils). Cells from both datasets
were selected based on: mitochondrial read percentage < 5%, hemo-
globin read percentage < 1%, number of reads > 500 and < 6000, and
number of genes profiled between 200 and 2000. After the quality
criteria filtering, almost all non-neutrophil cells were lost from Schulte-
Schrepping et al. dataset. Thus, CD8+T-lymphocytes and
B-lymphocytes were analyzed from the Ren et al. dataset and neu-
trophils from the Schulte-Schrepping et al. Individuals were classified
as early or late based on Schulte-Schrepping et al. definition (late,
sampling > 11 days after first symptoms) and authors defined cell-type
annotation was used to select two subsamples of 2500 cells for each
cell-type (500 cells per severity group and onset category). Molecular
pathway activity values were estimated by means of ssgsea algorithm
implemented in escape R package56. HLA and Immunoglobulin genes
were removed from the Reactomepathways before activity estimation.

Genetic statistical analyses. Overall genetic contribution to DNA
methylation changes (heritability, h2) was estimated by means of two
models: one based on variance decomposition analysis from a linear
mixed-model57 and the other one using the diagonalization trick58. The
kinshipmatrix for the formermodel was calculated bymeans of popkin
R package59, while for the diagonalization trick estimation, gaston R
package recommendations were followed58. Methylation quantitative
trait loci (meQTLs) analyses were performed using the matrix-eQTL R
package60. We applied a linear regression model that tests the additive
effects of allele dosages for each genetic variant on the DNA methyla-
tion levels, while correcting for age, sex, the deconvoluted cell pro-
portions and the first two genetic principal components. We restricted
analysis to cis-meQTL mapping (maximum distance between CpG and
SNPs of 1Mb) and SNPs with minor allele frequencies (MAF) >0.05. cis-
meQTL analyses were performed independently on the different
groups, using a FDR<0.05 as significance threshold. Significant
meQTLs were classified as common or specific QTLs based on whether
the association nominal p-values were below 0.05 for all the groups or
not. Then classifying non-common QTLs based on the groups that pass
the threshold (QTL effects were took into consideration which might
result in shared significant QTLs between groups but with opposite
effects). MeQTLs enrichments were tested against SNP associated traits
from the GWAS catalog database29 expanded with COVID-19 Host
Genetics Initiative results7,8. GWAS catalog traits were selected based on
studies with a replication cohort and at least 50 SNPs below the geno-
mic significant threshold (p-value < 5e-08). Traits annotation into
meQTLs were performed based on linkage-disequilibrium blocks by
means of PLINK1.9 software61, applying blocks function62 default para-
meters in a maximum window size of 1MB.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Genotypes summary statistics can be accessed throughCOVID-19Host
Genetic Initiative web page (https://www.covid19hg.org/), included in

the project “Determining the Molecular Pathways and Genetic Pre-
disposition of the Acute Inflammatory Process Caused by SARS-CoV-2
(SPGRX)”. The genotype data generated (SPGRX cohort) in this study
have beendeposited in the EuropeanGenome-phenomeArchive (EGA)
database under accession code EGAS00001005304. The methylation
data generated in this study have been deposited in the Gene
ExpressionOmnibus (GEO) database under accession codeGSE179325.
The clinical data collected in this study are provided in Supplementary
Data 2. The additional methylation data used in this study are available
in the GEO database under accession code GSE167202. The scRNA-Seq
data used in this study are available in the EGA database under
accession code EGAS00001004571 and in GEO database under
accession code GSE158055. Source data are provided with this paper.

Code availability
No custom code or unpublished methods were used in the study. The
scripts used in the generation of this manuscript are available upon
request.
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