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ABSTRACT In last years, coreference resolution has received a sensibly performance boost exploiting
different pre-trained Neural Language Models, from BERT to SpanBERT until Longformer. This work is
aimed at assessing, for the first time, the impact of ELECTRAmodel on this task, moved by the experimental
evidence of an improved contextual representation and better performance on different downstream tasks.
In particular, ELECTRA has been employed as representation layer in an assessed neural coreference
architecture able to determine entity mentions among spans of text and to best cluster them. The architecture
itself has been optimized: i) by simplifying themodality of representation of spans of text but still considering
both the context they appear and their entire content, ii) by maximizing both the number and length
of input textual segments to exploit better the improved contextual representation power of ELECTRA,
iii) by maximizing the number of spans of text to be processed, since potentially representing mentions,
preserving computational efficiency. Experimental results on the OntoNotes dataset have shown the effec-
tiveness of this solution from both a quantitative and qualitative perspective, and also with respect to other
state-of-the-art models, thanks to a more proficient token and span representation. The results also hint at
the possible use of this solution also for low-resource languages, simply requiring a pre-trained version of
ELECTRA instead of language-specific models trained to handle either spans of text or long documents.

INDEX TERMS Coreference resolution, ELECTRA, neural language model, OntoNotes, natural language
processing.

I. INTRODUCTION
Coreference resolution is the task aimed at determining
referring expressions (mentions) - are either pronouns, noun
phrases or named entities - that point to the same real-world
entities (referents) in a document. Although it is one of the
oldest tasks in Natural Language Processing (NLP), it still
cannot be considered as solved, experiencing several different
approaches over years, from early rule-based and statistical to
machine and deep learning ones [1]–[3]. More recently, Neu-
ral Language Models (NLMs) have been proposed, obtaining
sensibly improvements on different semantic benchmarks,
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such as question-answering, natural language inference, and
named entity recognition [4]. These NLMs are pre-trained
on large text corpora to obtain a general-purpose language
representation and, then, fine-tuned for a down-stream task,
by only re-training a single, task-specific layer at the output.

This approach has been widely used in almost all the NLP
tasks, except for the coreference resolution, where, in the
last decade, sophisticated end-to-end architectures have been
proposed, where NLMs like ELMo (Embeddings from Lan-
guage Models) [5], [6] and BERT (Bidirectional Encoder
Representations from Transformers) [7]–[9] have been uti-
lized to numerically encode the tokens composing the input
sentences, reaching significant performance gains over all
previous more traditional approaches [10].
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The most used and re-adapted end-to-end coreference
architecture is represented by the one proposed in [5], [11],
that jointly learns which spans of text in a document are
entity mentions and how to best cluster them. This architec-
ture reasons over the space of all spans, taking into account
computational limits, and directly optimizes, for each span,
the marginal likelihood of having a good antecedent in the
previous ones [11]. A core element of this architecture is the
representation layer aimed at first encoding input tokens with
numerical embeddings and, thus, obtaining the consequent
span embeddings by combining them.

To improve the representation abilities of this architecture
with respect to the original proposal, different contextual-
ized NLMs, from BERT [4] to SpanBERT [9] until Long-
former [12], have been adopted, reaching a continuous gain
in the final performance [8], [9], [13].

This work is framed in this context, and, in particular,
is aimed at adopting, for the first time, the novel ELECTRA
model (Efficiently Learning an Encoder that Classifies Token
Replacements Accurately) [14] as representation layer in the
above-mentioned coreference architecture. Reasons for this
choice lie in better performance shown by ELECTRA in cap-
turing contextual word representations, also outperforming
other NLMs, like BERT, in downstream tasks [15].

Moreover, the architecture itself has been optimized: i) by
simplifying the modality of representation of spans of text,
but still considering both the context they appear and their
entire content, ii) by maximizing both number and length
of input textual segments to better exploit the representation
power of ELECTRA as contextualized NLM, iii) by maxi-
mizing the number of spans of text to be processed, since
potentially representing mentions, following computational
limits as well as training dataset statistics.

This ELECTRA-poweredmodel has been trained and eval-
uated on the OntoNotes dataset [16] from both a quantita-
tive and qualitative perspective, comparing its performance
with respect to the state-of-the-art and deeply analyzing its
behavior in terms of typology and length of mentions that are
correctly predicted.

The paper is organized as follows. Section 2 reviews the
state-of-the art of approaches, also giving details on exist-
ing neural language models. Section 3 outlines the research
objective and contribution, also in comparison with existing
state-of-the-art approaches. Sections 4 details the proposed
solution, also given the description of both the dataset and
the neural language model used. Section 5 outlines the exper-
imental assessment, whereas results are presented, analyzed
and discussed in the Section 6, from both a quantitative and
qualitative perspective. Section 7 concludes the work.

II. LITERATURE REVIEW
In this section the scientific articles that form the founda-
tion of this paper are detailed. In particular, an overview of
coreference resolution approaches and systems is provided
in section II-A, whereas in section II-B, an outline of neural
language modelling methods is given.

A. COREFERENCE APPROACHES
Coreference resolution has been one of the historical NLP
tasks, therefore many approaches have been proposed over
the years, since rule-based to statistical ones until to deep
learning-based [1].

The first neural coreference resolution model [17] has
been focused on two critical aspects: the identification of
non-anaphoric references in texts and the ability to distin-
guish mentions from non-mentions. Later developed models
[18], [19] have incorporated entity-level information pro-
duced by a Recurrent Neural Network (RNN) in order to
exploit global features about entity clusters. These models
have relied on including features defined on mention-pair
clusters. Another approach [20] has exploited a neural men-
tion ranking model [19] in order to replace the heuristic
loss functions with reinforced-learning based policy gradient
algorithm.

Currently, the state-of-the-art approach is represented by
the end-to-end coreference (e2e-coref) model [11]. It has
been based on the construction of high-dimensional word
embeddings to represent tokens of annotated documents.
Spans of text in the document are represented by combin-
ing context-dependent boundary representations with a head-
finding attention mechanism over all their tokens. Although
difficult to maintain because of its high-dimensionality, this
system, based on Long Short-Term Memory (LSTM) net-
works, has, as its strengths, the ability to capture long term
dependencies. An evolution of this work has been the coarse-
to-fine coreference (c2f-coref) model [5], using ELMO for
word representation, but without altering the modality of
representation of spans of text.

More recent approaches have re-adapted c2f-coref model
by first substituting ELMO with BERT to enhance the repre-
sentation abilities [8]. In particular, the entire LSTM-based
encoder has been replaced with BERT, representing a span of
text in terms of the first and last word-pieces, concatenated
with the attended version of all word pieces occurring in it.
Then, SpanBERT [9] has been exploited in place of BERT,
since specifically re-trained to better represent and predict
spans of text, thus most fitting with the need of representing
multi-token mentions. Other modifications have been pro-
posed to advance c2f-coref model, like attended antecedent,
entity equalization, span clustering, and clustermerging. Still,
they have been proved to not improve performance [7], [10],
with a negative to marginal impact.

Similar performance to the c2f-corefmodel enhanced with
SpanBERT but with lower memory usage has been achieved
by the start-to-end coreference (s2e-coref) model [13]. This
approach has been aimed at not constructing span represen-
tations but at utilizing the endpoints of a span (rather than
all span tokens) to compute mention and antecedent scores
through a series of bilinear functions over their contextualized
representations. Moreover, SpanBERT has been substituted
with Longformer [12], in order to exploit its better ability to
process long documents without resorting to sliding windows
or truncation.
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Among themany recent approaches derived from e2e-coref
model, it is noteworthy the one proposed by [21], named
Simplified e2e-coref model, offering a simplified version
of the original neural model. Most lately, a new model,
named CorefQA, has been proposed [22], based on Span-
BERT and handling the task of coreference resolution as an
extractive question-answering one, achieving a further boost
in the performance but at the cost of a worsening of the
execution time.

B. NEURAL LANGUAGE MODELS
The most used NLM in coreference resolution task is
BERT [4], which is also the most widely used model in the
whole NLP field. BERT is usually pretrained on a very large
unannotated text corpus, exploiting Masked Language Mod-
elling (MLM) approach, which consists in randomly applying
a mask on a percentage of words in the training corpus.
This allows encoding information from both directions of the
sentences and training themodel to predict themaskedwords.
The input vocabulary can be cased or uncased, leading to two
different pretrained models. Because of the time and com-
putational resources demanded for training, in recent years
several pretrained BERT models have been made available in
literature.

A NLM extending BERT capabilities and developed for
tasks such as coreference resolution and question answering
is SpanBERT [9]. It is a method for span-based pre-training
that outperforms BERT on two ways: masking contiguous
random spans, not only random tokens, and training the
span boundary representations to predict the entire content
of the masked span, without relying on the individual token
representations.

Longformer [12] is a modified Transformer architec-
ture with a self-attention operation able to scale linearly
instead of quadratically with the sequence length, making
it able to process long documents. This allows overcoming
the limits of existing approaches to handle text segments
made of, at most, 512 tokens characterizing BERT-style
pretrained NLMs. Thus, using multiple layers of attention,
it is possible to build contextual representations of the
whole context limiting the need for task-specific architec-
tures. Longformer has been successfully applied to different
downstream NLP tasks requiring document-level processing
abilities.

A new NLMworthy of attention is ELECTRA [14], which
has demonstrated to reach or even exceed performance of
BERT-basedmodels using less compute resources. It uses two
Transformer models, a generator and a discriminator. Unlike
other NLMs, the pre-training task in ELECTRA is based
on Replaced Token Detection (RTD) approach that corrupts
the input replacing some tokens with plausible alternatives
sampled from generator network. This allows the model to
learn from all input tokens and not just from a masked subset.
As far as is known, ELECTRA has never yet been used for
coreference resolution task.

III. RESEARCH OBJECTIVE AND CONTRIBUTION
The main objective of this work is to investigate the use of
ELECTRA to improve performance for the task of coref-
erence resolution, moved by the experimental evidence of
an improved contextual representation able to substantially
outperform the ones learned by other NLMs, achieving higher
accuracy on different downstream tasks.

To this aim, first of all, ELECTRA has been used in
c2f-coref architecture, in place of BERT and SpanBERT,
in order to encode input tokens and improve their contextual-
ized representation.

Secondly, spans of text have been chosen to be represented
by continuing to use all their tokens, differently from the
recent proposal of [13] where span representations are not
built, and only the endpoints of a span (rather than all span
tokens) are used to compute mention and antecedent scores.
In such a way, spans of text are still represented by consider-
ing both the context they appear in, i.e. exploiting contextu-
alized embeddings of their boundary tokens, and their entire
content, averaging embeddings of all their tokens. This choice
allows avoiding codifying spans of text only in terms of their
boundary tokens since these latter could be uninformative to
approximate the whole span content, for instance, in case they
are articles, prepositions or adjectives. Moreover, differently
from the original architecture [11] and the other successive
evolutions [5], [8], [9], a simpler and more computationally
efficient way has been adopted to exploit the contribution of
all the tokens composing a span, i.e. using the average instead
of a head-finding attention mechanism, where all its weights
have to be learned during the training process.

Furthermore, both the number and the length of textual
segments given in input to c2f-coref architecture have been
optimized in accordance with limits of the transformer archi-
tecture [23] at the basis of ELECTRA and in order to preserve
the computational efficiency, maximize the coverage of the
input documents, thus producing a reduced truncation for
them, and exploit in the best possible way the representation
power of ELECTRA as contextualized NLM. Even though
recent work on Longformers has allowed shifting towards
processing complete documents, they admit only a smaller
model, i.e. in its base version, and with one training example
per batch [13].

Finally, the number of spans of text to be processed as input
of c2f-coref architecture, since potentially representing men-
tions, has been also maximized by considering input dataset
statistics, such as the maximum mention width or mentions-
tokens ratio for documents or partitions of them, but also not
violating computational limits due the high spatial complex-
ity of c2f-coref architecture, which is equal to O(n4). This
choice is motivated by the consideration that the larger the
number of spans evaluated, the more likely it is to identify
potential mentions in them.

All these aspects represent the main contributions of
this work, that will be deeply investigated in the following
sections.
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IV. DATASET AND METHODS
The working process behind the proposed coreference reso-
lution system can be summarized as follows.

First, documents composing the OntoNotes dataset are
given as input. Secondly, the end-to-end c2f-coref architec-
ture proposed by [5], [11] and powered by the usage of
ELECTRA to represent input tokens is leveraged to calculate
the coreference predictions. A detailed description of the
OntoNotes dataset (Section IV-A), of the system architecture
(Section IV-B) and the ELECTRA model (Section IV-C) is
provided below.

A. DATASET
OntoNotes is the most used corpus in coreference resolu-
tion tasks [2]. It is part of the OntoNotes project, aiming
at the creation of a multilingual corpus with multiple level
of annotation. It includes three languages (English, Chinese
and Arabic), collecting texts from several domains manu-
ally annotated with syntactic structure and shallow seman-
tics [16]. For the purpose of this work, only the English
sub-corpus has been taken into account.

OntoNotes is divided into three subsets (Train, Dev, and
Test), which, respectively, can be used for training, develop-
ing and testing a coreference model. The subsets are arranged
into sets of documents, each of which is composed of an
ordered list of non-overlapping partitions of ordered utter-
ances. Statistics on the dataset are reported in Table 1.

TABLE 1. OntoNotes statistics.

OntoNotes presents different layers of annotation, includ-
ing syntax, propositions, word sense, named entities and
coreference. The latter is the one used in this work and
considers every type of potential mentions: pronouns (PRP),
noun phrases (NP) and verb phrases (VP).

With respect to the width of mentions, most mentions are
composed of one (in detail, 59.92% for Train, 58.08% forDev
and 59.74% for Test) or two tokens (respectively, 79.11%,
78.02% and 79.45%), but there are many very long ones,
reaching up to 94 tokens (respectively, 94, 63 and 58).

Going into detail, Figure 1 shows the mentions distribution
in terms of cumulative histogram over mentions width. In par-
ticular, the cumulative histogram highlights what percentage
of the total number of mentions has a width no greater than
that considered. It is worth noting that almost the totality of
all the mentions (respectively, about 99.96%, 99.96% and
99.97%) presents a width of at most 40 tokens.

FIGURE 1. The histograms represent the cumulative distribution of
mentions over their span width for the Train, Dev and Test sets. The figure
on the top shows all the values from 1 to 40, on the other hand, the
bottom histogram shows only a zoom for the values (20, 30, 40).

On average, partitions contain more than 400 tokens
(in detail, 463.7 for Train, 475.52 forDev and 487.3 for Test),
while the number of mentions contained in a partition is about
55.52, 55.85 and 56.79, respectively.

It is worth noting that the ratio between i) the number
of token composing a partition and ii) the number of spans
(i.e. ordered sequences of tokens) which can be successfully
recognized as mentions within that partition, is about 0.12,
on average. Going into detail, as reported in Figure 2, all par-
titions present a ratio less or equal of 0.3. As a consequence,
the maximum number of antecedents a mention can have is at
most about 0.3 * number of tokens within the same partition.

B. SYSTEM ARCHITECTURE
The neural architecture here used is the c2f-coref model pro-
posed by [5], [11]. In accordance with this architecture, the
task of coreference resolution is defined as a set of antecedent
assignments yi for each span i, with 1 ≤ i ≤ N , belonging to

a given document D that contains T tokens and N = T (T+1)
2

possible text spans.
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FIGURE 2. The distribution of partitions for mentions-tokens ratio.

In particular, all spans are considered as potential mentions
and, for each span i, the set of antecedent assignments yi, i.e.
mentions preceding the span under examination and referring
to the same entity, is calculated. The set of of possible assign-
ments for each yi is Y (i) = {ε, 1, . . . , i− 1}, which includes
the dummy antecedent ε and all preceding spans.

The dummy antecedent covers the cases when a span is
not an entity mention, or it is an entity mention but is not
coreferent with other previous spans.

Grouping all spans connected by a set of antecedent pre-
dictions allows defining a final clustering.

To realize this task, c2f-coref model learns a conditional
probability distribution P(y1, . . . , yn|D) whose most likely
configuration corresponds to the correct clustering. This dis-
tribution is calculated as the product of multinomials for each
span:

P(y1, . . . , yN |D) =
N∏
i=1

P(y1|D)

=

N∏
i=1

exp(s(i, yj))∑
y′∈Y (i) exp(s(i, y′))

(1)

where s(i, j) is a pairwise score for a coreference link between
span i and span j in document D. This coreference score is
computed as follows:

s(i, j) =

{
0 j = ε
sm(i)+ sm(j)+ sa(i, j) j 6= ε

(2)

It is equal to 0 in case of dummy antecedent, otherwise it is
the sum of three terms, namely sm(i) and sm(j) are the scores
indicating that the spans i and j are mentions, and sa(i, j) is the
score indicating that the span j is an antecedent for the span i.

The model predicts the best antecedent score if all non-
dummy scores are positive, otherwise it vanishes. Differently
from the original c2f-coref model, each span i is given an
embedding representation hi by using ELECTRA as shown
in Figure 3 and described in the next subsection.

FIGURE 3. Span representation using ELECTRA and mean of the internal
span words.

Given these span representations, the scoring functions sm
and sa are calculated, as shown in Figure 4, via feed-forward
neural networks FFNNm and FFNNa as follows:

sm(i) = wm · FFNNm(hi) (3)

sa(i, j) = wa · FFNNa([hi, hj, hi ◦ hj, φ(i, j)]) (4)

where · is the dot product; ◦ is element-wise multiplication;
FFNN is a feed forward neural network calculating a non-
linear mapping from input to output; sa(i, j) includes explicit
element-wise similarity of each span ei and a feature vector
φ(i, j) containing information about speaker, genre and other
syntactic metadata.

FIGURE 4. Calculation of mention and antecedent scoring functions.

For the training, the marginal log-likelihood of all correct
antecedents implied by the gold clustering is optimized:

log
N∏
i=1

∑
ŷ∈Y (i)∩GOLD(i)

P(ŷ) (5)

where GOLD(i) is the set in the gold cluster containing the
span i.

A challenging characteristic of this model is its space
complexity ofO(T 4) in the number of input tokens T . In order
to grant computational efficiency, a pruning strategy has been
adopted to reduce the number of spans representing candidate
mentions to be processed.

Specifically, first, candidate mentions are pruned depend-
ing on their width expressed by the max_span_width
hyperparameter.
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Then, their number is further reduced by considering only
M spans with the highest mention scores sm(·), whereM is an
heuristic value that is dynamically calculated as product of the
number of tokens T of the document and a cutting percentage
top_span_ratio. Finally, for the remaining spans, only up to
K antecedents are considered for each one, where K is deter-
mined by fixing the max_top_antecedents hyperparameter.
In order to determine the top antecedents to consider for

each span, the coarse-to-fine antecedent pruning strategy
proposed by [5] has been used, aimed at estimating the afore-
mentioned sa(·, ·) using an alternate bi-linear scoring function
that can be learned in an end-to-end fashion. By using this
approach, max_top_antecedents can be fixed equal to 50,
with comparable performance that can be obtained without
it, but with a less aggressive pruning, so considering up to
250 antecedents per span, and thus worsening the memory
occupation and computational efficiency.

C. ELECTRA
ELECTRA NLM relies on two Transformer models, that
share the same word embedding, namely a generator G and
a discriminator D, and it is based on training D to distin-
guish fake or replaced input tokens produced by G in the
sequence. This approach, called replaced token detection
(RTD), allows using a minor number of examples without
losing in performance.

FIGURE 5. ELECTRA overview with replaced token detection. The
generator G is usually a MLM trained with the discriminator D but it may
virtually be any model producing an output distribution over tokens.

In particular, for a given input sequence, where some
tokens are randomly replaced with a [MASK] token, G is
trained to predict the original tokens for all masked ones.
On the other hand,G is given input sequences built by replac-
ing [MASK] tokens with fake ones produced by G, and it is
trained to predict whether they are original or fake.
More formally, given an input sentence s of raw text χ ,

composed by a sequence of tokens s = w1,w2, . . . ,wn where
wt (1 ≤ t ≤ n) represents the generic token, both G and
D firstly encode s into a sequence of contextualized vector
representations h(s) = h1, h2, . . . , hn.
Then, for a given position t so that the corresponding wt =

[MASK ], the generator outputs the probability to have a token
wt , with a softmax layer:

pG(wt |s) =
e(wt )T hG(s)t∑

w′ exp(e(w′)T hG(s)t )
(6)

where e(·) represents the embedding function.

On the other hand, the discriminator predicts whether wt is
the original or ‘‘fake’’, using a sigmoid layer:

D(s, t) = sigmoid(e(wt )T hD(s)t ) (7)

During the pre-training, G employs the following loss
function:

LGen = LMLM = E(
∑
i∈m

− log pG(wi|smasked )) (8)

where m = m1,m2, . . . ,mk are k random selected words and
smasked is the sentence with the masked words.
On the other hand, D uses the following loss function:

LDis = E(
n∑
t=1

−I(wcorruptt = xt ) logD(scorrupt , t)

+ − I(wcorruptt 6= xt ) logD(scorrupt , t)) (9)

where wcorruptt is the corrupted word within the corrupted
sentence scorrupt .
Finally, the following combined loss is minimized:

min
θG,θD

∑
s∈χ

LGen(s, θG)+ λLDis(s, θD) (10)

At the end of the pre-training, G is discarded and only D is
used.

The main reason for which ELECTRA efficiency results
improved with respect to BERT-like NLMs is that predictions
are calculated not only over masked tokens, but also for each
token and the discriminator loss can be calculated over all
input tokens.

In the c2f-coref model here adopted, ELECTRA is used
to represent each span by considering both the context
they appear, i.e. exploiting contextualized embeddings of its
boundary tokens, and its entire content, averaging embed-
dings over all its tokens. In more detail, for each span i, its
representation hi obtained by using ELECTRA is given by:

hi = [x∗START (i), x
∗

END(i), x̂SPAN (i), φ(i) ] (11)

where x∗START (i) and x
∗

END(i) are the embedding representations
of the boundary tokens, x̂SPAN (i) is the embedding representa-
tion of the whole span, calculated by averaging the embed-
ding representations of all its tokens, and φ(i) is a vector
feature which encodes the span size.

More formally, x̂SPAN (i) is defined as follows:

x̂SPAN (i) =
1

dim(SPAN (i))

END(i)∑
t=START (i)

·xt (12)

where x̂SPAN (i) is the mean of the embedding representations
xt belonging to the span i and dim(SPAN (i)) is the number of
span tokens.

Moreover, following the same strategy proposed in [8],
each input document has been split into non-overlapping
segments of length determined by the max_segment_length
hyperparameter. For ELECTRA, BERT and SpanBERT this
hyperparameter has an upper-bound of 512, determined by

VOLUME 10, 2022 75149



F. Gargiulo et al.: ELECTRA-Based Model for Neural Coreference Resolution

the usage of transformer architecture. Thus, the embedding
representation for each token is calculated depending on the
set of words that lie in the same segment.

Finally, following [5], a batch size of one document has
been used, with a number of training segments, determined by
themax_training_ sentences hyperparameter, chosen hand in
hand with the max_segment_ length hyperparameter in order
to preserve the computational efficiency, due to the memory
intensiveness of span representations, maximize the coverage
of the input document, with a reduced truncation, and, exploit,
in the best possible way, the representation power of ELEC-
TRA as contextualized NLM.

V. EXPERIMENTAL SETUP AND METRICS
Hereafter the experimental setup and the evaluation metrics
are described in Section V-A and V-B respectively.

A. EXPERIMENTAL SETUP
The experimental assessment of the c2f-corefmodel powered
by ELECTRA, as described in the previous section, has
been arranged by exploiting the implementation1 released
by [10], by integrating ELECTRA to calculate span repre-
sentations. ELECTRA model in its large (cased) version2

has been used, which is made available by Hugging Face
Transformers3 framework. This framework provides state-
of-the-art Transformer-based architectures with thousands of
pre-trained models in over a hundred languages for NLP
tasks. In particular, this specific ELECTRA model has been
pretrained on a dataset which is 33B tokens greater than
the one used for BERT, by including data from ClueWeb,
CommonCrawl, and Gigaword.

In detail, the architecture of ELECTRA is characterized
by 12 encoder layers, known as Transformers Blocks, and
12 attention heads (as introduced in [23], hence feed forward
networks with a hidden size of 768. Each training session
of the c2f-coref model has been fixed of 100 epochs, with
a learning rate varying from 0.1 up to 0.00001. More archi-
tectural details and training hyper-parameters are reported in
Table 2. At the top of Table, architectural details of ELEC-
TRA are reported, whereas at the bottom, hyperparameters
of c2f-coref model.

All experiments have been performed on a deep learning
IBM cluster, composed by 13 operation nodes (AC922) char-
acterized by 2 x 16 cores at 2.7GHz, 4 xNVIDIAV100GPUs
(16GB), 512GB RAM, 100Gb IB EDR (2ports), 2 x 1.92TB
SSD.

The choice of some values for the hyperparameters of both
ELECTRA and c2f-coref model has been dictated by the
hardware resource used for the experiments. In particular,
max_segment_length has been set to 512 in order to maxi-
mize the length of each segment and, thus, the contextualized
representation that can be obtained by using ELECTRA.

1https://github.com/lxucs/coref-hoi
2https://storage.googleapis.com/electra-data/electra_large.zip
3https://github.com/huggingface/transformers

TABLE 2. Hyper-parameters: the list is split into two parts, the top list
contains ELECTRA hyperparameters, whereas the bottom list indicates
c2f-coref model hyperparameters.

Moreover, max_training_sentences has been fixed equal to
2 for computational limits, thus truncating documents with a
length higher than 1024.

On the other hand, with reference to the parameters of
c2f-coref model, max_span_width has been set equal to
40 since, according to what is shown in Figure 1, almost
the totality of the mentions presents a width of at most
40 tokens. Moreover, top_span_ratio has been fixed to 0.6,
since, according to what is reported in Figure 2, all partitions
present a mentions-tokens ratio less or equal of 0.3. This
value has been doubled in order to have a balanced number
of positive and negative examples for the c2f-coref model.

B. EVALUATION METRICS
For the purpose of this work, official metrics provided by
the Conll 2012 shared task have been taken into account.
In particular, three metrics addressing different dimensions
have been adopted: MUC , B − CUBED and CEAFe. These
metrics consider the true set of entities K (named key or
key partition) obtained through manual annotation of the
entities, and the predicted (or response) set of entities R, i.e.
answer partition produced by the system. In particular, they
are defined as follows:

• MUC considers a cluster of references as linked ref-
erences, i.e. each reference is linked to one or more
references. It measures the number of link modifications
required to make the result entity set R identical to the
key entity set R. Precision is calculated as follows:

PrecisionMUC =

∑
rj∈R

|rj|−|P(rj)|
|rj|∑

rj∈R(|rj| − 1)
(13)

while recall is equal to:

RecallMUC =

∑
ki∈K

|ki|−|P(ki)|
|ki|∑

ki∈K (|ki| − 1)
(14)
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Precision is calculated as the number of common pairs
between entities in K divided by the number of pairs
in R, while recall is equal to the number of common
pairs between entities in K and R divided by the number
of pairs in K .

• B−CUBED (B3) first computes precision and recall for
each mention, and then calculates the weighted average
of these individual precision and recall scores to obtain
global precision and recall. In particular, for each men-
tion m of K , the recall is computed by considering the
fraction of the correct mentions included in the predicted
entity that contains m. On the other hand, the precision
is computed by exchanging the gold entities with the
predicted ones. If K is the key entity containing mention
m, and R is the response entity containing mention m,
precision and recall for the mention m are calculated as:

PrecisionB3 =

∑
ki∈K

∑
rj∈R

|ki∩rj|
|ki|∑

rj∈R |rj|
(15)

RecallB3 =

∑
ki∈K

∑
rj∈R

|ki∩rj|
|ki|∑

ki∈K |ki|
(16)

• CEAFe uses a similarity measure to find the best one-to-
one mapping between entities inK and entities in R. The
best mapping is the one that maximizes the overall sim-
ilarity of the entities, φ, which is given by the following
equation:

φ(ki, ri) =
2|ki ∩ rj|
|ki| + |ri|

(17)

Recall is the total similarity divided by the number of
mentions in K :

RecallCEAF =

∑
ki∈K* φ(ki, g*(ki))∑

ki∈K φ(ki, ki)
(18)

where g* is a function associating to each entity of K an
entity of R, whereas K * is the set of key entities in the
optimal mapping.
Precision is the total similarity divided by the number of
mentions in R:

PrecisionCEAF =

∑
ki∈K* φ(ki, g*(ki))∑

ri∈R φ(ri, ri)
(19)

VI. RESULTS AND DISCUSSION
In this section, experimental results are presented, analyzed
and discussed from different perspectives, ether quantita-
tively, also reporting a comparison with the state of the art
and deeply inspecting the typology of produced errors, and
qualitatively, highlighting some examples of correctly and
incorrectly predictions. Moreover, the contribution of each
piece of the proposed model is inspected, analyzed and dis-
cussed by means of an ablation study.

A. QUANTITATIVE ANALYSIS
In Table 3 results obtained by most successful approaches
proposed in the literature are shown. Results are reported with
reference to the three metrics presented in V-B, according to
the criteria proposed in Conll 2012 shared task. The table is
divided into two parts: in the first one all the approaches based
on the e2e-coref, c2f-coref and s2e-coref models are listed,
including the proposed solution referred as c2f-corefopt +
ELECTRA-large and highlighted in bold, whereas, in the
second one, the approaches based on CorefQA model are
mentioned.

The results shown in Table highlight that the proposed
c2f-corefopt + ELECTRA-large model outperforms the best
two models based on c2f-coref and s2e-coref architec-
tures, namely c2f-coref + SpanBERT-large and s2e-coref +
Longformer-large, with a F1 score boost of 1 and 0.9, respec-
tively. These results also imply that ELECTRA and the way
used to encode spans of text allows obtaining a more effective
token and span representation, without requiring a specific
NLM trained to handle either spans of text, as SpanBERT,
or long documents, as Longformer.

On the other hand, the c2f-corefopt + ELECTRA-
large model reaches inferior performance than CorefQA +
SpanBERT-large, but without neither resorting to data
augmentation to improve its generalization capability nor
processing hundreds of individual context-question-answer
instances for a single document, substantially worsening
execution time, as reported by [13]. As further stated in
[21], [24], this method has resulted very computationally
expensive since it needs to run a transformer-based model to
perform a different query on the same document many times.
It also exhibiting some difficulties to scale to long documents.

B. ABLATION STUDY AND ANALYSIS
The performance of the proposed c2f-corefopt + ELECTRA-
large model has been deeply inspected with respect to four
main aspects that are different from the c2f-coref + BERT-
large model: i) the method used to represent spans of text;
ii) the number and length of textual segments given in input;
iii) the number of spans of text to be processed as input; iv)
the number of epochs to be used in the training process.

First of all, the behavior of the proposed c2f-corefopt +
ELECTRA-large model has been assessed with respect to
the strategy used to represent spans of text, by comparing
the performance obtained in terms of average and standard
deviation of F1 score on ten random tests, by concatenating
the embedding representations of the boundary tokens either
to the average of the embedding representations of all the
span tokens, or to the soft heads of these spans, calculated
as a weighted sum of the embedding representations of all
the span tokens, as proposed in [11].

Figure 6 shows the results achieved with the two methods,
with an average F1 score gain of 0.23 if the average strategy
is preferred to the soft head one. It is worth noting that
this average F1 score gain does not significantly exceed the
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TABLE 3. Evaluation results on the English CoNLL-2012 shared task of different coreference models. The table is divided into two parts, the first part with
the results of the models based on the (e2e, c2f, s2e) paradigms whereas the second part shows the CorefQA based method. The proposed method is
c2f-corefopt + ELECTRA-large and it is highlighted in bold.

deviation ranges. Therefore, the superiority of the average
strategy cannot be decisively stated. However, the major sim-
plicity of the average strategy with respect to the soft head
one, which is a weighted average with weights to be learned
during the training phase, and comparable, or even slightly
better, the performance obtained experimentally, in fact, jus-
tify the preference for the former in the final c2f-corefopt +
ELECTRA-large model.

Secondly, the c2f-corefopt + ELECTRA-large model has
been evaluated by comparing the performance obtained
in terms of average and standard deviation of F1 score
on ten random tests, with respect to the number and
length of textual segments it receives in input, varying the
max_training_sentence and max_segment_len hyperparam-
eters, and with respect to the number of spans to be selected
for being processed, by modifying max_span_width and
max_top_span_ratio hyperparameters.
In particular, the hyperparameters max_training_sentence

and max_segment_len are strictly correlated and indicates
jointly the maximum number of tokens that can be managed
by the model. More formally:

max_token_number

= max_training_sentence ∗ max_segment_len

The maximum number of tokens has an impact on the
spatial complexity of the model. In the best result achieved by
the model, it is equal to 1024, with max_training_sentence
equal to 512 and max_segment_len equal to 2. However,
in order to confirm this choice as the best one to improve the
performance, other configurations for this couple of hyper-
parameters have been tested, varyingmax_training_sentence
jointly, from 128 to 512, and max_segment_len, from 8 to 2,
reaching a maximum number of tokens always equal to
1024 except for the couple (3-384) where it is equal to 1152.

The results in Figure 7 have shown that the usage of larger
contexts always improves the performance.

Continuing to look at the Figure 7, two vertical bars
are reported for each couple (max_training_sentence,
max_segment_len), indicating the performance reached
depending on the values they assume. The blue bar is

FIGURE 6. The histogram and the related table show the c2f-corefopt +
ELECTRA-large model behavior in terms of average and standard
deviation of F1 score obtained on ten random tests. The results are
function of the methods, namely average or soft head, used to combine
token embeddings composing a span and create a span embedding.

referred to a configuration with max_top_span_ratio equal
to 0.4 and max_span_width equal to 30, whereas the orange
bar to the same hyperparameters but with values equal to
0.6 and 40, respectively. It appears clear form the Fig-
ure that the couple (0.6, 40) for the max_top_span_ratio and
max_span_width hyperparameters represents the best one,
for each couple (max_training_sentence, max_segment_len)
and, thus, regardless of it. Indeed, more spans are selected
(0.6 and 40 for max_top_span_ratio and max_span_width),
better performances the model is able to reach. Thus, the val-
ues (0.6, 40) for max_top_span_ratio and max_span_width
and the values (2-512) for max_training_sentence and
max_segment_len represent the best choice and have been
all used to configure the final c2f-corefopt + ELECTRA-large
model.

Finally, the number of epochs to be used for the training
of the c2f-corefopt + ELECTRA-large model has been also
assessed, varying it from 25 to 100 with an incremental step
equal to 25. Figure 8 show the F1 score obtained in terms
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FIGURE 7. The histogram and the related table show the c2f-corefopt +
ELECTRA-large model behavior in terms of average and standard
deviation of F1 score obtained on ten random tests. The results are
function of the max_training_sentence and max_segment_len
parameters. In detail, the blue bar is referred to a configuration with
max_top_span_ratio equal to 0.4 and max_span_width equal to 30,
whereas the orange bar to the same hyperparameters with values 0.6 and
40 respectively.

FIGURE 8. The histogram and the related table show the system behavior
in terms of average and standard deviation of F1 score obtained on ten
random tests. The results are function of the maximum number of epochs
used during the training stage.

of average and standard deviation of F1 score on ten random
tests.

It is worth noting that as the number of epochs increases,
the model improves its performance, thus reaching the best
value with 100 epochs, a greater value then the 20 epochs
used by [8] and the 24 used by [10].

C. IMPACT ANALYSIS OF c2f-corefopt AND ELECTRA
First, the effectiveness of the proposed optimized c2f-corefopt
architecture with ELECTRA in place of the original c2f-coref

one equipped with BERT has been assessed. To this end,
further experiments have been arranged and performed and
the results achieved are reported in Table 4:

TABLE 4. Performance comparison among various models, varying the
architecture used between the original c2f-coref and the proposed
c2f-corefopt and the language model between BERT and ELECTRA in their
large versions.

The results obtained for the c2f-coref architecture equipped
with BERT are slightly lower than the ones reported in [8].
Still, they have been experimentally obtained from scratch to
use the same computing infrastructure for comparison.

As can be seen, the usage of ELECTRA in place of BERT
in the c2f-coref architecture has generated an F1 score gain of
1.2, highlighting the superiority of the ELECTRA language
model over the more widely used BERT model. For this
test, the same hyperparameters used by the baseline proposed
in [8] have been adopted, maintaining the best couple of
values obtained for BERT for max_training_sentence and
max_segment_len, i.e. 4 and 256, respectively.
Moreover, the proposed optimized c2f-corefopt architec-

ture in place of the original one, maintaining BERT as the
language model, has generated an F1 score gain of 1.6,
highlighting the validity of the proposed optimizations, inde-
pendently of the language model used. The optimized hyper-
parameters reported in Table 2 have been adopted for this
test, but maintaining the best couple of values obtained in [8]
for BERT formax_training_sentence andmax_segment_len,
i.e., 4 and 256, respectively.

Finally, the contextual usage of ELECTRA in place of
BERT and the proposed c2f-corefopt architecture in place
of the original one, has generated an F1 score gain of 4.9,
highlighting the goodness of both. To achieve the result of
this last model, the optimized hyperparameters reported in
Table 2 have been adopted, choosing to use the best couple
of values obtained for ELECTRA formax_training_sentence
and max_segment_len, i.e., 2 and 512, respectively.

As a second analysis, the different behavior of the
c2f-corefopt + ELECTRA-large model has been evalu-
ated in comparison with the one reported by [8] for the
c2f-coref + BERT-large model, when various configura-
tions of values are considered formax_training_sentence and
max_segment_len hyperparameters.
In particular, in Table 5, the performance achieved by the

c2f-coref+ BERT-largemodel proposed in [8] has been com-
pared with those obtained by first changing the architecture
with the proposed c2f-corefopt and then the language model
with ELECTRA.

As highlighted by the results, both the models using
BERT have performed very similarly or worse when
max_segment_len of 384 or 512 is used, reaching the worst
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TABLE 5. Performance comparison among different models, varying values for max_training_sentence and max_segment_len hyperparameters. The
results in the first line come from [8] and are compared with the ones achieved first by changing the architecture with the proposed c2f-corefopt and then
the language model with ELECTRA in its large version. The baseline results are reported only as mean values, whereas the novel computed ones as
mean ± standard deviation.

F1 score with the couple (2-512). On the other hand, the pro-
posed c2f-corefopt + ELECTRA-largemodel has increasingly
taken advantage of using greater max_segment_len with the
best F1 score achieved for the couple (2-512).

A possible motivation of this difference could be the
usage in ELECTRA, similarly to SpanBERT, of a single-
sequence training, that has been shown in [9] to work bet-
ter than bi-sequence training with next sentence prediction
objective used by BERT. Indeed, like SpanBERT, ELECTRA
has removed the next sentence prediction objective and the
two-segment sampling procedure used by BERT for it, per-
forming the training on single contiguous segments instead of
two half-length segments. This removal may have produced
a better handling of longer full-length contexts, allowing to
more proficiently learn longer-range features.

D. ERROR ANALYSIS
A further error analysis has been carried out in order to assess
the performance of c2f-corefopt + ELECTRA-large model
with respect to the prediction of mentions depending on their
length and, in case of single-token ones, depending on the
different Parts-Of-Speech (POS) they belong to.

In particular, Table 6 outlines the numbers of mentions
that are predicted (p) or not correctly predicted (np), grouped
in two classes, namely single-token and multi-token. With
respect to themulti-token class, it has been further subdivided
in three sub-classes depending on their token length.

TABLE 6. Predicted and not-predicted mentions, grouped depending on
their length.

It is possible to highlight a greater number of correctly
predicted mentions in case they are single-token (92.8%)
than in case they are multi-token (84.8%). Moreover, for
multi-token mentions, also a progressive decay in the correct
predictions is shown as the number of tokens constituting
the mentions increases. The percentage of correctly predicted
multi-token mentions, indeed, decreases from 85.9% for
mentions between 2 and 9 in length to 66.1% for mentions
greater than 20 in length.

Going deeply with respect to single-token mentions,
Table 7 outlines the numbers of this type of mentions that

are predicted (p) or not correctly predicted (np), grouped
with reference to the three most frequent POS categories,
namely pronoun (PRON), proper noun (NOUN) and verb
(VERB). In the PRON category, personal, possessive and
demonstrative pronouns have been considered, where, in the
last two categories, also adjectives have been included since
POS-tagged in the same way in the dataset.

The second column shows the total number of occurrence
for every POSwith the frequencies in round brackets. As con-
firmed by other studies, the most used single-token POS to
co-refer an entity is pronoun, which covers 72.9% of total
single-token mentions.

TABLE 7. Predicted and not predicted single-token mentions grouped
according to the most frequent POS classes.

Concerning the mentions belonging to pronoun POS, the
proposed c2f-corefopt + ELECTRA-large model reaches a
percentage of wrong predictions equal to 3.8%. The error rate
for mentions associated to the noun POS is slightly higher
reaching a value of 13, 8%. With regard to verb POS, the
model has an error rate of nearly 32.3%, but the impact on
the overall results is however low due to the fact that verbs
only affect 2, 9% of the total POS categories associated to
single-token mentions in the dataset.

A deeper analysis of mentions associated to pronoun POS
shows differences between the predicted and erroneous pro-
noun types (as shown in Table 7). Almost 80% of pronouns
used as mentions are personal pronouns, which are predicted
with an accuracy of 97.1%. Correct predictions increase by
just over one percentage point (98.2%) in the case of pos-
sessives, which account for 21.5% of the total number of
pronouns. By contrast, mention predictions are much more
inaccurate in case of demonstratives: the model stops at
75.1% of correct predictions, while the error rate increases
by around 25%.

E. QUALITATIVE ANALYSIS
A qualitative analysis has been also carried out in order
to highlight clusters that are both correctly and incorrectly
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TABLE 8. Examples of correctly (bold) and incorrectly (italicized)
predicted clusters with reference to both single-token mentions, grouped
depending on the most frequent POS categories, and multi-token
mentions, grouped depending on their length.

predicted by the proposed c2f-corefopt + ELECTRA-large
model.

In detail, in Table 8, examples of correctly and incor-
rectly predicted clusters are reported. These examples are first
arranged depending on the length of the mentions composing
the clusters, namely single-token and multi-token. For the
single-token class, the clusters highlighted in the examples
contain at least one mention whose length is equal to 1.
Moreover, for this typology, a further subdivision is foreseen
with respect to pronoun, noun and verb POS categories. For
each of these POS categories, every cluster reported in the
examples contains at least one single-token mention asso-
ciated to that POS. On the other hand, for the multi-token
class, the clusters in the examples contain at least onemention
whose length is included in the ranges (2-9), (10-19) or (>20),
respectively.

Moreover, with reference to the examples in the last col-
umn, mentions belonging to correctly predicted clusters are
reported as boldfaced, whereas the ones belonging to incor-
rectly predicted clusters are written as underlined. In order
to make examples more readable, their text is truncated by
indicating ellipsis in square brackets.

Concerning clusters containing at least a single-tokenmen-
tion, for the pronoun POS category, the model correctly
predicts the neuter third-person personal pronoun ‘‘it’’ in
prepositional phrase postponed to the verb (first example in
table 8), making a cluster with the multi-token mention ‘‘the
nuclear weapons program’’.

By contrast, an error is shown in the second example,
where in the subordinate clause ‘‘To express its determina-
tion’’, the possessive ‘‘its’’, is not correctly predicted, and
thus not properly associated to the othermention expressed by
the proper noun ‘‘Chinese’’ in the main clause ‘‘the Chinese
securities regulatory department compares this stock reform

to a die that has been cast’’. This behavior is probably due to
the fact that the second example has amore complex syntactic
construction made of a main clause and a subordinate one.

Observing the examples concerning single-token mentions
belonging to the noun POS category, it can be seen that
the proper noun ‘‘Bush’’ is correctly predicted as mention
and linked to the mention ‘‘George Bush’’ to form a cluster.
On the other hand, in the second example, the common noun
‘‘industry’’ is not predicted as mention. This occurs despite
the fact that the correctly predicted mention ‘‘Bush’’ in the
first example is in an apparently more complex syntactic
construction, acting as a subject within a subordinate clause
introduced by the preposition ‘‘although’’. By contrast, for
the not predicted mention ‘‘industry’’, the second example
presents a linear easier syntax ‘‘industry executives. . . ’’. It is
thus possible to assume for the noun POS category - which
overall success rate is more than 86% - that proper names
have a greater effect over common ones. In the absence of
sub-tags on the type of nouns, this behavior can only be
hypothesized.

With regard to the couple of examples concerning single-
token mentions that are verbs, there is a slightly different
behavior. No specific factor, such as mention position or
syntactic construction, seems to influence whether or not the
mentions are predicted and clustered correctly. It is therefore
not possible to identify a clear-cut discrimination between
correct and incorrect predictions. However, it should be noted
- as mentioned above - that verbs are the POS category with
the highest percentage of error (49.23%) but that they account
for very little of the total grammatical categories (2.89%).

Concerning clusters containing at least a multi-token men-
tion, although the examples associated to the different token
intervals are very heterogeneous, a recurring pattern can be
noted. Correctly predicted clusters contain multi-token men-
tions tending to be proper nouns composed by two or more
tokens, as in the case of ‘‘Professor Zhou’’ for mentions
within (2− 9) interval, or noun phrases with topicalizations.
The proper noun acting as subject (for instance ‘‘Yang Yang’’
in (10 − 19) interval is located on the left of the clause that
refers to it (‘‘a host of Beijing Traffic Radio Station’’), instead
of the canonical order. This phenomenon can be observed for
every class with clauses referring to the subject that becomes
progressively longer. By contrast, incorrectly predicted clus-
ters contain mentions presenting a plain subject-verb-object
(SVO) syntax (i.e. ‘‘your new book. . . I’ve got here. . . ’’) but
with several proper nouns within paratactic conjunctions,
as in ‘‘president Bill Clinton back. . .George Bush’’, or punc-
tuation marks ‘‘Reader’s Digest, New York Times. . . ’’. These
constructions could be the cause of a higher difficulty in
correctly determining mentions and clusters containing them.

VII. CONCLUSION
In this paper, the most used end-to-end coreference archi-
tecture proposed in [5], [11] has been enhanced adopt-
ing ELECTRA as representation layer in order to encode
input tokens and improve their contextualized representation.
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Moreover, the architecture itself has been revised: i) by rep-
resenting spans of text considering both the context they
appear, exploiting information at their boundary tokens, and
their entire content, averaging information of all their tokens,
ii) by optimizing both number and length of textual segments
considered in input in order to preserve the computational
efficiency, maximize the coverage of the input documents
and better exploit the representation power of ELECTRA,
iii) by maximizing the number of spans of text to be pro-
cessed, since potentially representing mentions, not violating
computational limits due a high spatial complexity.

The final model has been assessed on the OntoNotes
dataset from both a quantitative and qualitative perspective,
showing its effectiveness with respect to the state-of-the-art.
In detail, the model has outperformed all the other existing
solutions derived from the architecture proposed in [5], [11],
whereas it has reached inferior performance than [22], but
without neither resorting to data augmentation to improve its
generalization ability nor requiring a major execution time
to process a plenty of individual context-question-answer
instances for each single document.

These results have also implied that ELECTRA and the
way used to encode spans of text allows obtaining a more
effective token and span representation. These aspects leave
open the possibility of using this model also for low-resource
languages for which it is sufficient that a pre-trained version
of ELECTRA exists, not requiring a language-specific NLM
trained to handle either spans of text, as SpanBERT, or long
documents, as Longformer.
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