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Abstract

Federated learning, as a distributed learning that conducts the training on the local devices without accessing to the training data,

is vulnerable to Byzatine poisoning adversarial attacks. We argue that the federated learning model has to avoid those kind of

adversarial attacks through filtering out the adversarial clients by means of the federated aggregation operator. We propose a

dynamic federated aggregation operator that dynamically discards those adversarial clients and allows to prevent the corruption of

the global learning model. We assess it as a defense against adversarial attacks deploying a deep learning classification model in

a federated learning setting on the Fed-EMNIST Digits, Fashion MNIST and CIFAR-10 image datasets. The results show that the

dynamic selection of the clients to aggregate enhances the performance of the global learning model and discards the adversarial

and poor (with low quality models) clients.
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1. Introduction

The standard machine learning approach is built upon an al-

gorithm that learns from a centralized data source. Distributed

machine learning proposes the distribution of the data and ele-

ments of a learning model among several nodes as a solution for

the unceasing growing of learning model complexity and the

size of training data [1, 2]. However, the distributed machine

learning solution is neither valid for the data privacy challenge,

nor for an scenario with a large number of clients and a non

homogeneous data distribution [3, 4].

Federated learning (FL) is a machine learning approach in

which the algorithms learn from sequestered data [3, 5]. The FL

model is mainly composed of two components: a global server

that owns the global learning model and a set of clients storing

the local learning models and the local training datasets. Like-

wise, FL consists in: (1) training the local learning models in

each data source, (2) distilling the parameters of the local learn-

ing models into a central server, (3) aggregating the parameters

of the local models in the global learning model and (4) up-

dating the local learning models with the aggregated federated

global learning model after the aggregation. This specific set-

ting supports its main feature, which is the prevention of data

leakage and the protection of data privacy, since the data do not

abandon its local storage and they are not shared with any other

client or third party. Since FL is a user privacy-preserving ap-

proach designed to decentralized scenarios, an Artificial Intel-

ligence of Things (AIoT) setting is a natural way to use it, for

∗Corresponding author

Email addresses: rbnuria@ugr.es (Nuria Rodrı́guez-Barroso),

emcamara@decsai.ugr.es (Eugenio Martı́nez-Cámara), luzon@ugr.es
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both the distributed nature and the privacy needed in IoT (Inter-

net of Things) devices [6].

Machine learning is vulnerable to malicious manipulations

on the input data or the learning model to cause incorrect classi-

fication [7]. This vulnerability becomes harder to address in FL

due to most of the defensive approaches are based data inspec-

tion techniques. Among the different kind of adversarial attacks

in the literature [8], in this paper we focus on byzantine poison-

ing attacks [9], which are based on the arbitrary manipulation

of the training data (data poisoning attack [10, 11]) or the client

model updates (model poisoning attacks [12]) with the aim of

hindering the performance of the FL model.

We argue in this paper that the FL model has to be able to

dynamically avoid adversarial clients to preserve the learning

model from byzantines poisoning attacks, which is usually per-

formed on the server by the federated aggregation operator. In

the literature there are a number of federated aggregation opera-

tors, but they do not prevent the federated model from this kind

of attacks [13, 14, 15], or they do it following some assump-

tions about the nature of the adversarial clients [16] or prove to

be insufficiently effective [17].

We propose the Dynamic Defense Against Byzantine At-

tacks (DDaBA), which is a dynamic aggregation operator that

dynamically selects the clients to be aggregated and discards

those ones considered as adversarial, and it features agnostic

about the number and nature of the adversarial clients. This

dynamic defense is built upon an Induced Ordered Weighted

Averaging (IOWA) operator [18], which aggregates the clients

on a weighted basis according to an induced-ordered function

and a linguistic quantifier. We use as induced-ordered function

the performance of the local learning models on a validation
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set stored in the server. The linguistic quantifier addresses the

weighting of the clients, which usually depends on the knowl-

edge of the problem and predefined parameters. We design

an agnostic linguistic quantifier on the nature of the problem,

which is based on: (1) considering the distribution of data re-

sulting from measuring the performance variation between lo-

cal learning models on the validation set, (2) assuming that

the resulting distribution follows an exponential distribution,

and (3) using the properties of that distribution to set the pa-

rameters of the linguistic quantifier in order to discard the ad-

versarial clients that correspond to outliers in the exponential

distribution according to the Tukey criteria.

We evaluate the DDaBA as a defense in a FL model for im-

age classification. For that purpose, we leverage the benchmark

image classification datasets Fed-EMNIST1 Digits [19], Fash-

ion MNIST2 [20] and CIFAR-10,3 and we distribute the data

over the clients following a non independent and identically dis-

tributed (non-IID) distribution. We compare the DDaBA with

the classical federated aggregation operator FedAvg [13] with

no defense and the state-of-the-art defenses against three dif-

ferent byzantine attacks: label-flipping [21], out-of-distribution

[22] and random weights [23] attacks. We show that the DDaBA

is able to identify the adversarial and poor clients, filter them

out and enhance the performance of the global learning model.

We analyze the behavior of the DDaBA in an scenario with

a extreme proportion of adversarial clients, and we see that the

performance of the federated global model is hindered. Al-

though this is a very unlikely scenario, we also introduce the

static version of DDaBA, Static Defense Against Byzantine At-

tacks (SDaBA), which predefine the parameters of the linguistic

quantifier of the IOWA operator for discarding the susceptible

adversarial clients. The SDaBA, as well as the DDaBA, outper-

forms all the baselines in the three adversarial attacks developed

for the evaluation.

The rest of the work is organized as follows: the following

section summarizes the background related to FL, adversarial

attacks in FL and defenses against them. Section 3 is focused

on the description of the dynamic FL model for identifying ad-

versarial clients. We detail the experimental set-up in Section 4

and evaluate and analyze the results of the FL models in Section

5. Finally, conclusions are described in Section 6.

2. Background

We expound in this section some relevant concepts and re-

lated works. We introduce FL in Section 2.1, we describe the

main types of adversarial attacks in FL in Section 2.2, and we

detail the proposed defenses against byzantine attacks in Sec-

tion 2.3.

1https://www.nist.gov/node/1298471/emnist-dataset
2https://github.com/zalandoresearch/fashion-mnist
3https://www.cs.toronto.edu/~kriz/cifar.html

2.1. Federated Learning

FL is a learning approach pushed by the need of overcom-

ing the limitations of distributed learning for preserving data

privacy and for processing large number of clients following a

non homogeneous data distribution [24]. FL proposes a new

training approach of learning algorithms that consists in the it-

erative training of the model in the devices that own the data,

the aggregation of those models in the federated model, and the

updating of the local models with the federated model. Hence,

FL prevents from data leakage and preserves data privacy, since

the data do not leave the electronic device.

Formally, FL is a distributed machine learning paradigm

consisting of a set of clients {C1, . . . ,Cn} with their respective

local training data {D1, . . . ,Dn}. Each of these clients Ci has a

local learning model named as Li represented by the parameters

{L1, . . . , Ln}. FL aims at learning a global learning model repre-

sented by G, using the scattered data across clients through an

iterative learning process known as round of learning. For that

purpose, in each round of learning t, each client trains its local

learning model over their local training data Dt
i
, which updates

the local parameters Lt
i

to L̂t
i
. Subsequently, the global param-

eters Gt are computed aggregating the trained local parameters

{L̂t
1
, . . . , L̂t

n} using an specific federated aggregation operator ∆,

and the local learning models are updated with the aggregated

parameters:

Gt = ∆(L̂t
1, L̂

t
2, . . . , L̂

t
n)

Lt+1
i ← Gt, ∀i ∈ {1, . . . , n}

(1)

The updates among the clients and the server are repeated as

much as needed for the learning process. Thus, the final value

of G will sum up the knowledge sequestered in the clients.

2.2. Related works about adversarial attacks

Machine learning is highly susceptible to adversarial attacks

[25], and the vast majority of the defensive approaches are based

on three approaches [8]: (1) game theory [26], (2) data sanita-

tion [27] and (3) resilient and robust learning models, which

assume that a fraction of the training data may be manipulated

and consider it as outliers [28]. Due to the federated aggrega-

tion operator is agnostic in relation with adversarial clients in-

formation, the first approach can not be applied in FL. Likewise,

since the training data in FL is inaccessible by the server, the

second approach is also not feasible in FL. Therefore, the most

promising defense approach is developing resilient and robust

federated aggregation operators with the ability to safeguard the

model from the effect of attacks.

According to [29], there are two types of adversarial attacks

in FL: (1) Inference attacks [30], which aim at inferring infor-

mation from the training data; and (2) poisoning attacks [31],

which pursue to compromise the global learning model. Con-

cerning inference attacks, there are different types of them de-

pending on the information being inferred. The most important

ones are the property and membership inference attacks, which

respectively seek to infer certain properties of the data and the

membership of specific samples in the training set. Because of

2
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their nature, the defenses proposed in the literature are based on

applications derived from or inspired by the Differential Privacy

[32]. Regarding poisoning attacks, we identify two taxonomies:

1 Depending on which part of the FL model is attacked,

we differentiate between model-poisoning [33] and data-

poisoning attacks [34]. In practice, both are almost equiv-

alent, since a poisoning of the data results in a poisoned

model. However, data-poisoning attacks and some of the

model-poisoning attacks fail to be effective since the at-

tack dissipates in the aggregation of many clients. Hence,

these attacks are combined with model-replacement [17]

techniques, which boosts the adversarial model (or mod-

els) in order to replace the global model.

2 Depending on the purpose of the attack, we distinguish

between untargeted or byzantine attacks [35], which seek

to affect the model’s performance, and targeted or back-

door attacks [17], which aim at injecting a secondary or

backdoor task into the global model by stealth.

2.3. Defenses against adversarial attacks

The literature provides multiple solutions to both byzantine

and backdoor attacks in classical machine learning. The vast

majority of these defenses are based on data inspection meth-

ods, such as removing outliers from the training data in cen-

tralized learning [36] or, in a distributed setting, removing out-

liers from participant’s training data or models [37, 38]. In both

cases, the available defenses require data inspection, which is

not possible in FL. Therefore, defenses against adversarial at-

tacks in FL must be designed ad hoc.

Regarding the state-of-the-art defenses designed to be ap-

plied in federated settings, they are based on the modification

of the aggregation operator, because the attack is usually car-

ried out by the clients. The most important defenses against

byzantine attacks are based on a more robust aggregation of the

updates and they are called byzantine-robust aggregation rules.

We highlight the following ones:

• Coordinate-wise aggregations [39], which replaces the

mean of the classical aggregation operator FedAvg [13]

with more robust statistics to outliers or anomalous data.

The main ones are the trimmed-mean and the median.

• Krum (and MultiKrum) [40], which is based on using ge-

ometric properties to determine the most central model

updates vectors. This defense requires a k hyper-parameter

that determines the number of clients remaining in the ag-

gregation.

• Bulyan [41] which is the state of the art. It is built as

a combination of Krum and trimmed-mean. Accordingly,

the model updates vectors are sorted according to their ge-

ometrical centrality and are aggregated through a trimmed-

mean with a m parameter, which discards a total of 2m

clients.

Additionally, differential privacy [32] methods are an im-

portant safeguard for the information shared during the com-

munication between the server and the clients. Therefore, the

defensive challenges of the FL should focus on client attacks.

The main weakness of the defenses proposed in the liter-

ature is that they are highly dependent on parameters, which

beforehand are difficult to set without information about the

number or nature of the adversary clients. Thus, we propose

in this paper a defense mechanism against poisoning attacks,

which dynamically selects the clients that are not adversarial

and filters out the adversarial or the poor ones (clients with low

quality models) without the requirement to set any parameters.

3. Dynamic Defense Against Poisoning Attacks

FL is featured by its restriction to access to the training data,

which is sequestered in the clients. Accordingly, poisoning at-

tacks, both data and (local) model poisoning [10, 11], grounded

in the malicious manipulation of the training data or the local

model updates, can corrupt the FL model, which cannot inspect

the training to defend itself against this kind of adversarial at-

tacks.

We propose a defense against byzantine poisoning attacks

built upon a federated aggregation operator based on a Induced

Ordered Weighted Averaging (IOWA) [18] that dynamically se-

lects the clients to be aggregated, and filters out the adversarial

ones. We call it Dynamic Defense Against Byzantine Attacks

(DDaBA).

The IOWA operators, and more generally the Ordered Weigh-

ted Averaging (OWA) ones [42], are functions for weighting the

contribution of a set of clients in a aggregation process, as it is

the aggregation of the parameters of the local learning models

in FL. We mathematically introduce OWA and IOWA opera-

tors in Appendix Appendix A, and according to the definition

the IOWA operator is composed of (1) an order-inducing func-

tion to set the weighting assignation order, and (2) a linguistic

quantifier to calculate the weight contribution value. We define

the induced-order function used in DDaBA in Section 3.1, and

the linguistic quantifier that dynamically adapts the weighting

value calculation during the FL training in Section 3.2. Finally,

we sum up DDaBA in Section 3.3.

3.1. Accuracy-based induced ordering function for clients model

updates

The aim of byzantine poisoning adversarial attacks is hin-

dering the performance of a FL model through altering the train-

ing data or directly the model updates. Since FL is grounded in

the aggregation of the Li, those maliciously altered ones would

perform lower than the non-altered ones. Hence, the validation

of the Li before the aggregation may help to identify the suspi-

cious adversarial clients.

We propose the Local Accuracy Function, fLA , to measure

the performance of each Li before its aggregation. The fLA func-

tion is based on the availability of a validation set shared among

the clients. The viability of this validation set is justified by its

reduced size compared to the size required for training, and the
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possibility of making it up through expert or prior knowledge.

We define the fLA function in Definition 3.1.

Definition 3.1 (Local Accuracy Function ( fLA)). it measures

the performance of a local learning model Li using a fixed vali-

dation dataset named as VD. For that, it computes the accuracy

of Li over VD:

fLA(Li) = accuracy(Li,VD) (2)

where accuracy(Li,VD) refers to the standard accuracy evalu-

ation measure of the local learning model Li in the dataset VD.

Once the clients model updates are sorted according to this

sorting function, we expect that the benign client’s models will

converge to a common solution, while the adversarial client’s

models will not, but they will converge to a worse solution for

the original problem. Therefore, if we define the random vari-

able resulting from the differences in accuracy among all clients

with the client that scored the highest accuracy as follows:

X
fLA

i
= max

i
{ fLA(Li)} − fLA(Li). (3)

We assume that this random variable X will approximate an

Exponential Distribution, since there will be many values close

to zero (and always positive), and very few far from zero.

3.2. Dynamic linguistic quantifier for weighting the contribu-

tion of clients

The non-IID data distribution of most of the FL settings

make impossible to know beforehand the nature of the clients,

and hence it is impossible to know the amount of adversar-

ial clients. Therefore, the selection of the FL clients by its

weighted contribution has to be dynamically calculated for adapt-

ing to the nature of the clients.

The dynamic selection of the DDaBA model is based on a

IOWA linguistic quantifier that some of its parameters values

depend on the resulting exponential distribution after ordering

the clients model updates X
fLA

i
. Before the definition of the lin-

guistic quantifier of DDaBA, we first define the IOWA linguis-

tic quantifier in Definition 3.2.

Definition 3.2 (Linguistic quantifier). It is a function Q : [0, 1]→

[0, 1] verifying Q(0) = 0, Q(1) = 1 and Q(x) ≥ Q(y) for x > y.

Equation 4 defines how the function Q computes the weighting

values where wi represents the weighting associated to the po-

sition i of a vector of dimension n, and Equation 5 defines the

behaviour of the function Q.

w
(a,b)

i
= Qa,b

(

i

n

)

− Qa,b

(

i − 1

n

)

(4)

Qa,b(x) =































0 0 ≤ x ≤ a

x − a

b − a
a ≤ x ≤ b

1 b ≤ x ≤ 1

(5)

where a, b ∈ [0, 1] satisfying 0 ≤ a ≤ b ≤ 1, and they set the

intervals for calculating the contribution weight of each Li. For

the sake of clarification, those x values in the same interval will

have the same weighting value.

Qa,b,c,yb
(x) =



















































0 0 ≤ x ≤ a

x − a

b − a
· yb a ≤ x ≤ b

x − b

c − b
· (1 − yb) + yb b ≤ x ≤ c

1 c ≤ x ≤ 1

(6)

We redefine the function Qa,b for providing it a dynamic be-

haviour and a higher weighting of top clients, which depends

on the random variable X
fLA

i
. Accordingly, we propose Qa,b,c,yb

that is defined in Equations 6, and incorporates two new param-

eters to the model (c and yb), in addition to the two existing

ones. The definition of each of the parameters is as follows:

1 Parameter a. This parameter represents the proportion of

clients to which null weighing is assigned. Since we do

not want to filter out those clients which stand out ”at the

top”, i.e. those that obtain the best accuracy, we set the

value to 0.

2 Parameter b. It sets the portion of clients we consider as

top clients and we want to weight higher. The choice of

this parameter is done dynamically, so that the top clients

correspond to the first decile of the distribution of X
fLA

i
.

Formally, b is the portion of clients that verify

X
fLA

i
≤

ln(10/9)

λ
, (7)

where λ = 1
µ
X

fLA
i

and µ
X

fLA
i

the mean of X
fLA

i
.

3 The dynamic behavior of the parameter c. This param-

eter represents the portion of clients that we do not dis-

card. For example, a value of c = 0.8 means that the

20% of the clients will be discarded. With the aim of

dynamically adapt it in each aggregation, we identify the

problem of filtering out adversarial clients as a problem

of outlier detection in X
fLA

i
. We thus employ the Tukey

criteria [43, 44] for anomalies in exponential probability

distribution functions and set c = 1 − ĉ where ĉ is the

portion of clients that verify

X
fLA

i
≥ Q3 + 1.5IQR =

ln(4)

λ
+ 1.5

ln(3)

λ
, (8)

where λ = 1
µ
X

fLA
i

and µ
X

fLA
i

the mean of X
fLA

i
.

4 Parameter yb. It provides the weighting of the top clients

together with b. In particular, it represents the portion

of the total weight assigned to these clients. In order to

weight the top clients with double the importance of the

rest of the clients participating in the aggregation, we set

yb =
2|Top|

2|Top| − |Rest|
, (9)

where |Top| = b × n and |Rest| = (c − b) × n.
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Analogously to Equation 4, we obtain the weighting of each

client from the Qa,b,c,yb
function according to Equation .

w
(a,b,c,yb)

i
= Qa,b,c,yb

(

i

n

)

− Qa,b,c,yb

(

i − 1

n

)

(10)

3.3. Defense based on the federated aggregation

Finally, using the equations defined above and the defini-

tions of FL (Equation 1), we define DDaBA as a defense con-

sisting of the following aggregation operator:

DDaBA({L̂t
1, L̂

t
2, . . . , L̂

t
n},VD) =

n
∑

i=1

w
(a,b,c,yb)

i
L̂t

i (11)

where w
(a,b,c,yb)

i
is defined in Equation 10 and L̂t

i
the local

model update of the client i for i ∈ {1, . . . , n}. Algorithm 1

depicts the DDaBA pseudo-code.

Algorithm 1 DDaBA

Input: local updates {L̂t
1
, L̂t

2
, . . . , L̂t

n} and VD

Initialize Gt

for i = 0 to n do

fLA(Li) = accuracy(Li,VD)

end for

for i = 0 to n do

X
fLA

i
= maxi{ fLA(Li)} − fLA(Li)

end for

a = 0

b = |X
fLA

i
≤

ln(10/9)

λ
|

c = |X
fLA

i
≥

ln(4)

λ
+ 1.5

ln(3)

λ
|

yb =
2|b×n|

2|b×n|−|(c−b)×n|

for i = 0 to n do

wi = w
(a,b,c,yb)

i
according to Equation 10.

end for

Gt =
∑n

i=0 wiL̂
t
i

Return Gt

4. Experimental set-up

The evaluation of DDaBA is performed by means of the ac-

curacy of the resulting FL model in three datasets arranged for

FL, and we describe them in Section 4.1. Also, we deployed

an image classification deep learning model in the FL setting.

Since the main aim of this work is to propose a dynamic de-

fense against byzantine attacks, we use an standard CNN-based

image classification model composed of two CNN layers fol-

lowed by its corresponding max-pooling layers, a dense layer

and the output layer with a softmax activation function for the

Fed-EMNIST and Fashion MNIST datasets and a pre-tained

model based on EfficientNet [45] for the CIFAR-10 dataset. Fi-

nally, the federated aggregation operators used as baselines are

introduced in Section 4.2 and the covered attacks in Section 4.3.

4.1. Evaluation datasets

Since the DDaBA needs a validation set for dynamically

discarding adversarial clients, we create it from the test subsets

of the three datasets, by assigning 20% of the sample in the

test dataset to the validation set. The three datasets used in the

evaluation are described as what follows:

1 The Fed-EMNIST (Federated Extended Modified NIST)

dataset, which was presented in 2017 in [19] as an ex-

tension of the MNIST dataset [46]. The EMNIST Digits

class contains a balanced subset of the digits dataset con-

taining 28,000 samples of each digit. The dataset consists

of 280,000 samples, which 240,000 are training samples

and 40,000 test samples. We use its federated version by

identifying each client with an original writer.

2 The Fashion MNIST [20] aims to be a more challenging

replacement for the original MNSIT dataset. It contains

a balanced subset of the 10 different classes containing

7,000 samples of each class. Hence, the dataset consists

of 70,000 samples, which 60,000 are training samples

and 10,000 test samples. We set the number of clients

to 500.

3 The CIFAR-10 dataset is a labeled subset of the 80 mil-

lion tiny images dataset [47]. It consists of 60000 32x32

color images in 10 classes, with 6000 images per class.

There are 50000 training images and 10000 test images,

which correspond to 1000 images of each class. We set

the number of clients to 100.

In summary, the datasets, after appropriate modifications to

prepare the validation sets, follow the data distributions shown

in Table 1.

Table 1: Size of the training, validation and test sets of Fed-EMNIST, Fashion

MNIST and CIFAR-10 datasets.

Training Validation Test

Fed-EMNIST 240,000 8,000 32,000

Fashion MNIST 60,000 2,000 8,000

CIFAR-10 60,000 2,000 8,000

With the aim of adapting both Fashion MNIST and CIFAR-

10 datasets to a federated environment, the training data is dis-

tributed among the clients following a non-IID distribution. Ac-

cordingly, we randomly assign instances of a reduced number

of labels to each client simulating a scenario in which each

client contains partial information.

4.2. Baselines based on federated aggregation operators

We compare the DDaBA defense with the classical feder-

ated aggregation operator FedAvg [48] and the following state-

of-the-art defenses against byzantine poisoning attacks:
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• Median [49]. It is one of the byzantine-robust aggrega-

tion rules which is based on replacing the mean with the

median in the aggregation method, which is more robust

against extreme values.

• Trimmed-mean [50]. It represents another byzantine-robust

aggregation rule. It relies on using a more robust version

of the mean that consists in eliminating a fixed percent-

age (k) of extreme values both below and above the data

distribution.

• Krum and Multikrum [40]. It sorts the clients according

to the geometric distances of their model updates distribu-

tions and chooses the one closest to the majority as the ag-

gregated model. Multikrum incorporates an d parameter,

which specifies the number of clients to be aggregated

(the first d after being sorted) resulting in the aggregated

model.

• Bulyan [41]. It represents the state-of-the-art combining

Krum and the thrimmed-mean. Hence, it sorts the clients

according to their geometric distances and, according to

an f parameter, filters out the 2 f clients of the tails of

the sorted distribution of clients and aggregates the rest

of them.

The main weakness of Multikrum and Bulyan is that they

strongly depend on a parameter given by the user. Both are

optimal if the number of adversarial clients is known, which is

usually not the case.

4.3. Byzantine Data and Model Poisoning Attacks

There are multitude of byzantine adversarial attacks both

data and model poisoning. Due to the high number of clients

participating in the aggregation and the low proportion of clients

that will be adversarial in a reasonable configuration, poison-

ing attacks are very ineffective as their effect dissipates in the

aggregation. For that reason, poisoning attacks are combined

with model-replacement [17] techniques, which weight the con-

tribution of adversarial clients in the aggregation according to

a boosting parameter that is distributed among the adversarial

clients.

The adversarial attacks covered in this work are the follow-

ing:

• Label-flipping attack [21]. It is a data poisoning attack

consisting of randomly flipping the labels of the adver-

sarial attacks. This way, the adversarial clients learn in-

correct information that send to the server.

• Out-of-distribution attack [22]. It is another data poison-

ing attack consisting of introducing into the adversarial

clients’ training dataset some samples out of the training

distribution. In practice, the most frequent approaches

are to introduce samples from another dataset with the

same features (e.g. EMNIST and Fashion MNIST) or to

introduce randomly generated samples. We adopt the sec-

ond approach in the experimentation.

• Random weights [23]. It is a model poisoning attack

based on randomly generate the model updates of each

adversarial client.

We experiment with four different settings of adversarial

clients for each of the previously described attacks:

• 1-out-of-30 attack scenario. Consisting of 1 adversarial

clients of a total of 30 clients participating in each aggre-

gation, which represents 1/30 of adversarial clients.

• 5-out-of-30 attack scenario. Consisting of 5 adversarial

clients of a total of 30 clients participating in each aggre-

gation, which represents 1/6 of adversarial clients.

• 10-out-of-50 attack scenario. Consisting of 5 adversarial

clients of a total of 50 clients participating in each aggre-

gation, which represents 1/5 of adversarial clients.

In each of the scenarios described, the boosting factor is

divided by the number of adversarial clients in order to carry

out the model-replacement.

4.4. Implementation details

We provide the code of DDaBA federated aggregtion oper-

ator4 in order to ensure the reproducibility of the experiments.

Due to the large number of existing FL frameworks [51] and

with the aim of showing that DDaBA is independent of the

framework, we have selected two of them:

• The Sherpa.ai FL [51] framework.

• The Flower [52] framework.

For each framework, we include Jupyter notebooks to visualise

how the aggregation operator works and to facilitate its under-

standing.

5. Experimental results

We evaluate the performance of DDaBA as a defense to the

byzantine attacks described in Section 2.2 in two ways: (1) In

Section 5.1, we compare the behavior of DDaBA in terms of

the performance of the resulting FL model with the baselines

described in Section 4.2 and, (2) In Section 5.2 we analyze

DDaBD in a scenario with a high number of adversarial clients,

and we propose a modification of it for this particular scenario.

5.1. Analysis of the results

Tables 2, 3 and 4 show the results obtained in label-flipping,

out-of-distribution and random weights attacks. Regarding the

strength of the attacks, we find that all three are sufficiently

powerful to pose a challenge to defenses. In fact, notice that

the attack is slightly more effective when there are fewer adver-

sarial clients since the boosting factor is divided among fewer

4https://github.com/ari-dasci/S-DDaBA
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Table 2: Mean results for the label-flipping byzantine attack in terms of accuracy. We also show, in the first row, the expected accuracy with FedAvg but without any

attack. The best result for each of the scenarios is highlighted in bold.

Federated EMNIST Fashion MNIST CIFAR-10

1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50

No attack 0,9657 0,9657 0,9629 0,8719 0,8719 0,8697 0,8357 0,8357 0,8231

FedAvg 0,1591 0,4212 0,4007 0,1917 0,3665 0,4322 0,1184 0,1436 0,2448

Trim.-mean 0,9428 0,8739 0,8370 0,8672 0,8325 0,861 0,8239 0,7346 0,8220

Median 0,9313 0,9161 0,9097 0,8671 0,8473 0,8585 0,8287 0,8090 0,8289

Krum 0,8917 0,8706 0,8634 0,7264 0,7197 0,7473 0,7479 0,7610 0,7698

MultiKrum (5) 0,9132 0,9270 0,9189 0,8403 0,8433 0,8255 0,8164 0,8232 0,8114

MultiKrum (20) 0,9563 0,9571 0,9504 0,8727 0,8724 0,8680 0,8439 0,8479 0,8518

Bulyan (f=1) 0,9523 0,7813 0,5809 0,8689 0,7830 0,7875 0,8265 0,6595 0,6454

Bulyan (f=5) 0,9365 0,9421 0,9516 0,8617 0,8652 0,8726 0,8492 0,8451 0,8540

DDaBA 0,9657 0,9663 0,9643 0,8817 0,8783 0,8807 0,8633 0,8503 0,8557

Table 3: Mean results for the label-flipping byzantine attack in terms of accuracy. We also show, in the first row, the expected accuracy with FedAvg but without any

attack. The best result for each of the scenarios is highlighted in bold.

Federated EMNIST Fashion MNIST CIFAR-10

1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50

No attack 0,9657 0,9657 0,9629 0,8719 0,8719 0,8697 0,8357 0,8357 0,8231

FedAvg 0,4093 0,4404 0,4350 0,2041 0,3667 0,4657 0,1468 0,1922 0,3419

Trim.-mean 0,9456 0,8602 0,8531 0,8652 0,8348 0,8310 0,8202 0,7441 0,7400

Median 0,9345 0,9200 0,9144 0,8662 0,8465 0,8454 0,8223 0,8019 0,8073

Krum 0,8693 0,8668 0,8621 0,7361 0,7062 0,7281 0,7202 0,7310 0,7408

MultiKrum (5) 0,9169 0,9330 0,9198 0,8493 0,8430 0,8345 0,8305 0,8191 0,8023

MultiKrum (20) 0,9545 0,9544 0,9506 0,8747 0,8719 0,8733 0,8607 0,8519 0,8521

Bulyan (f=1) 0,9507 0,7872 0,5812 0,8704 0,7601 0,6930 0,8319 0,6862 0,5551

Bulyan (f=5) 0,9353 0,9383 0,9502 0,8713 0,8654 0,8757 0,8440 0,8498 0,8481

DDaBA 0,9652 0,9620 0,9654 0,8761 0,8841 0,8783 0,8626 0,8599 0,8632

Table 4: Mean results for the label-flipping byzantine attack in terms of accuracy. We also show, in the first row, the expected accuracy with FedAvg but without any

attack. The best result for each of the scenarios is highlighted in bold.

Federated EMNIST Fashion MNIST CIFAR-10

1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50

No attack 0,9657 0,9657 0,9629 0,8719 0,8719 0,8697 0,8357 0,8357 0,8231

FedAvg 0,0997 0,0994 0,1001 0,1006 0,1016 0,0997 0,0998 0,0994 0,1005

Trim.-mean 0,9537 0,1039 0,0990 0,8751 0,1004 0,0999 0,8608 0,0992 0,0998

Median 0,9367 0,9354 0,9342 0,8654 0,8618 0,8554 0,8499 0,8664 0,8646

Krum 0,8314 0,8652 0,8541 0,7156 0,7459 0,7342 0,7184 0,7164 0,7994

MultiKrum (5) 0,9325 0,9228 0,9191 0,8348 0,8343 0,8278 0,8164 0,8115 0,8167

MultiKrum (20) 0,9565 0,9577 0,9510 0,8764 0,8751 0,8676 0,8488 0,8488 0,8531

Bulyan (f=1) 0,9598 0,0997 0,0998 0,0990 0,1001 0,0990 0,8529 0,0996 0,0993

Bulyan (f=5) 0,9379 0,9377 0,9514 0,8746 0,8690 0,8746 0,8502 0,8411 0,8519

DDaBA 0,9653 0,9645 0,9622 0,8801 0,8778 0,8777 0,8656 0,8624 0,8626
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clients. The out-of-distribution attack is slightly less damag-

ing while the random weights attack achieves the lowest perfor-

mance without defense, ranking as the most challenging. The

results obtained both in the different types of attacks and in the

considered datasets confirm common conclusions, so we dis-

cuss all the results as a whole.

When evaluating the performance of the baselines we hereby

confirm that MultiKrum and Bulyan do indeed represent the

state of the art. However, they are highly dependent of the d

and f parameters since they set the number of clients to keep

or discard, respectively, in the aggregation. For example, in the

10-out-of-50 scenario and Bulyan with f = 1 we verify this

weakness, since only 2 f = 2 clients would be discarded from

the aggregation, which is not enough to defend the model in the

presence of 10 adversarial clients. A possible solution would be

to set this value always to high, but this is also a limitation be-

cause in the case of having fewer adversarial clients than 2 f the

quality of the model decreases (e.g., 1-out-of-30 using Bulyan

with f = 5). Finally, MultiKrum and Bulyan promise optimal

performance in the case of knowing the number of adversarial

clients, which is not the case. This enhances the need for a de-

fense that dynamically estimates how many clients to filter in

the aggregation.

In contrast, the outperformance of DDaBA is confirmed

in all the attack settings considered enhancing its success re-

gardless of the type of attack and the proportion of adversarial

clients. Moreover, DDaBA achieves better results than the no

attack situation in the vast majority of the scenarios. This is

because the dynamic filtering of clients not only discards those

that are adversarial but also those that perform too poorly to

contribute to improving the global learning model.

5.2. Extreme attack scenarios - A static version of DDaBA

It has been proven that discarding clients based on whether

or not they are outliers in a distribution formed from perfor-

mance on a common validation set overcomes the defenses of

the state of the art. However, this approach based on data dis-

tributions has a weakness stemmed from the fact that the dis-

tribution we use to search outliers is configured with the same

data that we subsequently evaluate. Therefore, with a very high

presence of adversarial clients, the resulting distribution will be

highly skewed by this data, resulting in no outlier. Although

we recognize this weakness, we point out that it is not a major

one, since it is highly unlikely for the percentage of adversarial

clients in an FL scenario to be so high as to cause the defense

to fail.

To overcome this weakness, we propose a static version of

DDaBA called Static Defense Against Byzantine Attacks (SD-

aBA), which incorporates the only difference that the propor-

tion of clients to be discarded from the aggregation is computed

using a fixed parameter α. In particular, instead of eliminating

those clients that represent outliers in the distribution X
fLA

i
, we

eliminate those clients whose distance to the best accuracy is

greater than α times the maximum of the distances. In other

words, using X
fLA

i
, we set c = 1 − β where β is the portion of

clients verifying that

X
fLA

i
≥ αX

fLA

n ∀i ∈ {1, . . . , n} (12)

in Equations 6 and 10. Analogously, we set b = 0.2 in order

to consider as top clients the top 20% clients.

With the aim of evaluating SDaBA we set α = 1/4 and the

10-out-of-30 attack scenario consisting of 10 adversarial clients

of a total of 30 clients participating in each aggregation, which

represents 1/3 of adversarial clients, which is an unusual high

proportion of them. Table 5 shows the results of DDaBA and

SDaBA in comparison with the baselines in this extreme attack

scenario in Federated EMNIST.

Table 5: Mean results for the extreme scenario (10-out-of-30) in Federated EM-

NIST in terms of accuracy. We also show, in the first row, the expected accuracy

with FedAvg but without any attack. The best result for each of the scenarios is

highlighted in bold.

Label-flipping Out-of-dist. Random weights

No attack 0,9657 0,9657 0,9657

FedAvg 0,3561 0,4394 0,0994

Trimmed-mean 0,6256 0,5778 0,1002

Median 0,8595 0,8347 0,9355

Krum 0,8801 0,8678 0,8633

MultiKrum (5) 0,9336 0,9366 0,9349

MultiKrum (20) 0,9623 0,9617 0,8595

MultiKrum (25) 0,9623 0,9617 0,8595

Bulyan (f=1) 0,4755 0,5005 0,1000

Bulyan (f=5) 0,9485 0,9475 0,9455

DDaBA 0,4235 0,4819 0,0997

SDaBA (1/4) 0,9654 0,9653 0,9629

The results show how this extreme scenario highly affects

to DDaBA, but also Bulyan (f=1). With respect to the base-

lines, in this case it is MultiKrum with d = 20 that achieves

the best results by setting the d parameter to its optimal value.

Finally, we highlight the appropriate performance of SDaBA,

outperforming the rest of the defenses and solving the problem

of extreme scenarios.

6. Conclusion and future work

We addressed the problem of defending against byzantine

attacks in FL, which is a real challenge since the existing de-

fenses are not enough. Using the exponential distribution re-

sulting of the differences between the best model and the rest of

them in terms of accuracy over a central validation set, we con-

sider that those clients that represent outliers in that distribution

are likely to be adversarial ones. Hence, we propose DDaBA, a

defense against byzantine attacks which dynamically filters out

the adversarial and poor clients.

We evaluated the DDaBA in three different byzantine at-

tacks, in three datasets and using three different settings. In

addition, we proposed a static version of the defense approach

in order to use it in scenarios with an extremely high proportion

of adversarial clients. Both the experiments corroborate the fol-

lowing conclusions:
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• DDaBA is a highly effective defense against byzantine

attacks in real attack scenarios.

• It properly filters out adversarial and poor clients improv-

ing the performance of the global model in scenarios with

adversarial clients, even outperforming the performance

in the original task.

• The static version SDaBA is an effective solution for ex-

treme attack scenarios.

To conclude, we have proven that DDaBA is a high quality

defense against byzantine attacks, and it can act as a proper fed-

erated aggregation operator, since it defends the global model

against the effect of the attacks while improving the learning of

the global model.

Appendix A. Ordered weighted model averaging

Group decision making is the AI task focused on finding

out a consensus decision from a set of experts by summing up

their individual evaluations. Yager proposed in [42] the Ordered

Weighted Averaging (OWA) operators with the aim of mod-

elling the fuzzy opinion majority [53] in group decision mak-

ing. Yager and Filev generalised the OWA operator definition

in [18], where they defined the OWA operator with an order-

induced vector for ordering the argument variable. They called

this generalisation of OWA operators with a specific semantic

in the aggregation process as Induced Ordered Weighted Av-

eraging (IOWA). The OWA and IOWA operators are weighted

aggregation functions that are mathematically defined as what

follows:

Definition Appendix A.1 (OWA Operator [42]). An OWA op-

erator of dimension n is a function Φ : R
n → R that has an

associated set of weights or weighting vector W = (w1, . . . ,wn)

so that wi ∈ [0, 1] and
∑n

i=1 wi = 1, and it is defined to aggre-

gate a list of real values {c1, . . . , cn} according to the Equation

A.1:

Φ(c1, . . . , cn) =

n
∑

i=1

wicσ(i) (A.1)

being σ : {1, . . . , n} → {1, . . . , n} a permutation function such

that cσ(i) ≥ cσ(i+1), ∀i = {1, . . . , n − 1}.

Definition Appendix A.2 (IOWA Operator [18]). An IOWA

operator of dimension n is a mappingΨ : (R ×R)n → R which

has an associated set of weights W = (w1, . . . ,wn) so that wi ∈

[0, 1] and
∑n

i=1 wi = 1, and it is defined to aggregate the second

arguments of a 2-tuple list {〈u1, c1〉, . . . , 〈un, cn〉} according to

the following expression:

Ψ(〈u1, c1〉, . . . , 〈un, cn〉) =

n
∑

i=1

wicσ(i) (A.2)

being σ : {1, . . . , n} → {1, . . . , n} a permutation function such

that uσ(i) ≥ uσ(i+1), ∀i = {1, . . . , n−1}. The vector of values U =

(u1, . . . , un) is called the order-inducing vector and (c1, . . . , cn)

the values of the argument variable.

The OWA and IOWA operators are functions for weighting

the contribution of experts for the global decision in the case of

group decision making, and the contribution of a set of clients

in an aggregation process in a general scenario. However, they

need an additional function to calculate the values of the param-

eters, which in the context of group decision making means the

grade of membership to a fuzzy concept. The weight value cal-

culation function is known as linguistic quantifier [54], which

is defined as a function Q : [0, 1] → [0, 1] such as Q(0) = 0,

Q(1) = 1 and Q(x) ≥ Q(y) for x > y. Equation A.3 defines how

the function Q computes the weight values and Equation A.4

defines the behaviour of the function Q.

w
(a,b)

i
= Qa,b

(

i

n

)

− Qa,b

(

i − 1

n

)

(A.3)

Qa,b(x) =































0 0 ≤ x ≤ a

x − a

b − a
a ≤ x ≤ b

1 b ≤ x ≤ 1

(A.4)

where a, b ∈ [0, 1] satisfying 0 ≤ a ≤ b ≤ 1.

The function Q in Equation A.4 can be redefined in order

to model different linguistic quantifiers. Since the definition of

the notion quantifier guided aggregation [42, 54], other defini-

tions of the function Q has been proposed to model different

linguistic quantifiers like “most” or “at least” [53].
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