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Abstract. We construct a one-parameter family of singly periodic translating
solutions to mean curvature flow that converge as the period tends to 0 to the

union of a grim reaper surface and a plane that bisects it lengthwise. The

surfaces are semigraphical: they are properly embedded, and, after removing
a discrete collection of vertical lines, they are graphs. We also provide a nearly

complete classification of semigraphical translators.

1. Introduction

A translator in R3 is a smooth surface M such that t 7→ M − te3 is a mean
curvature flow, or, equivalently, such that the mean curvature vector at each point
of M is given by (−e3)⊥. Ilmanen [Ilm94] observed that M ⊂ R3 is a translator
if and only if M is a minimal surface with respect to the translator metric
gij(x, y, z) = e−zδij . (See [HIMW21] for an expository survey of some recent results
about translators.) In this paper, we prove the following theorem:

Theorem 1. For every a > 0, there is a unique translator Ma with the following
properties:

(1) Ma is a smooth, properly embedded surface in R3.
(2) For each integer n, M contains the vertical line {(na, 0)} ×R.
(3) Ma is periodic with period (2a, 0, 0).
(4) Ma∩{y > 0} is the graph of a function ua defined on some strip R× (0, b),

with boundary values given by

ua(x, 0) = −∞ for −a < x < 0,

ua(x, 0) = +∞ for 0 < x < a,

u(x, b) = −∞ for all x.

(5) Ma is tangent to the yz-plane at the origin.

If M ′ is any other translator with properties (1)–(4), then M ′ is a vertical translate
of Ma.

Furthermore, the width b = b(a) of the strip in (4) is a continuous, increasing
function taking values in (π/2, π) and tending to π/2 as a → 0 and to π as a →
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∞. The surface Ma depends smoothly on a. As a → 0, Ma converges smoothly
away from the x-axis X to the union of the xz-plane and the grim reaper surface
{(x, y, z) : z = log(cos y) and |y| < π/2}.

Figure 1. The surface M1 .

The behavior of Ma as a→∞ is described in §7.
We do not know whether the function b(·) is strictly increasing.
We remark that the periodicity in Property (3) follows from Property (2) since

any translator must be invariant under rotation through π about each vertical line
that it contains. (This rotational invariance of the translator is an instance of
the Schwarz reflection principle for minimal surfaces, since the translator metric is
rotationally invariant about vertical lines. In particular, the surface and the rotated
surface are tangent along the entire line and therefore must coincide, since distinct
minimal surfaces in 3-manifolds can have at most isolated points of tangency.) Also,
from the uniqueness of Ma, we see that Ma must be invariant under reflection in
the plane x = a/2 (or, more generally, in the plane x = ka/2 if k is an odd integer.)

For all sufficiently small a > 0, Xuan Hien Nguyen [Ngu09] used desingulariza-
tion methods to prove existence of translators with properties (1)–(5). She called
such surfaces tridents. We were led to Theorem 1 by a desire to understand tri-
dents from a variational point of view. According to the uniqueness assertion in
Theorem 1, our examples coincide with hers in the range of a’s for which she proves
existence.

Each trident is an example of a semigraphical translator, i.e., a properly
embedded translator M (without boundary) that contains a discrete, nonempty
collection L of vertical lines such that M \ L is a graph. In [HMW19], we con-
structed other families of semigraphical translators. In §9, we almost classify all
semigraphical translators. In particular, we show that every semigraphical transla-
tor, with the possible exception of one type that we believe cannot occur, is either
a trident or one of the examples in [HMW19].

(All graphical translators were classified in [HIMW19].)
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Figure 2. A fundamental piece of the surface Ma. It is a graph
over the domain (−a, a)× (0, b(a)). The whole surface is obtained
by successive Schwarz reflections about the vertical lines.

Although tridents have finite entropy (the entropy is 3), they have infinite genus
and thus cannot arise as blowups of an initially smooth mean curvature flow. How-
ever, any subsequential limit of tridents as a → ∞ has finite entropy and finite
topology (the topology of a disk). Whether it could occur as a blowup is an inter-
esting open problem.

The organization of the paper is as follows. In §2, we prove existence of the ex-
amples Ma and that b(a) is an increasing function of a. In §3, we prove uniqueness.
In §4, we prove a geometric property of tridents. In §5, we prove that Ma depends
smoothly on a and that the width b(a) is a continuous function of a. In §6 and §7,
we analyze the behavior of Ma as a tends to 0 and to infinity. In §8, we show
that the set {b(a) : a > 0} of widths of the various examples is the open interval
(π/2, π). In §9, we discuss the classification of semigraphical translators.

2. Existence

Lemma 2. Suppose that K is a 2-manifold with Riemannian metric γ. Endow
K ×R with the translator metric

g(p, z) = e−z(γ(p) + dz2).

(1) If M is a surface of finite area in K ×R such that M is minimal or such that
all the tangent planes to M are vertical, then

area(M) =

∫
∂M

v · η ds,

where v = −∂/∂z and η is the unit vector tangent to M and normal to ∂M
that points out from M .

(2) Suppose that C is the union of one or more curves in K, and that M is a
minimal surface in K × [0,∞) of finite area with ∂M = ∂(C × [0,∞)). Then

area(M) ≤ area(C × [0,∞)) = length(C),

with equality if and only if M is tangent to C × [0,∞) along C × {0}. If C is
a union of geodesics, then equality holds if and only if M = C × [0,∞].
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Proof. Let

φt : K ×R→ K ×R,

φt(p, z) = (p, z − t).
Thus

∂

∂t
φt(p, z) = v.

Now

area(φt(M)) = et area(M),

so

(d/dt)t=0 area(φt(M)) = area(M).

Thus by the first variation formula,

area(M) = −
∫
M

H · v +

∫
∂M

v · η ds,

where H is the mean curvature. If M is minimal or if the tangent planes to M are
vertical, then H · v ≡ 0, so

(1) area(M) =

∫
∂M

v · η ds.

Thus we have proved Assertion (1).
Now suppose M is either C × [0,∞) or a minimal surface with boundary ∂(C ×

[0,∞)). Then by (1),

area(M) =

∫
∂M

v · η ds

=

∫
C×{0}

v · η ds+

∫
(∂C)×[0,∞)

v · η ds

=

∫
C×{0}

v · η ds

since v · η ≡ 0 along (∂C)× [0,∞).
When z = 0, v is a unit vector so v · η ≤ 1. Thus

area(M) ≤ length(C)

with equality if and only if M is tangent to C × [0,∞) along C × {0}.
If C consists of geodesics, then C × [0,∞) is minimal, so if M and C × [0,∞)

are tangent along C × {0}, then they coincide by unique continuation. �

Now we specialize as follows. Let K = Ka,b be the rectangle

[−a, a]× [0, b] = {(x, y) : −a ≤ x ≤ a, 0 ≤ y ≤ b}
with the right and left edges identified. (Equivalently, K is the quotient of the strip
R× [0, b] under the equivalence (x, y) ≡ (x+ 2a, y).) Note that y is well-defined on
K, and that x is well-defined except that it is two-valued on the segment {x = a}
(which is the same as the segment {x = −a}.)

Lemma 3. Let G be the collection of embedded geodesics σ in K such that ∂σ ⊂
{(0, 0), (a, 0)}. Then G consists of

(1) the segment {(x, 0) : 0 < x < a},
(2) the segment {(x, 0) : −a < x < 0}, and
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(3) the closed geodesics {(x, y) : y = β} where 0 ≤ β ≤ b.
Thus if Ω is a connected open set in K \ ∂K whose boundary consists of curves in
G, then Ω is {(x, y) ∈ K : α < y < β} for some α and β with 0 ≤ α < β ≤ b.

The proof is trivial.
Now consider Ka,b ×R endowed with the translator metric. Let

P = Pa,b = {(x, 0) ∈ K : 0 < x < a},
N = Na,b = {(x, 0) ∈ K : −a < x < 0} ∪ {(x, y) ∈ K : y = b},
Γ = Γa,b = ∂(N × [0,∞)).

Figure 3. The curve Γa,b.

Definition 4. We let α(a, b) be the infimum of area(M) among surfaces M in
Ka,b × [0,∞) having boundary Γa,b.

By Assertion (2) of Lemma 2 (or by direct calculation),

area(Na,b × [0,∞)) = length(Na,b) = 3a,

so

(2)
α(a, b) ≤ 3a, with equality if and only

if Na,b × [0,∞) is area-minimizing.

Proposition 5. Let Γ = Γa,b, N = Na,b, and K = Ka,b be as above.

(i) If Γ bounds any finite area minimal surface not equal to N × [0,∞), then
α(a, b) < 3a.

(ii) If α(a, b) < 3a, then there is a unique least-area surface M with boundary Γ,
and M \ ∂M is the graph of a function

u = ua,b : K \ ∂K → R.

Proof. Assertion (i) follows immediately from (2) and Assertion (2) of Lemma 2.

Claim 1. If M is a minimal surface in K × [0,∞) with boundary Γ and if M is
not connected, then M = N × [0,∞).
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For suppose that M is such a surface. Then one component M1 of M has
boundary in {y = 0} and the other component M2 has boundary in {y = b}. Using
grim reaper surfaces as barriers on the lift of M to R3, one sees that M1 lies in
{y = 0} and that M2 lies in {y = b}. Hence M = N × [0,∞), so Claim 1 is proved.

Now suppose α(a, b) < 3a = area(N × [0,∞)) and let M be a least-area surface
with boundary Γ. Then M 6= (N × [0,∞)), so M is connected.

By the strong maximum principle, M \ ∂M lies in the interior of K × [0,∞).
We assert that M \∂M is the graph of a function u : Ω→ (0,∞) over some open

subset Ω of (K \ ∂K). For if not, we could find a λ > 0 such that Σ = (M \ ∂M)
and Σ+λe3 intersect each other. By changing λ slightly, we can assume that Σ and
Σ + λe3 intersect transversely. But that is impossible by a standard cut-and-paste
argument (Lemma 9 below).

Thus M \ ∂M is the graph of a function u : Ω→ R.
Note that as λ → ∞, the curve Γ − λe3 converges smoothly to (∂P ) ×R and

the surface M − λe3 converges smoothly to (∂∞Ω)×R, where

∂∞Ω = {p ∈ ∂Ω : u(p) =∞}.

(The convergence is smooth by the curvature estimate in Theorem 10 below.) Now
(∂∞Ω) ×R is minimal (since it is the limit of the minimal surfaces M − λe3), so
∂∞Ω is a union of geodesics. Since the boundary of (∂∞Ω) ×R is (∂P ) ×R, the
geodesics belong to the family G in Lemma 3. Likewise ∂−∞Ω consists of geodesics
in G. Thus by Lemma 3,

Ω = {(x, y) : α < y < β}

for some 0 ≤ α < β ≤ b. Since ∂M = Γ, we see that Ω must be all of K \ ∂K.
It remains only to show that M is unique. Suppose that there is another least-

area surface M ′ with boundary Γ. Then we could find a λ ∈ R such that M \Γ and
(M ′ \ Γ) + λe3 intersect transversely. By relabelling, we can assume that λ ≥ 0.
But that is impossible by the cut-and-paste principle (Lemma 9). �

Corollary 6. α(a, π) = 3a.

Proof. Suppose not. Then α(a, π) < 3a, so by Proposition 5, Γa,π would bound a
connected minimal surface M in Ka,π × [0,∞). Consider the grim reaper surface

z = f(x, y) := log(sin y)

Note that

(x, y, z) ∈M \ ∂M 7→ f(x, y)− z
would attain a maximum, contradicting the strong maximum principle. �

Proposition 7. Let α(a, b) be as in Definition 4. If a < a′, then

(3) α(a, b) ≤ α(a′, b) ≤ a′

a
α(a, b).

and if b < b′, then

(4) α(a, b) ≤ α(a, b′) ≤ b′

b
α(a, b).

Thus

(a, b) 7→ α(a, b)

a
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is a continuous function that is decreasing as a function of a and increasing as a
function of b.

Proof. Let

F : Ka,b ×R→ Ka′,b ×R,

F (x, y, z) = F ((a′/a)x, y, z).

Then

(*) M 7→ F (M)

is a bijection from surfaces in Ka,b × [0,∞) with boundary Γa,b to surfaces in
Ka′,b × [0,∞) with boundary Γa′,b. Note that at each point of M , the Jacobian
determinant of (*) is between 1 and a′/a, so

area(M) ≤ area(F (M)) ≤ a′

a
area(M),

which implies the inequality (3). The inequality (4) is proved in exactly the same
way using the map (x, y, z) 7→ (x, (b′/b)y, z). �

Theorem 8 (Main Existence Theorem). For each a > 0, there is a unique b(a) ∈
(0, π] such that

(5)
α(a, b) < 3a if b < b(a), and

α(a, b) = 3a if b ≥ b(a).

Furthermore, b(a) is an increasing function of a. If b = b(a), there is a smooth
minimal surface M = Ma in Ka,b ×R such that

(i) The boundary of M consists of the lines {(0, 0)} ×R and {(a, 0)} ×R,
(ii) M as smoothly asymptotic as z →∞ to P ×R and as z → −∞ to N ×R.

(iii) M \ ∂M is the graph of a function

u : {(x, y) ∈ K : 0 < y < b} → R

such that u =∞ on P and u = −∞ on N .

Proof. Consider the surface

Σ = (K × {0}) ∪ P × [0,∞).

The boundary of this surface is Γa,b, and its area is

2ab+ a = (2b+ 1)a.

In particular,
area(Σa,b) < 3a if b < 1.

By Corollary 6,
α(a, b)

a
= 3 if b ≥ π.

Since α(a, b) is a continuous, increasing function of b, there is a unique b(a) such
that (5) holds.

Since α(a, b)/a is a decreasing function of a (by Proposition 7), we see that b(a)
is an increasing function of a.

Now fix an a > 0 and let bi ∈ (0, b(a)) be a sequence converging to b(a).
Let Mi be the area-minimizing surface in Ka,bi × [0,∞) with boundary Γa,bi .

Since bi < b(a), Mi \ ∂Mi is a graph.
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For z ≥ 0, let (cos θi(z), sin θi(z), 0) be tangent to Mi at (0, 0, z). Note that θi(·)
is monotonic since Mi \ ∂Mi is a graph. Since θi(0) = π and θi(z)→ 0 as z →∞,
we see that θi(·) is a decreasing function that takes all values in [0, π). In particular,
there is a zi ∈ (0,∞) for which θi(zi) = π/2.

Recall (see (2)) that Na,b(a) × [0,∞) is the only minimal surface with boundary
Γa,b(a). Thus Mi converges smoothly to Na,b(a) × [0,∞) as bi → b(a). Hence
θi(z)→ π for every z ∈ (0,∞), so

lim
i→∞

zi =∞.

By passing to a subsequence, we can assume (by the curvature estimate in Theo-
rem (10) below) that the surfaces Mi−(0, 0, zi) converge smoothly to a limit surface
whose boundary consists of the vertical lines through (0, 0) and (a, 0). Let M be
the component of the limit surface that contains the origin.

Since M is a limit of graphs, either M \ ∂M is a graph or else M is flat and
vertical. If it were flat and vertical, it would be σ ×R for some geodesic σ in the
family G in Lemma 3. But there is no such geodesic since e2 is tangent to M at
the origin. Thus M \ ∂M is the graph of a function

u : Ω→ R

for some open set containing (0, 0) in its boundary. Exactly as in the proof of
Proposition 5, Ω must be {(x, y) : 0 < y < β} for some β ≤ b(a).

Since the angle functions θi(z) are monotonically decreasing, the corresponding
angle function θ(z) for M must also be decreasing. It follows that

u(x, 0) =∞ for 0 < x < a, and

u(x, 0) = −∞ for −a < x < 0.

Using grim reaper surfaces as barriers, one sees that u must be −∞ (not ∞) on
{y = β}.

Note that as λ→∞, M−(0, 0, λ) converges smoothly to N×R. Thus N×[0,∞)
is area-minimizing. Hence β ≥ b(a) by (2), and therefore β = b(a). �

In the proof of Theorem 8, we used the following standard cut-and-paste princi-
ple:

Lemma 9 (Cut-and-Paste Lemma). Let N be an (m+ 1)-dimensional Riemman-
nian manifold with trivial mth homology and with mean-convex, piecewise smooth
boundary. Let A1 ⊂ A2 ⊂ ∂N be regions with finite area. Let Bi be an area-
minimizing flat chain mod 2 in N having the same mod 2 boundary as Ai. Suppose
that no connected component of spt(Bi) \ spt(∂Bi) lies in ∂N . Then the regular
sets of B1 and B2 cannot intersect transversely at any interior point.

Proof. By the maximum principle, sptBi \ spt ∂Bi lies in the interior of N . Let
Ωi be the region bounded by Ai and sptBi. Let B′1 be the portion of ∂(Ω1 ∩ Ω2)
in the interior of N and let B′2 be the portion of ∂(Ω1 ∪ Ω2) in the interior of N .
Then B′i and Bi have the same mod 2 boundary, so

area(Bi) ≤ area(B′i).

Also,

area(B′1) + area(B′2) = area(B′1) + area(B′2).
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Thus area(B′i) = area(Bi) for i = 1, 2, so B′1 and B′2 are area-minimzing. But at a
point where the regular sets of B1 and B2 cross transversely, the tangent cone to
B′i is a pair of a halfplanes that meet at an angle θ ∈ (0, π) along their common
edge. But that contradicts the fact that B′i is area-minimizing. �

In the proof of Theorem 8, we used the following curvature estimate, which is
Theorem A.3 in [HMW19]:

Theorem 10. There is a constant C < ∞ with the following property. Let M be
translator with velocity −e3 in R3 such that

(1) M is the graph of a smooth function u : Ω→ R on a convex open subset Ω
of R2.

(2) Γ := M \M is a polygonal curve (not necessarily connected) consisting of
segments, rays, and lines.

(3) M is a smooth manifold-with-boundary except at the corners of Γ.

If p ∈ R3, let r(M,p) be the supremum of r > 0 such that B(p, r) ∩ ∂M is either
empty or consists of a single line segment, where B(p, r) is the Euclidean ball of
radius r. Then

|A(M,p)|min{1, r(M,p)} ≤ C,
where |A(M,p)| is the norm of the second fundamental form of M at p with respect
to the Euclidean metric.

3. Uniqueness

Theorem 11 (Uniqueness Theorem). Suppose that

u, v : Ka,b \ ∂Ka,b → R

are solutions of the translator equation such that

u(x, 0) = −∞ for −a < x < 0,

u(x, 0) =∞ for 0 < x < a,

u(x, b) ≡ −∞,

and such that

v(x, 0) = −∞ for −a < x < 0,

v(x, 0) =∞ for 0 < x < a.

Then u− v is constant.

Note that there is no assumption about behavior of v on the portion of the
boundary where y = b.

Corollary 12. Let u be as in Theorem 11. Then u is invariant under (x, y) 7→
(a/2− x, y) and under (x, y) 7→ (−a/2− x, y).

Note that the Uniqueness Theorem 11 implies the uniqueness of the surface Ma in
Theorem 1, and thus that Ma has the reflectional invariance given by Corollary 12.

Proof of Theorem 11. By adding a large positive constant to u, we can assume that:
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(1) the zero set {u = 0} of u is the union

graph(γ1) ∪ graph(γ2)

where

γ1 : (−a, 0)→ (0, b)

γ2 : [−a, a]→ (0, b)

are smooth functions such that

γ1(x) < γ2(x) for −a < x < 0

and such that
lim
x→−a

γ1(x) = lim
x→0

γ1(x) = 0,

(2)

∂u

∂y
> 0 on Ω1 := {(x, y) : 0 < y < γ1(x)},

∂u

∂y
< 0 on Ω2 := {(x, y) : γ2(x) < y < b}.

Thus
{u < 0} = Ω1 ∪ Ω2.

Note that γ1 extends to a smooth function on [0, a] by setting γ1(0) = γ2(a) = 0,
and that γ′1(0) and γ′2(a) are nonzero.

Now v is bounded on each level set of u. (See Remark 13 below.) Thus by adding
a constant to v, we can assume that

(6) inf{v(x, y) : u(x, y) = 0} = 0.

Since u and v cannot have interior local minima, it follows that

u, v ≥ 0 on (Ω1 ∪ Ω2)c.

In particular, the set {v ≤ 0} is contained in {u ≤ 0}.
By Lemmas 14 and 15 below,

(7) v ≥ u on Ω1 ∪ Ω2.

Since u and v are bounded below on (Ω1∪Ω2)c and since v ≥ u on the boundary
of (Ω1∪Ω2)c, it follows (see Lemma 16 below) that v ≥ u on (Ω1∪Ω2)c. Combining
this with (7), we see that v ≥ u everywhere. On the other hand, the graphs of u

and v touch at some point on {u = 0} by (6). Thus u ≡ v by the strong maximum
principle or boundary maximum principle. �

Remark 13. Here we explain why v is bounded on each level set of u. Standard
boundary regularity results (e.g., [HS79]) imply that graph(u) and graph(v) extend
smoothly (as a manifolds-with-boundary) to the lines {(0, 0)}×R and {(a, 0)}×R.
Hence there are diffeomorphisms

θu, θv : R→ (0, π)

such that (cos θu(z), sin θu(z), 0) and (cos θv(z), sin θv(z), 0) are tangent to graph(u)
and graph(v) at (0, 0, z). Consider points pi = (ri cos θi, ri sin θi) converging to
(0, 0). Note that u(pi) → c if and only if θi → θu(c) and v(pi) → c if and only if
θi → θv(c). The analogous statements hold at (a, 0). Boundedness of v on each
level set of u follows immediately.
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Lemma 14. Let I be a finite open interval and γ : I → R be a continuous function
that is positive on I and that vanishes on the endpoints of I. Let Γ be the graph of
γ|I:

Γ = {(x, γ(x)) : x ∈ I},
and let Ω be the open region between I × {0} and Γ:

Ω = {(x, y) ∈ I ×R : 0 < y < γ(x)}.

Suppose that

u, v : Ω→ R

are solutions to the translator equation that extend continuously to Ω∪ Γ. Suppose
also that

∂u

∂y
> 0 on Ω,

u ≤ v on Γ, and

u(x, 0) = −∞ for x ∈ I.

Then u ≤ v on Ω.

Proof. Suppose not. Then there would be a maximum s > 0 such that

graph(u) + se2

intersects graph(v). In a neighborhood of a point p of contact, graph(v) would lie in
the closed region above graph(u)+se2, and the two surfaces would be tangent at p.
But then by the strong maximum principle and unique continuation, graph(u)+se2

and graph(v) would coincide, which is clearly impossible. �

Lemma 14 has an analog for periodic functions:

Lemma 15. Let γ : R → R be a continuous function that is everywhere > 0 and
that is periodic with period L. Let Γ = {(x, γ(x) : x ∈ R} be the graph of γ, and let

Ω = {(x, y) : 0 < y < γ(x)}.

Suppose that

u, v : Ω→ R

are solutions to the translator equation that are periodic with period (L, 0) and that
extend continuously to Ω ∪ Γ. Suppose also that

∂u

∂y
> 0 on Ω,

u ≤ v on Γ, and

u(x, 0) = −∞ for all x.

Then u ≤ v on Ω.

The proof is almost identical to the proof of Lemma 14.

Lemma 16. Suppose that Ω be a domain in a Riemannian 2-manifold with piece-
wise smooth boundary of finite length. Let u, v : Ω→ R be solutions of the translator
equation that are bounded below. If u ≤ v on ∂Ω, then u ≤ v on Ω.
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Proof. By translating, we can assume that u and v are bounded below by 0. Note
that for any compact region W in Ω×R,

area(graph(u) ∩W ) ≤ area((∂W ) ∩ {z > u}).

Applying this to Wn = Ωn × [0, n] where Ωn is a nice exhaustion of Ω, and taking
the limit, we see that

area(graph(u)) ≤ area(∂Ω× [0,∞))

= length(∂Ω)

<∞.

Likewise, area(graph(v)) < ∞. Hence u ≤ v by the cut-and-paste argument
(Lemma 9). �

4. A Geometric Property of Tridents

Theorem 17. Let Ma and ua : R× (0, b(a))→ R be as in Theorem 8. Then

∂

∂x
ua(x, y) > 0 for −a/2 < x < a/2,

∂2

∂x2
ua(−a/2, y) > 0,

∂2

∂x2
ua(a/2, y) < 0

for 0 < y < b(a).

Lemma 18. If a > 0, if 0 < b < π, and if f : R → R is a smooth, 2a-periodic
function, then there is a unique 2a-periodic solution

u : R× (0, b)→ R

to the translator equation with boundary values u(·, b) ≡ 0 and u(·, 0) = f(·). Fur-
thermore, if f is invariant under x 7→ a/2 − x and under x 7→ −a/2 − x and
if

f ′(x) ≥ 0 for −a/2 ≤ x ≤ a/2,
then

∂

∂x
u(x, y) ≥ 0 for −a/2 ≤ x ≤ a/2.

Proof. Existence and uniqueness are standard. (The hypothesis that 0 < b < π
means we can use a grim reaper surface as an upper barrier.)

For the “furthermore” assertion, note by uniqueness that u is invariant under
(x, y) 7→ (a/2 − x, y) and under (x, y) 7→ (−a/2 − x, y), so ∂

∂xu(x, y) = 0 when
x = a/2 and when x = −a/2. By differentiating the translator equation (23) with
respect to x, we see that v := ∂

∂xu satisfies an elliptic partial differential equation
of the form

aij(x, y)Dijv(x, y) + bi(x, y)Div(x, y) = 0.

Hence by the maximum principle,

v : [−a/2, a/2]× [0, b]→ R

attains its minimum on the boundary. �
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Proof of Theorem 17. Let f i : R→ R be a sequence of smooth functions satisfying
the hypotheses on f in Lemma 18 such that

f1 ≤ f2 ≤ f3 ≤ . . . ,
f i(x) ≡ 0 for −a/2 < x < 0, and

lim
i→∞

f i(x) =∞ for 0 < x < a/2.

Let ui be the (2a, 0)-periodic solution of the translator equation corresponding to
f i as in Lemma 18. By the maximum principle,

u1 ≤ u2 ≤ · · · ≤ ua,b
where ua,b is as in Proposition 5. It follows that ui converges to ua,b, and that the
convergence is smooth except at the points (na, 0), n ∈ Z. Thus by Lemma 18,

∂

∂x
ua,b ≥ 0 for −a/2 ≤ x ≤ a/2.

Since ua was obtained as a limit of ua,bi − zi for bi ↑ b(a) (and for suitable zi ∈
R), we see that ∂

∂xua ≥ 0 on [−a/2, a/2] × (0, b(a)). The strict inequalities in
Theorem 17 follow by the strong maximum principle and the strong boundary
maximum principle. �

Corollary 19. Every trident Ma has points where the Gauss curvature (with respect
to the Euclidean metric) is negative and other points where it is positive.

By contrast, all graphical translators have nonnegative curvature everywhere
(by a theorem of Spruck and Xiao [SX20]), and all known semigraphical translators
other than tridents have negative curvature everywhere [HMW19].

Proof. Let u = ua be as in Theorem 8. By Corollary 12, u is invariant under

(x, y) 7→ (a/2− x, y),

and thus uxy(a/2, y) ≡ 0. By Theorem 17, uxx(a/2, y) < 0 for all y ∈ (0, b(a)).
Since u(a/2, 0) =∞ and u(a/2, b(a)) = −∞, there exist y for which uyy(a/2, y) <

0 and other y for which uyy(a/2, y) > 0. The Gauss curvature of Ma is positive at
the former and negative at the latter. (Recall that the sign of the Gauss curvature
is equal to the sign of uxxuyy − u2

xy.)
(It is also easy to prove that the Gauss curvature is negative at all points in the

vertical lines in Ma.) �

5. Continuous Dependence on the Period

In this section (and in §6), we think of Ma (from Theorem 8) as a (2a, 0, 0)-
periodic surface in R3 rather than as a surface in a quotient of R3.

Theorem 20. Suppose that a(i) converges to a ∈ (0,∞). Then Ma(i) converges
smoothly to Ma, and b(a(i)) converges to b(a).

Proof. By passing to a subsequence, we can assume that b(a(i)) converges to a limit
b, and that Ma(i) converges smoothly to a limit M that lies in the slab {−b ≤ y ≤ b}.

Exactly as in the proof of Theorem 8, one shows that M has all the properties
listed in that theorem. Thus by the Uniqueness Theorem 11, M = Ma.
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Next, we show that b = b(a). Since b(·) is an increasing function (by Theorem 8),
it suffices to show that b(a(i)) → b(a) for sequences a(i) → a such that a(i)/a is
rational. We assume that a(i) is such a sequence. Note that

Π(Ma(i)) = R× (−b(ai), b(ai)), and

Π(Ma) = R× (−b(a), b(a)),

where Π(x, y, z) := (x, y). Thus, since Ma(i) →Ma, we see that b(a) ≤ b.
It remains to show that b ≤ b(a). Suppose to the contrary that b > b(a). Choose

β with 0 < β < b(a) very close to b(a), so that

(8) b(a)− β < b− b(a).

The curvature estimates imply that Tan(Ma, pk) · e2 → 0 for every sequence of
points pk = (xk, yk, zk) in Ma such that yk → b(a). Thus there is a β′ such that
β < β′ < b(a) and such that

max
x

∂ua
∂y

(x, β′) < min
x

∂ua
∂y

(x, β).

Consequently, for all sufficiently large i,

max
x

∂ua(i)

∂y
(x, β′) < min

x

∂ua
∂y

(x, β).

Fix such an i. Let δ = β′ − β and consider

f : R× [β, b(a))→ R,

f(x, y) = ua(x, y)− ua(i)(x, y + δ).

Since

δ = β′ − β < b(a)− β < b− b(a)

by choice of β (see (8)), we see that y < b(a) implies that y + δ < b = lim b(ai), so
that f is defined on the entire strip R× [β, b(a)) if i is sufficiently large.

Note that f is periodic since a(i)/a is rational, that ∂f
∂y > 0 on the lower edge

R × {β} of the domain, and that f is −∞ on the upper edge R × {b(a)} of the
domain. Thus f attains its maximum at an interior point, which is impossible by
the strong maximum principle. The contradiction proves that b ≤ b(a). �

6. Behavior as a→ 0

In this section (as in §5), we think of Ma as a (2a, 0, 0)-periodic surface in R3

rather than as a surface in a quotient of R3.
Recall that we distinguish Ma from its vertical translates by requiring that

Tan(Ma, O) is the yz-plane.

Theorem 21. As a → 0, the surface Ma converges to the union of the xz-plane
and the grim reaper surface

{(x, y, z) : z = log(cos y), |y| < π/2}.

The convergence is smooth away from the x-axis.

Proof. For small a, Nguyen’s examples [Ngu09] have the limiting behavior described
in Theorem 21. For such a, the Uniqueness Theorem 11 implies that the examples
she constructs are the same as the examples in this paper. �
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Figure 4. The surfaces M3 (left) and M1 (right).

We now give a different proof of Theorem 21 that is independent of Nguyen’s
construction.

Lemma 22. Let M = Ma. If W is an open domain with areag(∂W ) <∞, then

(9) areag(M ∩W ) < areag(W ∩ {y = 0}) +
1

2
areag(∂W ).

Proof. Note that

areag(M ∩W ∩ {y ≥ 0}) < 1

2
areag(∂(W ∩ {y > 0}))

since M ∩ {y > 0} is a graph over a convex domain (namely a strip) and therefore
is g-area-minimizing. Likewise

areag(M ∩W ∩ {y ≤ 0}) < 1

2
areag(∂(W ∩ {y < 0})).

Adding these inequalities gives (9). �

Lemma 23. Let
La = ∪n∈Z{(na, 0)} ×R

be the union of the vertical lines in Ma. Let L+
a = La∩{z > 0} and L−a = La∩{z <

0}. The image of L+
a under the Gauss map of Ma is contained in Q∪Q′, where Q

and Q′ are quarter-circles in the equator E = S2 ∩ {z = 0}. The same holds (with
different quarter-circles) for L−a .

Proof. Since M ∩ {y > 0} is a graph over a strip, Tan(M, (0, 0, z)) turns through
an angle of π/2 as z goes from 0 to ∞. Thus the image of {(0, 0)} × (0,∞) under
the Gauss Map of M is a quarter-circle Q in E. Likewise the Gaussian image of
{(a, 0)} × (0,∞) is a quarter-circle Q′ in E. By the periodicity, the Gauss map
image of {(na, 0)} × (0,∞) is Q if n is even and is Q′ if n is odd. �

Proposition 24. There is a constant C <∞ (independent of a) such that

|A(Ma, p)| min{1,dist(p,X)} ≤ C.
Here |A(M,p)| is the norm of the second fundamental form with respect to the
Euclidean metric, and dist(p,X) is the Euclidean distance from p to the x-axis X.
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Proof. Suppose the proposition is false. Then there is a sequence of examples
pi ∈Ma(i) such that

(10) |A(Ma(i), pi)| min{1,dist(pi, X)} → ∞.

We may choose pi to maximize the left-hand side of (10) since

|A(Ma, (x, y, z))| → 0 as z → ±∞.

Let λi := |A(Ma(i), pi)|, and let

φi : R3 → R3,

φi(p) = λi(p− pi).

Let M ′i = φi(Ma(i)) and X ′i = φi(X). Thus

|A(M ′i , O)| = 1,

where O is the origin in R3. Note that the left side of (10) is

λi min{1,dist(pi, X)} = min{λi, λi dist(pi, X)} = min{λi,dist(O,X ′i)},

so (by (10))

(11) dist(O,X ′i)→∞.

Note that (11) implies (perhaps after passing a subsequence) that

(12)
dist(O,φi(L

+
a(i)))→∞, or

dist(O,φi(L
−
a(i)))→∞,

where L±a(i) are as in Lemma 23. After passing to a further subsequence, the M ′i
converge smoothly to a complete (Euclidean) minimal surface M ′ with

(13) |A(M ′, O)| = 1.

Let ν be the Gauss map of M ′.
By (12) and Lemma 23,

ν(L) ⊂ Q ∪Q′

for certain quarter circles Q and Q′ in E, where L is the union of the vertical lines
in M ′. Since each component of M ′ \ L is a graph,

ν(M ′) ∩ E = ν(L) ∩ E.

Thus

ν(M ′) ∩ E ⊂ Q ∪Q′.
But this is impossible since a complete minimal surface whose Gauss map misses
an arc must be a plane [Oss86][Theorem 8.2], contradicting (13). (Indeed, if the
Gauss map misses even 5 points, then the surface is a plane [Fuj88].)

(In our setting, one can use more elementary results than [Oss86, Theorem 8.2]
or [Fuj88]. Note that the M ′ above has quadratic area growth by monotonicity.

Using that, it is not hard to prove (as in [Che97] or [Li97]) that the quotient M̃ ′

of M ′ by the period has finite total curvature, from which it follows that M̃ ′ is
conformally a punctured Riemann surface, that the Gauss map extends smoothly
to the punctures (see for instance [Oss86, §9] or [Whi16, Theorem 17]), and hence
that the Gauss map can miss at most finitely many points in S2.) �
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Proof of Theorem 21. Recall (by Theorem 8) that b(a) ≤ π for each a > 0 and that
b(·) is an increasing function. Thus

(14) b := lim
a→0

b(a) ≤ π.

Let a(i) be a sequence converging to 0. Fix a small ε > 0 and let (0, ε, zi) be
the unique point of intersection of Ma(i) and the line {(0, ε)} ×R. By passing to
a subsequence, we can assume that zi converges to a limit ẑ ∈ [−∞,∞] and that
the surfaces Ma(i) − (0, 0, zi) converge smoothly away from the line X − (0, 0, ẑ) to
a limit translator M ′. (If ẑ = ±∞, then the convergence is smooth everywhere.)
Since a(i)→ 0, M ′ is translation invariant in the x-direction.

Let Σ be the component of M ′ ∩ {y > 0} containing (0, ε, 0). Then Σ is either
the plane {y = ε} or G∩{y > 0} for some grim reaper surface G. Since M ′ contains
the line Z, M ′ also contains the entire xz-plane {y = 0}.

We claim that Σ is not the plane {y = ε} (provided ε is sufficiently small).
For if it were, then by symmetry M ′ would contain the plane {y = −ε}. Let
R = (0, 1)× (−ε, ε) and Ω = R× (0,∞). By Lemma 22,

(15) areag(M
′ ∩ Ω) ≤ areag(Ω ∩ {y = 0}) +

1

2
areag(∂Ω)

By direct calculation (or by Lemma 2),

(16) areag({y = c} ∩ Ω) = 1

for |c| ≤ ε. Since M ′ contains the planes y = 0, y = ε, and y = −ε, (15) and (16)
imply

3 ≤ 1 +
1

2
areag(∂Ω)

= 1 +
1

2
(areag(R× {0}) + areag((∂R)× [0,∞)))

= 1 +
1

2
(area(R) + length(∂R))

= 1 +
1

2
(2ε+ 2 + 4ε)

= 2 + 3ε

so ε ≥ 1
3 .

Thus by choosing ε < 1
3 , we guarantee that Σ is not a vertical plane. Conse-

quently Σ has the form

(17) Σ = graph(f) ∩ {y > 0}
where

f(x, y) = log(cos(y − y0)) + c

for some y0 > 0 and c. Since Σ ⊂ {0 < y < b} and b ≤ π, we see that

y0 ≤ b− π/2 ≤ π/2.
We claim that y0 < π/2. For if y0 = π/2, then Σ would be a grim reaper surface

defined over the strip 0 < y < π. Thus M ′ would be the union of the xz-plane, the
grim reaper surface Σ, and the image of Σ under reflection in the xz-plane. The
limit M ′′ of M ′ + (0, 0, λ) as λ→∞ would then consist of the planes y = ±π with
multiplicity 1 and the plane y = 0 with multiplicity 3. However, this is impossible.
We showed above that M ′ cannot contain the planes y = 0, y = ε, and y = −ε if
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ε is small. Exactly the same proof shows that M ′′ cannot contain the plane y = 0
with multiplicity 3. This completes the proof that y0 < π/2.

Since y0 < π/2, we see that graph(f) (in (17)) intersects the plane y = 0 in a
horizontal straight line L. Since graph(f) ∩ {y > 0} and the xz-plane are both
contained in M ′, we see that the convergence of Ma(i) − (0, 0, zi) to M ′ is not
smooth along L. Thus L = X − (0, 0, ẑ). In particular, |ẑ| <∞.

Thus Ma(i) converges to M := M ′ + (0, 0, ẑ). Note that M consists of the xz-
plane together with G and G′ where G is the {y ≥ 0} portion of a grim reaper
surface that contains X and where G′ is the image of G under reflection in the
xz-plane.

We claim that G is exactly half of a grim reaper surface, so that G∪G′ is a grim
reaper surface. For readers familiar with varifolds, this is an immediate consequence
of the fact that M (a limit of stationary varifolds) is a stationary varifold.

Here is a different proof. Suppose G were not half of a grim reaper. Then the
tangent cone C to M at the origin would consist of the xz-plane together with

{(x, y, z) : z = |y|/c}
for some constant c 6= 0. Assume c < 0. (The case c > 0 is handled in the same
way.) Let L be large and let

Ω = ΩL = {(x, y, z) : 0 ≤ x ≤ L and −1 ≤ z ≤ |y|/c}.
Note that

area(∂Ω) = 2(1 + c2)1/2L+ 2cL+ c.

Thus by Lemma 22,

area(M ∩ Ω) ≤ area(Ω ∩ {y = 0}) +
1

2
(area(∂Ω)

i.e.,

2(1 + c2)1/2L+ L ≤ L+
1

2
(2(1 + c2)1/2L+ 2cL+ c)

or

(1 + c2)1/2L ≤ cL+
1

2
c.

Dividing by L and then letting L→∞ gives (1 + c2)1/2 ≤ c, a contradiction. �

Theorem 25. lima→0 b(a) = π/2.

The proof is exactly like the proof of Theorem 20, so we omit it.

7. Behavior as a→∞

Theorem 26. Every sequence of real numbers tending to infinity has a subsequence
a(i) for which Ma(i) converges smoothly to a limit translator M . If M is a such a
limit, then M contains Z, M is tangent to the xz-plane at the origin, and M ∩{y >
0} is the graph of a function u : R× (0, π)→ R with boundary values

u(x, 0) = −∞ if x < 0,

u(x, 0) =∞ if x > 0,

u(x, π) = −∞ for all x.

As x̂→ −∞,

u(x̂+ x, y)− u(x̂, y)
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converges smoothly to log(sin y). If yi ∈ (0, π) and xi →∞, then

(M ∩ {y ≥ 0})− (xi, yi, u(xi, yi))

converges smoothly to plane x = 0. Furthermore, M is negatively curved every-
where, and the Gauss map induces a diffeomorphism from M ∩ {y ≥ 0} onto

(S2 ∩ {z ≥ 0}) \ {e2}.

Proof. Exactly as in the proof of the Main Existence Theorem 8, there is a subse-
quence a(i) for which Ma(i) converges smoothly to a smooth surface M such that
M contains Z, such that M is tangent to the yz-plane at the origin, and such that
M ∩ {z > 0} is the graph of a function u defined on a strip S := R× (0, β) where

β ≤ lim b(a(i)) ≤ π.

On each component of (∂S)\{(0, 0)}, u is either +∞ or−∞. Note that Tan(M, (0, 0, z))
rotates clockwise as z increases (because each Ma(i) has that property), so

u(x, 0) =

{
−∞ for x < 0, and

+∞ for x > 0.

By Theorem 8.1 in [HMW19], u(x, β) = −∞. The remaining assertions are proved
in Theorem 12.1 of [HMW19]. �

Corollary 27. lima→∞ b(a) = π.

The corollary follows immediately from Theorem 26 and the fact that b(a) is an
increasing function of a (by Theorem 8).

Conjecture 28. There is a unique surface M satisfying the conclusions of Theo-
rem 26.

In [HMW19] (see Theorem 2.3), a surface satisfying M the conclusions of The-
orem 26 is called a pitchfork of width π. See Figure 9.

If Conjecture 28 is true, then it is not necessary to pass to a subsequence in
Theorem 26. Also, in [HMW19], such a pitchfork was obtained as a limit of so-called
Scherkenoids. If the uniqueness conjecture is true, then that limit of Scherkenoids
is the same as the surface in Theorem 26 (obtained as a limit of tridents.)

8. Widths

Theorem 29. The set B := {b(a) : a ∈ (0,∞)} is the interval (π/2, π).

Proof. Recall that b(·) is a continuous, increasing function (by Theorems 8 and 20),
that lima→0 b(a) = π/2 (by Theorem 25), and that lima→∞ b(a) = π (by Corol-
lary 27). Hence

(π/2, π) ⊂ B ⊂ [π/2, π].

By Theorems 30 and 31 below, b(a) cannot take the values π/2 or π. �

Theorem 30. For every a, b(a) > π/2.

Proof. By definition of b(a) (see Theorem 8), the assertion is equivalent to the
assertion that α(a, π/2) < 3a. For 0 < b < π/2, consider the grim reaper surface

(18) z = log(cos y) + cb, where cb = − log(cos b).
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Note that cb > 0. The surface intersects the plane y = 0 in the line z = cb and
it intersects the plane z = 0 in the lines y = ±b. Let G(b) be the portion of the
surface in the region

{−a ≤ x ≤ a} ∩ {y ≥ 0} ∩ {z ≥ 0}.
We can regard G(b) as a surface in Ka,b×R (or in Ka,b′×R if b′ ≥ b.) By Lemma 2,

(19) area(G(b)) < 2a.

(If (19) is not clear, note that ν ·v < 1 on the portion of the boundary where y = b
and that ν · v = 0 on the rest of the boundary.)

If I and J are intervals, we let I ⊗ J denote the rectangle I × {0} × J in the
plane y = 0.

We claim that

(20) α(a, b) < area(G(b)) + area([0, a]⊗ [0,∞))

for 0 < b < π/2. (We remark that (20) together with (19) already establishes that
α(a, b) < 3a for b < π/2.)

We prove (20) as follows. Let Σ(b) be the union of the rectangle

[−a, 0]⊗ [0, cb]

and the strip

[0, a]⊗ [cb,∞)

(where cb is as in (18)). Clearly

area(Σ(b)) = area([0, a]⊗ [0,∞)).

Note that G(b) ∪ Σ(b) has boundary Γa,b. Since G(b) ∪ Σ(b) is not smooth (but
only piecewise smooth), it is not an area-minimizing surface. Thus

α(a, b) < area(G(b) ∪ Σ(b))

= area(G(b)) + area([0, a]⊗ [0,∞)).

Thus we have proved (20).
As a special case of (20), we have

α(a, 1) < area(G(1)) + area([0, a]⊗ [0,∞)).

Thus by continuity of the function α (Proposition 7),

(21) α(a, b) < area(G(1)) + area([0, a]⊗ [0,∞)).

for all b sufficiently close to 1.
Now fix a b slightly larger than 1 for which (21) holds. Let S be a least-area

surface with boundary Γ(a, b). Then

(22) area(S) = α(a, b) < area(G(1)) + area([0, a]⊗ [0,∞)).

Let ε = b− 1 and let b′ = π/2− ε.
Let τ be the height at which

G(b′) ∩ {z = τ} is the line {y = b} ∩ {z = τ}.
Shifting the surfaces in (22) by τ e3 gives

area(S + τ e3) < area(G(1) + τ e3) + area([0, a]⊗ [τ,∞))

= area(G(b′) ∩ {z ≥ τ}) + area([0, a]⊗ [τ,∞)).
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Now consider the surface

M := (S + τ e3) ∪ ([−a, 0]⊗ [0, τ ]) ∪ (G(b′) ∩ {z ≤ τ}+ ε e2).

Note that M is a piecewise smooth surface with boundary Γ(a, π/2).
Thus

α(a, π/2) ≤ area(M)

= area(S + τ e3)

+ area([−a, 0]⊗ [0, τ ]) + area(G(b′) ∩ {z ≤ τ})
< area(G(b′) ∩ {z ≥ τ}) + area([0, a]⊗ [τ,∞))

+ area([−a, 0]⊗ [0, τ ]) + area(G(b′) ∩ {z ≤ τ})
= area(G(b′)) + area([0, a]⊗ [0,∞))

< 3a

by (19). �

Theorem 31. For every a, b(a) < π.

Proof. Fix an a > 0. Let u = ua, b = b(a), and

w : (0, b)→ R,

w(y) = u(−a/2, y).

Consider the translator equation

∆u− DiuDju

1 + |Du|2
Diju = −1.

or, equivalently,

(23) (1 + u2
y)uxx + (1 + u2

x)uyy − 2uxuyuxy = −(1 + |Du|2).

On the line x = (−a/2), we have ux = 0, uxy = 0, and uxx > 0 (by Theorem 17),
so

uyy < −(1 + u2
y) for x = (−a/2).

Thus

w′′ + (w′)2 + 1 < 0.

In other words, w is a strict supersolution of the translator equation. Theorem 31
now follows from Lemma 32 below. �

Lemma 32. Suppose that w : (c, d)→ R is a strict supersolution of the translator
equation and that limx→c w(x) = limx→d w(x) = −∞. Then c− d < π.

Proof. By translating, we may suppose that w attains its maximum at 0 and that
w(0) = 0. Since w is concave downward, we see that w|(c, 0] is strictly increasing.
Let W be the graph of w|(c, 0]:

W := {(x,w(x)) : c < x ≤ 0}.

Let Γ be the left half of the standard grim reaper curve:

Γ := {(x, log(cosx)) : −π/2 < x ≤ 0}.



22 D. HOFFMAN, F. MARTIN, AND B. WHITE

The assertion that w is a a strict supersolution of the translator equation is
equivalent to the assertion that the geodesic curvature of W with respect the trans-
lator metric is a positive multiple of the downward pointing unit normal. Of course
Γ is a geodesic for the translator metric.

Thus near (0, 0), the curve W lies between Γ and the line x = 0.
Suppose c ≤ −π/2. Then there would be a maximum s > 0 such that Γ + (s, 0)

intersects W , and the point of contact would violate the maximum principle, a
contradiction.

Thus −π/2 < c. Likewise, d < π/2. �

9. Semigraphical Translators

A translator is M is called semigraphical if

(1) M is a smooth, connected, properly embedded submanifold (without boundary)
in R3.

(2) M contains a nonempty, discrete collection of vertical lines.
(3) M \ L is a graph, where L is the union of the vertical lines in M .

Suppose M is a semigraphical translator. We may suppose without loss of gen-
erality that M contains the z-axis Z. Note that M is invariant under 180◦ rotation
about each line in L, from which it follows that L∩{z = 0} is an additive subgroup
of R2. The curvature estimates imply that M − (0, 0, λ) converges smoothly (per-
haps after passing to a subsequence) to an embedded translator M∞. Note that
the limit translator cannot have any point where the tangent plane is non-vertical.
Thus M∞ is a union of one or more parallel vertical planes. Likewise M−∞ (the
limit as λ → −∞) is the union of one or more parallel vertical planes. Hence if Σ
is a connected component of M \ L, then Σ is the graph of a function u : Ω → R,
where Ω is one of the components of

R2 \Π(M∞ ∪M−∞).

Here Π is the projection Π(x, y, z) = (x, y). Note that such an Ω (i.e., a component
of R2 minus two families of parallel lines) must be one of the following (after a rigid
motion of R2):

(1) A parallelogram. Such translators are called “Scherk translators” and were
completely classified in [HMW19].

(2) A semi-infinite parallelogram, i.e., a set of the form {(x, y) : 0 < y <
w, x > my} for some m 6= 0. Such translators are called “Scherkenoids”
and were completely classified in [HMW19]. In particular, for each m, there
exists such a surface if and only if w ≥ π, and it is unique up to vertical
translation.

(3) An infinite strip R×(0, b) for some b <∞. There are three subcases, which
we discuss below.

(4) A wedge, i.e., a set of the form {(r cos θ, r sin θ) : r > 0, 0 < θ < α} for
some α with 0 < α < π. This case cannot occur; see Lemma 35 below.

(5) A halfplane. In this case, M contains only one vertical line by Remark 33
and Lemma 37 below. We conjecture that this case cannot occur.

Remark 33. Suppose Ω = R × (0, b) for some 0 < b ≤ ∞ (so Ω is a strip or a
halfplane.) Let S be the set of points p in ∂Ω such that M contains the vertical line
{p}×R. If the x-axis contains a second point (a, 0) in S (in addition to the origin),
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Figure 5. Semigraphical Translators. Row 1 (left to right):
Scherk translator, Scherkenoid, and Trident. Row 2: Helicoid-like
Translator and Pitchfork.

then M is periodic with period (2a, 0, 0) and thus the x-axis contains infinitely
many points of S.

Now we discuss the case of a strip, i.e., the case when Ω = R × (0, b) for some
0 < b < ∞. Let S be as in Remark 33. There are three subcases, according to
whether S has exactly 1 point, exactly 2 points, or more than 2 points.

If Ω = R × (0, b) and S has exactly one point (namely the origin), M is called
a pitchfork. In this case, u(·, b) = −∞, and u is +∞ on one component of
X \{(0, 0)} and −∞ on the other component. According to Theorems 10.1 and 12.1
of [HMW19], a pitchfork with Ω = R × (0, b) exists if and only if b ≥ π. We
conjecture that for each b ≥ π, the pitchfork is unique up to rigid motions.

If Ω = R×(0, b) and S has exactly two points, then by Remark 33, one point (the
origin) is on the line y = 0 and the other point is on the line y = b. In this case,
such a translator is called helicoid-like. Helicoid-like translators are described
in [HMW19], where it is proved that a helicoid-like translator with Ω = R× (0, b)
exists if and only if b < π. (We do not know whether, given b, the translator is
unique up to rigid motion.)

Now suppose that Ω = R× (0, b) and that S contains 3 or more points. Then S
must contain more than one point on one edge of Ω, say on the edge y = 0. Then
by Remark 33,

S ∩ {x = 0} = {(na, 0) : n ∈ Z}
for some a > 0, and M is periodic with period (2a, 0, 0).
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If S also contained a point (k, b) on the side y = b, then by the periodicity, it
would contain (k+na, b) for every n. That cannot happen according to Lemma 36
below.

Thus if Ω = R × (0, b) is a strip and if S contains more then 2 points, then
S = {(na, 0) : n ∈ Z} for some a > 0. In this case, M is the trident described in
Theorem 1.

In summary, we have

Theorem 34. If M is a semigraphical translator in R3, then it is one of the
following:

(1) a (doubly-periodic) Scherk translator,
(2) a (singly-periodic) Scherkenoid,
(3) a (singly-periodic) helicoid-like translator,
(4) a pitchfork,
(5) a (singly-periodic) trident, or
(6) (after a rigid motion) a translator containing Z such that M \ Z is a graph

over {(x, y) : y 6= 0}.

As mentioned above, we conjecture that Case (6) cannot occur.
Of course pitchforks are not periodic, nor are the Case (6) examples (if they

exist).
The proof of Theorem 34 was based on the following three lemmas:

Lemma 35. Let Ω = {(r cos θ, r sin θ) : r > 0, 0 < θ < β} where 0 < β < π. There
is no translator Σ such that

(1) Σ is a smooth, properly embedded manifold-with-boundary, the boundary
being Z, and

(2) Σ \ Z is the graph a function u : Ω→ R.

Proof. Suppose to the contrary that such an Σ exists. Then Σ and its vertical
translates foliate Ω × R. Let n be the downward pointing unit vectorfield on
Ω×R that is perpendicular to the foliation. Since the mean curvature is a positive
multiple of n, Div n is negative. Let W ⊂ Ω×R be a region with smooth boundary
that is transverse to Σ. Let W+ and ∂+W be the portions of W and of ∂W that
lie above Σ. Let ν be the outward pointing unit normal on ∂(W+). Then

(24)

0 ≥
∫
W+

Div n

=

∫
W∩Σ

n · ν +

∫
∂+W

n · ν

≥ area(W ∩ Σ)− area(∂+W )

since n = ν on Σ ∩ Ω and since |n · ν| ≤ 1. Since W is arbitrary, the area
bound area(W ∩ Σ) ≤ area(∂+W ) from (24) implies that Σ has finite entropy.
By Theorem 34 of [Whi21], the tangent flow at infinity to the flow

t ∈ R 7→ Σ− (0, 0, t)

is a static, multiplicity-one halfplane. Thus by Huisken monotonicity, Σ is a flat
halfplane, a contradiction. �
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Lemma 36. There is no (2a, 0)-periodic translator u : R× (0, b)→ R such that

u(x, 0) = u(k + x, b) =

{
−∞ for −a < x < 0, and

∞ for 0 < x < a.

Proof. Let P be a fundamental parallelogram, e.g., the parallelogram with corners
(0, 0), (2a, 0), (k, b), and (2a+ k, b). Recall the translator equation

(25) Div ξ = −(1 + |Du|2)−1/2.

where

ξ =
Du√

1 + |Du|2
.

By (25) and the divergence theorem,∫
∂P

ξ · η ds < 0,

where η is the outward pointing unit normal. The integrals on the left and right
sides of P are equal and opposite and so cancel each other out. On the top and
bottom edges of P , the integrand is 1 where u = −∞ and −1 where u =∞. Thus
the integral is 0, a contradiction.

Note that because the vectorfield ξ is bounded, the divergence theorem holds
even though there are isolated points (namely, the corners of the parallelogram)
where ξ is discontinuous. �

Lemma 37. A translator u : {(x, y) : y > 0} → R cannot be periodic in the
x-direction.

Proof. Otherwise, (x, y) ∈ R × (2π, 3π) 7→ log(sin y) − u(x, y) would attain its
maximum, violating the strong maximum principle. �
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