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Abstract Computing estimates in functional principal component analysis
(FPCA) from discrete data is usually based on the approximation of sample
curves in terms of a basis (splines, wavelets, trigonometric functions, etc.) and
a geometrical structure in the data space (L2 spaces, Sobolev spaces, etc.).
Until now, the computational efforts have been focused in developing ad hoc
algorithms to approximate those estimates by previously selecting an efficient
approximating technique and a convenient geometrical structure. The main
goal of this paper consists of establishing a procedure to formulate the algo-
rithm for computing estimates of FPCA under general settings. The resulting
algorithm is based on the classic multivariate PCA of a certain random vector
and can thus be implemented in the majority of statistical packages. In fact, it
is derived from the analysis of the effects of modifying the norm in the space of
coordinates. Finally, an application on real data will be developed to illustrate
the so derived theoretic results.
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1 Introduction

There are many fields of application where data are functions rather than vec-
tors as in the classical multivariate analysis. Taking into account that the existing
multivariate methodology was not entirely satisfactory for analyzing functional
data, many papers on functional data analysis (FDA) have been developed
in last years. Interesting examples of functional data appear in James et al.
(2000) and Rice and Wu (2001). The book of Ramsay and Silverman (2002)
considers different applications to illustrate how functional data analysis works
out in practice in a diverse range of subject areas as criminology, economics,
archaeology, rheumatology, psychology, biomechanics and education, among
others.

The majority of FDA techniques are extensions of multivariate methodol-
ogies to the case of functional data that can be modeled as sample paths of a
continuous-time stochastic process (see Ramsay and Dalzell 1991; Ramsay and
Silverman 2005). By the way, the classical (multivariate) principal component
analysis (PCA) was firstly adapted to functional data by Deville (1973), where
data were assumed to be square integrable functions.

Functional PCA (FPCA) was the first method to be considered in the early
literature on FDA with the objective of exploring substantial modes of varia-
tion of data. An interesting problem in the estimation of FPCA arises when
functional data are only observed at discrete time knots, not necessarily evenly
spaced. The usual practice to solve this involves the application of a numerical
technique for approximating the underlying functional data from the discrete
observed values. In this case, the unknown stochastic process that models the
functional data is usually replaced by a new one whose sample paths belong to a
finite-dimensional functional space generated by a basis of functions (Ramsay
and Silverman 2005). If the discrete observed values can be assumed errorless,
an appropriate process to convert them to a function is interpolation. Indeed,
Besse (1991) and Aguilera et al. (1996a) propose to use natural cubic spline
interpolation between the knots. However, if the discrete values are perturbed
by some observational error, then their conversion to functions may involve
a smoothing procedure such as the orthogonal projection of the sample paths
(Aguilera et al. 1995).

As data are functions, it is interesting to incorporate functional properties
in the FPCA (Cardot 2000). For example, Ramsay et al. (1995) considers the
smoothing behaviour of a biomechanical data set by means of a Sobolev inner
product in the data space. Silverman (1996) provides a detailed theoretical
discussion of the advantages of smoothing by penalizing the roughness of the
principal components weights. In our case, the functional properties of data
are incorporated in the FPCA by defining an appropriate geometrical structure
in the data space. More recently, Yao et al. (2005) proposed a nonparametric
method to perform FPCA for the case of sparse longitudinal data and referred
it as principal component analysis through conditional expectation (PACE).

In the available literature on computing FPCA, the efforts have been focused
in developing ad hoc algorithms to approximate the estimates in the FPCA by



Computational considerations in functional principal component analysis 451

previously selecting an efficient approximating technique and a convenient
geometrical structure. The theoretical results obtained in this paper establish a
general procedure which leads to derive the algorithm for computing the esti-
mates of the FPCA. The resulting algorithm is based on the classic multivariate
PCA, what has the advantage that is already implemented in the majority of
statistical packages.

The present paper is sketched out as follows. In Sect. 2 FPCA is introduced
in the general context of a Hilbert space. In order to obtain further results, an
equivalence involving FPCA and data transformation will be also introduced
under the name of filtering PCA. In Sect. 3 the FPCA on a finite-dimensional
functional space is studied to point out the role of functional basis in FDA. The
effects of modifying the norm in the space of coordinates will be also analyzed
in Sect. 4. Finally, Sect. 5 illustrates the methodology proposed in previous
sections.

2 Theoretical framework

We will consider a functional data set given by X1(t), X2(t), . . . , XN(t), where
t is an argument continuously varying on a set T ⊆ Rd with d ∈ N. Such data
functions are assumed in a separable Hilbert space H, whose inner product
〈∗, ∗〉H induces a norm given by ‖h‖H = 〈h, h〉1/2

H , ∀ h ∈ H. For instance, H
could be the space L2 (T ) of square-integrable functions over a real interval T ,
whose usual inner product is defined by

〈h1, h2〉L2(T ) =
∫

T

h1(t)h2(t)dt, ∀ h1, h2 ∈ L2 (T ) .

Associated to a functional data set, X = (Xw(t) : w = 1, . . . , N; t ∈ T ), some
summary statistics will now be considered.

• The mean function is defined by X̄ = N−1 ∑N
w=1 Xw ∈ H. From now on,

X̃ = (
X̃w : w = 1, . . . , N

)
stands for the centered functional data set, which

is given by X̃w(t) = Xw(t)− X̄(t), ∀t ∈ T , w = 1, . . . , N.
• The linear space LX = Lin{X̃w : w = 1, . . . , N}, which is usually called the

data space, has a dimension less or equal than N −1, because of
∑N

w=1 X̃w =
0. Further, as LX ⊆ H, LX is thus a finite-dimensional Hilbert subspace of
H and then H = LX ⊕ LX

⊥, where LX
⊥ is the ortogonal subspace of LX .

• The operator UX : H 
−→ RN defines column vectors denoted by UX(h),
for every h ∈ H, whose components are given by UX [w, h] = 〈

h, X̃w
〉
H,

∀ w ∈ {1, . . . , N}. UX can thus be interpreted as the constructor of any linear
combination from X̃ through the inner product 〈∗, ∗〉H, where the weights
for each combination are given by an element of H, i.e., a functional gen-
eralization of matrix product. However, we must take into account that the
most interesting weights for the aforementioned linear combinations are
those contained in LX , because of Ker UX = LX

⊥.
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• The covariance operator, denoted by CX : H 
−→ LX , is the positive semi-
definite symmetric operator defined by CX = n−1 ∑N

w=1 X̃w ⊗ X̃w. It can
then be characterized by

〈CX(h1), h2〉H = n−1 〈UX(h1), UX(h2)〉RN , ∀h1, h2 ∈ H, (1)

where n ∈ {N, N − 1} and depends on whether our functional data set is
considered as a population or a sample. Moreover, some straightforward
calculations from Equation (1) lead to establish that

CX(h)(s) = n−1
N∑

w=1

〈
X̃w, h

〉
H X̃w(s) =

〈
n−1

N∑
w=1

X̃w(s)X̃w, h

〉

H
= 〈CX(s, ∗), h〉H , ∀ s ∈ T and ∀ h ∈ H,

where CX : T × T 
−→ R is the covariance function of X, which is defined
by CX(s, t) = n−1 ∑N

w=1 X̃w(s) X̃w(t), ∀ s, t ∈ T .
Indeed we can only considered the restriction of CX to LX , because of
CX(LX

⊥) = {0}. Furthermore, as CX(H) = CX(LX) = LX , the rank of CX
must be less or equal than N − 1.

Finally, notice that the summaries provided by the linear operators UX and CX
account for the functional variations of data with respect to their mean, i.e., the
variability of X immersed in LX . This means that the finite-dimensional space
LX will establish the linear framework of the data analysis of X. However,
H will be considered as a shorthand to reference to the geometrical structure
induced into LX by H, i.e., (LX , 〈∗, ∗〉H).

As an illustrative example, let us consider that X is a set of functions of L2 (T ).
It is thus obtained that UX [w, h] = ∫

T X̃w(s)h(s)ds, ∀ w ∈ {1, . . . , N}, and that
CX(h)(s) = ∫

T CX(s, t)h(t)dt, ∀ s ∈ T and ∀ h ∈ L2 (T ), which generalizes the
well-known multivariate PCA framework.

The generalized linear combinations obtained by UX (vectors in RN) satisfy
the following properties:

• UX(h) = N−1 ∑N
w=1 UX [w, h] = 0, ∀ h ∈ H;

• Cov[UX(h1), UX(h2)] = 〈CX(h1), h2〉H , ∀ h1, h2 ∈ H;
• Var[UX(h)] = 〈CX(h), h〉H , ∀ h ∈ H.

Indeed these properties state that the second order moments of the generalized
linear combinations UX(h), for every h ∈ H, are determined by the covariance
operator of X.

2.1 Functional principal component analysis

The FPCA associated to a functional data set X is defined to have the same
optimal properties as in the multivariate case (Ramsay and Silverman 2005). In
fact, the principal components (p.c.’s) are vectors given by
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{ξi : i ∈ I = {1, 2, . . .}} ⊂ UX(SH) ⊆ RN ,

where SH = {f ∈ H : ‖f‖H = 1}, and defined by the following stepwise proce-
dure:

• ξ1 = arg max {Var[η] : η ∈ UX(SH)}
• if i > 1, then ξi = arg max

{
Var[η]

/
η ∈ UX(SH)
Cov[η, ξj] = 0, ∀ j < i

}
.

The previous optimization problem is equivalent with the spectral decomposi-
tion of the covariance operator (Riesz and Sz-Nagy 1990). In fact, the FPCA is
obtained from the principal component curves or principal factors (p.f.’s), which
are the solutions of the eigensystem given by

CX(fi) = λi fi, ∀ i ∈ I, (2)

subject to
〈
fi, fj

〉
H = δ(i,j), ∀ i, j ∈ I, where λi ≥ λi+1 ≥ 0, ∀ i ∈ I. Their corre-

sponding p.c.’s are thus obtained from ξi = UX(fi), ∀ i ∈ I.
For example, in the case of H = L2 (T ), the p.f.’s are the solutions of the

eigenequation λifi(t) = ∫
T CX(t, s) fi(s)ds, ∀ t ∈ T , i ∈ I. The i-th p.c. scores are

then given by ξi[w] = ∫
T fi(s) X̃w(s)ds, ∀w = 1, . . . , N.

Taking into account that CX(H) = LX , the set {fi : i ∈ I} is thus an orthonor-
mal basis of (LX , 〈∗, ∗〉H). In fact, as the rank of CX is not greater than N − 1,
the maximum number of nonzero eigenvalues is less than N, which also implies
that I ⊆ {1, . . . , N − 1}. Therefore, the p.c.’s provide a decomposition of X in
terms of its variability components as follows:

Xw(t) = X̄(t)+
∑
i∈I

ξi[w] fi(t), ∀ t ∈ T and ∀ w. (3)

The p.c’s are uncorrelated vectors whose variances are their associated eigen-
values, such as is derived from the equality Cov[ξi, ξj] = 〈

CX(fi), fj
〉
H = λi δ(i,j),

∀ i, j ∈ I. In fact, it follows from the data expansion in Equation (3) that the
data variance explained by the ith p.c. can be quantified by Vi = λi/V, where

V = n−1
N∑

w=1

∥∥X̃w
∥∥2

H =
∑
i∈I

Var[ξi] =
∑
i∈I

λi

accounts for the total variability of data.
In practice, the PCA expansion given in Equation (3) could be truncated in

the qth term (q ≤ N − 1), X(q)
w (t) = X̄(t)+ ∑q

i=1 ξi[w] fi(t), to provide the best
q-dimensional linear approximation to X in the least square sense, whose mean

squared error is thus given by n−1 ∑N
w=1

∥∥∥Xw − X(q)
w

∥∥∥2

H
= ∑

j>q λj.

2.2 Filtering PCA

In the framework given by Hilbert-valued random variables, Ocaña et al. (1999)
have established the equivalence between the PCA of the original data with
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respect to a well suited geometry and the PCA of transformed data with respect
to a given geometry, where the considered transform is induced by the geom-
etry initially considered in the original data space. This equivalence included
in a framework named as filtering PCA provides the theoretic support for the
reasonings included in this work. Because of this, the theoretic results here
considered are now to be sketched out.

Let F : H 
−→ (G, 〈∗, ∗〉G) be an one-to-one linear operator defined from the
vector space H containing the original data onto a (separable) Hilbert space G
(the space of the transformed data). Such a linear transform F induces in H a
geometrical structure defined by the following inner product:

〈h1, h2〉H = 〈F(h1), F(h2)〉G , ∀ h1, h2 ∈ H.

Under this setting, F is an isometry between the spaces (H, 〈∗, ∗〉H) and
(F(H), 〈∗, ∗〉G). From now on (H, 〈∗, ∗〉H) will be assumed a Hilbert space with-
out lack of generality. Otherwise, as F is an isometry, in particular a continuous
linear operator, the completion of H and the continuous extension of F should
be then considered to achieve the Hilbert assumption on H.

Let X = (Xw : w = 1, . . . , N) be a functional data set of H. Suppose that each
function of X is transformed by F. This way a new functional data set, which
is denoted by F(X) = (FXw = F(Xw) : w = 1, . . . , N) ⊂ G, is so obtained. The
following lemma provides the relationships between the characteristics of X,
with respect to (H, 〈∗, ∗〉H), and the corresponding ones of F(X), with respect
to (G, 〈∗, ∗〉G).
Proposition 1 Under the above settings, the following properties hold:

1. F(X) = FX̄.
2. UX = UF(X) ◦F.
3. CX = F−1 ◦ CF(X) ◦F.
4. σ(CX) = σ(CF(X)), where σ(CX) and σ(CF(X)) are the spectrum of the covari-

ance operators CX and CF(X), respectively.
5. F (Eλ) = Vλ, where Eλ = Ker (CX −λIH) and Vλ = Ker

(
CF(X) −λIG

)
, for

each eigenvalue λ.
6. It can be said that the PCA of X with respect to (H, 〈∗, ∗〉H) is equivalent

to the PCA of F(X) with respect to the geometry (G, 〈∗, ∗〉G). In fact, their
corresponding PCA expansions are related as follows:

Xw = X̄ +
∑
i∈I

ξi[w] fi (in H) and

FXw = FX̄ +
∑
i∈I

ξi[w] Ffi (in G).

In any PCA expansion [see Equation (3)], two kind of structures can be
considered. On the one hand, the p.f.’s are those basis functions (directions) in
the data space presenting maximum variability for the considered functional
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data. On the other hand, each p.c. stands for the weight of each p.f. for any func-
tional datum. Proposition 1 establishes then that, when the functions of X are
transformed by F, which is the transform establishing the relationship between
the two considered inner products, the PCA’s of X and F(X) are essentially the
same (they are called equivalent). In such a case the p.c.’s structures are both
the same and the p.f.’s are the only structures related through F. An impor-
tant consequence from this fact is that, if one of these two PCA expansions is
derived, then the other is straightforwardly determined.

3 Functional basis based PCA

In this section the equivalence between a PCA of a set of functions contained
in a finite-dimensional space and a certain multivariate PCA of its coordinates
with respect to a given basis (not necessarily orthonormal) is analyzed.

Let X be a functional data set onto a m-dimensional functional space E,
whose inner product is denoted by 〈∗, ∗〉E. For a given basis B = {e1, . . . , em}
of E, each function of X can be expanded,

Xw =
m∑

k=1

Yk[w] ek, ∀ w ∈ {1, . . . , N}, (4)

in terms of each row of the N × m-matrix Y =
[

Y1
... . . .

...Ym

]
with Yk =

(Yk[1], . . . , Yk[N])T. We can say that the matrix Y contains the coordinates
of X with respect to the basis B.

Associated to a basis B of E, let � = �B : Rm 
−→ (E, 〈∗, ∗〉E) be the linear
isomorphism defined by

�(α) =
m∑

k=1

αk ek = eT α, ∀α = (α1, . . . ,αm)
T ∈ Rm, (5)

where the functions of B are contained in e = (e1, . . . , em)
T. This way each data

function is thus obtained from the coordinate vector
Y[w] = (Y1[w], . . . , Ym[w])T, i.e., Xw = �(Y[w]), ∀w ∈ {1, . . . , N}.
Proposition 2 Under the framework given in this section, the following PCA’s
are equivalent:

1. The PCA of Y on (Rm, 〈∗, ∗〉P), whose PCA expansions are given by

Y[w] = Ȳ +
∑
i∈I

ξi[w] vi,

where Ȳ stands for the mean (m×1) vector of Y and {vi} ⊂ Rm and {ξi} ⊂ RN

are its p.f.’s and p.c.’s, respectively, with respect to 〈∗, ∗〉P. This inner product
is defined by
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〈α,β〉P = 〈�(α),�(β)〉E = αT Pβ, ∀α, β ∈ Rm, (6)

where P is the m × m matrix given by

P = 〈e eT〉E = (〈ek, el〉E : k, l = 1, . . . , m)m×m . (7)

2. The PCA of X on (E, 〈∗, ∗〉E), whose PCA expansions are given by

Xw = �(Ȳ)+
∑
i∈I

ξi[w]�(vi),

where �(Ȳ) is the mean function of X and ξi and �(vi) are its corresponding
ith p.c. and ith p.f., respectively.

3. The PCA of YQT on (Rm, 〈∗, ∗〉u), with PCA expansions given by

Q Y[w] = Q Ȳ +
∑
i∈I

ξi[w] Q vi,

where Q is a m × m matrix satisfying that QTQ = P and 〈∗, ∗〉u denotes the
usual inner product (in Rm).

Remark 1 • As P is a symmetric and positive definite matrix, then, among
others matrices, Q could be its well-known square root, P1/2.

• Taking into account that YT =
[

Y[1]... . . . ...Y[N]
]

m×N
, the transformation of

every vector Y[w] by Q could be obtained from Q(Y) = YQT.

Proof • Equivalence between statements (1) and (2).
The geometrical structure in (E, 〈∗, ∗〉E) induces in Rm a geometry given by

the inner product 〈∗, ∗〉P in Equation (6). This is a particular case of the filtering
PCA with F = �, H = (Rm, 〈∗, ∗〉P) and G = (E, 〈∗, ∗〉E).

Let C(P)Y be the covariance matrix of Y on (Rm, 〈∗, ∗〉P). As X = �(Y), Prop-
osition 1 states that �(Ȳ) = X̄, C(P)Y = �−1 ◦ CX ◦� and that the PCA of X on
(E, 〈∗, ∗〉E) is equivalent to the PCA of Y on (Rm, 〈∗, ∗〉P). This assures that if
{vj}j is a set of p.f.’s from the PCA of Y on (Rm, 〈∗, ∗〉P), then {�(vj)}j are p.f.’s
from the PCA of X on (E, 〈∗, ∗〉E), where both PCA’s have the same set of p.c.’s.

• Equivalence between statements (1) and (3).

To find out the matrix Q, the filtering PCA with F = Q, (H, 〈∗, ∗〉H) =
(Rm, 〈∗, ∗〉P) and (G, 〈∗, ∗〉G) = (Rm, 〈∗, ∗〉u) should be imposed. In fact,
Proposition 1 leads to establish that

〈α,β〉P = αT Pβ = 〈Qα, Qβ〉u = αT QT Qβ, ∀α,β ∈ Rm,

which means that P = QT Q.
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The characteristics of Y on (Rm, 〈∗, ∗〉P) can be related with those obtained
by using the usual geometry in Rm. In fact, it follows from Proposition 1 that
Q(Y) = QȲ and C(P)Y = Q−1 CQ(Y) Q = CY P, where CQ(Y) and CY are the
covariance matrices of YQT and Y, respectively, with respect to 〈∗, ∗〉u. Further,
the PCA of Y on (Rm, 〈∗, ∗〉P) is equivalent to the PCA of YQT on (Rm, 〈∗, ∗〉u).
In fact, if {vj}j is a set of p.f.’s from the PCA of Y on (Rm, 〈∗, ∗〉P), then {Qvj}j
are p.f.’s from the PCA of YQT on Rm, where both PCA’s have the same set of
p.c.’s. ��

An interesting case appears when B is an orthonormal basis of (E, 〈∗, ∗〉E).
In such a case, the matrix inner product 〈∗, ∗〉P becomes the usual inner product
in Rm (P = Im). This implies the well-known equivalence between the usual
multivariate PCA of Y and the FPCA of X, for orthonormal basis. Further-
more, Proposition 2 also assures that the FPCA of X can be even obtained from
the multivariate PCA of YQT, for any orthogonal matrix Q. This equivalence
means that the FPCA does not depend on the considered orthogonal basis in
(E, 〈∗, ∗〉E). Notice that YQT contains of the coordinate vector of X with respect
to the orthonormal basis Qe, for any orthogonal matrix Q.

However, FPCA is not necessarily subject to orthonormal basis. In fact,
there exist interesting non orthonormal bases in functional spaces (splines, non
orthogonal wavelets, etc.) which can be considered in FPCA (Ramsay and
Silverman 2005). Proposition 2 establishes how to perform a FPCA with any
kind of functional basis.

Moreover, in applications with functional data, the inner product in the data
space is usually suggested by the mathematical properties to be assumed for
the functional data. However, the implementation of the PCA in the majority
of statistical softwares is only given by routines performing the multivariate
PCA on Rm (with the usual geometry). In this context, Proposition 2 provides
mathematical results for the algorithmic implementation of the FPCA of X
through the available multivariate PCA routines.

Algorithm for computing FPCA
Proposition 2 establishes that the PCA of X on (E, 〈∗, ∗〉E) can be obtained

from the classic multivariate PCA of YQT. In this sense, the usual PCA of YQT

is obtained from the diagonalization of its covariance matrix CQ(Y),

CQ(Y) uj = Q CY QT uj = λj uj, ∀ j ∈ I, (8)

where uj stands for the jth p.f. and λj is the variance of the jth p.c., which is
defined by

ξj[w] = UQ(Y)[w, uj] = uTj Q
(
Y[w] − Ȳ

)
, ∀ w ∈ {1, . . . , N}. (9)

This way the p.c.’s of the FPCA of X and their corresponding variances are
already obtained. Further, it follows from Proposition 2 that {Q−1uj}j are p.f.’s
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of the PCA of Y on (Rm, 〈∗, ∗〉P) and that the p.f.’s of the FPCA of X can thus
be obtained by

fj = �
(

Q−1 uj

)
, ∀ j ∈ I. (10)

Therefore, the FPCA decomposition of X is given by

Xw = �(Ȳ)+
∑
i∈I

ξi[w]�
(

Q−1ui

)
, ∀ w ∈ {1, . . . , N}.

Finally, these reasonings for computing the PCA of a functional data set X such
as in Equation (4) are sketched in the following algorithm.

Input: A coordinate matrix of X, YN×m, for a basis B of (E, 〈∗, ∗〉E).
Output: The FPCA of X on (E, 〈∗, ∗〉E).
Step 1: Compute P by using Equation (7) and obtain a matrix Q such that

QTQ = P.
Step 2: Perform the usual multivariate PCA of YQT, obtaining its p.f.’s {uj}j ⊂

Rm, its eigenvalues {λj} and its p.c.’s {ξj}j.
The p.c.’s of the FPCA of X and its corresponding eigenvalues, {ξj}j
and {λj}, have been already obtained.

Step 3: The p.f.’s {fj}j of the FPCA are derived by using Equation (10).

4 Modifying the norm in the space of coordinates

On the one hand, the implementation of FPCA is based on multivariate PCA
routines applied to a transform of the coordinates of the functional data, such as
is derived in previous section. On the other hand, the multivariate PCA has its
own strategies to extract relevant properties from data, which are mainly based
on data transformations, as well. For example, the interpretation of a phenom-
enon described by an initial data set is not usually clear when its PCA is trivial
(the variability explained by the first p.c. is closed to 100%). An usual practice
in multivariate PCA studies consists of performing PCA to transformed data.
Therefore, as such strategies are usually implemented in statistical softwares,
we can attempt to adapt them to the FPCA setting. In this section, we will inves-
tigate the consequences of such data transform based multivariate techniques
on the FPCA.

Let us consider the same settings as those in Sect. 3, where X is a functional
data set in E and Y is its N×m matrix of coordinates, such as in Equation (4). For
a nonsingular matrix D ∈ Mm(R), the multivariate PCA of YDT with the usual
geometry in Rm could be considered to extract relevant properties from data.
The meaning of such a multivariate PCA will be now derived in the functional
data framework.

Proposition 3 Given a nonsingular matrix D ∈ Mm(R), the following PCA’s are
equivalent:
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1. The PCA of YDT on (Rm, 〈∗, ∗〉u),

DY[w] = DȲ +
∑
i∈I

πi[w] gi.

2. The PCA of Y on (Rm, 〈∗, ∗〉K),

Y[w] = Ȳ +
∑
i∈I

πi[w] D−1gi,

where K = DT D ∈ Mm(R) and the inner product 〈∗, ∗〉K is defined by

〈α,β〉K = αT Kβ, ∀α, β ∈ Rm.

3. The FPCA of X on (E, 〈∗, ∗〉K),

Xw = �(Ȳ)+
∑
i∈I

πi[w] �
(

D−1 gi

)
,

where the inner product is defined by

〈f , h〉K = �f T K �h , ∀ f = eT�f , h = eT�h ∈ E.

4. The FPCA of L(X) on (E, 〈∗, ∗〉E),

LXw = L�(Ȳ)+
∑
i∈I

πi[w] L�(D−1 gi),

where L : E 
−→ E is one of the operators defined by

L(f ) = eT Q−1 R D �f , ∀ f = eT�f ∈ E, (11)

for any orthogonal m × m-matrix R, and Q is the matrix in Proposition 1.

Proof This result is an application of Proposition 1.

• Equivalence between statements (1) and (2).
This equivalence is immediate by considering F = D, H = Rm and G =
(Rm, 〈∗, ∗〉u) in Proposition 1, where the induced inner product in H is then
defined by 〈α,β〉K = 〈Dα, Dβ〉u = αT DT Dβ = αT Kβ, ∀α, β ∈ Rm.

• Equivalence between statements (2) and (3).
Let us consider the operator �−1 : E 
−→ (Rm, 〈∗, ∗〉K) [see Equation (5)],
whose induced inner product in E is given by

〈 f , h〉K =
〈
�−1( f ),�−1(h)

〉
K

= �f T K �h , ∀ f = eT�f , h = eT�h ∈ E.
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Proposition 1 establishes the equivalence between the two considered PCA’s
by considering F = �−1, H = (E, 〈∗, ∗〉K) and G = (Rm, 〈∗, ∗〉K).

• Equivalence between statements (3) and (4).
Now the idea consists of finding a linear operator L : (E, 〈∗, ∗〉K) 
−→
(E, 〈∗, ∗〉E) such that 〈f , h〉K = 〈L(f ), L(h)〉E, ∀ f , h ∈ E. Once this operator
L was found, Proposition 1 assures the equivalence between both considered
PCA’s.

As E is a m-dimensional space, there exists a matrix B ∈ Mm(R) such that
L(f ) = eT B �f , ∀ f = eT �f ∈ E. Indeed, B will verify that

〈L(f ), L(h)〉E = �f T BT 〈e eT〉E B �h = �f T BT P B �h
= �f T K �h , ∀ f = eT �f , h = eT �h ∈ E .

It follows from Proposition 2 that B verifies that

K = BT P B = (Q B)T (Q B) .

As K = DT D, we can consider that Q B = R D, for any orthogonal matrix R.
Therefore, it is concluded that B = Q−1 R D. ��

Among other consequences, Proposition 3 establishes that the operator L
is not unique. In fact, an infinite set of operators verifying Statement (4) in
Proposition 3 could be considered. However, such operators have a common
behaviour such as we will see.

Let {vk}m
k=1 ⊂ E be the basis of E defined by vT = (v1, . . . , vm) = eT Q−1.

This new basis is orthonormal in (E, 〈∗, ∗〉E), because of

〈v vT〉E = (QT)−1 〈e eT〉E Q−1 = (QT)−1 P Q−1 = Im.

This means that the term eT Q−1 R = vTR in Equation (11) can be interpreted as
the expression of any orthonormal basis of (E, 〈∗, ∗〉E). Therefore, any operator
L verifying Statement (4) in Proposition 3 is given by L(f ) = Lu(f ) = uT D �f ,
∀ f = eT�f ∈ E, for any orthonormal basis u of (E, 〈∗, ∗〉E).

5 Application with data

To illustrate the theoretic results derived in this paper, they will be applied on
the functional data accounting the accumulated number of university profes-
sors nominated in Spain during 1992, for a random sample of twenty Spanish
universities. The number of new professors was drawn day by day from the
BOE (the official Spanish State gazette), for each university. Let Nw(t) be the
number of professors nominated in university w until day t over 1992. Each data
function Nw is thus piecewise constant on random intervals, with limits defined
by the days which new professors are nominated in.
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Case I: PCA with the usual geometry

The functional PCA of N , with respect to the usual geometry of L2 (T ), is given
from the solutions of Equation (2). An efficient procedure to solve such an
eigenequation is provided by the orthogonal projection method (OPM) which
is proposed in Aguilera et al. (1995). As the OPM is suitable when we have
information about the nature of the sample paths, as is our case, a functional
space with mimic mimic the characteristics of our functional data is the space Em
(m = 12) of piecewise constant functions over subintervals of a given partition

m, which has been previously chosen in the observation interval T = (0, 366].
In our study, the year 1992 was divided by natural months, i.e., the knots of
m
are a0 = 0, a1 = 31, a2 = 60, a3 = 91, a4 = 121, a5 = 152, a6 = 182, a7 = 213,
a8 = 244, a9 = 274, a10 = 305, a11 = 335, a12 = 366.

Let us consider the orthonormal basis of (Em, 〈∗, ∗〉L2(T )) defined as ek(t) =
α

−1/2
k Ik(t), ∀ t ∈ [0, 366], where αk = ak − ak−1 and Ik is the indicator function

of the interval (ak−1, ak], ∀ k = 1, . . . , m. The projected functions can then be
represented as

Xw(t) = Pm Nw(t) =
m∑

k=1

Yk[w] ek(t) =
m∑

k=1

Mk[w] Ik(t), ∀ (w, t) ∈ �× T ,

where

Yk[w] =
366∫

0

Nw(t) ek(t)dt = √
αk Mk[w], ∀ k = 1, . . . , m,

and Mk[w] = α−1
k

∫ ak
ak−1

Nw(t)dt, which is interpreted as the mean of the
monthly accumulated number of professors for each university w. Let us con-

sider the matrices Y =
[

Y1
... . . .

...Ym

]
and M =

[
M1

... . . .
...Mm

]
. In this frame-

work, the OPM consists of approximating the PCA of N by the PCA of
X = Pm N . Further, Proposition 2 establishes that the functional PCA of X

can be derived from the multivariate PCA of Y = [Y1
... . . .

...Ym] with respect to
the usual inner product in Rm. Indeed their corresponding PCA expansions are
given by Xw = µ + ∑m

l=1 ψl[w]�(ul) and Y[w] = Ȳ + ∑m
l=1 ψl[w] ul, where

µ = X.
The principal values and percentages of variance explained by the p.c.’s of

the aforementioned functional PCA appear in Table 1. The first p.c. explains
more than a 96% of the total variability. Aguilera et al. (1996b) have shown that
the error committed by reconstructing the data functions with only the first p.c.
is not too small. In addition, such an error is drastically reduced by introducing
in the model noisy p.c.’s (associated to the smallest variances). Therefore, the
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Table 1 Principal values of the projected process and their percentages of explained variance in
the following cases: I [usual geometry in L2 (0, 366)], II (the geometry induced by standardization
of the coordinates), III (the geometry induced by standardization of the projected process)

p.c. Case I Case II Case III

Principal Expl. Principal Expl. Principal Expl.
values var. values var. values var.

1 199408.796 96.142 9.29470 77.4558 283.88157 77.5633
2 5439.012 2.622 2.37300 19.7750 71.93605 19.6547
3 1920.881 0.926 0.20808 1.7340 6.39434 1.7471
4 403.674 0.195 0.08694 0.7245 2.65513 0.7254
5 149.870 0.072 0.01926 0.1605 0.59296 0.1620
6 40.641 0.020 0.01292 0.1077 0.38381 0.1049
7 23.759 0.011 0.00200 0.0167 0.06148 0.0168
8 12.038 0.006 0.00147 0.0123 0.04468 0.0122
9 5.438 0.003 0.00083 0.0070 0.02540 0.0070
10 3.185 0.002 0.00059 0.0049 0.01820 0.0050
11 2.383 0.001 0.00015 0.0013 0.00468 0.0013
12 1.237 0.001 0.00006 0.0005 0.00172 0.0005

Total variance Total variance Total variance

207410.913 12 366

so obtained PCA is considered trivial and thus a new functional PCA decom-
position could be searched from the coordinate matrix Y.

Case II: PCA with the geometry induced by standardization of its coordinates

In multivariate analysis it is usual the data standardization to solve the problem
of trivial PCA. Taking into account Proposition 2, the PCA of the standardiza-
tion of coordinates Y with respect to the usual geometry in Rm can be carried
out, i.e., the multivariate PCA of YDT

1 with respect to (Rm, 〈∗, ∗〉u), where

D1 = diag
(
σ−1

Y1
, . . . , σ−1

Ym

)
.

Proposition 3 establishes that such a PCA is equivalent to the functional PCA
of L1X with respect to the usual geometry in L2 (T ), where the transformed
data curves are given by

L1Xw = eT D1 Y[w] =
m∑

k=1

Yk[w]
σYk

ek =
m∑

k=1

α
−1/2
k

Mk[w]
σMk

Ik.

The variances explained by the so obtained p.c.’s appear in Table 1. Let us
observe the reduction of the variance explained by the first p.c. in comparison
with Case I (see Fig. 1).
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Fig. 1 Distribution of variances explained by the p.c.’s for the three considered PCA’s

Case III: PCA with the geometry induced by its own standardization

The standardization of the vector of coordinates of the projected functional
data, X, is not necessarily related with direct standardization of such functional
data. In fact, the functions of X could not be necessarily contained in Em. How-
ever, in the particular case of piecewise constant functions on fixed intervals,
there exists a certain relation that will be now presented.

In our example, the standard deviation function of X is given by

σX(t) =
m∑

k=1

σYk ek(t) =
m∑

k=1

σMk Ik(t), ∀ t ∈ T .

It follows that the standardized functional data is obtained by

Xw(t)
σX(t)

=
m∑

k=1

Mk[w]
σMk

Ik(t) =
m∑

k=1

√
αk

Yk[w]
σYk

ek(t).
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Fig. 2 First two principal factors obtained with respect to the geometry a of L2 (0, 366), b induced
by standardization of the coordinates. For the geometry induced by standardization of the projected
process, the principal factors are almost proportional to the ones obtained in b

Let us denote by L2(X) the standardized projection, L2(X)(w) = eT D2 Y[w],
where

D2 = diag
(√

α1

σY1

, . . . ,
√
αm

σYm

)
= diag

(
1
σM1

, . . . ,
1
σMm

)
.

Proposition 3 assures that the PCA of L2(X) with respect to the usual geome-
try in L2 (T ) is equivalent to classic multivariate PCA of YDT

2 with respect to
(Rm, 〈∗, ∗〉u).

The variances explained by the p.c.’s associated with this PCA appear again
in Table 1. Notice that they are very similar to the ones obtained in the Case
II (see Fig. 1). It is due to the matrices D1 and D2 are almost proportional. In
fact, the amplitudes of the months have very similar values {29, 30, 31}. As the
two first principal factors for Cases II and III are almost proportional, the ones
for Case III have not been considered in Fig. 2.

Roughly speaking, in both Cases II and III the coordinates are transformed by
a diagonal matrix D = diag(w1, . . . , wm), where wk stands for the weight of coor-
dinates for the basis function ek. Proposition 3 specifies the induced inner prod-
uct in Em for D, which is now given by 〈f , h〉K = �f T D2 �h = ∫

w2(s) f (s) g(s)ds,
∀ f = eT�f , h = eT�h ∈ E, where w(s) = ∑m

k=1 wkIk(s). Moreover, the idea
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underlying this new inner product is found in the restriction imposed for each
p.f.’s, i.e., ‖fi‖2

K = ∑m
k=1 w2

kfk,i = 1, ∀ i, where fi = ∑m
k=1 fk,iek. As we have

considered in both cases that wk ∝ 1/σYk , we can say that the modes of varia-
tions given by the p.f.’s are focused on the intervals where σYk is high; in fact, if
σYk ≈ 0, then fk,i ≈ 0.

6 Concluding remarks

In this paper it has been shown how PCA of functional data arising in a finite-
dimensional space can take advantage of the multivariate PCA procedures.
This result is very useful to simplify computational aspects in practice, because,
in almost all applications, the approximation of functional PCA from discrete-
time observations implies the approximation of data functions on suitable finite-
dimensional functional spaces. By the way, we have also proved that performing
multivariate PCA of a transformation of the coordinate vectors is equivalent to
a certain functional PCA of the original functional data.
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