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points (functional data). In this study, we propose a functional logistic regression model
with the aim of predicting the probability of lupus flare (binary response variable) from a
functional predictor variable (stress level). This method differs from the classical approach,
in which longitudinal data are considered as observations of different correlated variables.
The estimation of this functional model may be inaccurate due to multicollinearity, and
so a principal component based solution is proposed. In addition, a new interpretation
is made of the parameter function of the model, which enables the relationship between
the response and the predictor variables to be evaluated. Finally, the results provided by
different logit approaches (functional and longitudinal) are compared, using a sample of
Lupus patients.

Available online 6 July 2008

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Systemic lupus erythematosus (SLE) is a chronic disease that affects the autoimmune system and is characterized by
spontaneous exacerbations, or flares, that markedly decrease a patient’s quality of life and can sometimes cause death.
The diagnosis of flares is based on the presence of certain clinical characteristics, some of which can only be assessed by
performing a blood test (see Petri et al. (1991)). A functional model for explaining flare dynamics based on differential
equations has recently been developed (Ramsay et al., 2007). The association between the time evolution of stress and
flares in SLE patients has been studied by many authors (see for example Pawlak et al. (2003)). It would be very helpful to
control flares before they occur, and so in this paper a methodology is proposed that may help predict the probability of a
flare some time before it occurs, by controlling the daily stress level suffered by the patient.

Functional models describe practical situations in which the data involved are sample curves that are observed only at a
finite set of time points. Examples of functional data analysis (FDA) methodologies include functional principal component
analysis (FPCA), which is used to reduce the dimension in a stochastic process, functional linear regression (used to model
a scalar response variable from a functional covariate) and functional canonical correlation analysis, which is applied
to investigate different modes of variability in two sets of curves. A very good review of functional methods and their
applications in a diverse range of subject areas can be consulted in Ramsay and Silverman (2002, 2005) and Ferraty and
Vieu (2006). With respect to functional regression models, different methods, in which the response and predictor variables
are functional, have been proposed (Zeger and Diggle, 1994; Yao et al., 2005), while studies have also been made of
functional generalized linear models with different types of response and link functions when only the predictor is functional
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(Ratcliffe et al., 2002; Escabias et al., 2005; James, 2002). On the other hand, principal component prediction (PCP) models,
used to forecast a functional variable in a future period from its recent past, have been studied in depth (Valderrama
et al., 2000). Several reviews of the current state of development of statistical methods for analyzing functional data
and new trends in this active field of statistical research have recently been published in special issues on FDA in
leading statistical journals. See, for example, Davidian et al. (2004) in the special issue Emerging Issues in Longitudinal and
Functional Data Analysis of the journal Statistica Sinica, (Valderrama, 2007) in Modelling Functional Data in Practice in the
journal Computational Statistics and (Gonzalez-Manteiga and View, 2007) in Statistics for Functional Data in the journal
Computational Statistics and Data Analysis.

In order to predict flares in SLE patients from the historical evolution of their daily stress level, the functional logistic
regression (FLR) model is proposed. This model has been designed to predict a time-independent binary response variable
(occurrence of a flare) from the time evolution of a functional predictor variable (the daily stress level). The FLR model has
been studied in several recent papers (James, 2002; Ratcliffe et al., 2002; Escabias et al., 2004, 2005; Miiller and StadtMiiller,
2005).

Time-dependent data involved in functional models are well known in several fields, such as in medicine, as longitudinal
data. These data consist of observations carried out on a single variable repeatedly of the same subject at different time
points. Longitudinal data have previously been used to predict a response variable by considering them as observations
of different correlated variables and by including the dependence framework in a classical multiple regression model
(see Diggle et al. (2002) for a good review of longitudinal data analysis and (Liang and Zeger, 1986) for the particular case
of generalized linear models with longitudinal data). As a result of the considerable development of functional models, a
different point of view can now be used to predict a response from longitudinal data by considering them as observations of
sample curves. A comparison of the two perspectives and methods in functional data analysis and longitudinal data analysis
is provided in the article by Rice (2004). In the present paper, these two points of view (longitudinal and functional data
analysis) are compared to predict the risk of flares in SLE patients by using both multiple and functional logistic regression
approaches.

In order to introduce longitudinal data into a functional model, the true functional form of the underlying curves has to be
reconstructed. The most commonly used method consists of considering that the curves belong to a finite space generated
by a basis of functions. Many types of basis have been described in the literature, depending on the nature of the sample
paths. If the curves are expected to be smooth with a sinusoidal aspect, the basis most often used is that of trigonometric
functions (Aguilera et al., 1995), while B-spline functions (Escabias et al., 2004) or wavelet functions (Ocafina et al., 1998) are
employed to explain the local behaviour of sample curves. Monotone piecewise cubic interpolation of the sample paths has
been proposed to approximate the mean of a doubly stochastic Poisson process (Bouzas et al., 2006). Diverse methods have
been proposed for computing the basis coefficients of sample curves from their discrete time observations (longitudinal
data). Unobserved basis coefficients estimated by using the EM algorithm have been considered by James (2002). Quasi-
natural cubic spline interpolation on longitudinal data observed without error has been developed by Escabias et al. (2005).
Many of the papers on FDA assume that the functional variable is observed at the same time points on each subject and that
the measurements grid is sufficiently fine for this purpose. Functional nonparametric statistical methods based on functional
local weighting kernel techniques could be used to smooth sample curves from this type of discretized data (Ferraty and
Vieu, 2006). This kind of balanced data set is not commonly found, however, due to the absence of certain data or the
impossibility of observing a variable on a certain subject at a specific time point. In order to approximate the basis coefficients
when longitudinal data are missing (SLE, for example), the use of least squares approximation for each individual functional
observation (stress level) is now proposed.

Most papers on FLR models focus on predicting the response variable; for example, the probability of a high risk birth
outcome is predicted from periodically stimulated foetal heart rate tracings (Ratcliffe et al., 2002). In addition to estimating
the probability of lupus flares, there is special interest in interpreting the relationship between lupus flares and stress
levels, in terms of obtaining an accurate estimation of the parameter function of a FLR model. A new method to interpret
the parameter function is now proposed, based on evaluating the change in the odds of success (lupus flare) for a general
functional increment of the functional predictor (stress level) in the observation interval.

The approximated solution most commonly used for estimating a functional model consists in transforming it into a
multiple model after approximating sample paths and parameter functions in terms of a set of basic functions. In the case of
functional logistic regression, this model fits well and provides good predictions but inaccurate estimations of the parameter
function because of the high correlation between longitudinal observations (multicollinearity) (Escabias et al., 2004).
Different approaches have been developed to solve this problem; principal component regression and principal covariate
regression are often employed to forecast a response variable from highly correlated predictors (see Heij et al. (2007) for
a comparison of the forecast accuracy of these two methods). In a recent paper, a functional PLS logit regression (FPLSLR)
model that can be seen as a generalization of the functional PLS regression model (proposed by Preda and Saporta (2005))
was proposed (Escabias et al., 2007). On the basis of several simulation studies, it has been concluded that the accuracy of
the estimations provided by FPLSLR is similar to that of the functional principal component logit regression (FPCLR) model
developed by Escabias et al. (2004), and better than that of alternative discrimination models such as the classification
and regression tree procedure (CART), functional discriminant analysis (FDA), multivariate partial least-squares regression
(MPLSR), penalized discriminant analysis (PDA) and nonparametric curve discrimination (NPCD) (see Ferraty and Vieu
(2003) for a detailed explanation).
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A functional PCA based approach is proposed to overcome this problem in the case of SLE data. The model is based on using
as covariates of the logit model a reduced set of principal components associated to the design matrix of the multiple model
obtained after basis expansion of the sample curves and the parameter function. An alternative nonparametric estimation
procedure of this functional logit model could be developed by applying nonparametric smoothing procedures to estimate
the mean and covariance functions of sample curves, and then the corresponding principal components (Rice and Silverman,
1991). In this context, generalized functional linear models that include functional binary regression models for longitudinal
data have recently been generalized to the extreme case of sparse longitudinal data (few irregularly spaced observations),
by using a new nonparametric FPCA estimation procedure (Yao et al., 2005; Miiller, 2005).

This article is organized in four sections. The first is an introduction describing the objectives of the paper and the
present state of art concerning the FLR model. A classical multiple logistic regression treatment of longitudinal data and
a principal component (PC) based solution to solve the multicollinearity problem is developed in Section 2. An estimation
of the FLR model from missing longitudinal data, a PC based solution to the multicollinearity problem and a new method
for interpreting the association between response and predictor variables are introduced in Section 3. These methodologies
are then applied in Section 4 to estimate the probability of lupus flare and to interpret its relationship with stress level.

2. Multiple logistic regression for longitudinal data

The logistic regression model is the most commonly used method to explain a binary response variable from a set of
related covariates. In order to use longitudinal data to predict a binary response Y by the multiple logistic regression model,
it is assumed that the observations of a functional variable, X(t), at different time points, 4, ..., t,, are observations of
different variables, X(t1), ..., X(t,) (Diggle et al., 2002). One of the main disadvantages of this multiple approach with
respect to the functional one is that the functional variable has to be observed at the same time points for each individual,
and so incomplete variables (missing data) are usually removed.

Let {(x,»l, X2y - - o x,-p)/ = (xi (t), X (t2) , ..., x; (tp))/ i=1,..., n} be the observations at p different time points of a
sample of a functional variable, and let (y1, y3, . . ., ¥»)’ be the vector of observations of an associated binary random variable.
Then the multiple logistic regression model is defined as y; = m; + ¢;, where the probability of success is modelled as

p

exp o + D xiB;

j=1

m=P[Y = 1|(xi1, X, . .., Xip) | = ; , (1)
1+ exp {Ol + ZX,],B]}
j=1

&; are centered independent random errors with unequal variances 7; (1 — 7;) and «, B4, ..., B, are the parameters to be
estimated. This model is usually expressed in matrix linear form in terms of the logit transformations l; = In [7;/ (1 — 71;)]
asL = 1a+XB, withL = (I4, ..., I;)" being the vector of logit transformations, 1 = (1, ..., 1)’ the n-length vector of ones,
X the n x p matrix that has as rows each longitudinal sample observation and 8 = (,31, ce ,BP)/ the vector of parameters.

In the longitudinal case, the B; parameter is associated to the variable X (t;) (jth observation of the longitudinal variable)
and can be interpreted as the additive change produced in the logit transformation when the longitudinal variable is
increased by one unit in ; and remains constant in the rest (see Hosmer and Lemeshow (2000)). Equivalently, exp { ,3,-}
is the multiplicative change in the odds of success (Y = 1) produced when an additive change of one unit is produced in the
longitudinal variable at the time ¢;.

The estimation of the parameters of this model is not very accurate when there is strong dependence between the
explicative variables (multicollinearity) (Ryan, 1997). This fact impedes the correct interpretation of such parameters in
terms of odds ratios. Nevertheless, the model may fit well if accurate goodness of fit measures are applied. The usual
goodness of fit measures for logistic regression are the area under the ROC curve and correct classification rates (CCR) for
the response. A CCR is defined as the rate of correctly classified individuals taking into account that individuals are correctly
classified when their estimated probabilities agree with their response observations, that is, after setting a cut-off point,
individuals are classified as Y = 1 if their estimated probabilities are greater than the cut-off point and Y = 0 otherwise. On
the other hand, it is known that standard goodness-of-fit tests (residual deviance and Pearson chi-square statistics) behave
unsatisfactorily when the data contain only a small number of observations for each pattern of covariate values (extreme
sparseness). This is the case of the SLE data analyzed in this paper, where there is only one observation for each different
stress curve. The Hosmer-Lemeshow (H&L) test is frequently recommended to solve this problem. This is a chi-squared
goodness of fit test that is computed from a new grouping of the observations, to avoid sparseness, and which depends on the
estimated probabilities being usually grouped in deciles. See Hosmer and Lemeshow (2000) for details about the definitions
of such goodness of fit statistics. Alternative non-standard tests that also perform well with sparse data (Farrington test and
the information matrix test) have been compared with the (H&L) test on simulated data (Kuss, 2002).

When the covariates of the logit model come from the observations of a longitudinal variable at different time points,
there is necessarily multicollinearity between the explicative variables being considered. Different solutions have been
proposed to avoid problems related to multicollinearity, and the dependence framework between covariates in the model
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could be involved in this (Liang and Zeger, 1986). Unlike these solutions, the use of a reduced set of principal components
(PCs) of the longitudinal data as covariates of the logistic model is considered in this paper. Thus, the original parameters
are reconstructed in terms of those estimated by the resulting principal component model.

2.1. Principal component estimation

The principal components (PCs) of a set of variables are defined as the centred uncorrelated variables with maximum
variance, obtained as linear spans of the original variables whose coefficients are the eigenvectors of the sample covariance
matrix. Let Z = XV be the matrix of PCs of the X matrix with V being the matrix of eigenvectors of the covariance matrix
of X. The logistic model can be expressed in matrix form in terms of all PCs as L = la + X = la + Zy, where
B = Vy. The principal component logistic regression (PCLR) model is then defined in terms of a compact set of s PCs
by Ly = lag) + Zs)Yis), where Z) is the matrix whose columns are s selected PCs and Vg is its associated matrix of
eigenvectors. An estimation of the original 8 parameters can then be obtained through the estimation of this model as
Bs) = Vis)7s)- This estimation is more accurate than that provided by the logit model without PCs (Aguilera et al., 2006).

Different criteria have been employed to select the PCs to be retained in principal component regression. The most
commonly used method consists in discarding the PCs with the lowest variances (eigenvalues of the sample covariance
matrix). However, in many cases the last PCs may be more explicative of the response than the first ones. A criterion
based on the partial correlation coefficient between the PCs and the explicative variables was proposed in Foucart (2000).
The inclusion of variables in a principal component linear regression model in the order given by a stepwise method was
considered by Aucott et al. (2000). In addition, the number of PCs to be retained in the model is an important aspect to take
into account.

It has been shown by simulation that including PCs in the PCLR model in the order given by a stepwise method based
on conditional likelihood ratio tests provides more accurate estimated parameters than in the order given by the explained
variance (Aguilera et al., 2006). Moreover, it has also been shown that after adding the next PC (in the stepwise order)
to the model that provided the best possible estimation of the parameters (minimum mean squared error), the estimated
variance of the estimated parameters increases very noticeably. Therefore, in order to obtain the most accurate estimation
of the § parameters, PCs are included in the logistic model according to their statistical significance given by a stepwise
method based on the conditional likelihood ratio test, and the best PCLR model is chosen as the one with a number of PCs

previous to a significant increase in the estimated variance of the estimated parameters given by Var) = Var [,8(5)] =
-1

Vis) (ng) W(S)Z(S)> V(,,, with W, being the diagonal matrix of elements i (1 — 7)) , and 7 being the probabilities

estimated by the corresponding PCLR model.

3. Functional logistic regression

This section presents the theoretical tools of the functional point of view for longitudinal data, and provides an
introduction to the FLR model, a PC based solution to the multicollinearity problem and a new procedure for interpreting
the change in the odds of success from the estimated parameter function. The main advantage of this functional approach
is that it takes into account the distances between the observed data, and so the functional predictor can be observed at
different and unequally spaced time points for each sample individual. The first step is to summarize different procedures
for approximating the true functional form of observations from longitudinal data.

3.1. Reconstructing the functional form of missing longitudinal data

Let {1, Xi2, ..., Xim;» 1 = 1,..., n} be observations of a single variable taken repeatedly on the ith subject of a size n
sample at m; time points (longitudinal data). These are seen by FDA methods as observations of a set of n curves at different
time points. That is, for the ith subject x; =~ x; (ty), (k = 1, ..., m;), with {x;(t), t € T} being its associated sample curve.
As it is impossible to observe each curve continuously in time, it is necessary to reconstruct its true functional form from
the corresponding discrete-time observations.

In most studies published on this question, it is assumed that sample curves belong to a finite dimension space
generated by a basis of functions {¢1(t), e d)p(t)}, such that each curve can be expressed in terms of the basis as
xi(6) = 3 ayy(t).

When discrete-time observations are assumed to be measured without error, xj; = X; (ti), an interpolation method to
estimate the basis coefficients can be used. This is the case of quasi-natural cubic spline interpolation used by Escabias et al.
(2005) for estimating the parameter function of a functional logistic model. On the other hand, if a degree of error is assumed
to exist in the observations x;, = x; (ti) +&ix, least squares approximation is usually used for estimating the basis coefficients
for a specific curve as a; = (ay1, ..., aip)/ = (P|®)) ! @/x;, with &; = (¢ (ti)) and x; = (Xi1, Xig, - - - x,-ml.)/ (Escabias
etal., 2004).

Note that the functional variable could be recorded at different time points for each individual (missing longitudinal
data). In the proposed approach, the basis coefficients are estimated by using least squares approximation on the same basis

m;xXp
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for each patient from the days he/she answers the stress test. In addition, two different types of basis, cubic B-splines and
Fourier basis, are used.

3.2. Principal component estimation

Firstly, the FLR model is formulated as a generalization of the logistic regression model and estimated after considering
the sample curves and parameter function expressed in terms of a basis. Secondly, an accurate estimation of the parameter
function is obtained by using a functional principal component logistic regression (FPCLR) model.

Let x1(t), ..., x,(t) be a random sample of curves of a functional variable {X(t) : t € T}, and let yq, y»,...,y, be
the random observations of the binary response variable Y associated with the curves. Then, the FLR model is given by
yi=mi+e¢& (i=1,...,n)withg; being zero mean independent random errors with variance 7;(1— 7;), and the probability

of response Y = 1 for a specific curve x;(t) modelled as
exp {a + [; xi(t)B(t)dt}
1+exp{a+ [ x(0)B®)dt}

with o being a real parameter and S8(t) a parameter function that has to be estimated. Equivalently, in terms of the logit
transformations, ; = In[r;/ (1 — 7;)], the model can be seen as a functional generalized linear model (James, 2002) given

by

P{Y = 1IX(t) = xi(t)} = ;i =

li =05+/X,«(t),3(t)dt, i=1,...,n (2)
T

As in the linear case (see Ramsay and Silverman (2005)) it is impossible to obtain a direct estimation of model (2).
Therefore, what is usually done is to fit a related multiple model derived from the reconstruction of the sample curves
from the longitudinal data, making the assumption that the parameter function and the sample curves belong to the same
space generated by a basis {qbl ®,..., gbp(t)} . Then, they can be expressed as

B(t) = fﬂmk(t), xi(t) = fayasj(t), i=1,....n, (3)
k=1 j=1
so that the functional model given by Eq. (2) is equivalent to the following multiple logit model given in matrix form by
L=1a +A¥B, (4)
withL = (I, ..., ;)" , A the matrix that has the basis coefficients of the sample curves as rows, ¥ = (wjk)pxp the one that

has the [?-usual inner products between the basis functions as entries, (ij = fT ¢j(t)¢k(t)dt), and 8 = (B1,...Bp) the
vector of the parameter function basis coefficients.

Observe that the parameter function (t) could belong to a different space from that of the sample functions spanned
by a different basis {¢;(t), ..., ¢n (t)}. In this case B(t) = ka=1 Brek (£), so that in Eq. (4) ¥ would be a p x m matrix
whose entries are the [?-usual inner products between the functions of the two different bases, (llfjk = fT ¢j(t)(pk(t)dt),
and B = (B1, ... Bm)".

The last multiple model has a high degree of multicollinearity between the columns of its design matrix (see Escabias
et al. (2004)). As stated above, this dependence provides inaccurate estimations of the parameters of the multiple model
and hence of the parameter function too. Estimation of these parameters is improved by using a limited set of PCs of the
design matrix X = Aw¥ (FPCLR model).

It can be shown that multiple PCA of A¥ is equivalent to functional PCA of the sample curves with respect to an inner
product different from the usual one in L>(T) (Ocafina et al., 2007). A detailed study of the equivalences between FPCA
with a given inner product and FPCA with a given well-suited inner product can be found in Ocafina et al. (1999). We
now obtain the following PC decomposition of the original sample curves x;(t) = X(t) + Zf:] zifr (t), where z, are
the PCs of the A¥ matrix (columns of Z matrix) and f; (t) are the eigenfunctions given in terms of the basis functions as
i) = Y7 firdi(t), (r = 1,...,p), where the basis coefficients are obtained in matrix form as F = (j}r)pxp =yly
from the eigenvector matrix V of the sample covariance matrix of AW.

Finally, let E(s) = (,E (s)s s Ep(s))/ be the most accurate estimation of the parameters of the multiple model (4) obtained
from the PCLR model by following the PCs selection criterion described in the previous section, based on the stepwise
method. Then, the most accurate estimation of the parameter function is B (t) = Zi:l Brs)Pr(t).

3.3. Interpreting the parameter function

Interpretation of the parameter function is important because it may help to assess the relationship between the response
and the functional predictor variable. Several attempts have recently been made to interpret the parameter function of
the FLR model. An interpretation of the parameter function asserting that high absolute values of the parameter function
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indicate times with a large influence on the response whereas small values represent times with little influence has been
given in James (2002).

An interpretation of the parameter function §(t) is now proposed in terms of odds ratios from which the change in the
odds of flares in SLE patients can be assessed.

Let If be the logit transformation corresponding to a curve xj (t) obtained by increasing the curve x;(t) in accordance with
a function g(t) in an interval of amplitude h (h > 0), denoted by [to, to + h]

“(1) = {X,'(t) T+ g(t) ift € [to, to + h]
N 10 ift & [to, to + h].

Then, the difference between the two logits is

to+h
I —1 :/ B(t)g(t)dt. (5)

to

So, the integral of the parameter function multiplied by g(t) is the change in the logit transformation provided by an
increment of the curve x;(t) according to g(t) in the interval [ty, to + h] . The difference between the logit transformations
is the logarithm of the odds ratio

*
i
1-n

0 (Axi(t) = g(t) : t € [to, to + h]) = —,

b3

1—m;

so that, the exponential of the integral (5) is the multiplicative change in the odds of success (Y = 1) provided by a change
of the curve x;(t) according to g(t) in the cited interval.

A particular case of this situation is that of a constant increment (g(t) = K > 0) in a sample curve at a specific
interval, such that the change in the odds of success is the integral of the parameter function multiplied by K. James (2002)
shows that each parameter of the multiple linear model in terms of all functional PCs is the additive change obtained in the
response variable when a functional observation changes according to the corresponding eigenfunction. In fact, from the PC
decomposition of the original sample curves, it can be deduced that if the rth PC is increased by one unit, then the functional
observation is increased according to the associated rth eigenfunction f; (t). In the logistic model, this interpretation can be
seen as a particular case of the one given by (5) when the pattern of variation is given by an eigenfunction across the entire
domain, that is, g(t) = f;(t) t € T.Then,

)4 )4
/ F®Bnydr = f (Zm(t)) (Z ﬂkqsk(t)) dt =FWp =V/B =y,
T T \j=1 k=1

with F/ and V; being the rth columns of matrices F and V, respectively. Then the integral of the parameter function multiplied
by the rth eigenfunction is the rth parameter of the model in terms of all PCs, and its exponential represents the change
in the odds of response Y = 1 for an individual whose sample curve changes according to the rth eigenfunction. In the
particular case of the FPCLR model in terms of s PCs, exp(yys)) is the multiplicative change in the odds of success for an
increment of the functional variable according to its associated eigenfunction f; (t).

4. Modelling lupus flares from daily stress level

This section discusses the performance of different logistic models in predicting the risk of flares in SLE patients from
their daily stress level. First, a classical multiple logistic regression model with longitudinal data is examined, followed by
various functional approaches, whose results are compared and interpreted.

With the aim of predicting the risk of flares in lupus patients, analysis was made of real data provided by the Autoimmune
Diseases Section of the Internal Medicine Department of the Virgen de las Nieves hospital (Granada, Spain) in a highly
ambitious project to study many aspects related to lupus patients, one of which is stress. Of particular relevance to the
present study were 44 SLE patients, who were asked to respond to different stress tests over a period of 18 days. The stress
level was evaluated by carrying out different tests (the Self-Efficacy Scale of Sherer and Adams (1983), among others).
The responses were analyzed by a team of psychologists from the Department of Personality, Testing and Psychological
Treatment of the University of Granada, who estimated a daily stress level for each individual. After these 18 days, the
occurrence of flare was tested according to Petri et al. (1991), and two patients were found to have suffered a flare. This
ratio is in agreement with the established prevalence of flares in Lupus patients, i.e. 0.65 flares per year (see Petri et al.
(1991)). As a result, the observation of the binary response variable was given the value of one if a flare had taken place and
zero otherwise.
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Table 1
Parameters estimated by the multiple logit model (second column) and the PCLR model with the second PC as covariate (third column)
Param Bi Bay;
o —38.13 —3.92
B —5.17 —0.05
B 2.17 —0.03
B3 5.24 —0.03
Ba —1.23 —0.03
Bs —0.79 —0.02
Bs 5.62 0.004
B7 3.66 0.01
Bs —2.62 0.007
Bo —2.72 —0.02
Bio 4.60 —0.002
B11 4.40 0.009
B2 —-2.19 0.01
Bz —4.91 0.02
Bia —2.76 0.02
Bis —7.64 0.04
B 3.86 0.05
Table 2
Goodness of fit measures for different PCLR models (PCs entered by stepwise selection) and for the multiple logit model (with all the PCs)
s PCs CCR1 CCR2 Var G?(df) H&L(df) p
1 2 97.73 90.91 1.17E4-00 1.08E4-1(43) 7.44(8) 0.49
2 2,1 97.73 84.09 1.56E4-02 6.52E+0(42) 2.27(8) 0.97
3 2,1,13 100.00 100.00 3.73E+11 2.49E—9(41) 1.01E—10(1) 1.00
16 1,2,...,16 100.00 100.00 2.69E+10 4.63E—9(28) 7.88E—10(4) 1.00

Correct classification rates with 0.5 and the proportion of flares in the sample as cut-off points (CCR1, CCR2, respectively). Variances of estimated
parameters, G> and H&L statistics, degrees of freedom (df) and p-values (p).

4.1. The multiple approach

The first problem encountered in using the classical logistic regression model is that this model needs the stress level to
be observed at the same time points for all the 44 patients. This was not the case in the real data analyzed because several
patients did not provide observations on the third and twelfth days. These time observations were removed for all the 44
patients, and so 16 unevenly spaced measurements of the daily stress level were available for each patient before the blood
test.

First, a multiple logit model with 16 explicative variables was fitted (one for each day of observation) and its estimated
parameters obtained (second column of Table 1), together with the usual goodness of fit measures (last row of Table 2). The
logit model was a good choice for these data, as is clear from the usual H&L goodness-of-fit test (H&L = 7.88E—10 with
p-value 0.49) and CCR = 100%. Nevertheless, the variance of the estimated parameters was very high (2.69E+410), which
implies that this estimation was not very accurate.

Secondly, a PCLR model was fitted, to improve the estimation of the parameters of this logit model. The first PC of
the design matrix explained 42.4% of the total variability, and eleven PCs were needed to explain at least 90%. The PCs
were entered in the PCLR model in the order given by the stepwise method based on the conditional likelihood ratio
test. From Table 2 it can be seen that only the second PC was included in the optimum model because the following one
(the first PC) dramatically increased the estimated variance, which rose from 1.17 to 156. Therefore, the initial multiple
model with 16 covariates was reduced to a simple one in terms of the second PC. Moreover, this simple model fitted well
(CCR1 = 97.73%, CCR2 = 90.91%) and was a good choice for the data (H&L = 7.44 with p-value = 0.97). The 8 parameters
estimated by this model can also be seen in Table 1 (third column). The parameters estimated by the PCLR model with only
the second PC as covariate are very different from those estimated by the initial multiple model, which is equivalent to
a multiple model that has all the PCs as covariates. This is due to multicollinearity and the main consequence is that the
interpretation of the relationship between lupus flares and stress may be very different and even the complete opposite,
depending on the model used.

When a multiple model with longitudinal data is used, the exponential of each single parameter can be interpreted as
the multiplicative change in the odds of flare provided by a unit change in the stress level on a specific day. For example, if
the stress level increases by one unit two days before the blood test (see 15 and f(1y15 from Table 1), the odds of flare are
multiplied by e~7%* = 4.8E—4 if the multiple model with all the PCs is used (the probability of lupus flare decreases), and by
e%0%4 = 1.04if the model with only the second PC is used (the probability of flare increases). Nevertheless, this interpretation
is not very significant because the stress level usually changes over a period of time and not in a single day.
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The results obtained show the importance of accurately estimating the parameters of the logistic model in the presence of
multicollinearity. The use of PCs improves the estimation of the parameters of the multiple logistic model with longitudinal
data. Nevertheless, the use of a multiple model for longitudinal data made it necessary to remove some time observations
and to lose some information provided by them. There are many real situations in which the removal of data might mean
that few data are available with which to fit the model.

4.2. The functional approach

The first step taken was to obtain the functional form of each stress level sample curve by least squares approximation
from the longitudinal observations. Then, the FLR model was fitted on a different basis and the most frequently used
goodness of fit measures and the estimated parameter function obtained. These estimations were not very accurate due to
multicollinearity (moreover, the interpretations of the parameter function were inconsistent). Finally, a FPCLR model was
fitted to solve this problem and the best possible parameter function estimation obtained. The results with two different
bases of functions (Fourier and B-splines basis), the improvement in the estimation and the interpretation of the parameter
function can be seen below.

In relation to the basis considered, an important factor is the number p of basis functions to be used. According to the
literature, the most frequently used criterion for selecting the dimension of the Fourier basis in functional regression models
is that of cross-validation (Ratcliffe et al., 2002). In the present case, a heuristic criterion was assumed, consisting in choosing
the lowest number of basic functions that provided minimal changes in the most accurate estimated parameter function,
this was found to be p = 6. In the B-spline basis case, the number of basis functions depends on the number of definition
knots and their allocation, and the approach adopted was to make a heuristic selection among the observation knots given
by the knots (0, 3, 5, 6, 10, 12, 14, 17), which provided a basis of cubic B-spline functions of dimension 10. Many articles
have addressed the question of knot selection, for example Zhou and Shen (2001).

Some of the sample curves approximated by least squares with these two different bases, the curve of mean stress level
among observations, given by X(t) = n~' (}_I_, x;(t)) , for individuals with y = 0 and y = 1 can be seen in Fig. 1 together
with the observed daily stress level (points) on the individual curves. In all cases, the solid line curve corresponds to the curve
approximated by using cubic B-spline functions, while the broken line curve corresponds to the Fourier basis. This figure
shows that the cubic B-spline basis provided better approximations than the Fourier basis, especially at the boundaries of the
observation time period. In addition, the mean functions reveal a similar behaviour of the two bases, with little difference
at the boundaries. Therefore, it is concluded that in the case of stress level, where irregular trends are commonly found, it
is better to use the B-spline basis than the Fourier basis because cubic B-splines give a better approximation of the sample
curve local behaviour.

After approximating the sample curves, the functional logit model (2) was fitted by using the usual multiple
approximation given in Eq. (4). The parameter functions estimated with the two described bases are shown in Fig. 3. In
order to compare the multiple and functional models, the natural cubic spline interpolation of the estimated parameters
of the multiple approach was obtained (dotted line function). Clearly, there are large differences between the estimated
parameter functions provided by the three approaches. Although the functional models fitted well with high CCR and low
H&L statistics with both bases (see Table 3), the variances of the estimated parameter functions (Table 3) were extremely
large (6.12E+412 for the Fourier basis and 2.23E+12 for the cubic B-spline basis). This is indicative of inaccuracy in the
estimated parameter functions, which may be due to multicollinearity.

In order to improve these estimations, the FPCLR model was fitted. The first PC alone accounted for 63.17% of the total
variance with the Fourier basis and 94.76% with the cubic B-splines basis, while four PCs were needed to account for at
least 90% of the variability with the Fourier Basis. As stated in Section 2.1, on many occasions the most explicative principal
components may not be the best predictors for the response. This is one example, and when PCs are entered in the functional
model by a stepwise selection based on the conditional likelihood ratio test, the only significant PC for the response is the
third one, with each of the approximating bases. The percentage of variance accounted for by the third principal component
was 1.06% and 9.22% in the B-spline and Fourier basis cases, respectively. Fig. 2 illustrates the predictive ability, where the
S-shaped models with the 3rd PC (B-spline basis) suggests that it is a better predictor than the first PC in spite of its lower
explicative power. The corresponding curves for the Fourier basis case were very similar.

The FPCLR parameter function estimation, for both cases, is shown in Fig. 3. It can be seen that the estimated parameter
functions are very similar except at the beginning of the domain. However, the cubic interpolation with the parameters
estimated by the PCLR model is very different, revealing the improvement obtained in the estimation of the parameter
function of the FLR model by using a small number of PCs (in the present case, only the third PC) versus not using them,
and the improvement, moreover, of using the functional model against the classical multiple treatment of longitudinal data.
Note, too, that although the shape of the estimated function when PCs are not used in the Fourier basis case does not differ
greatly from that obtained by the optimum model with the third PC, the scale is very different, which causes large differences
in the integrals of the parameter functions and their interpretation in terms of odds ratios.

Table 3 and Fig. 4 show the goodness of fit measures for the FPCLR models. The model with only the 3rd PC provides high
CCR rates with both bases and similar estimated variances of the estimated parameter function, with 0.9892 and 1.074 for
the Fourier and B-spline bases, respectively, which differs greatly from the variances estimated without using PCs. The p-
values of the H&L test corroborate the goodness-of-fit of the models (p-value = 0.14 for the B-spline basis and p-value = 0.28
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Fig. 1. Least squares approximations of stress level curves obtained with Fourier (broken line) and B-spline (solid line) bases and the discrete-time
observations (points).

< | = °
[o¢] [=+]
S o]
9. o
o o
] o
[=] o
o (3]
= - o]
g- \1\_—;——____ L] o o g - - o o
-100 -50 0 50 100 150 -10 0 10 20 30 40
First PC Third PC

Fig. 2. Scatter plots of grouped data: average proportion of flares per class against class midpoints next to the fitted logit curve.

for the Fourier basis). The areas under ROC curves for the models with the 3rd PC as response and the models with all PCs
are shown in Fig. 4, together with the associated ROC curves. Thus, these models provide a good fit and may provide a more
accurate estimation of the parameter function.

In order to overcome the possible overestimate of the CCR as a measure of the goodness of fit, a bootstrap based study
was developed, by using 100 training samples and 100 test samples of the response and the 3rd functional PC with the
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Fig. 3. Estimated parameter functions for functional models with B-spline basis (solid line) and Fourier basis (broken line), and the interpolation of the
parameters estimated by the multiple model (dotted line).

Table 3

Goodness of fit measures for different FPCLR models: with all the PCs and with the 3rd

Model CCR1 CCR2 Var G2(df) p H&L(df) p
B-spline basis

All PCs 100.00 100.00 2.23E+12 3.12E—9(34) 1 3.13E—10(3) 1.00
With 3rd PC 97.73 84.09 1.074 10.39(42) 1 12.19(8) 0.14
Fourier basis

All PCs 100.00 100.00 6.12E4+012 4.28E—9(38) 1 1.3E—11(1) 1.00
With 3rd PC 97.73 93.18 0.9892 10.39(42) 1 9.747904(8) 0.28

Correct classification rates with 0.5 and the proportion of flares in the sample as cut-off points (CCR1, CCR2, respectively). Variances of estimated parameter
functions, G> and H&L statistics, degrees of freedom (df) and p-values (p).
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Table 4
Bootstrap study for the CCR

Training sample Test sample

Mean St. dev Mean St. dev
CCR1 97.54545 2.183272 96.97727 2.817141
CCR2 70.72727 30.51797 70.09091 29.46273

B-spline basis. The logit model was fitted with each training sample and the probabilities estimated over the test samples.
The mean and standard deviation of the CCRs (over 100 samples) in each type of sample and using two different cut-off
points, 0.5 (CCR1) and the proportion of flares in the sample (CCR2), are shown in Table 4. Although the CCR are somewhat
slower in the test sample, from using the proportion of flares in the sample, the results show the models to have a reasonably
good prediction ability.

Taking into account the similarity between the estimated parameter functions provided by the FPCLR model with the
two bases, henceforth the interpretation of the relationship between lupus flares and stress level is analyzed on the basis of
that given by B-splines.

First, looking at the shape of the estimated parameter function, it can be observed that people with a high stress level
around the maxima of that function (t = 6.6 and t = 17) have a higher probability of suffering a lupus flare, while an
absolute high level around the minima (t = 1.2 and t = 12) would reduce this probability. As a result, it can be concluded
that the consequences of high stress level on a lupus flare have a lag of approximately five days.

Thus, it is possible to derive an interpretation based on the estimated parameter 3 = 0.16 (with both bases) of the
optimum FPCLR model that has only the third PC as covariate. In this sense, if the stress level of an individual increases
according to the third eigenfunction, that is, when the third PC increases by one unit, the odds of lupus flare will be multiplied
by exp {73} = exp{0.16} = 1.17. This means that if the stress level increases by five times the third eigenfunction, then
the odds of lupus flares are doubled. However, if all functional PCs are used as in James (2002), the estimation of the third
parameter is ;3 = 15.61 for the Fourier basis and 33 = 3.20 for the B-spline basis. This means that if the stress level of an
individual changes according to the third eigenfunction, the odds of lupus flare are multiplied by exp {3.2} = 24.53 in the
B-spline case and by exp {15.6} = 6.0E+-6 in the Fourier case. These results contradict those provided by the FPCLR model
and would provide an erroneous interpretation because of the high dependence between longitudinal data.

5. Conclusions

This article examines a novel approach to functional logistic regression, the estimation of which constitutes a
considerable improvement on that provided by the classical multiple logistic regression model, for the longitudinal data
studied. This improvement in the estimation corroborates previous studies in which it has been shown that FDA approaches,
such as functional PCA or functional regression, are superior to their multivariate counterparts in the case of unbalanced
data (irregularly spaced grid of measurements that may change from one unit to another one) (Castro et al., 1986; Aguilera
et al,, 1999). Daily observations of the stress curves, considered as predictors of lupus flares, are an example of missing data
that lead to irregularly spaced designs because some individuals do not respond to the stress test every day. Multivariate
methods for analyzing correlated data do not take into account this unequal distance between observation times, which
may be the cause of their poorer results in parameter estimation.

When longitudinal data of stress levels are used to obtain the functional form of the observations by least squares
approximation, it is better to use the B-spline than the Fourier basis because the functions obtained provide a better fit to
the points observed. In the functional logistic regression model, it is better to estimate by using a compact set of functional
PCs included in the model in the order given by the stepwise method based on the conditional likelihood ratio test, because
this greatly reduces the dimension of the problem and estimates the parameter function more accurately. This accurate
estimation makes it possible to interpret the parameter function in terms of odds ratios that generalizes others discussed in
the literature. In the application with lupus patients, it is concluded that the consequences of high stress levels on a lupus
flare have a lag of approximately five days, and that the odds of lupus flare are doubled when the stress level increases by
five times the third eigenfunction shown in Fig. 5. However, these findings should be considered with caution because we
have analyzed a small sample with a very small proportion of lupus flares. This is justified because lupus is a rare sickness
and to have a lupus flare is a rare event among lupus patients. It is well documented in the statistics literature that logistic
regression can sharply underestimated the probability of rare events. Methods for computing probability and parameters
estimates that correct problems due to small samples of rare events have been discussed by King and Zeng (2001). Any
case, these problems will be innocuous in some applications and it is not usual among applied researchers to correct for the
underestimation of event probabilities. In addition, the problem of rare events data affects more to the estimation of the
probabilities than the one of the parameters and the main objective of our proposal is to provide an accurate estimation of
the parameter function.

On the other hand, the functional methodology applied in this paper to estimate the relationship between lupus flares
and stress level is not specific for lupus sickness. In fact, this is a general methodology for estimating functional logit
models that can be applicable to estimate any binary response variable in terms of discrete time observations of a related
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Fig. 5. 3rd eigenfunction: B-spline basis (solid line) and Fourier basis (broken line).

functional predictor. What differs in each real data application is the approximation technique used for reconstructing the
true functional form of sample curves. If we consider, as in the stress level case, that time observations have been observed
with error, least square approximation in terms of basis functions has proven to be effective. In other case, interpolation
on the observed data could be more appropriate. As discussed in the introduction section, the basis must also be chosen
depending on the nature and smoothness of the functional predictor sample curves.
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