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Abstract The power of functional linear regression to estimate a set of curves from others
involved is studied in this work in the context of life sciences. The objective is to determine
the relationship between the degree of lupus and the level of stress for patients suffering this
autoimmune disease. Daily stress and lupus curves have a strong local behavior with miss-
ing data those days that a patient does not answer the corresponding test. Because of this,
wavelet smoothing with an appropriate thresholding rule is considered. Then, functional
principal component analysis of the response and predictor variables is used to reduce the
dimension and solve the multicollinearity problem that affects the estimation of the func-
tional linear regression model with functional response. Model selection is solved by using
a criterion that selects those pairs of response/predictor components that explain the high-
est proportions of response variability. The performance of the proposed functional model
is tested on simulated and real data.
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1 Introduction

In many applications in life sciences is usual to have observations of vital signs of individ-
uals over time. This is the case studied in this work in which daily stress and lupus levels of
patients suffering this immunological disease have been observed.

Systemic lupus erythematosus (SLE) is an autoimmune disease that occurs when your
body’s immune system attacks your own tissue and organs. Inflammation caused by lupus
can affect many different body systems, including your joints, skin, kidneys, blood cells,
brain, heart and lungs. The course of the disease is unpredictable, with periods of illness
(called flares) alternating with remissions. The specific causes of lupus are unknown and
their identification is a very active area of research around the world. To date, there is some
evidence that supports a number of possible factors that lead to the development of lupus.
On the one hand, research indicates that SLE may have a genetic link. On the other hand,
environmental factors also seem to play some role because the immune system in patients
with lupus is more easily activated by external factors, such as viruses, ultraviolet light and
drugs. Finally, stress has also been associated with the onset of lupus. It may be that certain
genetically and hormonally susceptible persons, who have been exposed to just the right
amount of environmental factors, could trigger the onset of the illness after significant life
stresses (Peralta-Ramı́rez et al. 2006). In this line of research, the objective of this paper is
to estimate continuously in time the degree of lupus of a patient from his/her level of stress
and to establish the relationship between these two diseases.

The sample units associated to the variables stress and lupus in a period of time T are
curves observed only those days in which the patient answers the tests provided by the
doctor to measure the degree of both afflictions. Therefore, we will use functional data
analysis (FDA) methodologies to model them (Ramsay and Silverman 2005). A functional
linear regression model with functional response is considered in this paper to solve the
problem of estimating the degree of lupus level in a period of time from daily stress level
evolution in the same period. The results in this paper willshow the power of FDA to solve
medical problems. The results of this paper are very important in medicine because they
will highlight the importance of controlling lupus based on controlling the level of stress.

In order to estimate the model we have daily observations of stress and lupus measured
from a questionnaire that patients must complete every day. On the one hand, daily stress
level was measured by using the Spanish translation and adaptation of the Daily Stress
Inventory (DSI) (Brantley et al. 1987) carried out by Peralta et al. (2002). This instrument
measures the degree of stress produced by different stressful daily events in the last 24
hours. It contains 20 items that are categorized from 0 to 6 with 0 indicating that no stress
was experienced and 6 indicating that the event caused panic. This is a well known measure
of stress that presents high validity for detecting change (Peralta et al. 2002). On the other
hand, daily level of lupus was measured by using the SLE Symptoms Inventory (SLESI)
elaborated by the group of medical specialists in the Systemic Autoimmune Disease Unit of
the Internal Medicine Service at the University Hospital Virgen de las Nieves in Granada. It
refers to 8 symptoms suggestive of SLE activity, such as loss of appetite, joint pain, general
malaise, fever, tiredness or fatigue, skin rash, difficulty breathing, and abdominal symptoms.
These items are categorized from 1 to 10 according to the degree of intensity of symptoms
on that day. The SLE Disease Activity Index (SLEDAI) was used to assess lupus activity. It
consists of 24 descriptors with pre-assigned severity weights. The total SLEDAI score can
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range from 0 (no activity) to 105 (maximum activity). This is a well known measured with
high internal consistency, high degree of reliability that has been shown to be sensitive to
changes in lupus activity measured by the treating physician.

An estimation approach based on nonparametric estimation of functional principal com-
ponent analysis (FPCA) was developed in Yao et al. (2005). A review of different functional
regression models with applications to analyze dose-response data with functional responses
from an experiment on the age-specific reproduction of medflies can be seen in Chiou
et al. (2004). The case of functional regression with scalar response and functional predic-
tor was studied by Cardot et al. (1999). Functional PLS with basis expansions of sample
curves has been recently introduced with applications in the field of chemometrics Aguilera
et al. (2010). As an alternative to standard longitudinal data methods used in the biologi-
cal sciences, linear models where the response is a function and the predictors are vectors
were first studied in Faraway (1997). Residual analysis and diagnostics for such functional
models were introduced in Shen and Xu (2007). Different PCA-based estimation of the
functional logit model were introduced in Escabias et al. (2004) for estimating a categorical
response from a functional predictor. These principal component logit models were applied
to predict the probability of lupus flare from time evolution of stress level.

The problem of forecasting a continuous-time stochastic process on an entire time-
interval in terms of its recent past was also solved by using functional regression models.
Principal component prediction models were first performed and adapted for predicting
continuous-time series Aguilera et al. (1999). These models were successfully applied
to forecast curves of pollen concentration from continuous evolution of temperatures
(Valderrama et al. 2010). Different wavelet approaches for estimating autoregressive Hilbert
processes were also developed with the same objective in Antoniadis and Sapatinas (2003).

A wavelet-based functional principal component estimation of functional linear regres-
sion models with functional responses is proposed in this paper. First, wavelet smoothing
with thresholding is used to reconstruct each curve of stress and lupus from daily obser-
vations. Second, two functional PCAs, one for the response curves (lupus) and another for
the predictor curves (stress) are computed to reduce the dimension of both functional data
spaces. Third, functional linear regression is reduced to multivariate principal component
regression between response and predictor principal components (PC’s). Finally, several
selection model procedures that take into account both, explained variability and correlation
between response/predictor PC’s, are developed.

Apart from this introduction, the content of the paper is divided into four sections. Basic
ideas on nonlinear wavelet smoothing of curves from discrete observations are outlined in
Section 2. Formulation, principal component estimation, selection of variables and inter-
pretation of the functional linear regression model with functional response are studied in
Section 3. A simulation study for analyzing the good performance of the proposed method-
ology for estimating the functional response and providing an accurate estimation of the
functional parameter is developed in Section 4. Finally, the relationship between lupus and
stress curves is established in Section 5 by selecting and fitting an optimal wavelet-based
functional principal component regression model to daily observations of lupus and stress.

2 Wavelet Smoothing of Functional Data

A functional variable X is characterized because its values belong to a function space with
a metric induced by an inner product. Just as in the case of an scalar variable, a sample
of functional data is obtained from the observation of n identically distributed functional
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variables X1, X2, . . . , Xn. The observed values related to a functional variable can be
curves, surfaces or other functions defined on a continuous argument. The argument is often
time, but may also be other type as for example wavelenght in chemometric applications or
spatial location in spatial data analysis.

In practice, the sampling units are functions of which only discrete observations are
available in a finite set of points that may be unevenly spaced and different for the sample
individuals. This means that, given a sample {xw(t) : t ∈ T ;w = 1, . . . , n} of n records of
a functional variable X, we have a vector of discrete observations xw = (xwk)k=1,...,Kw for
each sample curve xw at a finite set of points (twk : k = 1, . . . , Kw). Therefore, the first step
in FDA is to reconstruct the true functional form of each sample function from the discrete
information available. A way to solve this problem consists of assuming a basis function
expansion for each observed sample curve. The dimension of the basis and the basis func-
tions must be chosen according to the characteristic of the functional data. Most frequently
used systems are Fourier basis for approximating periodic data, B-spline basis for control-
ling the degree of smoothness of the curve and wavelet basis for functions with sharp local
features. If the observed values are errorless, interpolation procedures are used to estimate
the basis coefficients. On the other hand, if the observations are affected by noise, least
square smoothing or orthogonal projection is used Ramsay and Silverman (2005). When
the data are smooth functions observed with error the approximated sample curves do not
control the degree of smoothness. In order to improve the estimation of FDA methodolo-
gies in this case, different approaches based on penalized estimation with B-spline basis
expansions of sample curves were recently introduced Aguilera et al. (2008), Aguilera and
Aguilera-Morillo (2013a, b) and Aguilera-Morillo et al. (2013).

In the application developed in this paper we have daily observations of levels of stress
and lupus in a period of 100 days with missing data those days that a patient does not answer
the test. Daily levels of lupus and stress are measured in based to different tests provided by
the doctor to each patient. Taking into account the subjectivity of such measures that can be
irregularly distributed and have high variability, we consider that discrete-time observations
are affected by noise. As both, lupus and stress curves, have a strong local behavior we
propose to approximate the curves by using wavelet basis expansions.

By considering dilations and translations of a suitable mother wavelet, the wavelet expan-
sion provides a decomposition of a function into orthogonal signal components at different
resolution levels that it is called multiresolution analysis (MRA). The advantages of this
wavelet representation derive from the ability of wavelets to represent locally non-smooth
functions with only a relatively small number of coefficients. They form orthonormal basis
and enable multiresolution analysis by localizing a function in different phases of both
time and frequency domains simultaneously. In this paper we estimate basis coefficients by
orthogonal projection of each predictor and response sample curve on basis of wavelets on
bounded intervals. For simplicity, we summarize wavelet approximation for the functional
predictor X representing stress level.

Let φ and ψ be the scaling (mother) and wavelet (father) functions for an orthogonal
MRA of the space of squared integrable functions L2[R]. In our case we consider the adap-
tation of the wavelet analysis in a bounded interval (see Mallat (1998) and Daubechies
(1988)). For simplicity, the space L2[0, 1] is considered in this work without loss of
generality.

Let us consider the orthonormal basis systems

φ∗
j,k = χ[0,1]

∑

l∈Z
φj,k−l2j and ψ∗

j,k = χ[0,1]
∑

l∈Z
ψj,k−l2j ,
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obtained, respectively, from the dilations and translations of the scaling and wavelet
functions

φj,k(t) = 2j/2 φ
(

2j t − k
)

and ψj,k(t) = 2j/2 ψ
(

2j t − k
)

.

Then, projecting each sample path x(t) at resolution level J we obtain a first orthogonal
approximation in terms of scaling coefficients

PJ x(t) =
2J −1∑

k=0

sJ,kφ
∗
J,k(t) ∀ t ∈ [0, 1], (1)

where sJ,k = ∫ 1
0x(t)φ∗

J,k(t)dt .
A more sparsely decomposition of PJ X can be obtained as follows by applying the dis-

crete wavelet transform (DWT) to the vector of scaling coefficients from an initial resolution
level J0 < J

PJ x(t) =
2J0 −1∑

k=0

sJ0,kφ
∗
J0,k

(t) +
J−1∑

j=J0

2j −1∑

k=0

dj,kψ
∗
j,k(t), (2)

where dj,k =
∫ 1

0
x(t)ψ∗

j,k(t)dt .

Unfortunately, the discrete time observation assumption makes impossible to exactly
compute the scaling and thus the wavelet coordinates for the expansions given in Eqs. 1 and
2. Nevertheless, once the scaling coordinates sJ,k are approximated, an approximation to
the wavelet coordinates in Eq. 2 are directly obtained by applying the DWT to the approxi-
mated scaling coordinates. Hence, the scaling coordinates sJ,k must be firstly approximated
following one of the techniques proposed in wavelet theory. An usual and efficient way for
approximating sJ,k is

sJ,k(w) ≈ s̃J,k(w) = K−1/2xw(tk) , ∀ k = 0, . . . , K ,

when we have K = 2J equally spaced time points in the observed interval for each sample
curve (Mallat 1998). In the case of unequally spaced points we can use first an interpola-
tion procedure to compute the values of each sample path at these equally espaced knots.
Wavelet-based estimators can be computed extremely quickly because the DWT and its
inverse is computed in O(K) operations.

When the discrete observations of sample curves are subject to noise it is appropriate to
use a nonlinear smoothing approach that consists of computing the DWT of noisy observa-
tions and thresholding it by deleting the small wavelet coefficients and shrinking the large
ones. This provides an economical wavelet expansion with few non-zero coefficients, even
if the approximated curve displays sharp local features.

The thresholded wavelet estimator of a sample curve x(t) is given by Eq. 2 where the
coefficients dj,k are replaced by Tθ (dj,k) with Tθ being the thresholding rule, J0 the starting
scaling level for thresholding J0 = log2(log(K)) + 1, with K being the number of observa-
tion knots and θ is the universal threshold θ = σe

√
2 log(K) with σe being the estimation of

the observation noise deviation σe = median(|d(J − 1, k)| : k = 0, . . . , 2J−1 − 1)/.6745.
The thresholding rules most frequently used in wavelet literature are hard thresholding, soft
thresholding and non-negative garrote thresholding.

Thresholded wavelet estimators should adapt well to different degrees of smoothness and
regularity in the function being estimated. In Fig. 1 we have the wavelet approximation with
Symmlet 4 family and resolution level J=8 next to its thresholded estimators by using soft
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Fig. 1 Scaterplot, wavelet projection with Symmlet 4 family and resolution level J=8 (pink), and nonlinear
wavelet smoothing with soft thresholding at resolution levels J=8 (red), J=7 (black) and J=6 (blue) for the
curves of stress (left) and lupus (right) of different patients

thresholding rule at different resolution levels for the curves of lupus and stress of different
patients.

3 Functional Regression with Functional Response

As we set in the introduction, the aim of this paper is to estimate a linear functional regres-
sion model for a random functional response variable Y = {Yw(s) : s ∈ S,w ∈ �} in terms
of the observed values of a functional predictor variable X = {Xw(t) : t ∈ T ,w ∈ �}
where (�,A,P) is a probability space, and T and S are real intervals.

3.1 Model Formulation

The sample information we have consists of pairs of square integrable curves
{(xw(t), yw(s)), w = 1, . . . , n; t ∈ T , s ∈ S} that can be seen as realizations of
the functional predictor and response variables, X and Y, in the real intervals T and S,
respectively.

The functional linear regression model to estimate the functional response Y (s) in terms
of the functional predictor X(t) can be formulated as

yw(s) = α(s) +
∫

T

β(t, s)xw(t)dt + εw(s) s ∈ S, (3)

where β(t, s) is the functional parameter and {εw(s) : w = 1, . . . , n; s ∈ S} are indepen-
dent and centered random errors.

As in any other functional regression model, in order to estimate model (3) we have to
solve two important problems. First, the estimation of the parameter function is an ill-posed
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problem due to the infinite dimension of the response and predictor function spaces (Ram-
say and Silverman 2005). Second, the sample curves are only observed at a finite set of time
points. This problem is solved by using wavelet basis expansions of sample curves so that
the functional model becomes a multivariate linear regression model of response sample
curve wavelet coefficients on predictor sample curve wavelet coefficients. But the estima-
tion of this multivariate linear model usually presents new problems. On one hand, high
correlations between the predictor basis coefficients could provide an inaccurate estimation
of the parameter function. On the other hand, the number of predictor variables may be too
high if many coefficients are needed to approximate the predictor curves.

Different reduction dimension approaches based on using as predictors of the functional
model a set of uncorrelated variables have been considered for different functional regres-
sion models. Generalizations of PCR and PLS to the functional case have been formulated
to solve this problem. In this paper we propose to use a functional PCA wavelet-based
approach that transforms the functional regression problem into linear regression of a
reduced set of principal components of the functional response variable on a reduced set of
principal components of the functional predictor.

3.2 Functional Principal Component Estimation

In order to estimate model (3), we will consider the principal component decomposition
of both predictor and response sample curves that transforms functional regression into
multivariate principal component regression.

Let briefly summarized the basis ideas on PCA of a functional variable X with values
in the space L2[T ] of square integrable functions on the interval T . Functional principal
components are defined as uncorrelated generalized linear combinations of the functional
variable with maximum variance. That is, the jth principal component (PC) is given by
ξwj = ∫

T (xw (t) − x̄(t)) fj (t) dt , where the functional factor loadings {fj (t) : j =
1, . . . , n−1} are computed as the eigenfunctions of a second integral equation whose kernel
is the sample covariance function associated with the functional variable X.

Then, we obtained for each sample curve an orthogonal principal component decompo-
sition xw (t) = x̄(t) + ∑n−1

j=1ξwjfj (t), where x̄(t) is the sample mean of the functional
predictor X. The principal components are ordered in terms of their explained variability, so
that truncating this expansion in terms of the first q principal components we obtain an opti-
mal principal component reconstruction whose proportion of explained variance is given by(∑q

j=1λj

)
�

(∑n−1
i=1 λi

)
, being λj the explained variance of the j -th principal component.

Let us consider also the principal component decompositions of the response functional
variable given by yw(s) = ȳ(s)+∑n−1

j=1ηwjgj (s). Then, it is easy to prove that the functional
linear regression becomes to linear regression for each PC of the response Y on all PC’s of
the predictor X

ηwj =
n−1∑

i=1

ξwiνij + εwj , (4)

and the functional parameter is given by β(t, s) = ∑n−1
i=1

∑n−1
j=1νij fi(t)gj (s).

Then, by truncation and linear least squares estimation of the parameters νij we obtain
the following prediction equation for the response:

ŷw(s) = ȳ(s) +
J∑

j=1

η̂wj gj (s) = ȳ(s) +
J∑

j=1

⎛

⎝
∑

i∈Ij

σij

σ 2
i

ξwi

⎞

⎠ gj (s), (5)



1022 Methodol Comput Appl Probab (2015) 17:1015–1028

with σij the corresponding element of the sample cross-covariance matrix of predictor and
response principal components and σ 2

i the sample variance of the predictor PC ξi .
Wavelet basis expansion of each predictor and response sample curve will be considered

for estimating FPCA of curves with high variability as lupus and stress. Once we have an
orthonormal basis expansion for each curve, FPCA is equivalent to multivariate PCA of the
matrix of basis coefficients. See Ocaña et al. (2007) for a detail study of these results in the
more general context of Hilbert valued functional variables.

Let us suppose that the wavelet approximations of the response and predictor sample
curves are given by yw = ∑Q

q=1bwqϕq, xw = ∑P
p=1awpϑp, where {ϕq}Qq=1 and {ϑp}Pp=1

are orthonormal wavelet basis. Then, we obtain the following orthonormal wavelet estima-
tion of the parameter function β̂(t, s) = ∑P

p=1
∑Q

q=1β̂pqϑp(t)ϕq(s), where the matrix of

basis coefficients is given by β̂ = (β̂pq) = VXν(VY)
′
, with ν = (νij ) = (

σij

σ 2
i

) and VX

and VY being the matrices of eigenvectors of the covariance matrices of A = (aij ) and
B = (bij ), respectively.

3.3 Model Selection

In order to select the optimal functional principal component regression (FPCR) model we
have to choose an optimal set of J PC’s ηj of the functional response Y and regress each
response PC ηj on an optimal set of Ij PC’s of the functional predictor X. In PCR it is
known that principal components with smaller variances could be highly correlated with
the response so that introducing PC’s in a regression model by variability order could be
inappropriate. Because of this in this paper we introduce a new criterion that introduces
pairs of PC’s in the FPCR model based on both, explained variability and correlation.

The R2 coefficient associated to linear model (5) can be decomposed as R2 =
∑J

j=1
∑

i∈Ij
P (j, i), where P(i, j) = ∑J

j=1
∑

i∈Ij

αj ρ2(ηj ,ξi )

V ar(Y )
is the proportion of response

variance explained by each pair (ηj , ξi) of response/predictor principal components, with
αj = V ar(ηj ) and V ar(Y ) = ∑n−1

j=1αj .
Taking into account this decomposition of the multiple linear correlation coeffi-

cient, we propose in this paper a selection model criterion based on selecting pairs of
response/predictor PC’s in based to the priority order established by their proportions of
explained variances P(∗, ∗). With respect to the pairs of PC’s needed for estimating the
functional parameter β, we consider two different possibilities. One one hand, all possible
pairs are considered (method a). On the other hand, pairs with non-significant correlation
(t-ratio test) are leaved out (method s). Finally, the number of pairs of response/predictor
PC’s can be selected by minimizing one of the following statistics.

– Leave-one-out cross validation error CV MSE = 1
n

∑n
w=1‖yw − ŷ(−w)‖2, where ŷ(−w)

is the predicted curve computed by eliminating the sample curve yw in the sample.
– Mean square error given by MSE = 1

n

∑n
w=1‖yw − ŷw‖2, with ŷw being the predicted

curve.
– BIC statistics defined as BIC = MSE + log n

n
P s2

e , with P being the number of param-

eters, s2
e the residual variance given by s2

e = nPmaxECM
n−Pmax

, and Pmax being the maximum
number of parameters.

– Cp statistic given by Cp = MSE + 2Ps2
e .

– Integrated error of the estimated parameter function (only for simulation studies)
defined as bE = ‖β − β̂‖2.
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3.4 Interpretation

As the principal component estimation of functional linear regression turns the functional
model into a multivariate multiple linear model, we propose an interpretation of the relation
between the response and the predictor variables based on the estimated scalar parameters.

From the principal component representation of the functional predictor we deduce that
one unit increment in the ith PC of the predictor variable produces an increase of each
predictor curve according to the ith weight function. That is, �ξi = 1 =⇒ �X(t) = fi(t).
On the other hand, from regression Eq. 4 we have that one unit increase in the ith PC of
the predictor variable produces also an increment of νij units in the j th PC of the response
variable. As a result, from Eq. 5 it follows that each response curve is increased according
to the j th weight curve multiplied by the parameter νij . This means that �ξi = 1 =⇒
�Y (s) = νij gj (s). This interpretation allows us to establish in practice the effect of the
change in the evolution of a functional predictor on the evolution of a functional response.

4 Simulation Study

In order to study the good performance of the proposed wavelet-FPCA estimation of the
functional regression model, we have developed a simulation study. We randomly generated
n = 100 sample curves of the following functional predictor (James et al. 2000): xw(t) =∑14

p=1 awp ϑp(t) + γw, t ∈ [0, 1], with ap � N (0, |10 − p|), ϑ2r−1(t) = sin(2πrt)

and ϑ2r (t) = cos(2πrt), r = 1, . . . , 7. The functional response curves were simulated
by the functional model (3) on the interval [0, 1], with the functional parameter given by

β(s, t) = s sin(2π t) + cos(4 π t) s, t ∈ [0, 1],
and the errors ε(s) randomly generated by zero mean independent normal distributions. The
error variances were fixed to control the signal to noise ratio at each time point. A contour
map of the original simulated parameter function can be seen in Fig. 2.

In order to fit the functional linear model, we simulated discrete time observations of the
functional predictor at time points ti = i/20 (i = 0, . . . , 20) and the functional response
at sj = j/16 (j = 0, . . . , 16). The experiment was repeated 400 times.

Fig. 2 Contour map of the simulated functional parameter β(t, s)
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Fig. 3 Box plots for the distribution of the number of pairs of PC’s selected with each model selection
criterion

The wavelet-FPCA based approach introduced in this paper to fit the functional
regression model with functional response had the following steps for each of the 400 trials:

– Wavelet approximation of response sample curves (resolution level 4) and predictor
sample curves (resolution level 5) using D2 wavelet family.

– FPCA estimation of wavelet approximations of the predictor and the response variables.
– Model selection based on optimal pairs of response/predictor PC’s. We considered two

methods (it a and s) for selecting the pairs of PC’s to be included and five criteria for
selecting the number of pairs. To form pairs of response/predictor PC’s, noise principal
components were eliminated.

– Model estimation based on linear regression between the principal components of each
selected pair.

The numerical results for the 400 simulated trials can be seen in Figs. 3, 4 and 5.
Based on the results of the simulation study we can draw the following conclusions:

1. The priority order established by P(∗, ∗) exhibits a good estimation performance with
both methods a and s considered in this paper for selecting the pairs of PC’s needed to
get an accurate estimation of the functional parameter.

2. Considering only PC pairs with significant correlation (method s) provides estimations
of β much more parsimonious than method a with a not excessive cost in error.

3. Taking into account the computational simplicity of BIC and Cp, they would be a good
choice for method s.

Fig. 4 Box plots for the distribution of the R2 coefficientes of the optimal models selected with each
selection criterion



Methodol Comput Appl Probab (2015) 17:1015–1028 1025

Fig. 5 Box plots for the distribution of the integrated errors bE of the parameter functions estimated by the
optimal models selected with each selection criterion

5 Application with Immunology Data

In order to estimate the relation between lupus and stress we have daily observations of
levels of stress and lupus in a period of 100 days for a sample of 56 patients with missing
data those days that a patient does not answer the test. The sample of 56 patients has been
divided in two, a training sample of size 40 to fit the model and a test sample of size 16 to
evaluate the predictive ability of the estimated model.

During the first week, the patients were recruited by the internist at the outpatient clinic
for autoimmune disease. When the patient attended his routine checkup, s/he was informed
about this study on the effects of emotional status and lupus, and invited to participate (100%
agreed). In the first session, the study was explained in detail, and subjects were asked to
sign the consent form. Each subject underwent a clinical interview to find out basic data
like age, education level, and diverse emotional problems occurring in his or her life. Each
patient was given 31 copies of the 20-item version of the DSI and the SLESI. The subjects
were told that they would have to complete the DSI and the SLESI at the end of every day
for 100 days. Every month they were mailed an envelope containing the 31 questionnaires
corresponding to that month and an empty stamped envelope so they could return the forms
they had already completed. Furthermore, they were contacted by telephone every month,
so we could find out about any problems that arose in completing the questionnaires.

The aim of this application is to estimate the functional response variable {Y (s) : s ∈
[0, 100]} representing lupus evolution from the functional predictor {X(t) : t ∈ [0, 100]}
representing stress evolution for lupus patients. This problem is solved in this work by fitting
a FPCR model based on wavelet approximation of lupus and stress curves.

The first step was to approximate lupus and stress curves by using Symmlet 4 wavelet
family with resolution level J=7. Soft thresholding with universal threshold was used for
denoising and smoothing.

The second step was to perform functional PCA of both set of smoothed curves in the
observed interval [0, 100] from multivariate PCA of the associated wavelet coefficients. To
facilitate interpretation, Fig. 6 shows plots of the overall mean functions of stress and lupus
curves and the functions obtained by adding and substracting a suitable multiple of each of
the first two PC curves that define the main modes of variation in the stress and lupus curves.
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Fig. 6 The mean curves (black) and the effects of adding (blue) and subtracting (red) a suitable multiple of
each PC curve for stress (left) and lupus (right) sample curves

We can see that in both samples the effect of the first principal component of variation is
approximately to add or subtract a constant to the degree of stress or lupus throughout the
observed period of time. That means that the greatest variability between lupus patients is
due to the effect of size. The second PC of stress accounts approximately a 4 % of the
total variability and consists of a positive contribution for the first period and a negative
contribution for the second one. On the other hand, the second PC curve of lupus is similar
but with opposite sign. These second PC curves can be seen as a measure of uniformity of
stress and lupus throughout the observed period.

The third step was to select the optimal pairs of lupus/stress PC’s to estimate the func-
tional linear regression model. After eliminating noise components we considered the first
8 response PC’s that explained a 97.5 % of variability and the first 7 predictor PC’s explain-
ing a 97.7 %. The pairs of response/predictor PC’s were ordered in based to the proportions
P(∗, ∗) of response variance explained by their associated linear regression models. The
linear regression model with all these pairs of PC’s explains a 58 % of the total variability
of the response and the model with only the significant pairs explains a 56.8 %.

The number of PC pairs was selected with BIC and CP criteria. In both cases the optimal
FPCR model includes only the first PC of the response. The prediction equation is given
by ŷ(s) = ȳ(s) + η̂1g1(s) s ∈ [0, 100], where η̂1 is the estimation of the first principal
component given by

– BIC: η̂1 = 0.586ξ1 − 1.769ξ4. In this case 2 pairs of response/predictor PC’s were
selected for estimating a FPCR model that explains a 50 % of the total variability of
lupus and a 57% of the variability of its reconstruction with the first PC. The multiple
correlation coefficient associated to this model is R2 = 0.586.
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Fig. 7 Prediction error curve with respect to the wavelet approximation of lupus (left) and with respect to the
approximation of lupus in terms of the first PC (right) provided by the BIC model with 2 PC pairs (in black)
and the CP model with 3 PC pairs (in red) for the training sample (solid line) and the test sample (broken line)

– CP : η̂1 = 0.586ξ1 − 1.769ξ4 − 1.575ξ5. In this case 3 pairs of response/predictor
PC’s were selected for estimating a FPCR model that explains a 52 % of the total
variability of lupus and a 63.8 % of the variability of its reconstruction with the first
PC. R2 = 0.626.

Taking into account the values of the multiple correlation coefficients associated to the
fitted model, we can not expect the forecasting ability of the model is very high. Two kinds
of prediction errors were computed for stress and lupus sample curves of both, training
and test samples. On one hand, Fig. 7 (left) shows the prediction errors with respect to the
wavelet approximation of sample curves at resolution level 7. On the other hand, Fig. 7
(right) shows the prediction errors with respect to the representation of the curves in terms
of the first PC.

But the main purpose of this application was not predict but to estimate the relationship
between lupus and stress. This relation is stablished in terms of the estimated parameters
of the linear models. Each increase in the overall level of stress (stress first PC) in an unit
produces an increase in the overall level of lupus (lupus first PC) by half an unit. Then, an
increase of the stress curve according to the the first PC curve of stress produces an increase
of the associated lupus curve according to the half of the first weight curve of lupus.

6 Conclusions

This paper presents a FDA methodology for interpreting the relationship between two func-
tional variables whose sample observations are two set of related curves. A wavelet-based
approach for FPCA has been proposed to estimate the functional parameter of the functional
lineal model with functional response. This approach is appropriate when sample data are
curves with a strong local behavior (high peaks with great variability). This is the case of
the stress and lupus curves analyzed in the life sciences application developed in this paper.

Different criteria for selecting the optimal PC’s included in the regression models were
proposed. The novelty of these criteria is based on including pairs of response/predictor
PC’s in terms of the percentage of response variance explained by each pair. Methods to
select the number of PC pairs based on minimizing cross validation, BIC, CP and MSE
errors were also considered an compared on a simulation study. All criteria provided an
accurate estimation of the functional parameter and a good forecasting performance. Con-
sidering only those PC pairs with significant correlation provided an estimation of the
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functional parameter much more parsimonious with a not excessive cost in error. On the
other hand, BIC and CP criteria are preferred because give similar results to CV and are
computationally simpler.

With respect to the application to establish the relation between lupus and stress, we can
conclude that stress can explain only a fifty percent of the total variability of lupus. The
other fifty percent of variability must be explained by others variables related with lupus
illness. On the other hand, for every unit increase in the overall level of stress of a patient
its overall level of lupus increases half unit.
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