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A B S T R A C T

Least squares estimation of the functional linear regression model with scalar response is an ill-posed
problem due to the infinite dimension of the functional predictor. Dimension reduction approaches as prin-
cipal component regression or partial least squares regression are proposed and widely used in applications.
In both cases the interpretation of the model could be difficult because of the roughness of the coefficient
regression function. In this paper, two penalized estimations of this model based on modifying the partial
least squares criterion with roughness penalties for the weight functions are proposed. One introduces the
penalty in the definition of the norm in the functional space, and the other one in the cross-covariance opera-
tor. A simulation study and several applications on real data show the efficiency of the penalized approaches
with respect to the non-penalized ones.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The linear regression model was the first regression model con-
sidered in the framework of functional data analysis (FDA). Called the
functional linear regression model (FLRM), it was intensively stud-
ied in the literature, depending on the type of the response and the
predictor random variables. The first theoretical contributions to the
study of FLRM are due to [1] for scalar response and functional pre-
dictor. The case of both predictor and response of functional type is
considered in [2] and [3]. These linear models were first introduced
in [4,5] to forecast a continuous time stochastic process from its
recent past. Linear models with scalar or finite multidimensional pre-
dictor and functional response have been studied in [6]. Finally, the
functional analysis of variance as a model for the mean of a functional
response was introduced in [7].

To fit such linear models, the general methodology is to com-
bine dimension reduction techniques and to modify the least squares
criterion by introducing penalties. Principal component regression
(PCR) [8,9] and partial least squares regression (PLSR) [10,11] are
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two of the main dimension reduction approaches. Several smooth-
ing estimation approaches based on penalizing the least squares
criterion (roughness penalty) in terms of a B-spline expansion of the
functional parameter and smoothed principal component regression
were considered by [12].

In this paper we propose the estimation of the FLRM by modi-
fying the PLS criterion with roughness penalties for the coefficient
regression function. Our approach is motivated by the following con-
siderations. It is well known that PLSR fits closer than PCR [13].
In [14] functional PCR and functional PLSR with basis expansion of
the functional predictor were compared with their multivariate ver-
sions by an extensive simulation study. From this study, the authors
concluded that, although discrete and functional models have simi-
lar prediction ability, the functional models provide a more accurate
estimation of the functional parameter, PLSR outperforming PCR.
However, in both cases (PLSR and PCR) even if the fit is very good in
terms of prediction, the interpretation of the model could be difficult
because of the complexity (roughness) of the coefficient regres-
sion function. A similar idea has been developed in [15] and [16]
for smoothing principal components and in [12] in the regression
framework. In [17] the authors introduce two discrete roughness
penalty estimation approaches for PCR and PLSR based on B-spline
basis expansion of the functional parameter. The main difference
between these two approaches is in the way of introducing the

http://dx.doi.org/10.1016/j.chemolab.2016.03.013
0169-7439/© 2016 Elsevier B.V. All rights reserved.
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penalty: in the likelihood function of the model or in the construc-
tion of the PLS or principal components. These penalized estimation
approaches do not assume a basis representation for the sample
paths and are based on multivariate linear regression of the response
in terms of the matrix of discrete-time observations of the sample
curves. A penalized version of multivariate PLSR was also applied
for the estimation of additive functional models in terms of B-spline
expansions [18].

A roughness penalty for PLS regression based on redefining the
inner product in the functional space data belong, is introduced
in Section 3. A simulation study compares the performance of this
penalized approach with the corresponding non-penalized versions
in Section 4. Two applications with chemometric data (Section 5)
close the paper. Finally, the methodological and practical results
related with an alternative approach that introduces the penalty
in the covariance have been presented as supplementary material
because this type of penalization consistently performed worse than
the other in all simulations and applications developed in this paper.

2. Functional PLS regression

Let Y be a real random variable (response) and X be a real-valued
second order stochastic process {X(t) : t ∈ T } (predictor), where T is
some interval on the real line. We assume that the sample paths of X
belong to the space L2(T) of the square integrable functions endowed
with the usual inner product 〈 • , • 〉. Without loss of generality, we
consider that E[Y] = 0 and E[X(t)] = 0, ∀t ∈ T.

The functional linear regression model with response Y and pre-
dictor X assumes that

Y =
∫

T
X(t)b(t)dt + 4, (1)

where b is the functional parameter and 4 is the residual. It is well
known [1,9] that the use of the least squares criterion for estimating
the model in Eq. (1) yields to an ill-posed problem because of the
covariance operator of X which, in general, is not invertible. Indeed,
the estimation of the regression coefficient function b under the least
squares criterion yields to the integral Wiener–Hopf equation

E(YX(t)) =
∫ T

0
E(X(t)X(s))b(s)ds. (2)

The PLS approach is an efficient solution to the inverse problem
encountered in Eq. (2). In the framework of functional data, that
method was widely investigated by [10], [14] and [19]. It consists of
building PLS components as linear functionals of X,

t =
∫

T
X(t)w(t)dt,

obtained by maximizing the squared covariance

max
w,‖w‖2=1

Cov2
(∫

T
X(t)w(t)dt, Y

)
. (3)

In the multivariate context this maximization problem is known
as Tucker’s criterion [see 20, for a detailed study]. The PLS algorithm
for multivariate linear regression was first introduced by [21]. The
fact that the PLS components are solutions to the Tucker’s criterion
was subsequently discovered by [22].

In what follows it is useful to detail how the PLS methodology
works for fitting the model in Eq. (1).

2.1. The PLS algorithm

Let CYX be the cross-covariance operator of X and Y and CXY be its
adjoint defined by

CYX :L2(T) → R

f �→ x =
∫

T
Cov(X(t), Y)f (t)dt,

CXY :R → L2(T),

x �→ f (t) = x • Cov(X(t), Y) ∀t ∈ [0, T].

The optimization problem (3) can be rewritten as

max
w∈L2(T)

〈Uw, w〉
〈w, w〉 ,

where U = CXY ◦ CYX .
Therefore, the solution to Eq. (3) is the eigenfunction of the

operator U associated to its largest eigenvalue k1,

Uw1 = k1w1,

and the first PLS component is defined as

t1 =
∫

T
X(t)w1(t)dt.

The PLS algorithm is an iterative procedure.
Let X0 = X and Y0 = Y. For any positive integer h, let Xh and Yh be

the residuals of the linear regressions of Xh−1, respectively of Yh−1,
with predictor the h-th PLS component th, i.e

Xh(t) = Xh−1(t) − ph(t)th, t ∈ T,

Yh = Yh−1 − chth,

where ph(t) =
(
E(Xh−1(t)th)/E(t2

h)
)

and ch =
(
E(Yh−1th)/E(t2

h)
)
.

Then, at the step h, the h-th PLS component is defined as the ran-
dom variable maximizing the Tucker criterion (3) using the residuals
Xh−1 and Yh−1,

th =
∫

T
Xh−1(t)wh(t)dt, (4)

where wh(t) is the solution of

wh = arg max
w,‖w‖2=1

Cov2
(∫

T
Xh−1(t)w(t)dt, Yh−1

)
, (5)

given by the largest eigenvalue of Uh−1 = Ch−1
XY ◦ Ch−1

YX . That is,

Uh−1(wh) = khwh, (6)

with Ch−1
XY and Ch−1

YX being the cross-covariance operators of Xh−1(t)
and Yh−1, respectively.

The properties of the PLS components are summarized by the
following proposition [10].

Proposition 1. For any h ≥ 1

a) {th}h≥1 forms an orthogonal system in L(X), the linear space
spanned by {X(t) : t ∈ T},

b) Y = c1t1 + c2t2 + . . . + chth + Yh,
c) X(t) = p1(t)t1 + p2(t)t2 + . . . + ph(t)th + Xh(t), ∀t ∈ T,
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d) E(Yhtj) = 0, ∀j = 1, . . . , h,
e) E(Xh(t)tj) = 0, ∀t ∈ T, ∀j = 1, . . . , h.

The PLS approximation of Y at the step h is then given by

Ŷh = c1t1 + c2t2 + . . . + chth. (7)

Notice that the expression of the PLS components defined by Eq.
(4) can be rewritten as elements of the linear space spanned by {X(t) :
t ∈ T}, i.e.

ti =
∫

T
vi(t)X(t)dt,

with vi ∈ span{w1, . . . , wi}, i = 1, . . . , h. Thus, the PLS linear approxi-
mation at the step h becomes

Ŷh = c1

∫
T
v1(t)X(t)dt + . . . + ch

∫
T
vh(t)X(t)dt =

∫
T
bPLS,h(t)X(t)dt, (8)

where bPLS,h is the approximation of the slope parameter func-
tion b in Eq. (1) provided by the functional PLS approach with h
components.

2.2. Basis expansion estimation

In practice, the functional predictor X is often observed in a finite
set of time points {tk : k = 1, . . . , m} and data is represented by a
finite vector {X(tk) : k = 1, . . . , m}. Notice that the points tk and m
could be random. Thus, first step in FDA is often the reconstruction
of the functional form of data from discrete observations. The most
common approach to this problem is to consider that sample paths
belong to a finite dimension space spanned by a basis of functions
[see, for example, 23].

Let {01, . . . ,0p}, p ≥ 1, be a p-dimensional basis in L2(T) and
assume that the functional predictor admits the basis expansion

X (t) =
p∑

k=1

ak0k (t) , (9)

with the ak
′s as random coefficients.

Let V = (0jk) be the p × p symmetric matrix with entries
the inner products between basis functions

(
0jk

)
=< 0j,0k >=∫

T0j (t)0k (t) dt, and let denote by V1/2 a square root of the matrix V

such that V = (V1/2)(V1/2)′. (This square root is computed in prac-
tice by using the SVD of the matrix V). Let us look closely to the
weights functions wi defining the PLS components. From Eq. (6), the
wh

′s have the basis representation

wh(t) =
p∑

k=1

whk0k(t), h ≥ 1,

where wh = (wh1, . . . , whp)′ is the vector of the expansion coeffi-
cients. Therefore, the parameter function b can be expressed in the
same basis by

b(t) =
p∑

k=1

bk0k(t).

Let us denote by a = (a1, . . . ,ap)′ and b = (b1, . . . ,bp)′ the
vectors of expansion coefficients of X and b, respectively.

PLS regression is then equivalent to the finite multivariate PLS
regression using as predictor the expansion basis coefficients in the

sense that, at each step of the PLS iteration, one obtains the same
prediction [14]. The main results are in the following proposition.

Proposition 2. The functional PLS regression of Y on X = {X(t) : t ∈
T } is equivalent to the PLS regression of Y on the finite random vector
(V1/2)′a with the usual metric in Rp. In this sense, at each step h of the
PLS algorithm, 1 ≤ h ≤ p, we have the same PLS component, and so, the
same PLS approximation.

Then, at each step of the FPLS algorithm, the weight functions
wh defining the FPLS components are obtained, in terms of expan-
sion coefficients, as wh = (V−1/2)′w̃h where w̃h are the eigenvectors
associated to the largest eigenvalues of the eigen-problem

(V1/2)′Ch−1(V1/2)w̃ = kw̃ w̃ ∈ Rp, 〈w̃, w̃〉Rp = 1,

where Ch−1 is the p × p matrix with entries

Ch−1( j, k) = Cov(ah−1,jYh−1)Cov(ah−1,kYh−1), j, k ∈ 1 . . . p

and ah−1,j
′s are the expansion coefficients of the residuals Xh−1. In

other words, the FPLSR is reduced to the finite multivariate PLSR with
predictor a, and metric V. The weight functions wh are then given by
the coefficients w associated to the largest eigenvalue of the eigen-
problem

Ch−1Vw = kw, w ∈ Rp, 〈w,Vw〉Rp = 1.

3. Penalized functional PLSR

The main goal of the present work is to provide smoothed and
more accurate estimates of b within the PLS algorithm. For this pur-
pose, one way to do this is to smooth the weights wi defining the PLS
components. Therefore, by Eq. (8), one obtains smoothed estimates
of b.

Two different versions of penalized FPLSR were considered at
the time of developing this work. The first one makes use of the
methodology exposed in [15] for regularized FPCA that introduces
the penalty in the norm of the PCA weights. The second one intro-
duces the penalty in the covariance by following the penalized FPCA
proposed in [16]. Taking into account that the second penalized
approach (FPLS by penalizing the covariance) consistently performed
worse than the first in all simulations and applications developed in
this paper, the methodological and practical results related with it
were omitted from the main article and presented as supplementary
material.

Next, a review about the penalty function which will be used in
the proposed penalized versions of FPLSR is given.

3.1. Roughness penalty function

The approach developed in this work to obtain smoothed esti-
mates of b, is based on the roughness penalty. In order to quantify
the “roughness” of a function w, the derivatives of some order d,
Dd(w) = w(d), d ≥ 1, are used. The first reference about penalties
based on such a roughness is introduced in [24] who proposed

Pend(w) =
∫

T
[Dd(w)(t)]2dt,

with d = 2, as a measure of roughness of w. Thus, the flexibility of
the fitted curve is restricted and the over-fitting is prevented.
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By considering the basis function expansion of w(t) given by

w(t) =
p∑

k=1

wk0k(t), (10)

the roughness penalty function is given by

Pend(w) =
∫

T
[Ddw(t)]2dt = w′Pdw, (11)

where w = (w1, . . . , wp)′ is the vector of basis coefficients of w(t) and
Pd the matrix of the cross inner products of the d−order derivatives
of basis functions.

In [25] the approximation of O’Sullivan was generalized, such that
it could be applied in any context where regression on B-splines
was useful. They proposed to work with a relatively large num-
ber of knots and a penalty based on d−order differences between
coefficients of adjacent B-splines. This kind of penalty is known as P-
spline. In that paper, the relationship between the two penalties was
shown. More recently, [26] concluded from a simulation study that
P-splines provide the lowest approximation errors, have less numer-
ical complexity making easier its computational implementation and
are quite insensitive to the choice of knots so that it is sufficient to
choose a relatively large number of equally spaced basis knots. In this

context, Pd = (d)′d, with d the matrix of d−order differences
between the adjacent basis coefficients.

In the following, the notation Pd is used for both, continuous and
discrete penalty matrices.

3.2. FPLS by penalizing the norm

In order to smooth the PLS weight functions, the smoothing is
incorporated in the definition of the norm with respect to an inner
product which takes into account the roughness.

The FPLS regression by penalizing the norm is defined as a gen-
eralization of the Tucker criterion (3) by introducing the following
roughness penalty for the weights defining the PLS components:

max
w∈L2(T)

Cov2 (∫
T X(t)w(t)dt, Y

)
〈w, w〉 + kPend(w)

, (12)

with Pend being the penalty defined in Eq. (11) for some given
positive integer d.

Notice that, for any of the two considered penalties (continuous
or discrete), this is equivalent to consider a new inner product in the
functional space so that the h-th PLS component is given by

th =
∫

T
Xh−1(t)wh(t)dt,
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Fig. 1. Simulation study. Spectrometric raw curves of 60 gasoline samples measured in 2-nm intervals from 900 nm to 1700 nm (top left). Discrete observations (circles),
regression spline (blue dashed line) and P-spline (red solid line) for one of the sample paths (top right). At the bottom, the regression splines (left) and P-splines (right) for all the
sample paths.
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Fig. 2. Simulation study. Box plot of the distribution of correlations between columns
of matrix AV.

where wh(t) is obtained by solving the following problem

wh = arg max
w,‖w‖2

k
=1

Cov2
(∫

T
Xh−1(t)w(t)dt, Yh−1

)
, (13)

and ‖. ‖k is the norm associated to a new inner product defined by

〈f , g〉k = 〈f , g〉 + k(f ′Pdg),

with f = (f1, . . . , fp)′ and g = (g1, . . . , gp)′ being the vectors of basis
coefficients of f(t) and g(t), respectively.

The main result of this section is the following proposition.

Proposition 3. If X admits the expansion in (9), then, for any k> 0, the
FPLS regression by penalizing the norm is equivalent with the finite mul-
tivariate PLS regression of Y on the random vector of basis coefficients a
using the metric

M = (L−1V)′L−1V,

where L is such that LL′ = V+kPd. Then, at each step h of the penalized
FPLS algorithm, the weights functions wh defining the penalized FPLS

components are obtained, in terms of expansion coefficients, as wh =
(L−1)′L−1Vuh, where uh are the eigenvectors associated to the largest
eigenvalues of the eigen-problem

Ch−1Mu = ku, u ∈ Rp, 〈u, Mu〉Rp = 1.

Proof. Let us consider now the basis expansions of X(t) and w(t)
given by Eqs. (9) and (10), respectively. Then, 〈w, w〉k = w′Vw +
kw′Pdw, with Pd being the penalty matrix, and w = (w1, . . . , wp)′
the vector of basis coefficients of w(t). It is easy to convert the initial
problem (12) into a new problem given by

maxw
〈Uw, w〉

w′Vw + kw′Pdw
= maxw

w′VCV′w
w′ (V + kPd) w

, (14)

where C is the p × p matrix with entries

C( j, k) = Cov(ajY)Cov(akY), j, k ∈ 1 . . . p.

By assuming the decomposition LL′ = V+kPd(L = (V+kPd)1/2),
the maximization problem (14) is equivalent to

maxw
w′VCV′w
w′ (LL′) w

.

Defining w̃ = L′w
(
w = (L−1)′w̃

)
the problem is reduced to

maxw
w̃′(L−1)VCV′(L−1)′w̃

w̃′w̃
.

By analogy with the non-penalized FPLS, the associated eigen-
problem is

(L−1)VCV′(L−1)′w̃ = kw̃,

so that the weight function associated with the first penalized PLS
component t1 is given by w1 = (L−1)′w̃1, with w̃1 being the eigen-
vector associated with the largest eigenvalue of that problem.

The first PLS step is completed by ordinary linear regression of
X0(t) = X(t) and Y0 = Y on t1, and denoting by X1(t) and Y1 the
corresponding residuals.

In general, the weight function that defines the h-th PLS compo-
nent (h > 1) is obtained by solving the maximization problem (13).
Reasoning as above, it is shown that wh = (L−1)′w̃h with w̃h being the
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Fig. 3. Simulation study. Parameter function used for simulating the response variable of the functional linear model (left) and the estimation provided by the functional linear
model in terms of regression spline approximation of the spectrometric curves (right).
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Fig. 4. Simulation study. Case I (left) and Case II (right). Simulated parameter function (black), mean of the 100 parameter functions estimated by Methods I (blue dotted line), II
(green dashed line) and III (red solid line), using Criterion 1 (solid line) and Criterion 2 (dashed line) to select the number of PLS components.

eigenfunction associated with the largest eigenvalue in the following
eigen-problem:

(L−1)VCh−1V
′(L−1)′w̃ = kw̃. (15)

The h-th PLS step is concluded with the linear regression of
Xh−1(t) and Yh−1 on th, and the corresponding residuals Xh(t) and Yh.

From Eq. (15) it can be concluded that FPLS by penalizing the
norm is equivalent to multivariate PLS of Y on the random vector
L−1Va, with the PLS components given by

th = w̃′L−1Va = w′Va.

Defining u = (L−1V)−1w̃, (w̃ = L−1Vu) the eigen-problem (15) is
equivalent to

Ch−1V
′(L−1)′L−1Vu = ku u ∈ Rp, u′V′(L−1)′L−1Vu = 1.

This means that the FPLSR by penalizing the norm is equivalent
to the finite multivariate PLS regression of Y on the random vector
L−1Va with the usual metric in Rp. Then, the weights functions wh

defining the penalized FPLS components are obtained, in terms of
expansion coefficients, as wh = (L−1)′w̃h where w̃h are the eigen-
vectors associated to the largest eigenvalues of the eigen-problem

(L−1)VCh−1V
′(L−1)′w̃ = kw̃ w̃ ∈ Rp, 〈w̃, w̃〉Rp = 1.

Remarks.

• Proposition 3 shows that by penalizing the norm, the func-
tional framework is reduced to a classical multivariate PLS
one. Algorithms and software devoted to the finite multivariate
framework can then be employed to estimate the functional
model (for example, the pls package in the R software).

• Proposition 3 assumes that the value of the smoothing param-
eter k is constant over all the steps of the PLS algorithm. As the
number of steps of the PLS algorithm, the optimal value of k

can be obtained by cross validation.
• The penalty introduced in the estimation process is given by

the matrix Pd. In Section 4, we provide a simulation study using
d = 2 and Pd defined by P-spline approaches in terms of cubic
B-spline bases. The advantage of the smoothed approaches
based on P-spline penalties with respect to the ones based on
penalizing the integrated squared d-order derivatives is that
they are mathematically simpler because the difference matrix
is easier to compute than the matrix of integrals of products of

d-order derivatives between B-spline basis functions [see 27,
for a detailed study with functional PCA].

3.3. Sample estimation

The estimation of the different PLS functional regression models –
without and with penalty – is developed in this section.

Let {xi(t) : t ∈ T, i = 1, . . . , n} be a random sample of curves drawn
from the distribution of the functional variable X. Assume that xi is
observed in the knots {tik}, k = 1, . . . , mi, and denote by xi the vector
of the observed values for the sample curve xi(t),

xi = (xi(ti1), . . . , xi(timi
))′, i = 1, . . . , n.

Let {y1, y2, . . . , yn} be a random sample of Y associated with the
sample {xi, i = 1, . . . , n} (i.e. the pairs (xi, yi) are drawn from the joint
distribution of (X, Y), for all i = 1, . . . , n).

The functional linear model assumes

yi = b0 +
∫

T
xi(t)b(t)dt + ei,

where {ei : i = 1, . . . , n} are independent and zero-mean random
errors.

Let {01, . . . ,0p}, p ≥ 1, be a p-dimensional basis in L2(T) and
assume that the functional predictor X admits an expansion in that
basis. Then, the estimation procedure of the parameter function b(t),
based on Propositions 2–3 consists of the following steps:

1. Compute the basis expansion approximation of {xi(t), i =
1, . . . , n}. The vector of basis coefficients of the i-th sample path
is estimated by the least squares criterion in terms of a B-spline
basis, so that âi =

(
X′

iXi
)−1

X′
ixi, with Xi =

(
0j(tik)

)
mi×p. Let us

denote with A the matrix of size n × p with rows the expansion
coefficients of xi, i = 1, . . . , n.

2. Compute the first h(h ≥ 1) PLS components. The matrix of PLS
components Th for each method is given by

• Non-penalized FPLS: Th = AV1/2Vh

• FPLS by penalizing the norm: Th = AV(L−1)′Vh with LL′ =
V + kPd.

where Vh is the matrix comprising the columns of the first
h eigenvectors w̃1, . . . , w̃h associated with the t1, . . . , th PLS
components of each considered method (see Propositions 2–3).
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Fig. 5. Simulation study. Case I. CR1 (left) and CR2 (right). Simulated parameter function (red dashed line) and the mean of the 100 parameter functions estimated by Methods I,
II and III (black solid line) next to confidence bands (black dashed line) computed as ± 2 times the standard deviation at each time. The number of PLS components was selected
by Criterion 1 (left) and Criterion 2 (right).

3. The estimated functional linear model of Y in terms of the first
h PLS components is given by

Ŷh = 1ĉh
0 + Thĉh = 1ĉh

0 + AVb̂h,

where Th is the matrix whose columns are the first h PLS com-
ponents, ĉh is the vector of the regression coefficients of Y
on Th, and b̂h the vector of basis coefficients of the estimated
parameter function

b̂h(t) =
p∑

j=1

b̂h
j 0j(t).

Then, the vector b̂h of coefficients estimated by each method is
given by

• Non-penalized FPLS: b̂h = (V−1/2)′Vhĉh

• FPLS by penalizing the norm: b̂h = (L−1)′Vhĉh.

3.4. Model selection

In order to select the optimum number h of PLS components
and the smoothing parameter k, two different criteria have been
considered.

• Criterion 1: choosing simultaneously the values of h and k

by the K-fold cross-validation criterion. The sample data are
divided into K segments of equal size, Sk(k = 1, . . . , K), using
each one as the validation data for testing the model and
the remaining K − 1 segments as training sample. The K-fold
cross-validation error is given by

K − FCVE(h,k) =
1
n

K∑
k=1

Ek(h,k),
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where Ek(h,k) =
∑

i∈Sk
(yi − ŷi(h,k))2, with ŷi(h,k) being the

predictions on the k-th segment Sk, from a model fitted with
the first h PLS components and the smoothing parameter k. In
practice we have considered K = 10.

• Criterion 2: for each fixed number of PLS components h,
choosing the value of k that minimizes the K−FCVE(h,k). Then,
the number of PLS components h is selected by minimizing the
integrated mean squared error of the parameter function

IMSEb(h) =
(

1
T

∫
T

(
b(t) − b̂h(t)

)2
dt

)1/2

,

where b̂h(t) is the parameter function estimated with h
PLS components and the smoothing parameter k previously
selected by K-fold cross-validation. This criterion can be com-
puted only in simulations where the parameter function is
known.

For non-penalized FPLS both criteria are reduced to select only
the number of PLS components.

4. Simulation study

The ability of the proposed penalized FPLS approaches to predict
the response and to provide an accurate estimation of the functional
parameter is tested and compared in this section with simulated
data.

4.1. Description

The simulation study developed in this paper is based on the spec-
troscopic data set of gasoline described by [28]. The gasoline data
set consists of the NIR spectra of 60 gasoline samples measured in
2-nm intervals from 900 nm to 1700 nm (400 discrete observations
for each sample curve). The NIR spectra of these gasoline samples are
shown in Fig. 1 (left).
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Fig. 6. Simulation study. Case II. CR1 (left) and CR2 (right). Simulated parameter function (red dashed line) and the mean of the 100 parameter functions estimated by Methods I,
II and III (black solid line) next to confidence bands (black dashed line) computed as ± 2 times the standard deviation at each time. The number of PLS components was selected
by Criterion 1 (left) and Criterion 2 (right).
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The parameter function b(t) used for simulating the response
variable Y of the functional linear model is a relatively smooth
function

b(t) = 2 sin(0.5pt) + 4 sin(1.5pt) + 5 sin(2.5pt), t ∈ [0, 1],

used in [12] and [17] by transforming its domain to the spectra
domain (see Fig. 3 (left)).

After least squares approximation of the spectrometric curves
and the functional parameter in terms of the cubic B-splines defined

on 40 equally spaced knots in the interval [900, 1700], the response
values simulated in this work are given by

yi =
∫ 1700

900
xi(t)b(t)dt + ei,

where ei (i = 1, . . . , n) are simulated independent random errors
with normal distribution. The standard deviation of the errors, se , is
chosen so that the squared multiple correlation coefficient of the true
model equals 0.9 (Case I) and 0.7 (Case II). An example of regression
spline and P-spline for one of the sample paths is shown in Fig. 1 (top
right).

Fig. 7. Simulation study. Case I (left) and Case II (right). Box plots related to the distribution of IMSEb, CV RMSE, RMSPE number of PLS components for the FPLS regression models
estimated by Methods I, II and III, with the number of predictors selected by CR1 and CR2 on 100 simulations.
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The simulated response variable in matrix form is given by

Y = AVb + e, (16)

with A being the matrix of basis coefficients of the spectrometric
curves, b the vector of basis coefficients of the parameter function
and V the matrix of inner products between the B-spline basis func-
tions. It is well known that an important problem related with the
estimation of this linear model is multicollinearity (high correlations
between columns of its design matrix). This could produce inaccu-
rate estimates of the functional parameter. The distribution of the
correlations between the columns of the design matrix can be seen
in Fig. 2. As a consequence, the estimation of the functional param-
eter from the equivalent linear model (16) is really poor (see Fig. 3
(right) for case I). This inaccurate estimation makes it very difficult to
interpret the relationship between the functional predictor and the
response variable.

This problem is solved in this paper by applying different dimen-
sion reduction approaches based on taking an optimum set of
functional PLS components as predictor variables.

The problem of lack of smoothness of the parameter function
estimated by non-penalized FPLS regression (Method I) is solved by
considering a penalized approach.

First, two non-penalized FPLS regression approaches based on
non-penalized FPLSR on regression spline approximation of the sam-
ple paths (Method I) and the other is based on non-penalized FPLSR
on P-spline smoothing of the sample curves (Method II). In both
cases, a cubic B-spline basis with 40 equally spaced knots in the
interval [900, 1700] is considered for computing the basis expansion
of the spectral curves. A detailed comparative study between the
behavior of regression splines, smoothing splines and P-splines in the
functional data context can be seen in [26].

Second, a penalized estimation of FPLSR (by penalizing the norm)
is introduced in this paper and it will be called Method III. The
smoothing parameters associated with the penalized FPLS version
are chosen by 10-fold cross-validation (10-FCV). On the other hand,
the optimal number of FPLS components in all compared methods
was chosen by two different criteria: minimizing the 10-FCV error
(Criterion 1 denoted by CR1) and minimizing the integrated mean
squared error with respect to the functional parameter (IMSEb)
(Criterion 2 denoted by CR2). In order to corroborate the good per-
formance of the penalized FPLS estimations proposed in this paper,
100 repetitions of each simulation scheme (Case I and Case II) were
carried out.

4.2. Discussion of results

The response values were simulated by fixing R2 = 0.9 (Case
I) and R2 = 0.7 (Case II) for the simulation of the random errors
associated with the functional linear model.

The means of the estimated parameter functions over 100 simu-
lations provided by Methods I, II and III, with criteria CR1 and CR2
used for model selection, are presented in Fig. 4. The mean and point-
wise confidence bands computed as the sample mean ± 2 times the
standard deviation at each time point are shown in Fig. 5 (Case I. CR1
and CR2) and Fig. 6 (Case II. CR1 and CR2).

The box plots for the distribution of the integrated mean squared
error with respect to the original parameter function (IMSEb) are
drawn in Fig. 7 for the four considered methods and the two model
selection criteria. Let us observe that in Case II the variance of errors
is higher and then the estimation of the parameter function is a bit
less accurate and with higher variability than in Case I. This fact is
reflected in the confidence bands for the mean functions that are
wider for Case II. Independently of the criterion to be used for model

selection, the penalized Method III provides lower IMSEb than the
non-penalized ones (Methods I and II).

According to the results related to the estimation of the param-
eter function, it can be seen that Method I does not provide a fairly
accurate estimation by showing a great lack of smoothness that
makes very difficult its interpretation. The parameter functions esti-
mated by Method II are smoother than the ones provided by Method
I, but they are noisy and far from the original function. On the other
hand, looking at the plots about the mean of the parameter func-
tions, the penalized FPLS version proposed in this paper (Method III)
achieves the best parameter functions in the sense of smoothness
and variability.

In order to check the forecasting ability of the three considered
methods, box plots for the distribution of the CV RMSE and RMSPE
(squared root of the mean squared prediction errors) on the 100 sim-
ulations are presented in Fig. 7. In general, in Case II, both the CV
RMSE and RMSPE are higher than in Case I. And just for the more real-
istic case (Case II, where R2 = 0.7) the box plots show that Method
III provides the minimum RMSPE (in median).

To compare the degree of dimension reduction produced by the
two model selection criteria, box plots for the distribution of the
selected number of PLS components are drawn in Fig. 7 for the two
cases and the three FPLSR approaches considered in this paper. Let
us observe that the penalized version of FPLS regression (Method
III) selects a balanced number of PLS components, with some out-
liers which do not exceed six components. Method I presents more
variability in the selected number of PLS components. On the other
hand, the number of PLS components selected by the Criteria 1 and
2 with Method III is different to the non-penalized procedures. Let
us take into account that in real applications the parameter function
is unknown and CR2 criterion based on minimizing the IMSEb can
not be used. Based on the previous comments, it can be concluded
that using K-fold cross-validation criterion for model selection is a
good option to predict the response and to estimate the parameter
function with the penalized approach.

In order to see numerical differences among the results given by
Methods I, II and III, the model selection criteria CR1 and CR2, and the

Table 1
Simulation study. Cases I and II. Sample mean and standard deviation related to the
distribution of IMSEb, CV RMSE, RMSPE and number of PLS components for the opti-
mum FPLS regression models estimated by Methods I, II and III, with the number of
predictors selected by CR1 and CR2 criteria on 100 simulations.

R2 = 0.9

Criterion 1 Criterion 2

Method I II III I II III

IMSEb Mean 6.08 3.52 1.36 4.16 3.20 1.14
sd 0.70 0.77 0.76 0.40 0.35 0.53

CV RMSE Mean 2.82 2.55 2.58 2.53 2.54 2.57
sd 0.34 0.28 0.29 0.30 0.27 0.28

RMSPE Mean 2.82 2.55 2.58 2.53 2.54 2.57
sd 0.34 0.28 0.29 0.30 0.27 0.28

No CPs Mean 3.56 4.42 3.95 5.16 4.67 4.23
sd 1.27 0.74 0.59 0.55 0.49 0.51

R2 = 0.7

Criterion 1 Criterion 2

Method I II III I II III

IMSEb Mean 7.29 5.55 2.49 5.13 4.16 2.00
sd 4.04 3.30 2.18 0.80 0.82 1.22

CV RMSE Mean 5.23 5.20 5.09 5.12 5.09 5.09
sd 0.54 0.56 0.49 0.50 0.50 0.50

RMSPE Mean 5.23 5.20 5.09 5.23 5.09 5.09
sd 0.54 0.56 0.49 0.54 0.50 0.50

No CPs Mean 3.54 3.74 3.83 4.10 4.24 4.07
sd 1.32 1.10 0.59 0.59 0.64 0.61
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two different R2 used in the simulation study, Table 1 summarizes
the sample mean and the standard deviation of the errors IMSEb,
CV RMSE and RMSPE, and the number of PLS components for each
of the eight possible combinations. The results in this table corrobo-
rate the previous ones given by Figs. 4–7. Summarizing, it can be said
that independently of the model selection criterion and the simula-
tion scheme (R2 = 0.9 or R2 = 0.7), we observe that the estimation
of the coefficient functions is significantly improved by Method III.
With respect to the prediction errors, Methods I, II and III give sim-
ilar results with Method I-CR1 providing the worse predictions for
R2 = 0.9 and Method III-CR1 being the most accurate for R2 = 0.7.

As expected, the significant differences between the non-
penalized and penalized estimations of FPLSR are not in their fore-
casting ability but in their capacity to provide an accurate estimation
of the functional parameter.

5. Real data applications

In order to test the good performance of the proposed meth-
ods, two applications to different real data sets are considered in the
following subsections.

5.1. Gasoline spectra

In this section, the spectroscopic data set of gasoline described
by [28] is considered again. Let {yi : i = 1, . . . , 60} be a sample of a
scalar response variable related to the octane number of each gaso-
line sample. The aim is to forecast the octane number from the NIR
spectra of 60 gasoline samples, measured in 2-nm intervals from 900
nm to 1700 nm. In order to test the results, the sample was divided
into five sets of 12 gasoline samples, as in [17]. Then, each of these
subsets is taken as a test sample and the remaining 48 observations
as a training sample to fit the model.

First, least squares cubic B-spline smoothing with 40 equally
spaced knots of the spectral curves was carried out. After that, the
three proposed methods were applied. In this case, the parameter
function is unknown, and then the number of PLS components for
each method was chosen by the leave-one-out cross-validation cri-
terion. The means of the parameter functions estimated by the three
proposed methods are overlaid in Fig. 8.

The non-penalized FPLS coefficient functions are quite difficult to
interpret because of their high local variation. The coefficient func-
tion provided by Method III is more useful not only for prediction but
also for interpretation. Let us observe that the weights are positive
and significantly different from zero for wavelengths in the interval
(1300,1450) and negative in the interval (1150,1300), approximately,
with the highest positive weight around 1350–1375 and the smallest
negative weight around 1200–1225. This means that high values of
the spectrum in the interval (1150,1300) are associated with gasoline
of less octane number while high values in the interval (1300,1450)
are related to hight level of octane number. In other words, a gaso-
line with high octane must have less value of the spectrum in the
wavelength range (1150,1300) and higher in the range (1300,1450).

In order to check the forecasting performance of the different pro-
posed methods, the squared root of the mean squared prediction
errors (RMSPE) was computed on the five test samples. The sample
mean and the standard deviation of the RMSPEs are summarized in
Table 2. The mean and the standard deviation of the squared multi-
ple correlation coefficients associated with the fitted models for each
method appear also in this table. Let us observe that (as in simulation
studies) the estimation of the functional parameter given by Method
III is smoother and more interpretable with similar prediction errors
than Method II and better than Method I.

Let us observe that an accurate estimation of the parameter
function could be useful not only for getting nice interpretations
and predictions but also for designing efficient selection methods
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Fig. 8. Application to gasoline data. Mean of the parameter functions estimated by
Methods I (blue dotted line), II (green dashed line) and III (red solid line), for 5 training
samples.

of explanatory variables (see, for example, [29]). A comparison of
selection methods of explanatory variables in multiple PLS regres-
sion with application to manufacturing process data was developed
in [30]. Some of these methods are based on eliminating those
explanatory variables presenting the smallest non-significant PLS
regression coefficients, and then recalculating a new PLS model on
the remaining covariates. Following this idea, an algorithm to select
the significant wavelength domain to predict the response could
be developed for the FPLS regression model. In fact, in the applica-
tion with gasoline data, if we eliminate the nonsignificant wavelet
intervals (900,1150) and (1450,1700) and estimate the FPLSR model
taking as explanatory functional variable only the spectra in the
interval (1150,1450) then we obtain a much less mean (RMSPE)
given by 0.1491 with standard deviation 0.0214.

5.2. Beer spectra

In this section, let us consider an original data set related to
the spectra of different types of beers. These data were proposed
in the competition “Challenge 2010” during the “CHIMIOMETRIE
2010 Symposium” organized by the French Chemometrics Soci-
ety. Data can be downloaded from http://www.chimiometrie.fr/
challenge2010.html. Originally, this data was presented as a clas-
sification problem, so that the best approaches proposed by the
participants and organizers were summarized in [31].

In order to apply FPLR a scalar response variable is required. So,
given the type of beer associated with each spectrum, the chemi-
cal composition of alcohol (%) of each sample has been observed.
Let {yi : i = 1, . . . , 200} be a sample of a scalar response variable
related to the alcohol content of each beer sample (ranging from 5
to 11.3%). The aim is to forecast the degree of alcohol from the NIR
spectra of 200 beer samples, measured in 2-nm intervals from 400
nm to 2498 nm. The 200 spectra were divided into training sample
(120 spectra) to fit the model and a test sample of 80 spectra. A cubic
B-spline basis defined on 40 equally spaced knots was considered
to approximate the functional data. As in the other application, the

Table 2
Application to gasoline data. Mean and standard deviation of the RMSPE on test
samples and the R2 coefficients estimated by Methods I, II and III.

Mean (RMSPE) sd (RMSPE) Mean (R2) sd (R2)

Method I 0.2680 0.0758 0.9780 0.0028
Method II 0.2224 0.0355 0.9868 0.0012
Method III 0.2200 0.1432 0.9055 0.0638



A. Aguilera, M. Aguilera-Morillo, C. Preda / Chemometrics and Intelligent Laboratory Systems 154 (2016) 80–92 91

500 1000 1500 2000 2500

−
0.

2
0.

0
0.

1
0.

2
0.

3
0.

4

Fig. 9. Application to beer data. Parameter functions estimated by Methods I (blue
dotted line), II (green dashed line) and III (red solid line).

number of PLS components was selected by means of leave-one-out
cross-validation criterion.

In Fig. 9 the coefficient functions estimated by the three pro-
posed methods are shown. There are no differences between the two
non-penalized methods (Methods I and II), meanwhile Method III
provides a function easier to interpret in the sense that clearly iden-
tifies periods in which the function is positive (from 400 nm to 772
nm – period A; and from 2040 nm to 2498 nm – period C) and neg-
ative (from 774 nm to 2038 nm – period B). This means that high
values of the spectrum in the period B are associated with beers of
less alcohol content, meanwhile high values of the spectrum in the
periods A and C are related to beers with high level of alcohol.

In Table 3 the squared root of the mean prediction error on
the test sample (RMSPE) and the determination coefficient (R2)
were also provided. In this application the differences between non-
penalized and penalized methods are more clear, being Method III
which achieves the smallest prediction error and lightly increases the
proportion of variability of the response explained by the model.

6. Conclusions

The aim of this paper is to improve the estimation of the func-
tional parameter associated with the functional linear model for a
scalar response.

In order to solve the problems of high dimension and multi-
collinearity in the estimation of the functional linear model, and
also to provide and accurate estimation of the functional param-
eter by controlling its degree of smoothness, two different penal-
ized approaches based on functional partial least squares regression
(FPLS) are developed. The first approach introduces the penalty in
the definition of the norm of the PLS component weight functions
(Method III). The second one considers a penalized estimation of the
covariance between the response and the PLS components (Method
IV that is presented only in the supplementary material because it
does not improve the results provided by Method III). Discrete and
continuous penalties can be used in terms of basis expansions of the
sample curves.

Table 3
Application to beer data. RMSPE on test sample and the R2 coefficients estimated for
Methods I, II and III.

RMSPE R2

Method I 1.2862 0.6574
Method II 1.2867 0.6569
Method III 1.0443 0.6986

Two different criteria based on minimizing the K-fold cross-
validation errors and the integrated mean squared error of the
parameter function (Criteria 1 and 2, respectively) were adapted
to select the different parameters (the smoothing parameter and
the number of PLS components) associated with the considered
approaches.

The performance of the penalized FPLSR approach was tested and
compared with non-penalized FPLSR on non-penalized and penal-
ized least squares approximation of the sample curves with cubic
B-spline basis (Methods I and II, respectively). A simulation study
and two applications with chemometric functional data, measuring
the NIR spectra of gasoline and beer samples, were developed. In
the simulation study two different schemes were considered so that
R2 = 0.9 and R2 = 0.7.

From the simulation study, it can be concluded that indepen-
dently of the model selection criterion and the simulation scheme
(R2 = 0.9 or R2 = 0.7), the most accurate estimation of the
functional parameter is given by Method III (penalizing the norm).

With respect to the forecasting performance, the penalized and
non-penalized approaches provided similar quality for the predic-
tion errors with the penalized approach (Method III) giving slightly
smaller errors (in median) for the more realistic case of R2 = 0.7 and
the selection model criteria valid in practice (CR1), and Method I-CR1
providing the worse predictions for R2 = 0.9.

Then, the significant differences between the non-penalized and
penalized estimations of FPLS regression are mainly in their capacity
to provide an accurate estimation of the functional parameter, which
is useful not only for obtaining accurate predictions but also for inter-
preting the relationship between the functional predictor and the
scalar response. On the other hand, after comparing with criterion
based on minimizing the IMSE with respect to the true parameter
function, we can say that K-fold cross-validation is a good criterion
for model selection from a prediction and estimation point of view.

In the applications with the spectroscopic data sets of gasoline
and beer, the aim was to forecast a related response variable from
the NIR spectra, and to get an accurate estimation of the functional
parameter that explains the relationship between the response and
the functional predictor. The results of this applications corrobo-
rate that the estimation of the coefficient function is significantly
improved by Method III. On the other hand, the forecasting per-
formance of the penalized and non-penalized approaches is quite
similar with Method III giving slightly smaller prediction error in the
second application. Based on this accurate estimation, an interpreta-
tion of the coefficient regression functions was provided.

Summarizing, in both, simulation and application studies, the
penalized FPLSR approach introduced in this paper presents the best
performance. Finally, it is important to highlight that an accurate esti-
mation of the parameter function could be useful not only for getting
nice interpretations and predictions but also for designing efficient
selection methods of explanatory variables. Based on this idea, an
algorithm to select the significant wavelength domain to predict the
response could be developed for the FPLS regression model.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at http://
dx.10.1016/j.chemolab.2016.03.013.
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