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Abstract: Titanium particles embedded on peri-implant tissues are associated with a variety of
detrimental effects. Given that the characteristics of these detached fragments (size, concentration, etc.)
dictate the potential cytotoxicity and biological repercussions exerted, it is of paramount importance
to investigate the properties of these debris. This study compares the characteristics of particles
released among different implant systems (Group A: Straumann, Group B: BioHorizons and Group
C: Zimmer) during implantoplasty. A novel experimental system was utilized for measuring and
collecting particles generated from implantoplasty. A scanning mobility particle sizer, aerodynamic
particle sizer, nano micro-orifice uniform deposit impactor, and scanning electron microscope were
used to collect and analyze the particles by size. The chemical composition of the particles was
analyzed by highly sensitive microanalysis, microstructures by scanning electron microscope and the
mechanical properties by nanoindentation equipment. Particles released by implantoplasty showed
bimodal size distributions, with the majority of particles in the ultrafine size range (<100 nm) for all
groups. Statistical analysis indicated a significant difference among all implant systems in terms of the
particle number size distribution (p < 0.0001), with the highest concentration in Group B and lowest
in Group C, in both fine and ultrafine modes. Significant differences among all groups (p < 0.0001)
were also observed for the other two metrics, with the highest concentration of particle mass and
surface area in Group B and lowest in Group C, in both fine and ultrafine modes. For coarse particles
(>1 µm), no significant difference was detected among groups in terms of particle number or mass,
but a significantly smaller surface area was found in Group A as compared to Group B (p = 0.02) and
Group C (p = 0.005). The 1 first minute of procedures had a higher number concentration compared
to the second and third minutes. SEM-EDS analysis showed different morphologies for various
implant systems. These results can be explained by the differences in the chemical composition and
microstructures of the different dental implants. Group B is softer than Groups A and C due to the
laser treatment in the neck producing an increase of the grain size. The hardest implants were those
of Group C due to the cold-strained titanium alloy, and consequently they displayed lower release
than Groups A and B. Implantoplasty was associated with debris particle release, with the majority
of particles at nanometric dimensions. BioHorizons implants released more particles compared to
Straumann and Zimmer. Due to the widespread use of implantoplasty, it is of key importance to
understand the characteristics of the generated debris. This is the first study to detect, quantify and
analyze the debris/particles released from dental implants during implantoplasty including the full
range of particle sizes, including both micro- and nano-scales.
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1. Introduction

Titanium and its alloys perform excellently for implant osseointegration, and therefore
have seen widespread use as biomaterials in medical and dental fields [1]. Titanium dental
implants have favorable properties, such as low specific weight, high corrosion resistance,
and excellent general biocompatibility [2]. However, dental implants are not exempt
from complications. Beside the extensively studied inflammatory peri-implant diseases
(i.e., mucositis and peri-implantitis), some investigations have reported hypersensitivity
and allergic reactions to titanium [3], increased titanium concentration in serum [4] and
urine [5] and the presence of particles/ions adjacent to dental implants and at distant
locations (lymph nodes, lungs, liver etc.) [6–8].

Peri-implantitis, characterized by inflammation of the peri-implant mucosa and subse-
quent progressive loss of supporting bone, is defined as a plaque-associated pathological
condition [9] with multiple local-, systemic-, implant- and host-related factors playing a role
in its development and progression. Factors such as poor oral hygiene, history of periodon-
titis and smoking, among others, have been widely studied in relation to peri-implantitis.
More recently, titanium particles and ions have also been investigated as potential etiologic
and/or contributory factors for peri-implantitis [10–12]. Indeed, there are several studies
linking the presence of titanium particles to peri-implantitis [12,13]. These metal debris
have been associated with a variety of detrimental effects, including the initiation of an
inflammatory process potentially leading to marginal bone loss [14,15], activation of DNA
damage in oral epithelial cells [16] and ultimately peri-implantitis [12,13,17].

It has been demonstrated that particulate debris, acting as a biologically active sub-
stance, may initiate an osteolytic reaction leading to the failure of joint replacements [18].
Moreover, different compositions, concentrations, morphologies and sizes of metal particles
exert different cytotoxic effects [19]. Among these factors, the size and concentration of
the particles have a greater impact [18,20]. Higher levels of biological and immunological
activity to metal particles have been related within the size range of 1–50 µm, and/or at
the nano-level [6–8,12,14,21]. Most wear particles found in failed joint replacements are
submicron (<1 µm) in size, and are more likely to be responsible for the osteolytic response
initiated and mediated by macrophages [15,18,20]. Specifically, macrophages can phago-
cytose wear debris [22], resulting in the production of pro-inflammatory signal molecules
such as prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), interleukin-1β
(IL1-β) and interleukin 6 (IL-6) [23]. These cytokines have been proved to be upregulated
when the particle size falls within a certain range (0.6–4.5 µm) [24].

To promote successful osseointegration and faster bone healing, implant manufactur-
ers have incorporated various surface treatments, including blasting, acid etching, plasma
spraying, anodization etc. [25]. Nevertheless, these modifications may facilitate the re-
lease of wear particles during implant manipulation, such as placement, maintenance,
peri-implant disease management etc. This alteration of the implant surface can be affected
by the structure of the fixture, roughness and topographical configuration [26], and could
influence the progression of peri-implantitis and/or its treatment [27].

Implantoplasty has been used for the surgical treatment of peri-implantitis, with some
investigations reporting stable outcomes over time [28], although more recent evidence
has demonstrated no additional benefits compared to less-aggressive modalities for the
treatment of the implant surface [29]. Nevertheless, due to the widespread use of im-
plantoplasty, it is of key importance to understand the characteristics of the generated
debris. Therefore, this study aimed at investigating the debris particles generated with
implantoplasty, including particles’ size, number concentration, mass, surface area and
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morphology. Additionally, the differences among different implant manufacturers were
also evaluated.

2. Materials and Methods
2.1. Experimental System

A novel experimental system was created and utilized for collecting and quantifying
particles generated from implantoplasty (Figure 1).
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Figure 1. Experimental system employed for collecting and quantifying particles.

A blower controlled by an autotransformer blew room air through one high-efficiency
particulate air filter (HEPA) into the sampling chamber. A scanning mobility particle sizer
(SMPS 3936, TSI Inc., Shoreview, MN, USA), aerodynamic particle sizer (APS 3314, TSI
Inc., Shoreview, MN, USA) and nano micro-orifice uniform deposit impactor (0.2 µm pore
size, 47 mm in diameter, Sterlitech Corporation, Kent, WA, USA) were installed outside the
system with sealed tubes connecting to the chamber. Mixed cellulose esters (MCE) filters
(0.8 µm pore size, 47 mm diameter, Zefon International, Inc., Ocala, FL, USA) were inserted
in the nanoMOUDI for particle collection.

2.2. Implants

Nine implants from three implant systems were tested (Table 1):

• Group A (Straumann® BLT, RC, SLA; 4.1 Ø mm, length 16 mm; Institut Straumann
AG, Basel, Switzerland);

• Group B (BioHorizons® Tapered Plus; 4.6 mm × 15 mm; BioHorizons Plus, Birming-
ham, AL, USA).

• Group C (Zimmer® Tapered Screw-Vent MTX; 4.1 mm × 16 mm; Zimmer Dental Inc.,
Carlsbad, CA, USA).

Table 1. Comparison between different implant systems.

Manufacturer Material Current
Generation Technique Chemical

Treatment Nanoscale

Straumann, Switzerland Ti-15Zr SLA Blasting and
acid-etched N N

Zimmer, Warsaw, IN, USA Ti-6Al-4V MTX Blasting N N
BioHorizons, Birmingham, AL, USA Ti-6Al-4V Laser-Lok Blasting N N
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All implants were embedded in epoxy resin (crystal clear; vinyl cyclohexene dioxide;
East Coast®) contained in Falcon round-bottom polystyrene test tubes (5 mL, Polystyrene;
Corning®) (Figure 2). Implant recipient sites were drilled in each resin tube using a
standard surgical drill sequence with ceramic sequential drills (Komet, Gebr. Brasseler
GmbH & Co., KG, Lemgo, Germany) including round bur, 2.2 mm, 2.8 mm and 3.5 mm
drills. Later, implants were inserted, leaving the most coronal 6 mm exposed, resembling a
circumferential peri-implant defect [28].
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Horizons; (C) Zimmer.

2.3. Intra-Operator Calibration

Before the experiment, the operator repeatedly performed implantoplasty for three
implants and results were analyzed with SMPS and APS data for calibration. In the aerosol
research field, particles are commonly categorized into three modes: an ultrafine mode
(<0.1 µm), a fine mode (0.1~1 µm) and a coarse mode (>1 µm). Data from these procedures
showed bimodal curves with the median of each mode (coarse, fine, ultrafine) with <10%
variation, indicating adequate intra-operator consistency.

2.4. Implantoplasty Procedures

The implants were subjected to the implantoplasty protocol using rotary tungsten
carbide round burs (Brasseler USA, Savannah, GA, USA). One calibrated operator (XW)
performed all implantoplasty procedures under standardized conditions. Three tested
implants per implant system were included to ensure data consistency. A hand-held
straight hand-piece (at 40,000 rotations per min/rpm) was used to perform the procedure
until all implants had an evenly machined appearance to the naked eye. The duration of
the procedure was 3 min per implant.

2.5. Particle Collection and Analysis

SMPS was used for the analysis of particle number concentration by size from ~10 nm
to ~700 nm, and APS was used to measure particle number concentration by size from
~700 nm to ~20 µm. Particles in this size range (~10 nm to ~20 µm) are believed to cover
most implant debris, according to previous studies [6–8,12,14,21,30]. In this study, the data
of particle number, mass and surface area concentration were collected from SMPS and
APS and subsequently analyzed. In addition, nanoMOUDI was utilized to collect particles
by size onto 13 substrates arranged sequentially, collecting particles with difference size
range/diameter ranging from >~10 µm (level 2) to <~0.01 µm (level 15). The diameter
used in nanoMOUDI is the aerodynamic diameter, which has two assumptions: (1) unit
density (water density), (2) spherical shape [31]. In the current investigations, we assumed
that particles met these two requirements. Last, scanning electron microscopy with a
backscattered electron detector (SEM-BSD) and X-ray microanalysis were performed in
order to determine the chemical composition, with a high-sensitivity beryllium detector
(Jeol 6400, Tokyo, Japan). This analysis was carried out to determine the composition
and morphology of the collected particles by size. The released debris were characterized
by scanning electron microscopy (SEM) using a Phenom XL Desktop SEM microscope
(PhenomWorld, Eindhoven, The Netherland) with a voltage of 20 keV. In order to increase
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the conductivity of the debris, they were attached a high-purity carbon, improving the
images obtained [32].

2.6. Mechanical Properties

Nanoindentation was used to determine the mechanical properties (maximum strength,
0.2% yield stress, elastic modulus, ductility and hardness) of the released particles during
implantoplasty. Tests were realized using a “Berkovich” indenter, with a constant strain
rate of 0.05 s−1. The equipment used were an iMiro (KLA-Tencor) and a Nanoindenter XP
(MTS Systems Corporation, Oak Ridge, MN, USA). The nanoindentation equipment used
exerts a charge on the surface of the growing nanoparticle that penetrates inwards. The
system can determine the depth and can be assimilated to deformation. In other words,
nanoindentation works like a compression test. The mechanical equipment was coupled
to a high-resolution microscope to determine where the indentation was made. Fifteen
nanoindentation tests were performed in order to have a representative sample.

2.7. Statistical Analysis

Non-parametric Kruskal–Wallis was conducted to compare the median measures of
the particles released among the three implant systems. The level of statistical significance
was set to 0.05 for this study. Multiple pairwise comparisons using the DSCF method
informs of the relative impact of the implant manufacturer on each outcome. The analysis
for each outcome is stratified by duration (1, 2, 3 min) and categorical classification of
particle size (coarse, fine, ultrafine).

3. Results

Particles emitted from the implant surface during implantoplasty showed bimodal
number size distributions, with the majority of particles in the ultrafine size range (<100 nm)
(Figure 3A). Most differences among groups were within fine (100–1000 nm) and ultrafine
(<100 nm) particle size ranges (Figure 4). For particle number concentration, statistical
analysis indicated significant differences among all manufacturers in terms of particle size
distribution (p < 0.0001), with the highest number concentration in Group B (BioHorizons)
and the lowest in Group C (Zimmer), in both fine and ultrafine modes (Table 2, Figure 3B).
Significant differences among all groups (p < 0.0001) were also observed for the two other
metrics, with the highest concentration of particle mass and surface area in Group B
(BioHorizons) and the lowest in Group C (Zimmer), in both fine and ultrafine modes
(Table 2, Figure 3B,C). For coarse particles (>1 µm), no significant differences were detected
among groups in terms of particle number and mass, but a significantly smaller surface
area was found in Group A (Straumann) as compared to Group B (p = 0.02) and Group C
(p = 0.005) (Table 2, Figure 3A–C).
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Figure 3. (A) Particle number concentrations distributed by size among groups. The highest particle
number concentration was observed in Group B (BioHorizons); the lowest particle number concen-
tration was in Group C (Zimmer), in both fine and ultrafine modes (<1 µm). For coarse particles
(>1 µm), the particle number concentrations were more overlapped among groups. (B) Particle mass
concentrations distributed by size among groups. The highest concentration of particle mass was
observed in Group B (BioHorizons) and the lowest in Group C (Zimmer), in both fine and ultrafine
modes (<1 µm). For coarse particles (>1 µm), Group A (Straumann) and Group B (BioHorizons)
showed higher concentrations than Group C (Zimmer). (C) Particle surface area distributed by size
among groups. The highest concentration of particle surface area was shown in Group B (BioHori-
zons) and the lowest in Group C (Zimmer), in both fine and ultrafine modes (<1 µm). For coarse
particles (>1 µm), the difference was less significant. Green dots: Group A (Straumann); orange dots:
Group B (BioHorizons); blue dots: Group C (Zimmer). Solid dots: data from SMPS; hollow dots: data
from APS.
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Table 2. Size distribution comparison among implant manufacturers stratified by particle size
(particle number size; particle mass; particle surface area).

Comparisons Pairwise Comparisons b

Particle Size p-Value a Straumann vs.
BioHorizons

Straumann vs.
Zimmer

BioHorizons vs.
Zimmer

Particle number size
Coarse (>1000 nm) 0.7169 <0.0001 - -
Fine (100–1000 nm) <0.0001 <0.0001 <0.0001 <0.0001
Ultrafine (<100 nm) <0.0001 <0.0001 <0.0001 <0.0001

Particle mass
Coarse (>1000 nm) 0.0488 <0.0001 - -
Fine (100–1000 nm) <0.0001 <0.0001 <0.0001 <0.0001
Ultrafine (<100 nm) <0.0001 <0.0001 <0.0001 <0.0001

Particle surface area
Coarse (>1000 nm) 0.0009 0.0232 0.0050 0.0547
Fine (100–1000 nm) <0.0001 <0.0001 <0.0001 <0.0001
Ultrafine (<100 nm) <0.0001 <0.0001 <0.0001 <0.0001

a Kruskal–Wallis test for comparing median measurements. b Pairwise comparisons computed with DSCF method.
If the overall p-value was >0.001 then the pairwise p-values are not displayed.
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Dot plots were created to indicate mean particle number concentration stratified
by minute. The first minute of the procedure generated a higher number concentration
compared to the second and third minutes for all implant systems, especially for Group A
(Straumann) and Group B (BioHorizons) (Figure 5A–C).
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Finally, SEM-EDS analysis of nanoMOUDI-collected particles indicated that for the
various implant systems, particles showed different morphology and composition. Bio-
Horizons implants produced particles with more spindle/shaving shape (Figure 6) while
particles from the other two groups seemed more spherical (Figure 6). In most samples,
the elements Ti, C, O, Si and Al were detected. Interestingly, a higher percentage of tita-
nium was detected by EDS within the coarse size range compared to fine and ultrafine
particles (Figure 6). Moreover, titanium was not identified in ultrafine particles in either
Group B (BioHorizons) or Group C (Zimmer) (Figure 6). Zr was detected only in Group A
(Straumann). The specific percentage of elements is not presented due to the inaccuracy of
element demonstration by EDS.
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The compressive properties of the tested implants are shown in Table 3. From the
results it can be seen that the Ti15Zr alloy had the highest hardness values and the Ti6Al4V
alloy used in Zimmer dental implants had the highest mechanical strength values. The
BioHorizons dental implants, which have the same alloy as Zimmer, had significantly
lower values than the Straumann and Zimmer implants due to the laser treatment to which
the dental implants are subjected.

Table 3. Compressive properties of the debris studied. The standard deviation is given in brackets.

Implant System Implant Maximum Strength
(MPa)

Yield Stress 0.2%
(MPa) Ductility (%) Hardness (GPa)

Straumann Ti15Zr 897 (24) 698 (20) 22 (4) 1.952 (137)
BioHorizons Ti6Al4V * 860 (37) 657 (23) 17 (4) 1.118 (198)

Zimmer Ti6Al4V 1050 (35) 740 (23) 8 (2) 1.451 (233)

* Laser treatment.

The BioHorizons Laser-Lok® is a series of precision-engineered cell-sized channels
laser-machined onto the surface of the dental implants and abutments. The surface treat-
ment is intended to attract a true, physical connective tissue attachment. The treatment
of laser produced an increase of the grain size, as can be observed in Figure 7. Figure 7A
shows the microstructure of the Ti6Al4V of the Zimmer implant, with an average grain
diameter of around 11 µm; Figure 7B shows the BioHorizons implant, with an average
grain diameter of around 240 µm with a columnar shape. This larger gran size is due to the
laser treatment because the high temperature produces grain boundary diffusion [33–36].
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4. Discussion

This in vitro study demonstrated that performing implantoplasty on dental implants
produces debris mostly within the ultrafine size range (<100 nm). Evidence from previous
in vitro investigations have also indicated that nanometer-sized particles may account for
the greatest number of debris generated, but only accounting for a very small proportion
of the total volume [19,37]. These results indicate that a surgical area that seems visually
“free of particles” after implantoplasty might still contain a great number of nanometric
debris. Of importance, as reported previously in the orthopedic literature [38,39], the
smaller particles (sub-micrometer-sized) have been shown to be more associated with
macrophage activities, including increased cytokine release (e.g., TNF-α IL-1 β IL-6, IL-8,
IL-11, TGF-β. Consequently, results from this investigation demonstrate that most of the
particles released after implantoplasty were within the range of debris capable of exerting
high levels of biological and immunological activity. These ultrafine debris are biologically
more detrimental compared to the visible coarse particles, through biochemical mediators
of inflammation, cellular recruitment and bone resorption [15]. As such, clinicians should
consider alternatives to reduce the widespread release of particles generated during im-
plantoplasty (rubber dam, high-volume evacuation, etc.). Similarly, the risks and benefits
of performing implantoplasty for the treatment of the implant surface should be cautiously
weighed for every implant/patient.

To the best of our knowledge, this is the first study to detect, quantify and analyze
debris/particles released from dental implants during implantoplasty including size ranges
from both micro- and nano-scales. Numerous studies have previously shown the presence
of titanium particles in peri-implant mucosa [6,12], especially around fixtures suffering
from peri-implantitis [13,21,30,40–42], but these investigations failed to perform a detailed
description and analysis and the metal debris investigated. Most importantly, previous
studies were not able to quantify the particles embedded on the peri-implant tissues. Given
the paramount importance of the particles’ characteristics (i.e., size, concentration, com-
position, morphology), this study focused on the description of these factors by reporting
number, size, mass and surface area. Results from this study can lead to future investigation
evaluating the deleterious effects of these nano-scale titanium particles on peri-implant
tissues, taking as a reference the debris observed in this study.

This in vitro study also demonstrated differences in terms of number, size, mass,
surface area and morphology among various manufacturers with different implant design
and surface treatment. Nevertheless, the diffractograms of all samples showed similar
bimodal curves. On the other hand, the generated particles showed differences regarding
the concentration of number, mass and surface area. In this study, not only particle numbers
were reported, but also particle mass and surface; this is because mass concentration is often
not sufficient to fully describe small particles, whereas other metrics such as particle number
or surface area may be more descriptive for ultrafine and fine particles [40]. Similarly,
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results also demonstrated that most particles were released within the first minute of
implantoplasty, and the particles number concentration was reduced when reaching the
second and third minutes, especially for Groups A and B.

Within the coarse size range, elements such as C, O, Ti, Si and Al were found in all
groups, which is consistent with previous investigations [12]. Zr was only observed in
group A. For particles within fine and ultrafine size ranges, similar elements were observed.
Interestingly, for these levels, the concentration of Ti decreased while those of C and O
increased. Ti was only detected in Group C (Zimmer) in ultrafine particles. Results failed
to detect Ti in ultrafine particles in the other two groups, probably due to the limitation
of element detection by SEM/EDS analysis, in which spectrum point analysis was used.
Therefore, it would be ideal to utilize spectrometry for composition analysis in future
investigations.

It is important to bear in mind that a force-controlled rotary machine was considered
for the current investigation. Nevertheless, an operator-controlled design was utilized in
order to more closely resemble the clinical treatment of peri-implantitis. In addition, to
avoid operation errors, intra-operator calibration was performed.

The mechanical properties analysis showed that the laser treatment applied to Bio-
Horizons dental implants to improve the biological seal caused an increase in the grain
size of the titanium alloy. According to the Hall–Petch relationship, this increase in grain
size causes a decrease in the hardness values, causing the material to fracture more easily.
Therefore, the particles were more numerous during implantoplasty. Zimmer’s Ti6Al4V
alloy had smaller grain sizes and therefore had higher hardness and greater mechanical
strength, as we were able to verify in the results of the mechanical tests. For this reason, the
released particles were smaller in number [34–36].

The Straumann Ti15Zr alloy had higher hardness values but lower mechanical strength,
which resulted in a slightly higher particle release in comparison to Zimmer, but a signifi-
cantly lower release than BioHorizons.

Limitations of the current investigation include the utilization of implantoplasty as
the only method for implant surface decontamination/modification. Often, implantoplasty
is used in combination with other chemical and/or mechanical methods for implant
detoxification

The influence of the particles should be studied, especially on the reaction of inflamma-
tory cells, and to determine the activation of the immune system by nanometric particles. It
is also important to determine the influence of the particles not only on peri-implantitis but
also on other infections or the relationship between them. Gherlone et al. [43] conducted a
comprehensive clinical study of dental implant placement including patients with HIV and
observed a high incidence of peri-implant infections in the first six months.

The effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) adminis-
tration in oral cavity carcinoma patients should also be considered. The administration of
5 mg on the same day as radiotherapy significantly reduced mucositis in [44]. This research
could help to determine a way to cure or at least reduce peri-implantitis.

Peri-implantitis is an infection in which oral hygiene undoubtedly plays a role in
its generation, but sometimes people with very good oral hygiene can be observed with
infection, or vice versa, people with poor oral hygiene can be observed without infection.
Therefore, the generation of infection can have many variables to consider: genetic factors,
hygiene, the presence of particles that facilitate infection or the distribution of occlusal
contacts that can cause disorders in the oral cavity [17,38–40,42,45].

Therefore, future testing is warranted to evaluate the occurrence of this phenomenon
using different techniques, and within the oral environment. This study is part of a series
of testing conditions that will investigate the debris particles released under various me-
chanical and electrochemical conditions from different implants with various materials
and surface treatments. To further elaborate on this topic, further studies are needed to
investigate the biotoxicity of the different types of debris generated during implantoplasty
and the potential detrimental effects on clinical outcomes. Future studies should also eval-
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uate the effects of these particles on cell behavior and utilize animal models to investigate
cytotoxicity based on different particle size ranges, especially at the nano-scale.

5. Conclusions

Implantoplasty is associated with debris particle release, with the majority of particles
being within the ultrafine size range (<100 nm). BioHorizons implants released more
particles compared to Straumann and Zimmer systems. The first minute of the procedure
released the most debris in terms of the particle number. The laser treatment of BioHorizons
dental implants to improve the biological seal causes a decrease in the implant’s mechanical
properties due to an increase in grain size, which explains the increased release of particles.
The potential short- and long-term cytotoxicity and biological effects of these debris should
be further investigated.
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