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The covariance of loop quantum gravity studies of spherically symmetric space-times has recently been
questioned. This is a reasonable worry, given that they are formulated in terms of slicing-dependent
variables. We show explicitly that the resulting space-times, obtained from Dirac observables of the
quantum theory, are covariant in the usual sense of the way—they preserve the quantum line element—for
any gauge that is stationary (in the exterior, if there is a horizon). The construction depends crucially on the
details of the Abelianized quantization considered, the satisfaction of the quantum constraints, and the
recovery of standard general relativity in the classical limit and suggests that more informal polymerization
constructions of possible semiclassical approximations to the theory can indeed have covariance problems.
This analysis is based on the understanding of how slicing-dependent quantities as the metric arise in a
quantum context in terms of parametrized observables. It has implications beyond loop quantum gravity
that hold for general approaches to quantum space time theories.
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The application of loop quantum gravity techniques to
spherically symmetric space-times has led to insights
about how the singularity inside black holes could be
eliminated by quantum effects. We refer specifically to
the construction that uses inhomogeneous slices and
enforces the constraint algebra at the quantum level
through Abelianization [1]. The construction is based on
canonical quantum gravity and, as such, is based on three-
dimensional objects that are slicing dependent. A reason-
able worry [2] is if the constructions lead to covariant
quantizations of the space-times. An encouraging sign is
that they enforce the constraint algebra, which in the
canonical theory is the guarantor of slicing independence
of the construction, and of reproducing the standard
general relativistic results in the classical limit. However,
technical aspects, like the fact that the algebra is
Abelianized, may lead to questions about the covariance
of the procedure. We would like to show explicitly that
the resulting space-times are indeed covariant at any space
time region in the usual sense of the word: the invariant
line element is indeed invariant at the quantum level for
any stationary foliation (stationary in the exterior if there is
a horizon). Although this is not a definitive extension of
the notion of covariance to the quantum realm, the result
arises in a nontrivial way and suggests that with more work
this notion could be achieved.
We start with a spherically symmetric space-time.

Following the discussion in [1], the line element can be

written as dS2 ¼ ds2 þ jExjdω2, where dω2 is the line
element of the unit 2-sphere, and,

ds2 ¼ −ðN2 − NxNxÞdt2 þ 2Nxdtdxþ
ðEφÞ2
jExj dx2; ð1Þ

where N and Nx are suitable lapse and shift functions, with
Nx ¼ gxxNx, and Eφ and Ex triad variables, conjugate to the
extrinsic curvature components of the foliation, Kφ and Kx,
with Poisson brackets,

fKxðxÞ; Exðx0Þg ¼ Gδðx − x0Þ;
fKφðxÞ; Eφðx0Þg ¼ Gδðx − x0Þ: ð2Þ

We take the Immirzi parameter γ ¼ 1 and G is Newton’s
constant.
We redefine the lapse and the shift in order to make the

constraints Abelian as shown in [3]

N̄x ¼ Nx −
2NKφ

ffiffiffiffiffiffiffiffijExjp
jExj0 ; ð3Þ

N̄ ¼ −
1

Eφ

�
N

Eφ

jExj0
�0

ð4Þ

(prime denotes derivative with respect to x with which the
smeared Hamiltonian constraint takes the form
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H̃ðÑÞ≔ 1

G

Z
dxÑ

ffiffiffiffiffiffiffiffi
jExj

p
Eφ

�
K2

φ−
½jExj0�2
4ðEφÞ2þ

�
1−

2GMffiffiffiffiffiffiffiffijExjp ��
;

ð5Þ
where M is the Arnowitt–Deser–Misner (ADM) mass.1 It
can be checked that this constraint has an Abelian algebra
with itself. The momentum constraint, on the other hand,
keeps its original form.
Let us recall the construction of the physical Hilbert

space. The elements of a basis of quantum states are one-
dimensional spin networks with integer valences kj at
each link j ∈ ½−S;−Sþ 1;…; 0;…; S − 1; S�, with 2Sþ 1
nodes in total. We have three kinds of Dirac observables,
one corresponding to the ADMmassM, the total number of
vertices S and the set of integers k⃗,

M̂jM; k⃗i ¼ MjM; k⃗i; ð6Þ

and the other two not having a classical counterpart,

ÔðzÞjM; k⃗i ¼ l2
PlanckkIntðSzÞjM; k⃗i ð7Þ

where Int means the integer part and z is a real parameter in
the interval ½−1; 1�, so OðzÞ constitutes a one-parameter
family of observables. M, OðzÞ, and S are the Dirac
observables. lPlanck is Planck’s length. Having identified
the physical space, we will describe the metric by intro-
ducing gauge fixings that allow us to write the metric
components in specific gauges in terms of evolving
observables defined on the physical space of states.
The action of the triads and their derivatives on physical

states is

ˆjExðxjÞjjM; k⃗i ¼ ÔðzðxjÞÞjM; k⃗i ¼ l2
PlanckkjjM; k⃗i; ð8Þ

jÊxðxjÞj0jM;k⃗i ¼ 1

lPlanck
ðjÊxjðxjþ1Þ− jÊxjðxjÞÞjM;k⃗i: ð9Þ

Here, and for simplicity, we choose a particular class of
spin networks, with givenM and kj (no superpositions) and
gauge fixing such that x2j ¼ l2

Planckkj, where

xj ¼ lPlanckðjjj þ j0Þ: ð10Þ

This is motivated in that in the classical theory the
condition jExj ¼ x2 corresponds to having x be the radius
of the spheres of symmetry. This includes many popular
coordinate systems for studying spherical space-times.

We will later relax this assumption, allowing arbitrary
stationary changes in the radial coordinate.
Within the improved dynamics of [3], j0 is the minimum

integer greater than ð 2GMΔ
4πl3Planck

Þ1=3 and Δ is the loop quantum

gravity area gap [3]. This implies

jÊxðxjÞjjM; k⃗i ¼ x2j jMk⃗i; ð11Þ

jÊxðxjÞj0jM; k⃗i ¼ signðjÞð2xj þ lPlanckÞjM; k⃗i; ð12Þ

where we take signðjÞ ¼ 1; ∀ j ≥ 0 and signðjÞ ¼ −1;
∀ j < 0.
The quantization of the constraints involves

Kφ →
sin ðρjKφðxjÞÞ

ρj
; ð13Þ

with ρ̂2j ¼ Δ=ð4πÊxðxjÞÞ. The quantum gauge fixings that
we adopt here leaveKφðxjÞ as either a c-number function or
a function of the Dirac observables M, S, or OðzÞ. These
quantum gauge fixings correspond to a choice of a slicing
in the quantum theory.
Moreover, the conjugate variable to KφðxjÞ on the

physical Hilbert space is obtained by solving the
Abelianized constraint (5), and amounts to

½ÊφðxjÞ�2 ¼ ½jÊxjðxjÞ0�2

×

�
4

�
1þ sin2ðdρjKφðxjÞÞbρj −

2GM̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jÊxjðxjÞ

q ��−1
:

ð14Þ
From now on we will use the notation Êx

j ≡ jÊxjðxjÞ,
ðÊx

jÞ0 ≡ jÊxjðxjÞ0, Êφ
j ≡ ÊφðxjÞ and Kφ;j ≡ KφðxjÞ. The

metric of space-time can be implemented as a quantum
operator acting on the physical space of states by writing it
as a parametrized observable given by the gauge fixing
conditions. Details are in [1].
Let us consider stationary slices, that is, the gauge fixing

conditions do not depend on time. Preservation of these
conditions [3] correspond to N̄x ¼ N̄ ¼ 0 and imply that
NEφ=ðExÞ0 is a constant that we take equal to 1=2. This in
turns means that N ¼ ðExÞ0=ð2EφÞ and this implies that
Nx ¼ Kφ

ffiffiffiffiffiffi
Ex

p
=Eφ. The gauge fixing determines the

Lagrange multipliers that were mentioned before.
We will first analyze what happens outside the “bounce”

that replaces the classical singularity and later study the
covariance at the bounce. For the physical states jM; k̂i
under consideration (with no superpositions in M and kj),
the Schwarzschild metric can be readily obtained by fixing
Kφ;j ¼ 0. It is given by21Classically, the variational problem is well posed once a

boundary term is introduced [4,5]. The boundary term explicitly
introduces the mass M and its conjugate variable τ (the proper
time of an asymptotic observer) as the global physical degree of
freedom that characterizes classical solutions.

2Note that the line element of the 2-spheres is determined by
gθθ ¼ x2j and gφφ ¼ x2j sin

2 θ.
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ĝSttðxjÞ ¼ −
½ðÊx

jÞ0�2
4ðEφ

j Þ2
¼ −N̂2 ¼ −

�
1 −

r̂Sffiffiffiffiffiffi
Êx
j

q �
; ð15Þ

ĝSttðxjÞjM; k⃗i ¼ −
�
1 −

r̂S
xj

�
jM; k⃗i; ð16Þ

ĝStxðxjÞ ¼ 0; since Kφ;j ¼ 0; ð17Þ

ĝSxxðxjÞ ¼
ðEφ

j Þ2
Êx
j

¼ ½ðÊx
jÞ0�2

4Êx
j

1

1 − r̂Sffiffiffiffi
Êx
j

p ð18Þ

ĝSxxðxjÞjM; k⃗i ¼ ð2xj þ lPlanckÞ2
4x2j

1

1 − rS
xj

jM; k⃗i

¼
�
1þ lPlanck

xj
þ l2

Planck

4x2j

��
1 −

rS
xj

�
−1
jM; k⃗i

¼
�
1þ lPlanck

2xj

�
2
�
1 −

rS
xj

�
−1
jM; k⃗i; ð19Þ

with r̂S ¼ 2GM̂. It should be noted that the calculation is
exact. Let us proceed to compare the result with the action
of the metric with a generic choice of functional parameter
of the observable Kφ;j only restricting to stationary folia-
tions (independent on time) that will include usual ones like
the Painlevé-Gullstrand and Eddington-Finkelstein ones.
On generic stationary foliation, lapse, shift, and Eφ

j can
be written as

Nj ¼
1

2

ðEx
jÞ0

Eφ
j

; Nx
j ¼

sin ðρjKφ;jÞ
ρj

ffiffiffiffiffiffi
Ex
j

p
Eφ
j

; ð20Þ

Eφ
j ¼ ðEx

jÞ0
 
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2 ðρjKφ;jÞ

ρ2j
−
2GMffiffiffiffiffiffi

Ex
j

ps !−1

ð21Þ

with the parameter of the observable Kφ;j generic but time
independent. These are the quantum versions of the
classical expressions discussed above.
The choice of Kφ;j completes the prescription for the

gauge fixing that characterizes the foliation. We recall that
it may be considered as the functional parameter of the
parametrized observable that defines Eφ

j , and through it the
metric components, and therefore can be chosen at will.
Each choice determines a different system of coordinates.
One way of doing this is to introduce a function FðxjÞ such
that sin ðρjKφ;jÞ ¼ FðxjÞ with FðxjÞ ∈ ½−1; 1� ∀ xj and
therefore, with the notation FðxjÞ≡ Fj ∈ ½−1; 1�. Each
choice of Fj leads to a different foliation, for instance

FðxjÞ ¼ ρj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rS=

ffiffiffiffiffiffi
Ex
j

pq
leads to an ingoing Painlevé-

Gullstrand form of the metric [6] and FðxjÞ ¼ ρjrS=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex
jð1þ rS=

ffiffiffiffiffiffi
Ex
j

p Þ
q

to ingoing Eddington-Finkelstein

coordinates [3].3 Note that as we explained for Kφ;j,
FðxjÞ can either be a c-number function or an operator,
function of the Dirac observables, and should be treated
accordingly.
For a generic stationary foliation given by FðxjÞwe have

N̂FðxjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F2

j

ρ2j
−

rSffiffiffiffiffiffi
Êx
j

qvuut ; ð22Þ

N̂x
FðxjÞ ¼

2Fj

ρj

ffiffiffiffiffiffi
Êx
j

q
ðÊx

jÞ0
N̂FðxjÞ; ð23Þ

ĝFxxðxjÞ ¼
ððÊx

jÞ0Þ2
4Êx

j

N̂FðxjÞ−2; ð24Þ

ĝFttðxjÞ ¼ −1þ r̂Sffiffiffiffiffiffi
Êx
j

q ; ð25Þ

ĝFtxðxjÞ ¼ ĝxxN̂
x
FðxjÞ: ð26Þ

We would like to show that the length of a space-
time curve ðtðxÞ; xÞ is invariant. If the state of the
black hole system is given by the basis element jM; k̂i
defined in Eqs. (6)–(10), to each function tðxÞ corres-
ponds, in Schwarzchild coordinates, a polygonal curve
in the plane ðt; xÞ described by a discrete set of
points ½…ðtj; xjÞ; ðtjþ1; xjþ1Þ…� where

ffiffiðp Êx
jÞjM; k̂i ¼

lPlanck
ffiffiffiffi
kj

p jM; k̂i ¼ ðjjj þ j0ÞlPlanckjM; k̂i ¼ xjjM; k̂i and

t̂ðxjÞjM; k̂i ¼ tðxjÞjM; k̂i. More general polygonal curves
may be defined by composition of these curves. To be able
to discuss changes of slicings in a situation where space is
discrete, it is necessary to consider polygonal curves in
space-time.
We assume that the quantum version of the invariant

interval between two successive points of the polygonal
curve acting on a basis element jM; k⃗i of the physical space
of states may be written as

ðdΔsjÞ2 ¼ dgabðtj; xjÞdΔxaj dΔxbj ; ð27Þ

with dΔx0j ¼ t̂jþ1 − t̂j ¼cΔtj and dΔx1j ¼ x̂jþ1 − x̂j ¼ cΔxj.
In particular, the invariant interval between two succes-

sive points of the polygonal in Schwarzschild coordinates
ΔsSj and generic stationary coordinates ΔsFj is

3Outgoing coordinates in both cases are defined similarly with
a minus sign in the right-hand side of these choices of FðxjÞ.
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ðΔsSj Þ2¼−
�
1−

rSffiffiffiffiffiffi
Ex
j

p �
Δt2j þ

ððEx
jÞ0Þ2

4Ex
j

1

1− rSffiffiffiffi
Ex
j

p Δxj2; ð28Þ

ðΔsFj Þ2¼−
�
1−

rSffiffiffiffiffiffi
Ex
j

p �
Δt2F;jþ2

Fj

ρj

ðEx
jÞ0

2
ffiffiffiffiffiffi
Ex
j

p 1

NFðxjÞ
ΔtF;jΔxj

þððEx
jÞ0Þ2

4Ex
j

1

NFðxjÞ2
Δxj2; ð29Þ

where we have omitted the hats indicating that Ex
j , Nj,

ΔsS;Fj , rS, and Fj are operators. By now the reader should
notice by context what we are referring to with the
expressions. So setting t̂FðxjÞ ¼ t̂ðxjÞ − âðxjÞ and taking
into account [(28)]

ðΔsFj Þ2 ¼−
�
1−

rSffiffiffiffiffiffi
Ex
j

p �
Δt2F;jþ2

Δaj
Δxj

�
1−

rSffiffiffiffiffiffi
Ex
j

p �
ΔtF;jΔxj

þ
�ðEx

jÞ0
4Ex

j

1

1− rSffiffiffiffi
Ex
j

p −
�
1−

rSffiffiffiffiffiffi
Ex
j

p ��
Δaj
Δxj

�
2
�
Δx2j

ð30Þ

and setting

Δaj ¼
Fj

ρj

ðEx
jÞ0

2
ffiffiffiffiffiffi
Ex
j

p 1

Nj

1

1 − rSffiffiffiffi
Ex
j

p lPlanck; ð31Þ

one can see that the intervals ΔsFj computed in (29), (31)
coincide and therefore we have shown that the line element
is invariant.
This allows us to construct aðxjÞ from aðxSÞ and one

recovers the classical change of coordinates when lPlanck is
taken to be infinitesimally small. The polygonal line
element is invariant up to all orders in terms of Planck’s
length.
This illustrates the invariance when one changes coor-

dinates that imply a change of slicing. It is clear that
changes that preserve the foliation keep the line element
invariant, provided they are well defined. For example, let
us consider the “tortoise” coordinate defined as�
1 −

rS
xj

�
ðx�jþ1 − x�jÞ2 ¼

�
1þ lPlanck

2xj

�
2
�
1 −

rS
xj

�
−1

× ðxjþ1 − xjÞ2; ð32Þ

or equivalently,

x�jþ1 − x�j ¼
�
1þ lPlanck

2xj

��
1 −

rS
xj

�
−1
lPlanck; ð33Þ

where we replaced xjþ1 − xj ¼ lPlanck for all j. This
equation determines all x�j provided the value of, for

instance, x�S. Again, we note that this change of radial
coordinate leaves invariant the line element, by
construction.
Up till now we have analyzed the case kj ¼ ðjjj þ j0Þ2

and ignored superpositions in the quantum states. It is easy
to extend the analysis to a general case of jM; k⃗i. If we
define xj ¼

ffiffiffiffi
kj

p
lPlanck with a nonuniform spacing, with

the discrete interval defined as ðΔsjÞ2 ¼ gabðxjÞΔxajΔxbj
and Δxj ¼

ffiffiffiffiffiffiffiffiffi
kjþ1

p
−

ffiffiffiffi
kj

p
in the gauge Ex

j ¼ sigðjÞx2j , the
previous proof can be extended easily.
For generic superposition states,Z

dM
X
k

cðk⃗;MÞjM; k⃗i; ð34Þ

the proof can be extended since M̂; Êx commute and
therefore ĝab can be defined without ordering ambiguities.
One can see that the intervals ΔsSj and ΔsFj (29) and (31)

coincide for any element of the physical basis jM; k⃗i and
therefore their expectation values coincide for any element
of the physical space of states. However, due to fluctua-
tions, as it is usual in quantum mechanics, even though

the expectation value hðdΔsjÞ2i ¼ h dgabðtj; xjÞdΔxaj dΔxbj i is

invariant, h dgabðtj; xjÞihdΔxaj ihdΔxbj i is not. Thus in a highly
quantum regime the length of a curve is gauge invariant but
there will be correction to the tensorial behavior of the
metric. The previous analysis then provides an explicit and
operational notion of quantum covariance.
Let us now address the covariance of the framework

at the bounce that replaces the singularity in [6]. It is
important to remark that the bounce occurs at a point that
may be identified in a way that is invariant under changes of
foliation and radial coordinates and is given by the infimum
of jEx

j j. Thus, the bounce hypersurface is slicing indepen-
dent and covariantly defined with the geometric description
being unique up to this point and, as we shall see, beyond.
We start from Schwarzschild’s metric given in Eqs. (15),
(17), and (18). Note that, for this metric, the region j <
rS=lPlanck − j0 is foliated by xj ¼ const hypersurfaces,
i.e., a nonstationary slicing. However, as we will see,
our discussion about covariance is still valid.4 At the
bounce x0 ¼ j0lPlanck, we have that

gSttðx0Þ ¼ −
�
1 −

rS
j0lPlanck

�
; ð35Þ

gStxðx0Þ ¼ 0; ð36Þ

4Let us note that it is not difficult to carry out the proof of
covariance at the bounce starting from horizon-penetrating
coordinates stationary at the exterior. We adopt the nonstationary
Schwarschild’s metric for the sake of simplicity.
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gSxxðx0Þ ¼
�ðEx

0Þ0
4Ex

0

�
2
�
1 −

rS
j0lPlanck

�
−1
: ð37Þ

Explicitly, acting on a state,

ðEx
0Þ0 ¼

ðj0lPlanckþlPlanckÞ2− j20l
2
Planck

lPlanck
¼ ð2j0þ 1ÞlPlanck;

ð38Þ
and therefore,

ððEx
0Þ0Þ2

4Ex
0

¼ ð2j0 þ 1Þ2
4j0

¼
�
1þ lPlanck

2j0lPlanck

�
; ð39Þ

and

gSxxðx0Þ ¼
�
1þ 1

2j0

�
2
�
1 −

rS
j0lPlanck

�
−1
: ð40Þ

Whereas at x−1, the point beyond where the classical
singularity would have been [recall (10)],

gSttðx−1Þ ¼ −
�
1 −

rS
ðj0 þ 1ÞlPlanck

�
; ð41Þ

gStxðx−1Þ ¼ 0; ð42Þ

and

ðEx
−1Þ0 ¼

j20l
2
Planck − ðj0 þ 1Þ2l2

Planck

lPlanck
¼ −ð2j0 þ 1ÞlPlanck;

ð43Þ

ððEx
−1Þ0Þ2

4Ex
−1

¼ ð2j0 þ 1Þ2
4ðj0 þ 1Þ2 ¼

4j20 þ 4j0 þ 1

4ðj0 þ 1Þ2

¼
�
1 −

1

2ðj0 þ 1Þ
�

2

; ð44Þ

and as a consequence,

gSxxðx−1Þ¼
�
1−

1

2ðj0þ1Þ
�

2
�
1−

rS
ðj0þ1ÞlPlanck

�
−1
: ð45Þ

Let us now consider the generic stationary metric gFab
with FðxjÞ ∈ ½−1; 1�. We will see that for the system to
describe correctly the bounce, Fðx0Þ must be close to
one (as usual, not all gauge choices allow one to reach the
singularity, in this case, the bounce). We start with the
general expression of the metric Eqs. (24)–(26), and
evaluate them at the bounce, namely,

gFttðx0Þ ¼ −
�
1 −

rS
j0lPlanck

�
; ð46Þ

gFtxðx0Þ ¼
ffiffiffiffi
π

Δ

r
ðEx

0Þ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Fðx0Þ�2

q �
1 −

rS
j0lPlanck

þ 4πj20l
2
Planck½Fðx0Þ�2

Δ

�−1=2

¼
ffiffiffiffi
π

Δ

r
ð2j0 þ 1ÞlPlanck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Fðx0Þ�2

q �
1 −

rS
j0lPlanck

þ 4πj20l
2
Planck½Fðx0Þ�2

Δ

�−1=2
; ð47Þ

gFxxðx0Þ ¼
�
1þ 1

2j0

�
2
�
1 −

rS
j0lPlanck

þ 4πj20l
2
Planck½Fðx0Þ�2

Δ

�−1
; ð48Þ

with ½Fðx0Þ�2 > ðrS − j0lPlanckÞΔ=ð4πj30l3
PlanckÞ.

The metric at x−1, i.e., j ¼ −1 is

gttðx−1Þ ¼ −
�
1 −

rS
ðj0 þ 1ÞlPlanck

�
; ð49Þ

gtxðx−1Þ ¼ −
ffiffiffiffi
π

Δ

r
ð2j0 þ 1ÞlPlanck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Fðx−1Þ�2

q �
1 −

rS
ðj0 þ 1ÞlPlanck

þ 4πðj0 þ 1Þ2l2
Planck½Fðx−1Þ�2
Δ

�−1=2
; ð50Þ

now with ½Fðx−1Þ�2 > ðrS − ðj0 þ 1ÞlPlanckÞΔ=ð4πðj0 þ 1Þ3l3
PlanckÞ. Notice that gFtx changes sign at the bounce since ðEx

0Þ0
is positive and ðEx

−1Þ0 is negative. This does not introduce singularities in the curvature, as we have shown explicitly in [6],
where we proved that it is of order Planck at the bounce.
For the spatial component we have that

gFxxðx−1Þ ¼
�
1 −

1

2ðj0 þ 1Þ
�

2
�
1 −

rS
ðj0 þ 1ÞlPlanck

þ 4πl2
Planckðj0 þ 1Þ2½Fðx−1Þ�2

Δ

�−1
: ð51Þ

TOWARDS A QUANTUM NOTION OF COVARIANCE IN … PHYS. REV. D 105, 026017 (2022)

026017-5



Making the substitution tFðx0Þ ¼ tðx0Þ − aðx0Þ, the
invariant line element is

Δaðx0Þ ¼
Fðx0Þ
ρ0

ðEx
0Þ0

2
ffiffiffiffiffiffi
Ex
0

p �
1þ ½Fðx0Þ�2

ρ20
−

rSffiffiffiffiffiffi
Ex
0

p �−1=2

×

�
1 −

rSffiffiffiffiffiffi
Ex
0

p �
−1
lPlanck; ð52Þ

andΔaðx−1Þ is identical substituting x0 → x−1.Δa changes
sign but is continuous when lPlanck is taken to be infini-
tesimally small.
Following the arguments discussed above, one can easily

show that this notion of quantum covariance is immediately
applicable for all nodes with j < 0. The only difference
arises in a global sign in (31), which indicates that this
region is covered by outgoing coordinates if one starts with
ingoing coordinates at j > 0 (and vice versa).
We have also studied the covariance of several curvature

scalars: the Ricci and the Kretschmann scalars, and the scalar
obtained by contracting the Weyl tensor with itself. We
checked that in the approximation where xj is treated as a
continuous variable, which allows us to use derivatives
instead of finite differences, these scalars do not depend on
the choice of the gauge function FðxÞ. This gives robustness
to our model regarding its covariance. It remains to be
checked if the discrete version of these scalars is also slicing
independent. Nevertheless, the ideas presented in this manu-
script regarding the invariance of the spacetime line element
of a discrete quantum geometry opens the possibility of
studying the covariance of discrete versions of curvature
operators and the invariance of curvature scalars.
Given the granularity of space time at the Planck scale,

quantum gravity should provide a new principle that
replaces general covariance. But it must still obey certain
consistency conditions related to independence of physical
effects on the frames we are using, provided these frames
are realizable in the quantum theory. Reference frames are
associated with physical observations, by a system of
observers: at rest, free falling, or others. In a quantum
theory of gravity not all reference frames will be physically
implementable. The holonomization condition that takes an
extrinsic curvature of the form sinðρjKφðxjÞÞ ¼ FðxjÞ with
jFðxjÞj ≤ 1 provides for each F an explicit definition for

the realizable foliations. Also notice that covariance allows
one to eliminate some ambiguities. For instance in principle
it could be possible to choose different polymerizations for
the shift and the spatial metric as we did in [3] that would
not lead to a quantum covariant formulation. The covariant
version of the improved quantization appears in [6].
We have shown here that there exists a quantum operator

extension of the line element whose expectation value in
any state is independent on the quantum stationary foliation
chosen. This provides an explicit and operational notion of
quantum covariance that reproduces the usual one at the
classical limit. When quantum reference frames are con-
sidered, the relation among coordinates associated to two
different frames have quantum nature and depend on the
observables and c-number functions that describe the
change of reference frame. In the explicit case of spherical
symmetry in which the radial coordinate is quantized by xj
once the stationary foliation FðxjÞ is specified, the descrip-
tion of a given curve whose invariant length we want to
evaluate in two different coordinate systems is given in
terms of an operator t̂ðO;M; S; jÞ whose form we have
determined. The use of parametrized observables for the
coordinate dependent quantities and operatorial change of
coordinates as considered in this paper should be present in
any approach to quantum gravity. Although we have only
shown covariance for the line element for generic stationary
slicings, it is likely that it can also be shown for other
nonstationary foliations of space-time and scalar quantities
that are functions of the geometry. It opens the possibility
of discussing covariance in the presence of a discrete
geometry. These ideas are not restricted to loop quantum
gravity or spherical symmetry.
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