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A B S T R A C T   

We have analyzed variability in resistive memories (Resistive Random Access Memories, RRAMs) making use of 
advanced numerical techniques to process experimental measurements and simulations based on the kinetic 
Monte Carlo technique. The devices employed in the study were fabricated using the TiN/Ti/HfO2/W stack. The 
switching parameters were obtained making use of new developed extraction methods. The appropriateness of 
the advanced parameter extraction methodologies has been checked by comparison to kinetic Monte Carlo 
simulations; in particular, the reset and set events have been studied and detected. The data obtained were 
employed to shed light on the resistive switching operation and the cycle-to-cycle variability. It has been shown 
that variability depends on the numerical technique employed to obtain the set and reset voltages, therefore, this 
issue must be taken into consideration in RS characterization and modeling studies. The proposed techniques are 
complementary and depending on the technology and the curves shape the features of a particular method could 
make it to be the most appropriate.   

1. Introduction 

Resistive switching devices have shown great potential to become 
the key electron devices in the next generation of embedded non-volatile 
memories circuits [1]. These devices, which are a subgroup of a greater 
set known as memristors [2], show promising characteristics such as low 
power operation, good endurance [3] and retention, CMOS technology 
compatibility, fast write/read times, etc. [1,4–8]. For these reasons, they 
are considered good candidates for embedded storage class memory in 
future ICs. 

Another booming application where resistive switching devices are 
called to play an important role is linked to neuromorphic computing. 
These devices can mimic biological synapses in order to simplify the 
fabrication of hardware neural networks to build artificial intelligence 
accelerators [9–22]. Neuromorphic circuits have greatly evolved since 
the first designs proposed by Carver Mead [23]; in recent years, crossbar 
arrays made of resistive switching devices have shown the way to 
implement vector-matrix multiplication, a key module both for the 
training and inference functions in hardware neural networks. In 

addition to the scaling and low power operation possibilities related to 
resistive switching devices in the neuromorphic landscape, it has been 
reported how their inherent variability can be used to improve 
commonly found hurdles in machine learning, such as overfitting 
[18,24]. 

A third application field for this technology, connected to the natural 
stochasticity of these devices [1,5,25–27], is associated with the 
implementation of security modules in hardware devoted to cryptog-
raphy [27–30]. This facet of the electronic circuits is growing rapidly 
due to the demands of edge devices for secure data analysis and trans-
mission on the Internet of Things. 

Among the features that allow the maturity discernment of a tech-
nology, we can count the existence of reliable and flexible compact 
models. These models along with the accompanying parameter extrac-
tion techniques are one of the main pillars of Electronic Design Auto-
mation EDA tools. Concerning RRAM models, there have been many 
works on the last few years [5,31–38]; nevertheless, the parameter 
extraction facet, a difficult issue in these devices, has not been tackled so 
often. We deal with this latter issue here focusing on the mathematical 
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implementation to build routines to attack the automatic extraction 
process of thousands of curves at a time, since this is a common situation 
when dealing with long resistive switching series (to study cycle-to-cycle 
variability). Moreover, to shed light on the purely numerical procedures 
that lay behind the extraction process, we have also incorporated 
comprehensive and physically-based kinetic Monte Carlo (kMC) simu-
lations. In doing so, we pursue the analysis of the step-by-step evolution 
of conductive filaments (CF) along the device set and reset processes 
[39–44], taking into consideration that our devices show filamentary 
conduction [45]. We deepen on the physical mechanisms that control 
the formation and rupture of percolation paths (the conductive fila-
ments) within a microscopic simulation that includes the 3D solution of 
the thermal and Poisson equations along with the RS dynamics 
described by a kinetic Monte Carlo algorithm [39,41]. 

In Section 2 we introduce the device fabrication and measurement 
details. Section 3 is devoted to kMC simulation, the numerical tech-
niques employed for the parameter extraction are tackled in Section 4. 

Section 5 presents and discuss the main results obtained and, finally, the 
main conclusions are drawn in Section 6. 

2. Device description and measurement 

The TiN/Ti/HfO2/W RRAMs used in this work were fabricated on a 
highly-doped N-type (ρ = 4 mΩ⋅cm) silicon wafer. The top metal elec-
trode consists of a (200 nm TiN/10 nm Ti) bi-layer and the 50 nm-thick 
W bottom electrode was deposited on a 20 nm-thick Ti layer adherence 
layer on the silicon substrate. The electrical contact to the W layer is 
made by Al-metallizing the back of the Si wafer, and the 10 nm-thick 
HfO2 dielectric layer was grown by ALD [45], see Fig. 1a. 

The compliance current (ICC) was fixed to 10 mA, 15 mA, 20 mA and 
25 mA for different groups of I-V curves, where complete reset and set 
processes were obtained in long RS series (1000 cycles each) under 
ramped voltage stress (RVS). We used ramps of different slopes. The 
colour code for these curves with respect to ICC, as shown in Fig. 1, is 

Fig. 1. a) Layer stack scheme of the fabricated devices, b) experimental I-V curves for 1000 set/reset cycles measured for different compliance currents (CC) (ICC). 
100 curves for each ICC are plotted here for the sake of clarity. Inset: Input signals applied to the devices under study. Three different ramped voltage signals 
were considered. 

Fig. 2. Experimental set current (black symbols) and first derivative (red 
symbols) versus voltage. The set point is established (blue point) at the current 
derivative maximum. We include in the inset a whole set (positive voltage) and 
reset (negative voltage) cycle to highlight in which part of the curve we are 
working. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 3. Experimental set current versus voltage. The new methodology uses a 
straight line (dashed) to join the final points in the experimental curve, and the 
maximum distance marks the set voltage. 
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used henceforth. Since the time step was fixed for the voltage ramps, we 
just change the voltage step (ΔV) in the sweeps to obtain different 
slopes, (see the inset in Fig. 1b). In particular, we considered the 
following voltage steps: ΔV = 0.01 V, 0.02 V and 0.03 V, combined with 
the compliance currents reported above. The input voltage signal was 
applied to the TiN/Ti top electrode, while the bottom electrode was 
grounded. The RS cycles were programmed with a Matlab software tool 
that controls a Keysight B1500A via GPIB. 

3. Kinetic Monte Carlo simulation 

A 3D kinetic Monte Carlo simulator was employed to analyze set and 
reset curves in the structures described in the previous section. The 
details of this tool have been given elsewhere [39,41]. The Poisson and 
heat equations are solved for each time step to determine the 3D tem-
perature and electric field distributions, which are needed to calculate 

Fig. 4. Kinetic Monte Carlo simulated I-V 
curve for a set process in a structure similar 
to the devices under study. a-d) show the 
oxygen vacancy configuration at four 
different points along the set curve close to 
the percolation path formation voltage. Blue 
particles represent oxygen ions, red particles 
stand for oxygen vacancies and purple par-
ticles are grid points where an oxygen ion 
and a vacancy coexist [39], but the recom-
bination event has not yet taken place. The 
different conductive filament snap-shots 
show the progressive CF creation until the 
percolation path is fully formed. a) and b), 
these figures show a simulation point pre-
vious to the CF complete formation, c) the 
simulation point where the percolation path 
is already formed and d) stands for a 
consolidated fully formed CF. Kinetic Monte 
Carlo simulations are good at reproducing 
the inherent cycle-to-cycle variability of RS 
devices [39]. (For interpretation of the ref-
erences to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   

Fig. 5. Experimental reset current (black symbols) and first current derivative 
(red symbols) versus voltage for the devices under study. The reset point is 
established by determining the minimum current derivative. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 6. Experimental reset current versus voltage curves for the devices under 
study. The maximum value of the curve was established as the reset point. The 
inset shows an experimental reset current versus voltage, in this case, the 
current maximum could lead us to a wrong result. 
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the different mechanisms involved in the CF formation and destruction. 
These mechanisms are randomly activated using a kMC algorithm based 
on the Transition State Theory [46]. The kMC simulation is a suitable 
tool for studying the CF rupture processes since it reproduces well the 
device inherent stochasticity that lies behind the RS cycle-to-cycle 
variability. The activation energies employed to calculate the transi-
tions rates of the different physical mechanisms were given in Ref. [39]. 

4. Numerical techniques for parameter extraction 

We present here several numerical techniques to extract the set and 
reset voltages and currents in the long RS series reported above. It is 
important to notice that although the thresholds of RS phenomena are 
reasonably distinguishable in a single I-V curve by eye (see Fig. 1), the 
main point in the algorithms described below consists in the imple-
mentation of robust and stable numerical procedures to deal with hun-
dreds of curves automatically. The numerical procedures should obtain 
good results accounting for the inherent device cycle-to-cycle variability 
that is reflected on the measurements and it is typical of these devices 
[1,5–7,39]. 

4.1. Set voltage determination 

4.1.1. Method 1 for Set (MS1). Determination of the current derivative 
maximum 

The first method to determine the set voltage consists in finding the 
maximum value of the numerical derivative. The determination of the 
numerical derivative is not an easy issue due to measurement fluctua-
tions among other considerations, in our case a 5-point numerical cal-
culus was performed, as displayed in Eq. (1) to account for the finite 
difference approximation to the first derivative with excellent results; 

nevertheless, if the numerical noise was high, a more complex meth-
odology was implemented [47]. It has to be considered that the mea-
surement conditions can complicate this calculation, for instance, high 
current variations might occur in these devices under the influence of 
external fields [48] and high temperatures; in these cases, other nu-
merical approaches can do better [47,49,50]. Around the derivative 
maximum (see Fig. 2), a change in the I-V curve slope is produced; 
therefore, a variation in the charge transport regime is consequently 
expected that might be linked to the CF formation stage. 

f ′(x) ≈
f (x − 2h) − 8f (x − h) + 8f (x + h) − f (x + 2h)

12h
(1) 

Once the current derivative has been calculated its maximum can be 
easily detected, see Fig. 2. 

4.1.2. Method 2 for Set (MS2). Maximum separation from a straight line 
that joins the end points in a set curve 

Another methodology that can be implemented to determine the set 
voltage, Vset, consists in finding the maximum separation of the 
measured curve to an imaginary straight line that joins the first and end 
points of the measured curve (see Fig. 3). In other words, it would 
consist in finding the set curve knee, as shown in Fig. 3 [51]. The original 
I-V curve is plotted from the beginning of the measurement (VApplied = 0 
V) until the end of the voltage ramp (at VApplied = 1 V). Then, a straight 
line joins these two points in the I-V domain (dashed line), the furthest 
point to the measured I-V curve (the greater distance, dmax) marks the 
set voltage Vset. 

A deeper insight into what is going on in a set process for a particular 
technology can be seen using a kinetic Monte Carlo simulator [39,41]. In 
this respect, the 3D temperature and electric field distributions, and the 
conductive filament formation steps can be studied systematically to 

Fig. 7. Kinetic Monte Carlo simulated I-V 
curve for a structure similar to the devices 
under study. a-d), the figures show the 
atomic configuration at four different points 
along the reset curve near the rupture point. 
Blue particles are oxygen ions, red particles 
are oxygen vacancies and purple particles 
are grid points where an oxygen ion and a 
vacancy coexist before their recombination. 
Figure c) shows the simulation point previ-
ous to the percolation path rupture and d) 
the simulation point after the rupture. (For 
interpretation of the references to colour in 
this figure legend, the reader is referred to 
the web version of this article.)   
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shed light on the threshold between the high resistance state (HRS) and 
the low resistance state (LRS), see Fig. 4. 

In Fig. 4, the progressiveness of the CF formation process is depicted. 
The simulated curve does not compare in shape with the experimental 
data in the region close to the set voltage determination, which corre-
sponds to the onset of a change of conduction regime (see the curve 
portion where point b-d are placed). This is due to the discreteness and 
limitations of the simulation domain, the percolation path searching 
algorithm, etc. However, it can be seen that in this case the CF full 
formation and the corresponding change in the device conductivity are 
close to the slope change region in the set I-V curve. In this respect, the 
physical foundation of the two proposed numerical methodologies is 
well established. The first method might provide more accurate results 
due to its very own definition and connection with the physics under-
lying the set process; however, other issues have to be considered, as it 
will be shown below. 

4.2. Reset voltage determination 

4.2.1. Method 1 for Reset (MR1). Determination of the current derivative 
minimum 

The first method to determine the reset voltage consists in finding the 
current derivative minimum. This procedure is somewhat linked to the 
first method introduced for the set voltage determination, the numerical 
derivative is calculated the same way described above. The peak of the 
minimum value of the current derivative is easily detected numerically, 
see the red curve in Fig. 5. 

4.2.2. Method 2 for Reset (MR2). Determination of the current maximum 
Another method to determine the reset voltage is based on the 

calculation of the current maximum, see Fig. 6. 
Depending on the compliance current and the measurement tech-

nique, this methodology could show problems related to the location of 
the current maximum. If the current compliance value is high enough 

Fig. 8. Vset cumulative distribution functions for the different I-V curve sets under consideration, comparing extraction method 1 for set (MS1, solid lines) and 
extraction method 2 for set (MS2, dashed lines). a) and d) Ramped voltage = 0.08 V/s; b) and e) Ramped voltage = 0.16 V/s; c) and f) Ramped voltage = 0.24 V/s. 
The a)-c) plots have been obtained with the original MS1 explained above, d)-f) figures have been obtained with the modified MS1 described in Fig. S1; the MS2 
method is the same in all the plots, it is kept for comparison. 
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(see the inset in Fig. 6) the maximum could be found in the last measured 
current value in the curve. This occurrence has to be detected and cor-
rected in the algorithm to robustly analyze hundreds of I-V curves. 

A kinetic Monte Carlo simulation was also performed in this case. A 
closer look at the step-by-step CF rupture in the region close to the reset 
can help to evaluate the location of the percolation path rupture event. 

Fig. 7 shows how the rupture point does not necessarily coincide 
with the maximum current point. Further CF degradation takes place 
after these maxima are achieved. In addition, it is seen that the final 
percolation path gets broken somewhere in the curve sections where the 
current strongest reduction is found. Although the random nature of the 
physics behind RS could place the percolation path rupture around 
points c) and d) (this stochasticity is correctly captured by the kMC 
technique) in other cases, it seems that the first methodology might be 

closer to the real CF rupture. 
We call the reader’s attention to the fact that although these nu-

merical techniques can be applied with generality, other RRAM tech-
nologies with different particularities linked to particular materials or 
interfaces and fabrication techniques could require adaptations to 
improve the parameter extraction procedures. 

5. Results and discussion 

We have employed the methodologies described previously to 
extract the most representative RS parameters (Vset, Iset, Vreset and Ireset) 
in the different series of cycles measured. As commented above, 
different ramped input voltages and compliance currents were consid-
ered. The Vset cumulative distribution functions (CDF) are given in 

Fig. 9. Iset cumulative distribution function for different values of ramped voltages and compliance currents (10, 15, 20 and 25 mA) comparing the maximum 
derivative value (solid lines, method MS1) versus the curve knee (dashed lines, method MS2). a) and d) Ramped voltage = 0.08 V/s; b) and e) Ramped voltage =
0.16 V/s; c) and f) Ramped voltage = 0.24 V/s. The d)-f) figures have been obtained with the modified MS1 explained in Fig. S1. 
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Fig. 8a–c. 
As can be seen, the curve knee determination (MS2) provides lower 

set voltages than the current derivative maximum method (MS1). In 
addition, the variability described by the CDFs is much different. See 
that in Fig. 8a, b, d and e, for an ICC = 20 mA (MS2) we obtain lower 
voltages compared to other compliance currents. These results could be 
feasible due to a different CF shape for this RS series and the role of 
virtual electrodes [39]; effects linked to numerical issues could also be 

behind this issue. Although a higher current is allowed that rupture 
could be placed at lower voltages due to a CF narrowing. This is an 
important issue since many authors evaluate cycle-to-cycle variability 
by analyzing the set and reset voltage CDFs; it is clear (as shown in 
Fig. 8a–c) that the CDF shape depends on the algorithm employed to 
extract these parameters. Therefore, the variability evaluation has to be 

Fig. 10. Vreset cumulative distribution functions for different values of ramped 
voltages and compliance currents (10, 15, 20 and 25 mA) comparing the 
maximum derivative value (solid lines, MR1) versus the maximum current 
(dashed lines, MR2). a) Ramped voltage = 0.08 V/s, b) Ramped voltage = 0.16 
V/s, c) Ramped voltage = 0.24 V/s. 

Fig. 11. Ireset cumulative distribution functions for different values of ramped 
voltages and compliance currents (10, 15, 20 and 25 mA) comparing the 
maximum derivative value (solid lines, MR1) versus the maximum current 
(dashed lines, MR2). a) Ramped voltage = 0.08 V/s, b) Ramped voltage = 0.16 
V/s, c) Ramped voltage = 0.24 V/s. 
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considered with care. It can be also noticed that extraction methodolo-
gies based on the numerical derivative (MS1 in our case) are dependent 
on measurement noise [47,49,50]. This fact could lead to error in nearly 
constant slope curves, see the supplementary material (Fig. S1). In our 
case, to improve the extraction methodology, we have limited the 
voltage interval where MS1 is applied as explained in the supplementary 
material. The results of the new MS1 technique are shown in Fig. 8d, e, f 
along with the same results for MS2 shown in Fig. 8a–c. 

The same tendencies reported above can be observed in Fig. 9d-e, for 
Iset case, where we have also considered the results of the modified MS1. 
This parameter is directly extracted since it is the current that corre-
sponds to the set voltage in the I-V curve. 

The results obtained for method 2, again, show lower currents and 
lower variability. See that, as expected, the set currents increase with the 
compliance current level despite the ramped voltage. 

For the Vreset (Fig. 10) and Ireset (Fig. 11), the results show a lower 
spreading than in the set case for both extraction methodologies. Both 
reset methods deal with an easier determination process due to the 
curves shape. 

As expected, higher reset voltages and currents are obtained for 
greater current compliances. Variability is much lower than in the set 
case, in general; it is also worth mentioning that for method 2 (current 
maximum) there is a lower variability than in method 1. Other meth-
odologies have been proposed for the reset voltage determination [52] 
although these definitions were more adequate for the technology 
analyzed in this reference (for the unipolar devices analyzed there, the I- 
V curves showed a sudden current drop once the reset voltage was 
reached). In particular, the reset voltage was defined as the voltage 
where a certain reduction of current is obtained in two consecutive 
points (Vreset = Vi if Ii+1 ≤ (1-a)Ii, where 0 < a < 1). For certain tech-
nologies, values of a = 0.3 or higher can be employed [52], although in 
our case, a value below 0.2 has to be used, see the supplementary 

material (Fig. S2). In this respect, the techniques presented here can be 
tuned (increasing or decreasing the voltage sweep search interval, or 
fixing a different value for the parameter devoted to detect a certain 
current drop) to deal with I-V curves of different shapes connected to 
other technologies that might show, for instance, progressive set and 
reset processes. 

In Figs. 12 and 13, the Weibits of the Vset and Vreset obtained above 
are plotted. Although the Weibull distribution works well with data 
generated in systems that show weakest-link reliability behavior (the 
failure of the whole, in this case, related to the conductive filament 
formation and rupture, is dominated by the degradation rate for the 
weakest element [53,54]); the expected straight line does not show up. 
The reason behind this is that the RS physics is complex and involves 
different intertwined mechanisms that when put together do not follow 
a Weibull distribution. In this respect, Phase type distributions [26,53] 
achieve a much better fitting, although we do not enter into details of the 
statistical structure of our data since this is out of the scope of this work. 

See in Fig. 13 that the Vreset Weibits show a more linear shape for 
input signals with lower ramps. As the ramp rate increases the data 
distribution is spread out. The reasons behind this might be related to 
different conditions of electric field and temperature, this could lead to 
more porous conductive filaments that produce a different distribution 
of reset voltages [38,39,55]. 

6. Conclusions 

Different numerical techniques for extracting typical RRAM resistive 
switching parameters, such as set and reset voltages and currents, have 
been developed and tested. After automatically processing hundreds of 
experimental curves obtained in long RS series, the results have been 
analyzed. To do so, valence change memories have been fabricated and 
measured. We have made use of cumulative distribution functions and 

Fig. 12. Vset Weibits (to analyze the appropriateness of Weibull distribution) for the different ramped voltages and compliance currents (10, 15, 20 and 25 mA) 
described in Section 2. a) Ramped voltage = 0.08 V/s, b) Ramped voltage = 0.16 V/s, c) Ramped voltage = 0.24 V/s. 

Fig. 13. Vreset Weibits (to analyze the appropriateness of Weibull distribution) for the different ramped voltages and compliance currents (10, 15, 20 and 25 mA) 
described in Section 2. a) Ramped voltage = 0.08 V/s, b) Ramped voltage = 0.16 V/s, c) Ramped voltage = 0.24 V/s. 
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the Weibull distribution to analyze the results, assess the cycle-to-cycle 
variability that is obtained for each of the methodologies presented. The 
subtleties related to methods based on the processing of the current 
numerical derivative are described and its connections to results ob-
tained employing kinetic Monte Carlo simulations have been explained. 
In general, the procedures linked to the current derivative determination 
present higher variability than the other methods, although the appro-
priateness of a particular method could depend on the shape of the 
current-voltage curve. We have found that the evaluation of cycle-to- 
cycle variability depends greatly on the numerical method employed 
to extract the RS parameters. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.mee.2022.111736. 
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B. Magyari-Köpe, E. Yalon, A. Kenyon, M. Buckwell, A. Mehonic, A. Shluger, H. Li, 
T.-H. Hou, B. Hudec, D. Akinwande, R. Ge, S. Ambrogio, J.B. Roldan, E. Miranda, 
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