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Abstract—A twofold personalized feedback mechanism is es-
tablished for consensus reaching in social network group decision-
making (SN-GDM). It consists of two stages: (1) generating the
trusted recommendation advice for individuals; and (2) produc-
ing personalized adoption coefficient for reducing unnecessary
adjustment costs. This is achieved by means of a uninorm
interval-valued trust propagation operator to obtain indirect
trust. The trust relationship is used to generate personalized
recommendation advice based on the principle of ‘a recom-
mendation being more acceptable the higher the level of trust
it derives from’. An optimization model is built to minimise
the total adjustment cost of reaching consensus by determining
personalized feedback adoption coefficient based on individuals’
consensus levels. Consequently, the proposed twofold person-
alized feedback mechanism achieves a balance between group
consensus and individual personality. An example to demonstrate
how the proposed twofold personalized feedback mechanism
works is included, which is also used to show its rationality by
comparison with the traditional feedback mechanism in GDM.

Index Terms—Group decision making; Consensus; Social net-
work; Uninorm interval trust propagation; Personalized feed-
back; Minimum cost.

I. INTRODUCTION

GROUP decision making (GDM) involves a group of experts
with preferences on multiple alternatives under a series of
criteria, which are aggregated into a collective preference
from which a group solution is derived [1]–[5]. Experts from
multiple organizations usually have different backgrounds and
knowledge, which may lead to different views on decision-
making issues, and even non-cooperative behaviors due to
their different attitudes and interests [6]; thus, GDM usually
deals with inconsistent opinions hindering the way to arrive
at a collective solution [7]–[9]. Consequently, how to reach
consensus is a challenge that requires tackling theoretically in
any GDM problem resolution [10]–[14]. A basic framework
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of group consensus process involving a feedback mechanism,
which generates advice on how experts in the group should
modify their preferences to arrive at the threshold value of
group consensus, has been proposed and applied in [15]–
[20]. Also, a comprehensive work of feedback mechanism
paradigms is investigated in [21]. Hence, the feedback mech-
anism plays a key role in group consensus process because
its modelling rationality will affect the inconsistent decision
maker acceptance or not of the generated advice.

A classic feedback mechanism in GDM derives feedback
advices using a feedback coefficient that is fixed beforehand
by subjective preference [16], [17] and that is common to
all inconsistent experts. This could be seen as a reaching
consensus process that enforces inconsistent experts to adopt
feedback advices with excessive adjustment costs. The exces-
sive adjustment cost was address by Wu et al. [22] with a ‘non-
personalized’ feedback mechanism with minimum adjustment
cost. In general, these types of traditional feedback mechanism
are helpful to reach consensus. However, they still suffer from
the drawback of generating feedback advices using experts’
preferences only [11] and ignoring experts’ trust relationships
[23]–[25]. Consequently, inconsistent experts are not able
to obtain personalized advices in the traditional feedback
mechanisms and they are forced to homogeneously arrive
to a ‘group center’ in order to reach group consensus. In
fact, individuals have different trusting relationships with the
opinions of other members of the group. Thus, it is necessary
to develop a personalized feedback mechanism by personal
trusted opinion and study is effective in reducing adjustment
cost for consensus.

People usually rely on the advice/recommendations from
their friends and acquaintances, nowadays via social network
platforms, for changing their opinions [26]–[29]. From this
perspective, an inconsistent expert may tend to be closer to the
‘individual center’ derived from his/her own social network
than to the aforementioned ‘group center’. Considering that
trust relationship plays a very important role in social net-
works[30], and is regarded as a useful resource for generating
advice in feedback mechanism [31]–[34]. Therefore, the first
objective of this article is to develop a twofold personalized
feedback mechanism for social network consensus, which
(1) uses trust relationship to generate the recommendation
advice for individuals and (2) determines feedback coefficients
by minimizing the adjustment cost for reaching consensus.
Consequently, an inconsistent expert can know which recom-
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mendation advice he/she trusts according to their personality
and how to implement them to satisfy the group consensus
aim.

In social network, every individual may not have a direct
trust relationship with other individual, i.e. the network may be
incomplete. Trust propagation operators have been developed
to make a complete trust relationship network if necessary
[35], [36]. Victor et al. [32] proposed t-norms and t-conorms
operators to propagate trust and distrust, respectively. Wu et
al. [15] investigated the use of uninorm operators to propagate
trust and distrust information simultaneously. Anyway, the
value of trust and distrust is to be precisely expressed with
numbers, which means that these approaches are not suitable
to deal with trust/distrust uncertain manifestations [37]–[40].
This is addressed here with the investigation of the uninorm
interval-valued trust propagation operator. Especially,the opin-
ions of experts are expressed as interval values, which will be
consistent with trust propagation information.

The rest of the article is set out as follows: Section II intro-
duces the concept of interval-valued trust function, and their
operator is investigated in Section III. Section IV proposes
the twofold personalized feedback mechanism. An example is
illustrated in Section V. Section VI is devoted to a comparative
analysis between the traditional feedback mechanisms and
proposed mechanism, while conclusions are drawn in Section
VII.

II. PRELIMINARIES

In this section, some basic concepts associated to social
network analysis (SNA) and the uninorm propagation operator
are introduced.

A. Interval-valued trust function

An interval-valued trust function (IVTF) is represented as
[17]:

IVTFΩ =
{
r̃ = (t̃, d̃)

∣∣t̃, d̃ ∈ C([0, 1])
}

(1)

Where r̃ is a tuple, the first component t̃ is a trust degree and
the second component d̃ is a distrust degree. C([0, 1]) is the
set of closed subintervals of set [0, 1] :

C([0, 1]) = {[x−, x+]
∣∣0 ≤ x− ≤ x+ ≤ 1}.

The interval analysis as described in [41] will be used herein.

B. Uninorm trust propagation operator

A uninorm operator U [42] is a mapping U : [0, 1]2 −→
[0, 1] having the following properties:

1) Commutativity: U(x, y) = U(y, x)
2) Monotonicity: U(x1, y) ≤ U(x2, y) if x1 ≤ x2.
3) Associativity: U(x, U(y, z)) = U(U(x, y), z)
4) Identity element: ∃ e ∈ [0, 1] : ∀ x ∈ [0, 1], U(x, e) = x

Symmetric aggregative operators are uninorm operators with
a representation based on a single variable function. In partic-
ular, the below cross ratio uniorm (identity element e = 0.5)

was used in [43] for a transitivity based estimation of unknown
preference values in incomplete preference relations:

U(x, y) =

{
0, (x, y) ∈ {(0, 1), (1, 0)}

xy

xy + (1− x)(1− y)
, otherwise. (2)

This idea was taking forward in [15] to propagate trust/distrust
with uninorms in incomplete social networks:

PU (ζ1, ζ2) =

(0, 1), ifζ1 ∨ ζ2 = (0, 1)

ζi, ifζj = (1, 0); i 6= j; i, j ∈ {1, 2}
(U(t1, t2), U(t1, d2)), otherwise

(3)

being ζ1 = (t1, d1), ζ2 = (t2, d2) trust functions with crisp
numerical trust/distrust information.

III. UNINORM INTERVAL-VALUED TRUST PROPAGATION

Uninorm operator is expanded to interval-valued inputs in
this section for trust propagation. In particular the cross-ratio
uniforms is fully developed.

A. Interval-valued Uninorm Operator

Let x̃ = [x−, x+], ỹ = [y−, y+] ∈ C([0, 1]) be two interval
numbers. Given a uninorm operator U : [0, 1]2 −→ [0, 1], the
following operator Ũ : C([0, 1])×C([0, 1])→ C([0, 1]) can be
defined:

Ũ(x̃, ỹ) = [U(x−, y−), U(x+, y+)] (4)

a) Operator Ũ is well defined: Uninorm operator U is
monotonic and therefore it is

U(x−, y−) ≤ U(x+, y+) =⇒ [U(x−, y−), U(x+, y+)] ∈ C([0, 1]).

b) Operator Ũ is commutative.: Uninorm operator U is
commutative and therefore it is

Ũ(x̃, ỹ) = [U(x−, y−), U(x+, y+)]

= [U(y−, x−), U(y+, x+)]

= Ũ(ỹ, x̃).

c) Operator Ũ is associative: Uninorm operator U is
associative and therefore it is

Ũ
(
Ũ (x̃, ỹ) , z̃

)
= Ũ

([
U
(
x−, y−

)
, U
(
x+, y+

)]
,
[
z−, z+

])
=
[
U
(
U
(
x−, y−

)
, z−

)
, U
(
U
(
x+, y+

)
, z+

)]
=
[
U
(
x−, U

(
y−, z−

))
, U
(
x+, U

(
y+, z+

))]
= Ũ

([
x−, x+

]
,
[
U
(
y−, z−

)
, U
(
y+, z+

)])
= Ũ

(
x̃, Ũ (ỹ, z̃)

)
d) Operator Ũ identity element: Let e ∈ [0, 1] be the

identity element of the uninorm operator U , and define ẽ =
[e, e]. Then we have the following:

Ũ(x̃, ẽ) = [U(x−, e), U(x+, e)] = [x−, x+] = x̃

Thus, operator Ũ has ẽ as its identity element.
e) Operator Ũ monotonicity: To study operator Ũ mono-

tonicity on C([0, 1]), we need to define an order relation on
C([0, 1]). The ordering of real numbers in which monotonicity
of uninorm operator is defined does not exist in the set of
interval numbers. Many ordering relations have been proposed
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to order interval numbers [44], and therefore the monotonicity
property of the operator Ũ will depend on the ordering
of interval numbers used. An ordering relation of interval
numbers � that verifies the property x̃ � ỹ ⇒ Ũ(x̃, z̃) �
Ũ(ỹ, z̃) ∀z ∈ C([0, 1]) will make Ũ to be monotonic (wrt
�), and therefore the interval number set in the unit interval
(with ordering �) is uniformly operated.Such ordering will be
referred to as a U-monotonocity ordering and be denoted by
�U . In particular, the ordering

x̃ �U ỹ ⇔ x− ≤ y− ∧ x+ ≤ y+

is a U-ordering. Indeed,

x− ≤ y− ∧ x+ ≤ y+ =⇒ U(x−, z−) ≤ U(y−, z−)∧
U(x+, z+) ≤ U(y+, z+) ∀z̃ = [z−, z+] ∈ C([0, 1])

We have proved in property a) that operator Ũ is well defined,
and so it is

[U(x−, z−), U(x+, z+)] ≺U [U(y−, z−), U(y+, z+)],

which implies that

Ũ(x̃, z̃) ≺ Ũ(ỹ, z̃) ∀z ∈ C([0, 1]).

B. Cross ratio uninorm interval trust propagation operator

This subsection develops the cross ratio interval-valued
trust propagation operator. Given a uninorm operator U ,
the interval-valued uninorm operator Ũ is constructed and
therefore interval valued trust/distrust can be propagated by
extending expression (3), as follows:

IVPŨ (ζ̃1, ζ̃2) =

([0, 0], [1, 1]), ζ̃1 ∨ ζ̃2 = ([0, 0], [1, 1])

ζ̃i, if ζ̃j = ([1, 1], [0, 0]); i 6= j; i, j ∈ {1, 2}
(Ũ(t̃1, t̃2), Ũ(t̃1, d̃2)), otherwise

(5)
The cross ratio uninorm interval trust propagation operator is
well defined.We only need to verify that the third case output
in expression (5)is an IVTF. Given two IVTFs ζ̃1 = (t̃1, d̃1) =
([t−1 , t

+
1 ], [d−1 , d

+
1 ]), ζ̃2 = (t̃2, d̃2) = ([t−2 , t

+
2 ], [d−2 , d

+
2 ]),

because operator Ũ is well defined, it is

Ũ(t̃1, t̃2), Ũ(t̃1, d̃2) ∈ C([0, 1]) =⇒ IVPŨ (ζ̃1, ζ̃2) ∈ Ω.

In the following we prove the associativity property of
IVPŨ , which is subsequently used to derive its expression
when we have a social network trust/distrust path of length
n(≥ 3).

Proposition 1 (Associativity). Given IVTFs ζ̃i = (t̃i, d̃i) (i =
1, 2, 3), it is:

IVPŨ (IVPŨ (ζ̃1, ζ̃2), ζ̃3) = IVPŨ (ζ̃1, IVPŨ (ζ̃2, ζ̃3)).

Proof. 1) One of the IVTF is ([1, 1], [0, 0]). Assume that
ζ̃1 = ([1, 1], [0, 0]). On the one hand, we have

IVPŨ (ζ̃1, ζ̃2) = ζ̃2,

and therefore it is

IVPŨ (IVPŨ (ζ̃1, ζ̃2), ζ̃3) = IVPŨ (ζ̃2, ζ̃3).

On the other hand, it is:

IVPŨ (ζ̃1, IVPŨ (ζ̃2, ζ̃3)) = IVPŨ (ζ̃2, ζ̃3).

The proofs when ζ̃2 or ζ̃3 are ([1, 1], [0, 0]) are the same.
2) One of the IVTF is ([0, 0], [1, 1]). Assume that ζ̃1 =

([0, 0], [1, 1]). On the one hand, we have

IVPŨ (ζ̃1, ζ̃2) = ([0, 0], [1, 1]),

and therefore it is

IVPŨ (IVPŨ (ζ̃1, ζ̃2), ζ̃3) = ([0, 0], [1, 1]).

On the other hand, it is:

IVPŨ (ζ̃1, IVPŨ (ζ̃2, ζ̃3)) = ([0, 0], [1, 1]).

The proofs when ζ̃2 or ζ̃3 are ([0, 0], [1, 1]) are the same.
3) None of the IVTFs is ([1, 1], [0, 0]) or ([0, 0], [1, 1]). In

this case, it is

IVPŨ (ζ̃1, ζ̃2) = (Ũ(t̃1, t̃2), Ũ(t̃1, d̃2)),

and therefore

IVPŨ (IVPŨ (ζ̃1, ζ̃2), ζ̃3) = (Ũ(Ũ(t̃1, t̃2), t̃3), Ũ(Ũ(t̃1, t̃2), d̃3)).

Associativity of operator Ũ implies

(Ũ(Ũ(t̃1, t̃2), t̃3),Ũ(Ũ(t̃1, t̃2), d̃3)) =

(Ũ(t̃1, Ũ(t̃2, t̃3), Ũ(t̃1, Ũ(t̃2, d̃3))).

Given that

IVPŨ (ζ̃2, ζ̃3) = (Ũ(t̃2, t̃3), Ũ(t̃2, d̃3)),

it is obvious that

IVPŨ (IVPŨ (ζ̃1, ζ̃2), ζ̃3) = IVPŨ (ζ̃1, IVPŨ (ζ̃2, ζ̃3)).

Thus, case 3 of the IVPŨ for three IVTFs becomes:

IVPŨ
(
ζ̃1, ζ̃2, ζ̃3

)
=
(
Ũ(t̃1, t̃2, t̃3), Ũ(t̃1, t̃2, d̃3)

)
(6)

For the cross-ratio uninorm U given in (2),

U(t−1 , t
−
2 , t
−
3 ) =

t−1 t
−
2 t
−
3

t−1 t
−
2 t
−
3 + (1− t−1 )(1− t−2 )(1− t−3 )

, (7)

Similar expressions are obtained for U(t+1 , t
+
2 , t

+
3 ),

U(t−1 , t
−
2 , d

−
3 ) and U(t+1 , t

+
2 , d

+
3 ).

Proposition 2. Let ζ̃i = (t̃i, d̃i) (i = 1, 2..., n) be n IVTFs.
Then IVPŨ is applied as follows:

1) If ∃ i such that ζ̃i = ([0, 0], [1, 1]), then

IVPŨ

(
ζ̃1, ζ̃2 . . . , ζ̃n

)
= ([0, 0], [1, 1]).

2) For each i such that ζ̃i = ([1, 1], [0, 0])

IVPŨ
(
ζ̃1, ζ̃2...ζ̃n

)
= IVPŨ

(
ζ̃1, . . . , ζ̃i−1, ζ̃i+1, . . . , ζ̃n

)
.

3) Otherwise:

IVPŨ (ζ̃1,ζ̃2, . . . , ζ̃n) =(
Ũ(t̃1, t̃2, . . . , t̃n), Ũ(t̃1, t̃2, . . . , t̃n−1, d̃n)

)
.

Proof. It is easy to prove by induction and it is omitted.
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C. Trust propagation principle in a connected network of
direct trust

Fig.1 shows a connected network of five nodes (experts)
with direct trust. In Fig.1, ‘→’ from expert E1 to node E2, for
example, indicates a direct trust relationship from expert E1

towards expert E2. Let ζ̃pq represents the IVTF of expert Ep
towards expert Eq , and TL = (ζ̃pq)l×l, (p, q = 1, 2 . . . l ∧ p 6=
q) represents the trust matrix of a directed trust network of a
group of experts. For two experts Ep and Eq with no direct

Fig. 1: Trust Network

trust relationship from Ep towards Eq , the IVTF value ζ̃pq in
TL is unknown, as shown by the TL given in (22) (Section V).
In a connected network, every expert can be reached from any
other experts when a direct link does not exist. There could
be, though, various indirect trust paths, through intermediate
experts with direct links, to reach Eq from Ep, and therefore
IVTF can be propagated from Ep towards Eq . The following
propagation principle of indirect IVTFs from Ep towards Eq is
applied herein [16]: the shortest path takes precedence; if more
than one path exist with shortest distance, then the average
IVTF propagated in each shortest path is computed. For
example, there is no direct trust relationship from E3 towards
E1, and therefore the element ζ̃31 in the TL given in (22)
is unknown. However, there are three trust propagation paths
from E3 to E1: E3 → E5 → E1; E3 → E2 → E4 → E1; and
E3 → E2 → E4 → E5 → E1. Applying the trust propagation
principle, we would estimate the value of ζ̃31 by propagating
trust via the shortest path using the intermediate expert E5.
Therefore, the estimated value of ζ̃31 would

ζ̃
′
31 = ζ̃531 = IVPŨ (ζ̃35, ζ̃51)

= IVPŨ (([0.6, 0.8], [0.2, 0.3]), ([0.5, 0.8], [0.2, 0.4]))

= (Ũ([0.6, 0.8], [0.5, 0.8]), Ũ([0.6, 0.8], [0.2, 0.4]))

= ([U(0.6, 0.5), U(0.8, 0.8)], [U(0.6, 0.2), U(0.8, 0.4)])

= ([0.60, 0.94], [0.27, 0.73]) .

There are, however, two paths of same (minimum) length
from E1 to E5, via the intermediate expert E3 and via the
intermediate expert E4, respectively. In this case, the estimated
value of ζ̃15 would be:

ζ̃
′

15 =
ζ̃315 + ζ̃415

2
= ([0.55, 0.95], [0.13, 0.59]).

Where,

ζ̃315 = IVPŨ (ζ̃13, ζ̃35)

= IVPŨ (([0.5, 0.9], [0.3, 0.5]), ([0.6, 0.8], [0.2, 0.3]))

= ([0.60, 0.97], [0.20, 0.79]) .

ζ̃415 = IVPŨ (ζ̃14, ζ̃45)

= IVPŨ (([0.4, 0.6], [0.5, 0.7]), ([0.6, 0.9], [0.1, 0.3]))

= ([0.50, 0.93], [0.07, 0.39]) .

By this way, the unknown elements of the TL between a
group of experts in a connected network of direct trust can
be estimated, and the complete trust matrix T

′

L derived, which
for the example used herein is given in (23) (Section V).

IV. A TWOFOLD PERSONALIZED FEEDBACK MECHANISM
FOR GDM

A. Identification of consensus inconsistency

Three consensus levels are a powerful tool for identifying
inconsistency in a GDM problem. Let E = {e1, e2...el} be a
set of l experts, A = {A1, A2...Am} be a set of m alternatives
and C = {c1, c2...cn} be a set of n criterions. Given the
experts set of decision matrices {R̃h = (r̃hij)m×n, r̃

h
ij =

(t̃hij , d̃
h
ij);h = 1, . . . , l.}, where r̃hij is an IV TF , which

represents the eh judgment of how well alternative Ai fulfill
cj . Then, consensus can be measured with respect to any of the
elements of the decision matrix (element level), with respect to
any of its rows of elements (alternative level); or with respect
to all its elements (decision matrix level):

a) Consensus with respect to a decision matrix element:
The value

CDEij(r̃h, r̃k)

= 1−
|th−ij − t

k−
ij |+ |t

h+
ij − t

k+
ij |+ |d

h−
ij − d

k−
ij |+ |d

h+
ij − d

k+
ij |

4
(8)

measures closeness, and therefore similarity or agreement
between the preferences of experts eh and ek on alternative Ai
with respect to criterion cj ,which can be tracked to[17].The
value

ACDEhij =
1

l − 1

l∑
h 6=k,k=1

CDEij(r̃h, r̃k) (9)

measures the average degree of similarity or consensus of
expert eh with the rest of experts in the group on alternative
Ai with respect to criterion cj .

b) Consensus with respect to an alternative: The value

ACDAhi =
1

n

n∑
j=1

ACDEhij (10)

measures the average degree of similarity or consensus of
expert eh with the rest of experts in the group on alternative
Ai.

c) Consensus degree on the decision matrix: The value

ACDDh =
1

m

m∑
i=1

ACDAhi (11)

measures the average degree of similarity or consensus of
expert eh with the rest of experts in the group.
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Complete consensus is obtained only when all experts have
same preferences, which is not expected and may not be
required in practice [45], where a sufficiently high level of
consensus γ would be sufficient for the group of experts to
‘agree on disagree’[46]. Without loss of generality, this article
sets the threshold value of consensus at γ = 0.8, which means
that if an expert has ACDDh below γ, then such expert is
labelled as ‘inconsistent’.

d) Inconsistent experts identification process refinement:
Once the set of inconsistent experts are identified:

EXPCH = {h|ACDDh < γ}, (12)

their corresponding ‘inconsistent’ alternatives are identified

ALT = {(h, i)|h ∈ EXPCH ∧ ACDAhi < γ}, (13)

which is refined into find the their ‘inconsistent’ preferences
on specific elements of their decision matrices

APS = {(h, i, j)|(h, i) ∈ ALT ∧ACDEhij < γ} (14)

B. Traditional feedback mechanism

Feedback mechanism within a consensus reaching process
refers to the procedure of producing advice or recommenda-
tions to inconsistent experts to support them in reaching the
threshold value of consensus agreeable to the group. Advice
can be presented as follows: “Revise your preference value
on alternative Ai under criterion cj from r̃hij = (t̃hij , d̃

h
ij)

to rr̃hij = (rt̃hij , rd̃
h
ij)”. Reaching the threshold value of

consensus requires that inconsistent values are revised and
considered to be replaced by adjustment advice closer to the
corresponding ‘group values’, i.e.

rr̃hij = (1− δ) · r̃hij + δ · ¯̃rhij
= ((1− δ) · t̃hij + δ · ¯̃thij , (1− δ) · d̃hij + δ · ¯̃

dhij),
(15)

where δ ∈ [0, 1] is a feedback coefficient that controls the
extent of the adjustment change or cost for the inconsistent
expert; ¯̃rhij = 1

l

∑l
k=1 r̃

k
ij = ( 1

l

∑l
k=1 t̃

k
ij ,

1
l

∑l
k=1 d̃

k
ij).

There are two main drawbacks associated to this ‘tradi-
tional’ feedback mechanism [35], [37]: (1) the ‘group value’
used above is the group average value. This may not be the
best to use in a trust social network because it neglects the
individual trust relationships, which is a key in accepting
advice or recommendations willingly [12], [17], [37]; (2) the
feedback coefficient δ is fixed and common to all ’inconsistent’
experts; this means that different states of inconsistency will
be treated equally, i.e. an inconsistent expert will be subjected
to the same adjustment cost regardless of how close they are
from the threshold value of consensus.

The proposed twofold personalized feedback mechanism
herein will overcome these two drawbacks. On the one hand,
the average operator used in the traditional feedback process
is repacked by a more general operator able to implement the
trust relationship between a group of experts in an appropriate
way. On the other hand, personalized adoption coefficients for
inconsistent experts that minimise the feedback adjustment
cost are proposed instead. To do that, in the next section,
a twofold personalized feedback mechanism is proposed to

determine personalized adoption coefficients for them with the
goal of minimizing feedback cost.

C. Trust based personalized feedback mechanism

The implementation of the trust relationship between the
group of experts in the feedback mechanism results in the
provision of trust based personalized feedback advice. The
below interval-value trust score induced ordered weighted
average(OWA) operator weight assignment process generates
group opinions, which are used in the computation of person-
alized feedback adjustment advice for inconsistent experts.

1) As per Section III-C, let TL = (ζ̃pq)l×l, (p, q =
1, 2 . . . l ∧ p 6= q) be the completed trust matrix of
a connected network of direct trust between a group of
experts, with ζ̃pq representing the IVTF of expert Ep
towards expert Eq .

2) If h ∈ EXPCH, then row h of matrix TL, {ζ̃hk|k 6=
h}, is arranged in descending order, denoted as follows:
ζ̃σh(l−1) � ζ̃σh(l−2) � . . . � ζ̃σh(1). The below total
ordering on the set of IVTFs, based on the trust score
TSζ̃ = (t−+ t+−d−−d+ +2)/4 and knowledge degree
KDζ̃ = |1− (t− + t+ + d− + d+)/2|, was proposed in
[17]: ζ̃i ≺ ζ̃j ⇔ [TSζ̃i < TSζ̃j ] ∨ [TSζ̃i = TSζ̃j ∧
KDζ̃i

> KDζ̃j
].

3) Denoting H(σ(s)) =
∑s
u=1 TSζσh(u)

, it is the sum of the
trust scores of ζ̃ in the top s. The following personalized
weighting vector is allocated to expert Eh: {w̃σh(s)|s =
1, . . . , l − 1} where

w̃σh(s) = Q

(
H(σ(s))

H(σ(l − 1))

)
−Q

(
H(σ(s− 1))

H(σ(l − 1))

)
(16)

with Q(x) =
√
x representing the concept of ‘majority’

as per the group consensus reaching model described in
[37]. Thus, for inconsistent experts Eh (h ∈ EXPCH),
their personal trust based weighting vectors towards the
other experts in the group, which we denote as W̃h→k =
(w̃h→1, . . . , w̃h→h−1, w̃h→h+1, . . . , w̃h→l), are obtained
and their corresponding personalized group values are
generated.

4) The personalized group value for the inconsistent expert
Eh on the element (Ai, cj), i.e (h, i, j) ∈ APS, is

r̃Thij =

l∑
k 6=h,k=1

w̃h→k · r̃kij . (17)

5) The personalized feedback advice for each (h, i, j) ∈
APS is computed as follows

rr̃hij = (1− δh) · r̃hij + δh · r̃Thij , (18)

where δh represent the personal adoption coefficient
for the inconsistent expert Eh, whose computation is
described in the next section.

D. Personalized adoption coefficient based on minimum cost

There are two expectations for the value of δh: one is
to make the inconsistent expert’s consensus degree on the
decision matrix, ACDDh, to reach the threshold of consensus
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after feedback adjustment; the other one is that the adjusting
costs should be optimized.

Adjustment cost is measured as the difference between an
expert’s inconsistent preference value, r̃hij such that (h, i, j) ∈
APS, and the corresponding personalized feedback advice that
replaces it, rr̃hij ,

chij =
∣∣∣r̃hij − rr̃hij∣∣∣ = δh

∣∣∣r̃hij − r̃Thij ∣∣∣ (19)

Solving the below twofold personalized feedback model for
the inconsistent experts will result in their personalized adop-
tion coefficients with minimum cost to reach the threshold
value of consensus γ:

min:
∑

(h,i,j)∈APS
δh
∣∣r̃hij − r̃Thij ∣∣

s.t.


r̃Thij =

∑l
k 6=h,k=1 w̃h→k · r̃

k
ij

ACDD
h ≥ γ (h ∈ EXPCH)

ACDD
k ≥ γ (k 6= h)

0 ≤ δh ≤ 1

(20)

where the targeted consensus degrees, ACDD
h

, at the next
round of interaction for inconsistent experts Eh reach the
threshold value of consensus, while keeping the rest of experts
consensus degrees, ACDD

k
, as they were before the feedback

process, i.e. greater or equal to the threshold value of consen-
sus.

E. Selection process for GDM

Once all experts’ consensus degree on the decision matrix
reach the threshold of consensus, ACDD

h ≥ γ (∀h), the indi-
vidual decision matrices are aggregated using an induced OWA
operator with weights, (w1, . . . , wl), derived using Exp. (16)
with the set of valued {ACDD

1
, . . . ,ACDD

l} arranged in de-
scending order. Assuming that the set of criteria {C1, . . . , Cn}
has associated a set of importance weights {wC1

, . . . , wCn},
then each alternative {Ai; i = 1, . . . ,m} will be associated
the following IVTF:

R̄i =

n∑
j=1

wCj

(
l∑

h=1

whr̃
h
ij

)
(21)

A total ordering of the alternatives is possible by applying the
total ordering on the set of IVTFs used in Section IV-C.

F. Twofold personalized feedback algorithm

The proposed twofold personalized feedback mechanism
based on a connected interval trust network for consensus in
GDM algorithmic description is presented below:

V. ILLUSTRATIVE EXAMPLE

A group of five experts {E1, E2, E3, E4, E5} has to decide
on a garment factory site for a clothing firm from given four
alternative sites {A1, A2, A3, A4}. The alternative sites are
evaluated using four criteria: c1 : infrastructure; c2 : climate;
c3 : cost; and c4 : environmental protection. They have original
trust relationship network as per Fig.1 with incomplete trust

Algorithm A1 Twofold personalized feedback Algorithm

Input: {R̃h = (r̃hij)m×n, h = 1, 2 . . . l}, r̃hij = (t̃hij , d̃
h
ij);

Trust matrix {T ′

L = (ζ̃pq)l×l, p, q = 1, 2 . . . l, & p 6= q};
Criteria weighting vector G = (wC1

, wC2
, . . . , wCj );

Consensus threshold γ;
Output: Personalized feedback for inconsistent experts (No

output if experts all consistent)
1: Compute three levels of consensus degree for individual

experts: ACDEhij , ACDAhi and ACDDh

2: if ∃ ACDDh < γ then
3: Determine set APS
4: Generate personalized feedback advice as per (18)
5: Generate personalized adoption coefficient δh by solv-

ing model (20)
6: else
7: Switch on selection process.
8: end if

relationship matrix TL, which is estimated and completed in
matrix T

′

L . The five experts original decision matrices R̃1,
R̃2, R̃3, R̃4, R̃5 are also provided below. Group threshold of
consensus is set at γ = 0.8

a) Identification of consensus inconsistency: The
experts’ consensus degrees on the decision matrix are
ACDD1 = 0.8195; ACDD2 = 0.8051; ACDD3 =
0.8168; ACDD4 = 0.7699; ACDD5 = 0.7195, which
means that experts E4 and E5 are inconsistent. The inconsis-
tent experts identification process refinement yields APS =
{(4, 2, 3), (4, 4, 1), (4, 4, 3), (5, 1, 1), (5, 1, 4), (5, 2, 3), (5, 2, 4)}.

b) Allocation of weights to inconsistent experts: Ar-
ranging in descending order rows 4 and 5 of matrix T

′

L,
respectively, and applying expression (16), inconsistent experts
E4 and E5 are allocated the following vectors of trust weights
towards the rest of experts in the group:

• E4 vector of trust weights towards (E1, E2, E3, E5) is
W̃4→k = (0.16, 0.52, 0.11, 0.21).

• E5 vector of trust weights towards (E1, E2, E3, E4) is
W̃5→k = (0.21, 0.55, 0.14, 0.10).

c) Personalized adoption coefficient by twofold person-
alized feedback mechanism: The optimisation model (20)
becomes
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min : δ4(|r̃423 − r̃T4
23 |+ |r̃441 − r̃T4

41 |+ |r̃443 − r̃T4
43 |)+

δ5(|r̃511 − r̃T5
11 |+ |r̃514 − r̃T5

14 |+ |r̃523 − r̃T5
23 |+ |r̃524 − r̃T5

24 |)

s.t.



r̃T4
23 =

(
5∑

k 6=4,k=1

w̃4→k t̃
k
23,

5∑
k 6=4,k=1

w̃4→kd̃
k
23

)
r̃T4
41 =

(
5∑

k 6=4,k=1

w̃4→k t̃
k
41,

5∑
k 6=4,k=1

w̃4→kd̃
k
41

)
r̃T4
43 =

(
5∑

k 6=4,k=1

w̃4→k t̃
k
43,

5∑
k 6=4,k=1

w̃4→kd̃
k
43

)
r̃T5
11 =

(
5∑

k 6=5,k=1

w̃5→k t̃
k
11,

5∑
k 6=5,k=1

w̃5→kd̃
k
11

)
r̃T5
14 =

(
5∑

k 6=5,k=1

w̃5→k t̃
k
14,

5∑
k 6=5,k=1

w̃5→kd̃
k
14

)
r̃T5
23 =

(
5∑

k 6=5,k=1

w̃5→k t̃
k
23,

5∑
k 6=5,k=1

w̃5→kd̃
k
23

)
r̃T5
24 =

(
5∑

k 6=5,k=1

w̃5→k t̃
k
24,

5∑
k 6=5,k=1

w̃5→kd̃
k
24

)
ACDD

4 ≥ 0.8

ACDD
5 ≥ 0.8

ACDD
k ≥ 0.8 (k = 1, 2, 3)

0 ≤ δ4 ≤ 1

0 ≤ δ5 ≤ 1

The solution of this optimisation model results in the
following personalized adoption coefficients for E4 and E5:
δ4 = 0.178 and δ5 = 0.577.An example of one personalized
feedback advice for E4 and E5 are given below:
E4: “Revise your preference value on alternative A2

under criterion c3 from ([0.1, 0.2], [0.3, 0.4]) to
([0.187, 0.294], [0.354, 0.463]);

E5: “Revise your preference value on alternative A1

under criterion c1 from ([0.1, 0.2], [0.8, 0.9]) to
([0.446, 0.588], [0.416, 0.516]);

The twofold personalized feedback model results in the below
experts’ consensus values: ACDD

1
= 0.8425; ACDD

2
=

0.8268; ACDD
3

= 0.8394; ACDD
4

= 0.8000; ACDD
5

=
0.8000.

d) Selection Process: Applying Exp. (16) the experts
weights are w1 = 0.453; w2 = 0.142; w3 = 0.187; w4 =
0.109; w5 = 0.109, with when implemented with the follow-
ing criteria weighing vector G = (0.1, 0.25, 0.4, 0.25) results
in

R̄ =

A1 ([0.548, 0.752], [0.259, 0.381])
A2 ([0.302, 0.459], [0.427, 0.582])
A3 ([0.387, 0.640], [0.315, 0.506])
A4 ([0.305, 0.602], [0.328, 0.505])


The final ranking of alternatives is: A1 � A3 � A4 � A2.

VI. COMPARISON AND DISCUSSION

A comparative analysis between the traditional feedback
model, the non-personalised feedback model and the proposed
twofold personalized feedback model is provided, which is
shown in TableI, TableII, and Figs.2-3.

Table I summarises the main operation mechanisms for
the traditional, non-personalized and twofold personalized
feedback models with respect to: (1) the feedback advice
construction; (2) the derivation of the adoption coefficients;
and (3) the objective function to achieve. While the traditional

and and non-personalized feedback models base their feedback
advices on using the same group opinion average to gene-
rate feedback advices for inconsistent experts, the proposed
twofold personalized feedback generates advices based on
personalised group opinion weighted average based on each
individual inconsistent expert’s trust relationship. The main
effect is shown in Fig. 3: Fig. 3 (a) and Fig. 3 (b) shows
that the inconsistent experts are somehow caught up in the
‘group thinking’, as their final positions are closer to the group
opinion than in the case of the proposed twofold personalized
feedback, which as shown in Fig. 3 (c), where the approach to
the group opinion by the inconsistent experts is the minimum
required achieving the threshold value of consensus and,
therefore it is possible to achieve group diversity by keeping
their personality traits as much as possible.

Table II exhibits the detailed results of the three feedback
mechanisms in terms of Recommendation advice, Adoption
coefficients, and Objective functions, also shows their re-
spective feedback effects from the sum of feedback coeffi-
cients and the total cost of adjustment with the same target
threshold(γ = 0.8). In the respect of feedback advice, Ēis the
average group’s original opinions and the representation of
‘group thinking’, which is applied in the operation of model
(a) and model (b); Ê4 and Ê5 are personalized group opinions
generated based on individual trust relationships,which is a
unique opinion for generating feedback advice in the model
proposed in this paper. For the adoption coefficient, model
(a) randomly determines the value that meets its objective
function, and here the value was found to be δ4 = δ5 = 0.7
(accurate to one decimal place); model (b) and model (c)
are the calculation results with their objective function and
conditions. As a result, each model can achieve its pre-set
goals(γ = 0.8), but the final feedback status and adjust cost
are different. Specifically, the proposed twofold personalized
feedback model achieved the minimum values. The non-
personalized feedback model is superior to the traditional
feedback model in that the changes to implement lead to
a lower total adjustment cost, which means that minimizing
cost contributes towards the keeping of the personality traits.
This is supplemented by the twofold personalized feedback
model with the implementation of personal trust relationships.
Indeed, the non-personalized feedback model produces values
for the adoption coefficients and total adjustment cost that are
between the maximum values obtained with the traditional
feedback model and the minimum values obtained with the
twofold personalized feedback model.To further prove this, a
visual simulation result is shown in Fig.2. The results show
that in the case of different target thresholds (Case 1: γ =
0.75;EXPCH = {5}; Case2:γ = 0.8;EXPCH = {5, 4} ;
Case3:γ = 0.81;EXPCH = {5, 4, 2}), twofold personalized
feedback model always achieved the minimum total cost.
Noticed that the performance of the three feedback models
is not much different in case 1, but the adjustment cost of
the twofold personalized feedback model in case 2 and case
3 is significantly lower than the other two models, which
means that the twofold personalized feedback mechanism is
more effective in dealing with the feedback with multiple
inconsistent experts.
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TL =


\ ([0.7, 0.9], [0.1, 0.2]) ([0.5, 0.9], [0.3, 0.5]) ([0.4, 0.6], [0.5, 0.7]) −
− \ − ([0.5, 0.7], [0.2, 0.3]) −
− ([0.5, 0.7], [0.3, 0.4]) \ − ([0.6, 0.8], [0.2, 0.3])

([0.6, 0.8], [0.2, 0.3]) − − \ ([0.6, 0.9], [0.1, 0.3])
([0.5, 0.8], [0.2, 0.4]) − − − \

 (22)

T
′
L =


\ ([0.7, 0.9], [0.1, 0.2]) ([0.5, 0.9], [0.3, 0.5]) ([0.4, 0.6], [0.5, 0.7]) ([0.55, 0.95], [0.13, 0.59])

([0.60, 0.90], [0.20, 0.50]) \ ([0.60, 0.99], [0.39, 0.90]) ([0.5, 0.7], [0.2, 0.3]) ([0.60, 0.95], [0.10, 0.50])
([0.60, 0.94], [0.27, 0.73]) ([0.5, 0.7], [0.3, 0.4]) \ ([0.50, 0.84], [0.20, 0.50]) ([0.6, 0.8], [0.2, 0.3])

([0.6, 0.8], [0.2, 0.3]) ([0.78, 0.97], [0.14, 0.50]) ([0.60, 0.97], [0.39, 0.80]) \ ([0.6, 0.9], [0.1, 0.3])
([0.5, 0.8], [0.2, 0.4]) ([0.70, 0.97], [0.10, 0.50]) ([0.50, 0.97], [0.30, 0.80]) ([0.40, 0.86], [0.50, 0.90]) \


(23)

R̃1 =


c1 c2 c3 c4

A1 ([0.5, 0.9], [0.2, 0.3]) ([0.7, 0.9], [0.4, 0.5]) ([0.5, 0.7], [0.3, 0.4]) ([0.4, 0.7], [0.1, 0.3])
A2 ([0.5, 0.6], [0.1, 0.2]) ([0.5, 0.7], [0.2, 0.5]) ([0.1, 0.3], [0.8, 0.9]) ([0.1, 0.2], [0.2, 0.3])
A3 ([0.6, 0.7], [0.1, 0.2]) ([0.5, 0.8], [0.1, 0.3]) ([0.3, 0.6], [0.4, 0.5]) ([0.2, 0.4], [0.3, 0.6])
A4 ([0.4, 0.6], [0.2, 0.3]) ([0.3, 0.5], [0.3, 0.6]) ([0.1, 0.8], [0.2, 0.3]) ([0.5, 0.8], [0.3, 0.5])



R̃2 =


c1 c2 c3 c4

A1 ([0.8, 0.9], [0.1, 0.2]) ([0.4, 0.7], [0.2, 0.3]) ([0.5, 0.6], [0.2, 0.4]) ([0.6, 0.8], [0.1, 0.2])
A2 ([0.8, 0.9], [0.2, 0.4]) ([0.3, 0.4], [0.6, 0.8]) ([0.8, 0.9], [0.7, 0.9]) ([0.1, 0.2], [0.1, 0.2])
A3 ([0.6, 0.8], [0.1, 0.2]) ([0.3, 0.6], [0.4, 0.5]) ([0.4, 0.6], [0.3, 0.6]) ([0.3, 0.6], [0.4, 0.5])
A4 ([0.5, 0.6], [0.2, 0.3]) ([0.1, 0.3], [0.5, 0.7]) ([0.5, 0.9], [0.3, 0.5]) ([0.1, 0.3], [0.5, 0.7])



R̃3 =


c1 c2 c3 c4

A1 ([0.6, 0.7], [0.2, 0.3]) ([0.7, 0.8], [0.2, 0.3]) ([0.4, 0.7], [0.5, 0.6]) ([0.7, 0.8], [0.1, 0.2])
A2 ([0.4, 0.6], [0.3, 0.4]) ([0.4, 0.6], [0.5, 0.8]) ([0.1, 0.2], [0.8, 0.9]) ([0.2, 0.3], [0.1, 0.2])
A3 ([0.6, 0.7], [0.1, 0.3]) ([0.5, 0.8], [0.3, 0.4]) ([0.5, 0.8], [0.3, 0.5]) ([0.2, 0.5], [0.6, 0.9])
A4 ([0.4, 0.6], [0.2, 0.3]) ([0.2, 0.4], [0.5, 0.6]) ([0.3, 0.4], [0.4, 0.6]) ([0.6, 0.7], [0.5, 0.7])



R̃4 =


c1 c2 c3 c4

A1 ([0.7, 0.9], [0.1, 0.2]) ([0.7, 0.9], [0.4, 0.5]) ([0.4, 0.5], [0.2, 0.3]) ([0.7, 0.9], [0.3, 0.4])
A2 ([0.8, 0.9], [0.1, 0.2]) ([0.2, 0.5], [0.3, 0.5]) ([0.1, 0.2], [0.3, 0.4]) ([0.1, 0.3], [0.3, 0.4])
A3 ([0.6, 0.7], [0.4, 0.5]) ([0.3, 0.4], [0.2, 0.5]) ([0.6, 0.8], [0.5, 0.7]) ([0.6, 0.8], [0.2, 0.4])
A4 ([0.1, 0.2], [0.8, 0.9]) ([0.2, 0.5], [0.6, 0.7]) ([0.1, 0.2], [0.7, 0.8]) ([0.3, 0.4], [0.3, 0.5])



R̃5 =


c1 c2 c3 c4

A1 ([0.1, 0.2], [0.8, 0.9]) ([0.7, 0.8], [0.1, 0.2]) ([0.7, 0.9], [0.3, 0.5]) ([0.1, 0.2], [0.8, 0.9])
A2 ([0.4, 0.9], [0.4, 0.5]) ([0.5, 0.8], [0.2, 0.6]) ([0.7, 0.9], [0.1, 0.2]) ([0.8, 0.9], [0.6, 0.7])
A3 ([0.3, 0.5], [0.1, 0.4]) ([0.4, 0.5], [0.3, 0.4]) ([0.1, 0.6], [0.5, 0.9]) ([0.6, 0.8], [0.4, 0.5])
A4 ([0.4, 0.6], [0.2, 0.3]) ([0.3, 0.5], [0.1, 0.3]) ([0.4, 0.6], [0.1, 0.4]) ([0.6, 0.8], [0.4, 0.6])



TABLE I: Comparison of three models wrt adoption coefficient, feedback advice and objective function

Models Recommendation advice Adoption coefficient Objective Function

(a) Traditional feedback
model[17]

Group opinion average Randomly generated and com-
mon to all inconsistent experts

Inconsistent experts’ consensus
value greater than or equal to
threshold value

(b) Non-personalized
feedback model[23]

Group opinion average Determined by minimizing cost
objective function and common
to all inconsistent experts

Inconsistent experts’ consensus
value greater than or equal to
threshold value with minimum
cost

(c) Twofold personal-
ized feedback model

Personalised group opinion
weighted average based on
individual’s trust relationship

Determined by minimizing cost
objective function and personal-
ized for each inconsistent experts

Inconsistent experts’ consensus
value equal to threshold value
with minimum cost
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TABLE II: Compared models values wrt adoption coefficient, consensus degree and total cost (minimum value highlighted)

(a) Traditional feedback
model[17]

(b) Non-personalized feedback
model[23]

(c) Twofold personalized
feedback model

Recommendation
advice

Ē for(4,2,3)is
([0.36,0.5],[0.54,0.66])...;

for (5,1,1)is
([0.54,0.72],[0.28,0.38])...

Ē for(4,2,3)is
([0.36,0.5],[0.54,0.66])...;

for (5,1,1)is
([0.54,0.72],[0.28,0.38])...

Ê4 for(4,2,3)is
([0.59,0.72],[0.601,0.753])...;

Ê5 for(5,1,1)is
([0.699,0.872],[0.135,0.235])...

Adoption
coefficient

δ4 = δ5 = 0.7 δ4 = δ5 = 0.667 δ4 = 0.178
δ5 = 0.577

Objective
function

ACDD
4

= 0.8218
ACDD

5
= 0.8028

ACDD
4

= 0.8202
ACDD

5
= 0.8000

ACDD
4

= 0.8000
ACDD

5
= 0.8000∑

δh 1.4 1.354 0.755
Total cost 1.939 1.875 1.540

Fig. 2: Comparison results of adjustment costs of three models
in three cases

In realistic cases, inconsistent experts are more willing to
change their opinions closer to their most trusted experts’
opinions, as visualised in Fig.3 (c) with Ê4 and Ê5. The
personalized feedback mechanism focuses on keeping the
‘individual personality’ as much as possible while achieving
as well the ‘group goal’ of consensus. Thus, the personalized
feedback mechanism contributes to achieving agreement while
maintaining group diversity with minimizing adjustment cost,
which can be referred to as “achieving agreement while
disagreeing”. Both traditional and non-personalized feedback
models put all or some of the inconsistent experts’ consensus
degrees above the satisfactory group threshold of consensus,
and as a consequence unnecessary over-adjustments are im-
posed on the inconsistent experts’ that are moved above the
threshold of consensus.

VII. CONCLUSIONS

This article proposed a twofold personalized feedback
mechanism by a uninorm interval trust propagation operator to
help inconsistent experts reach the consensus threshold value
in social network group decision making (SN-GDM). The
proposed model has the following features :

(1) It is based on an extension of the numerical uninorm
trust propagation operators to the case of interval numbers,
which enriches the field of trust propagation. The concept
of trust and distrust expressed by interval numbers can
better capture the uncertainty of experts’ opinions in
SN-GDM. The uninorm interval-valued trust propagation
operator is developed to provide a new method to compute
indirect trust relationship.

(2) Personalized feedbacks advices are generated for each one
of the inconsistent experts based on their individual trust
network. This approach is able to maintain the person-
ality traits of individual experts, and therefore guarantee
group diversity. Hence, it can resolve the ‘group thinking’
issue of traditional feedback mechanisms. This is indeed
possible because the personalization resides in personal
individual adoption coefficients for inconsistent experts
obtained by minimizing adjustment cost. This is argued to
be an appropriate methodology to ensure that the feedback
advice are accepted by the inconsistent experts.

This article used trust as a reliable source to investigate
a novel feedback mechanism for consensus reaching process
in a small-scale group decision making ; its essence is a
‘decentralization’ mechanism that can serve the consensus
reached in the Blockchain. However, this research also has
some shortcomings. For example, the knowledge defects of
experts are ignored in trust propagation where exists multiple
feasible paths. In the future, this element will be took account
to relevant research. In addition, research efforts will be put
into implementing this proposed methodology in a large-scale
group decision making framework.
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(a) Traditional feedback model (b) Non-personalized feedback model (c) Twofold personalized feedback model

Fig. 3: The comparison of three types of feedback models
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