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Abstract
Compound Cox processes (CCP) are flexible marked point processes due to the
stochastic nature of their intensity. This paper states closed-form expressions of their
counting and time statistics in terms of the intensity and of the mean processes. They
are forecast by means of principal components prediction models applied to the mean
process in order to reach attainable results. A proposition proves that onlyweak restric-
tions are needed to estimate the probability of a new occurrence. Additionally, the
phase type process is introduced, which important feature is that its marginal distribu-
tions are phase type with random parameters. Since any non-negative variable can be
approximated by a phase-type distribution, the new stochastic process is proposed to
model the intensity process of any point process. The CCP with this type of intensity
provides an especially general model. Several simulations and the corresponding study
of the estimation errors illustrate the results and their accuracy. Finally, an application
to real data is performed; extreme temperatures in the South of Spain are modeled by
a CPP and forecast.
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1 Introduction

The compound Cox process (CCP) is the natural extension of the compound Poisson
process and the Cox process (CP) since it is a Poisson process with stochastic intensity
and also a marked point process. More precisely, a CCP is a marked point process
in which the point process is a CP and the marks of the events are independent and
identically distributed as well as independent of the CP Snyder and Miller (1991).

The CCP has been used in several fields including geology, as in the classical
application to earthquakes by Ogata (1998) or Gospodinov and Rotondi (2001);
demography (Economou 2003); risk theory (Lin and Pavlova 2006); econometrics
(Chertok et al. 2016); astrophysics (Si 2001), etc. However, although this is quite a
general and flexible model, it is rare to find systematic studies of this type of process.
On the contrary, studies on CP or CCP often use a limited variety of examples where
the intensity or the mean process has an assumed stochastic structure that can fit the
phenomena under consideration (Bouzas et al. 2002; Genaro and Simonis 2015). The
main reason may lay in the difficulty of estimating the parameters of the CCP (mean
or intensity processes) that characterize it, specially without any assumption on the
process. Bouzas et al. (2006, 2007, 2010b, 2012) made the effort of studying a Cox
process or a CCP only from the sample paths using Functional Data Analysis, which
is a very powerful technique.

It is remarkable that a CCP generalizes some particular type of processes that are
found in the literature as completely different or unrelated. A CCP is a CP if the mark
space is denumerable with one markU = 1 or a CP with random deletions if the mark
space is {0, 1}marking the deleted points with 0. Relaxing the property of orderliness,
a CCP can represent a CP with simultaneous occurrences when the mark space is
{1, 2, . . .} (positive integers) indicating the number of occurrences. A multichannel
CP can be considered a CCP in which the mark indicates the region where the point
occurs.A time-spaceCoxprocess can also bemodeledby aCCP in timewhere themark
on a point is continuously distributed and indicates the spatial position of the point.

It can be very important to study the occurrences of a CCP which marks are in a
given subset of the mark space, for example, the points not deleted of a CP with ran-
dom deletions, the points with more than one occurrence from a CPwith simultaneous
occurrences, the points in a given region within the mark space of a time-space Cox
process, etc. Thus, this paper studies in depth the statistics, estimation and forecasting
of this type of process.

Bouzas et al. (2007) proposed a methodology for estimating the mean process and
some counting statistics of a CCP based on the representation theorems extended to
CCP and assuming raw data as the only available information. The present paper
tries to go further in the study of CCP in the same context of observation. It provides
expressions for some other counting statistics and for some important time statistics.
This is interesting not only to actually have the expressions but in order to address the
inference of the CCP. Subsequently, these statistics are forecast in a future instant of
time making use of functional data analysis techniques. The estimations presented are
calculated in terms of the mean process, but they could be expressed in terms of the
intensity process using its own estimation from Bouzas et al. (2012).
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Forecasting counting and time statistics… 237

During the course of this paper another issue will also be addressed. A new kind
of process will be defined in order to be proposed as a new model for the intensity
process. This model achieves a high level of generalization and flexibility and is based
on phase type distributions. This type of distributions, which were first introduced
by Neuts (1975), are positive valued. Therefore, they are appropriate to model an
intensity of any counting process. As this paper deals with a counting process which
intensity is stochastic, a doubly stochastic phase type distribution is proposed to be
the intensity for each instant of time. Doubly stochastic phase type distribution means
that the distribution changes, i.e. it is not the same for each instant of time because
its parameters are also random. Therefore, it is obtained a stochastic process which
will be called phase type process. This proposal provides a compound Cox process
with a stochastic intensity which marginals are phase type distributions. Then, it is a
wider alternative for those models found in the literature which intensity is a linear
combination of exponential distributions or similar.

The paper is structured in the following way. In Sect. 2, closed-form expressions
for counting and time statistics of a CCP having specific marks are derived and the
forecast of those statistics are calculated in Sect. 3. Section 4 proposes the CCP which
intensity process is a phase type process. Section 5 presents simulations of the CCP
for which the forecasting method has been applied in order to illustrate the results
stated in the previous sections. The simulation examples are also necessary to be able
to assess the theoretical results so, the estimations can be compared with the true or
sample values within different types of CCPs and in several scenarios. These sim-
ulations are notable examples of CCPs, Cox processes with deletions, simultaneous
occurrences or time-space Cox processes. Section 6 addresses the model and forecast
of extreme maximum and extreme minimum values of temperatures in the South of
Spain modeled by a CCP, obtaining the principal components prediction model for
the mean process of the two corresponding counting processes and the forecast of the
statistics. The main conclusions of the paper are gathered in Sect. 7.

2 Statistics of a CCP having specific marks

Let {N (t); t ≥ t0}, the number of points until instant t , be a CCP with intensity
{λ(t, x(t)); t ≥ t0} where {x(t); t ≥ t0} is the information process and with i.i.d.
marks associated to the arrival times and independent of the point process. The n-th
arrival time will be denoted by wn and its mark by un , which is a realization of the
random variable U in U with probability distribution Pu . Let {N (t, B); t ≥ t0} be the
counting process of the points from the former CCP whose marks are in B ⊆ U .

In this section, using the representation theorems of a CCP, the expression for the
basic counting statistics of N (t, B) taking into account that the mark space is nonde-
numerable (analogous in the denumerable case) are provided in terms of the intensity
and in terms of the mean process. The key idea of these theorems is that the pro-
cess {N (t, B); t ≥ t0} is also a Cox process with intensity

∫
B λ(σ, x(σ )) Pu(dU ) dσ

(Bouzas et al. 2007). Then, it is possible to derive its statistics extending the knowledge
of the Cox process in terms of the intensity and in terms of the mean process when it is
possible. That is interesting given that it is not usual to find in the literature the statistics
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238 P. R. Bouzas et al.

of a CCP explicitly written, specially the time statistics. Let us point out the the case of
the originalCoxprocess regardless themarks is included in theCCP just taking B = U .

From now on, in order not to complicate the expressions of the equations and being
aware that the intensity and mean processes depend on the information process and
that t ≥ t0, the intensity process of the CCP, λ(t, x(t)), will be denoted by λ(t) and
the mean process, Λ(t, x(t)), by Λ(t).

2.1 Counting statistics

The counting statistics of a counting process are based on its probability mass func-
tion; therefore, its expression is basic. Nevertheless, other counting statistics are more
or less important according to the framework, survival analysis, reliability, counting
point of view, etc. The probability mass function, the mean and the mode (Bouzas
et al. 2010b) are only included because they are basic statistics and also to present
the set of interesting counting statistics. The novelty of this subsection is to take into
account the expression of the cumulative distribution function as it plays an important
role in reliability theory and which will be used later on.

•The probability mass function (pmf) of the CCP, the probability of having n points
with mark in B until t , is

P [N (t, B) = n]

= Ex

[
1

n!
(∫ t

t0

∫

B
λ(σ) Pu(dU ) dσ

)n
exp

[

−
∫ t

t0

∫

B
λ(σ) Pu(dU ) dσ

]]

= Ex

[
1

n!
(

Λ(t)
∫

B
Pu(dU )

)n
exp

[

−Λ(t)
∫

B
Pu(dU )

]]

. (1)

where Ex is the expectation conditional to the information process (t).
• The mean of the CCP, that is the expected number of points in B until t , is

expressed as

E [N (t, B)] = Ex

[∫ t

t0

∫

B
λ(σ) Pu(dU ) dσ

]

= Ex

[

Λ(t)
∫

B
Pu(dU )

]

= Ex [Λ(t)]
∫

B
Pu(dU ).

• The mode of the CCP with marks in B denoted by nB
max(t) ∈ N, is the most

probable number of occurrences in B until a certain time point t so nB
max(t) =

{n|max P [N (t, B) = n]}. As proved in Bouzas et al. (2010b),

nB
max(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Λ(t)
∫
B Pu(dU ) − 1, Λ(t)

∫
B Pu(dU ) ∈ N⎧

⎨

⎩

int
(
Λ(t)

∫
B Pu(dU ) − 1

)

or
int
(
Λ(t)

∫
B Pu(dU ) − 1

)+ 1
, Λ(t)

∫
B Pu(dU ) /∈ N

0, Λ(t)
∫
B Pu(dU ) < 1

(2)
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note: int = integer part.
• The cumulative distribution function of N (t, B) is the probability of having

observed less than a given number of occurrences in B before a fixed instant of time.
Its expression, using the pmf, is clearly the following

P [N (t, B) < n] = P [N (t, B) ≤ n − 1]

= Ex

[
n−1∑

i=0

1

i !
(

Λ(t)
∫

B
Pu(dU )

)i
exp

[

−Λ(t)
∫

B
Pu(dU )

]]

= Ex

[
�
(
n,Λ(t)

∫
B Pu(dU )

)

�(n)

]

(3)

where �(n) = ∫∞
0 σ n−1e−σ dσ is the usual gamma function and �(n, y) =∫∞

y σ n−1e−σ dσ is the incomplete gamma function.

2.2 Time statistics

A key theoretical novelty of this paper is the derivation of the expressions for some
important time statistics of a CCP with marks in a given subset of the mark space U .
Once more, one of the keys to derive them, is the fact that N (t, B) is a Cox process
itself.

• The survival or reliability function of N (t, B) is the probability that the n-th
point happens after a given time T which is connected with the cumulative distribution
function the following way

PB [Wn > T ] = P [N (T , B) < n] (4)

where PB denotes the probability in a subset B. Therefore, its expression is the one
of Eq. (3).

• Due to the conditioning method (Snyder and Miller 1991), the conditional prob-
ability density of the n-th occurrence time of N (t, B), the probability of having a new
point in B after having occurred the (n − 1)-th point, is

pBwn/wn−1
(Wn/Wn−1)

= Ex

[

λ(Wn)

∫

B
Pu(dU ) exp

[

−
∫ Wn

Wn−1

∫

B
λ(σ)Pu(dU ) dσ

]]

= Ex

[

λ(Wn)

∫

B
Pu(dU ) exp

[

− (Λ(Wn) − Λ(Wn−1))

∫

B
Pu(dU )

]]

. (5)

• The probability of having a new specific occurrence within an interval of time
(the probability of having the following occurrence with mark in B in the time interval
[Wn−1, T )) is also interesting
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PB
wn/wn−1

(Wn < T /Wn−1) = Ex

[

1 − exp

[

−
∫ T

Wn−1

∫

B
λ(σ)Pu(dU ) dσ

]]

= Ex

[

1 − exp

[

− (Λ(T ) − Λ(Wn−1))

∫

B
Pu(dU )

]]

.

(6)

• As a consequence, the survival or reliability conditional function can be written
as

PB
wn/wn−1

(Wn > T /Wn−1) = Ex

[

exp

[

− (Λ(T ) − Λ(Wn−1))

∫

B
Pu(dU )

]]

. (7)

Taking into account the relation between the occurrence times and the interarrival
times, wn = wn−1 + tn , tn , the n-th interarrival time, it is straightforward to derive
similar densities and statistics in terms of the latter. Let us give an example using Eq.
(5).

• The forward-occurrence density is identical to the conditional density of tn and
it is expressed as

pBtn/wn−1
(T /Wn−1) = pBwn/wn−1

(Wn + T /Wn−1)

= Ex

[

λ(Wn + T )

∫

B
Pu(dU ) exp

[

− (Λ(Wn + T ) − Λ(Wn−1))

∫

B
Pu(dU )

]]

.

A common feature of the statistics studied in both Sects. 2.1 and 2.2 is that they all
are expressed in terms of the intensity or the mean of the Cox process regarding the
marks. This will allow us to use any further study on that intensity or mean for any
particular N (t, B). Furthermore, predicting the intensity or the mean, the statistics
will be also predicted as it will be done in the following section.

3 Forecasting the statistics of the CCP

As pointed out above, the forecast of the intensity or the mean process would allow to
forecast the statistics of any N (t, B). Different techniques of forecasting a stochastic
process could be contemplated to apply to the intensity or the mean. An aim of this
paper is to forecast the CCP assuming that the observed sample paths of the process
is the only available information. Therefore, the framework chosen for the estimation
and further forecast is functional principal components analysis (FPCA). Bouzas et al.
(2006, 2012) proposed corresponding ad hoc FPCA’s to estimate the intensity and
the mean processes of a Cox process. It is well known that principal components
prediction (PCP) developed by Aguilera et al. (1997) within FPCA is a useful and
precisemethodology. ThePCPof a stochastic process provides a continuous prediction
of the process in a future time interval from discrete observations of the process in
the past. The method to perform a PCP model is based on a double FPCA of the
process (FPCA of the past and of the future) and the correlation between the principal
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components of both. Bouzas et al. (2010b) used this powerful technique to derive a
forecasting method for the CCP which will provide estimators for its statistics.

In this paper, the forecast of a CCP will be done in terms of the mean process
using the method mentioned (Bouzas et al. 2010b). Let us assume that sample paths
of the Cox process have been observed in a discrete set of time points in [T0, T1] and
a forecast in a time point s ∈ (T1, T2] is needed with T0 < T1 < s ≤ T2. The method
consists on two main steps. Firstly, estimate sample paths of the mean process in a
discrete set of time points (each one from several sample paths of the Cox process).

Secondly, obtaining a continuous estimation of the mean process in the past and in
the future by means of FPCA. The estimations are denoted as follows

Λ̂1(t) = Λq1(t) = μ
1)
Λ (t) +

q1∑

j=1

ξ j f j (t); t ∈ [t0 = T0, T1]

Λ̂2(s) = Λq2(s) = μ
2)
Λ (s) +

q2∑

j=1

η j g j (s); s ∈ (T1, T2]
(8)

whereμ
1)
Λ andμ

2)
Λ are themean functions ofΛ in the past and future intervals, ξi are the

principal components of the past, g j (s), the principal functions of the future andwhere
q1 and q2 are chosen so that an important percentage of variance is explained. The
choice is sometimes made to compromise the amount of explained variance attained
with the complication of the final model. In this paper, the percentage of explained
variance imposed to the model is 99%.

Afterwards, the correlation between the past and the future has to be established.
Denoting by η̃

p j
j =∑p j

i=1 b
j
i ξi the estimator of η j , j = 1, . . . , q2 in terms of the p j

principal components ξ j , Eq. (8) can be rewritten so that the prediction of the mean
process in a future interval (T1, T2] given the past interval [T0, T1] is calculated by

Λ̃q2(s) = μ
2)
Λ (s) +

q2∑

j=1

( p j∑

i=1

b j
i ξi

)

g j (s); s ∈ (T1, T2] (9)

In order to indicate the number of principal components of the past and future consid-
ered in the final estimation, the PCP model will be denoted as PCP(q2; p1, . . . , p j ).

Having finished the prediction of the mean process, the forecasting expressions of
the mean and the mode of the CCP using Eq. (9) can be found in Bouzas et al. (2010b).

• Mean of N (T1, s, B), s in the interval (T1, T2], where N (T1, s, B) is the number
of points between T1 and s,

E [N (T1, s, B)] � Ex

[

Λ(s)
∫

B
Pu(dU )

]

= μ
2)
Λ (s)

∫

B
Pu(dU ). (10)

• Mode of N (T1, s, B), s in (T1, T2]. The number of occurrences with maximum
probability until time s is
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nB
max(s) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ̃q2(s)
∫

B
Pu(dU ) − 1, Λ̃q2(s)

∫

B
Pu(dU ) ∈ N

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

int

(

Λ̃q2(s)
∫

B
Pu(dU ) − 1

)

or

int

(

Λ̃q2(s)
∫

B
Pu(dU ) − 1

)

+ 1

,Λ̃q2(s)
∫

B
Pu(dU ) /∈ N

0, Λ̃q2(s)
∫

B
Pu(dU ) < 1

(11)

From here on, this paper presents the forecasting expressions of other statistics, the
cumulative distribution functionwithin the counting statistics and all the time statistics
from Sect. 2.

• The cumulative distribution function of the process N (s, B) with s ∈ (T1, T2]
is the probability of having observed less than a given number of occurrences in B
before the instant of time s. By means of Eqs. 3 and 9 and denoting N (T1, B) = nT1 ,
it is obtained

P [N (s, B) < n] �
⎧
⎨

⎩

0, n ≤ nT1

Ex

[
�
(
n−nT1−1,Λ(s)

∫
B Pu(dU )

)

�(n−nT1−1)

]

, n > nT1

where �(n) is the gamma function and �(n, x) is the incomplete gamma function
defined previously.

• The probability of having a new specific occurrence within the interval
(Wn−1 = T1,T2

]
, i.e. the probability of Eq. (6).

The plain application of the forecasting of the mean given in Eq. (9) provides an
intractable expression of this statistic as it is usual dealing with a CP. Despite that, if
very weak restrictions are verified, it is possible to derive an explicit expression able
to be implemented. Let us present it in the following proposition.

Proposition 1 Given the estimation of the mean process of N (t) in Eq. (9), let us
assume that the p.c.’s, ξi , used to estimate the p.c.’s of the future, η j , j = 1, . . . , q2
are independent, normally distributed (or k ≥ 30) and their distributions are (or can
be estimated as) N (0, σi ) where the σ 2

i are the variances previously estimated in the
corresponding FPCA.

Fixing s ∈ (Wn−1 = T1, T2
]
, the probability of having the following occurrence

with mark in B within the interval (Wn−1 = T1, s) is

PB
wn/wn−1

(Wn < s/Wn−1) � 1 − exp

[(
Λq1(Wn−1) − μ

2)
Λ (s)

) ∫

B
Pu(dU )

]

× exp

⎡

⎣
(∫

B Pu(dU )
)2

2

q2∑

j=1

( p∑

i=1

(
σi b

j
i

)2
)
(
g j (s)

)2

⎤

⎦

(12)

where p is the largest p j , ∀ j .
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Proof In order to simplify the notation in the proof, let us denote a =
∫

B
Pu(dU ) and

b = Λq1(Wn−1) both constants. Then, Eq. (6) is rewritten like this

PB
wn/wn−1

(Wn < s/Wn−1) = Ex

[

1 − exp

[

− (Λ(s) − Λ(Wn−1))

∫

B
Pu(dU )

]]

= Ex
[
1 − exp [−a (Λ(s) − b)]

] = 1 − Ex [e−aΛ(s) eab] = 1 − eab MΛ(s)(−a)

where MΛ(s)(σ ) is the generating function of Λ(s).
Using the prediction of Eq. (9), it is obtained

PB
wn/wn−1

(Wn < s/Wn−1)

� 1 − eab E

⎡

⎣exp

⎡

⎣−a

⎛

⎝μ
2)
Λ (s) +

q2∑

j=1

( p j∑

i=1

b j
i ξi

)

g j (s)

⎞

⎠

⎤

⎦

⎤

⎦ . (13)

Substitutinga andb by their values, the expression of the probabilitywould be achieved
but, as mentioned above, it is intractable.

In order to obtain a practical expression for this probability, let us first introduce
the following notation. Let us call p to the largest p j , ∀ j . In other words, p is the
largest subindex of the p.c.’s from the past used to estimate the p.c.’s of the future.
Therefore, Eq. (13) can be written and transformed as the following

1 − eab E

⎡

⎣exp

⎡

⎣−a

⎛

⎝μ
2)
Λ (s) +

q2∑

j=1

( p∑

i=1

b j
i ξi

)

g j (s)

⎞

⎠

⎤

⎦

⎤

⎦

= 1 − eab e−aμ
2)
Λ (s) E

⎡

⎣exp

⎡

⎣−a
q2∑

j=1

( p∑

i=1

b j
i ξi

)

g j (s)

⎤

⎦

⎤

⎦

= 1 − eab e−aμ
2)
Λ (s) E

⎡

⎣exp

⎡

⎣
p∑

i=1

ξi

⎛

⎝
q2∑

j=1

−a b j
i g j (s)

⎞

⎠

⎤

⎦

⎤

⎦

= 1 − eab e−aμ
2)
Λ (s) E

[
p∏

i=1

q2∏

j=1
exp
[
−a b j

i ξi g j (s)
]
]

. (14)

It should be noticed that some ξi may be missing because b j
i = 0, ∀ j , which means

that they do not appear in the estimation of the p.c.’s of the future. If the remaining
p.c.’s, ξi , are independent, the expression of Eq. (14) follows this way

PB
wn/wn−1

(Wn < s/Wn−1) � 1 − eab e−aμ
2)
Λ (s)

[
p∏

i=1

q2∏

j=1
Mξi

(
−a b j

i g j (s)
)
]

.
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Finally, let us assume that the remaining p.c.’s ξi are distributed asN (0, σ 2
i )where

σ 2
i have been estimated in the corresponding FPCA. If this does not hold but the sample

size was greater than 30, we can approximate their distributions by those Normals.

Then, as the generating function of ξi is Mξi (u) = exp

[
σ 2
i u

2

2

]

, the equation can be

written

PB
wn/wn−1

(Wn < s/Wn−1)

� 1 − exp

[(
Λ(Wn−1) − μ

2)
Λ (s)

) ∫

B
Pu(dU )

]
⎡

⎢
⎣

p∏

i=1

q2∏

j=1
exp

⎡

⎢
⎣

(
σi a b

j
i g j (s)

)2

2

⎤

⎥
⎦

⎤

⎥
⎦

= 1 − exp

[(
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⎣
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exp

⎡

⎣

(
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∫
B Pu(dU )
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2

⎤

⎦

⎤
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(15)

It is then straightforward to obtain the expression stated in the proposition. 	

It is remarkable that it has been found out from the simulations and several examples

of real data (Bouzas et al. 2010a) that the p.c.’s usually verify to have a joined Normal
distribution so, as they are uncorrelated, they become independent as well as they are
normally distributed. Thus, the restrictions imposed above are not difficult to fulfill.

•Anobvious consequence of Proposition 1 is that, in the same scenario, the survival
conditional function in s is expressed as

PB
wn/wn−1

(Wn > s/Wn−1)

� exp

[(
Λq1(Wn−1) − μ

2)
Λ (s)

) ∫

B
Pu(dU )

]

× exp

⎡

⎣
(∫

B Pu(dU )
)2

2

q2∑

j=1

( p∑

i=1

(
σi b

j
i

)2
)
(
g j (s)

)2

⎤

⎦ . (16)

4 Phase type process

The intensity of any counting process needs to be non-negative valued so, exponential,
gamma,Weibull or some generalizations of them are themost common distributions to
model it (see, e.g., Asha and Nair 2010; Russell and Engle 2010; Chen and Hall 2013;
Lefebvre andBelsalma 2015; Bieniek andGoroncy 2017; Sepehrifar andYarahmadian
2017; Singh and Tripathi 2018). These same references also prove that the selection
of the distribution is not simple and it is important to find new models which are more
adaptable to real data. The purpose of this section is to propose another and even more
general model suitable for the intensity of a doubly stochastic counting process.
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Phase type (PH) distributions were first introduced by Neuts (1975) and described
in detail by Neuts (1981). Another recommended and recent reference is He (2014).
This type of distributions has been mainly applied in areas such as survival, reliability
and queuing theory. Recently, Ruiz-Castro (2016a, b) considered PH distributions to
model the behavior of complex reliability systems by counting several events.

This distribution class is a generalization of the exponential one with a matrix
algebraic structure, by means of which the main measures associated with a reliability
system can bemodeled and calculated in an algorithmic andwell-structured form, thus
simplifying computational implementation. Several well known distributions such as
degenerate distribution, Erlang, Coxian, hyperexponential, hypoexponential, etcetera,
are particular cases of PH distributions (Neuts 1981; He 2014; Tank and Eryilmaz
2015 ).

One of the main features of PH distributions is their good properties; a notable
property is that, not only known distributions are phase type but, in the continuous case,
this class is dense in the non-negative class of probability distributions, while in the
discrete case, any probability distributionwith finite support is a PHdistribution (Neuts
1975). Therefore, given a non-negative distribution, this one can be approximated as
much as wanted. Consequently, these distributions are perfect candidates to model the
intensity of a counting process. It is important to remark that this type of distributions
is generally associated with time between failures in reliability theory; however, their
use in this proposal is completely different.

Another aspect to deal with is the stochastic nature of the intensity of a doubly
stochastic counting process (it is not only an unchanging random variable). For this
reason, a PH distribution with random parameters, let us name it as phase type process,
is proposed to model the intensity of the counting process. Thus, the intensity process
could follow a different phase type distribution at each instant of time. Let us define
this new process using the notation of the PH distributions.

Definition 1 A phase type process is a stochastic process with the representation
(π , T ) where

1. π = (π1, . . . , πp) and T = (Ti j )p×p

2. with any πi and/or Ti j random variables
3. such that for each realization of the random variables, the distribution is a PH

distribution.

The last item of the definition imposes on π and T all the restrictions of the PH
distributions, i.e.

∑p
i=1 πi = 1, negative diagonal elements of T and non-negative

Ti j , i �= j , non-positive sum of the elements of each row and being invertible.
Using a phase type process as a model for an intensity, a very general and flexible

intensity process is obtained and consequently, a general doubly stochastic counting
process is derived as well. It is notable that any particular type of counting process
has not been assumed throughout this section. Thus, this new model could be used
as intensity for any counting or point process and in any knowledge field. In order to
continue within the framework of this paper, the counting process taken into account
from now on is the CCP.
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Fig. 1 Sample path of the intensity as a phase type process

Let us give an example of a CCPwith a phase type process as intensity. The intensity
process of this example has the following representation

(π , T (β1, β2, β3)) where

π = (0.2, 0.4, 0.4) and T (β1, β2, β3) =
⎛

⎝
−1/β1 0 0

0 −1/β2 0
0 0 −1/β3

⎞

⎠

with β1 � B(10, 0.8) + 1, β2 � B(20, 0.5) + 1 and β3 � B(1, 0.5) + 1 (17)

and where B denotes the Binomial distribution.
Figure 1 shows a sample path of this intensity process given in the representation

above (17).
Let us consider that the marks of this example of CCP are two-dimensional, fol-

lowing the normal distribution N (μ,Σ) with mean μ = (4, 8) and covariance matrix

Σ =
(
1.5 0.7
0.7 1.5

)

.

If the set of marks of interest within the mark space is chosen to be B =
{(x1, x2); 2 ≤ x1 ≤ 4, 7 ≤ x2 ≤ 9} then, the probability of having a mark in this set
is
∫
B Pu(dU ) = 0.2717. Figure 2 represents the mark space with its distribution and

the set B.
Having defined the intensity process and the mark space, the CCP is characterized.

Taking into account the set of marks B, the counting process extracted from the CCP
is defined as the CP formed by the points with marks in B. Intuitively, the initial
sample paths lose points when considering only the points with marks in B. Figure 3
shows three sample paths of the CP regardless the marks (initial sample paths) and
the corresponding sample paths with marks in the set B.

This example can be interpreted as a time-space CP where the mark of a point
represents its position in the plane. It will be used as a simulation case in the next
section.
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Fig. 2 Graphic of the mark space with its distribution and the set of marks B
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Fig. 3 Three sample paths of the CP regardless the marks (without dashes) and the corresponding ones with
marks in the set B (symbols joined by dashes)

5 Simulations

This section illustrates the theoretical calculations presented in the former sections by
means of several simulations. As usual, they will also allow to carry out the assessment
of the results.

The simulations will consist on a number of CCP with different types of intensity
processes and mark distributions. In the literature, it is usual to find papers studying
counting processes which could be modeled as a special class of marked process. For
example,multi-channel processes canbe thought asmarkedprocesseswhosemarks are
the channels. The simulations chosen for the present section illustrate some interesting
cases such us a CCP with deletions, simultaneous occurrences or time-space CP’s.
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The selection of the intensities and mark spaces for the first and second simula-
tions has been inspired by examples found in articles from different knowledge areas.
The most usual models have gamma or geometric Brownian motion intensities and
lognormal, binomial and gammas as mark distributions. These type of models can be
found in Gospodinov and Rotondi (2001), Barta et al. (2005), Park and Padgett (2005)
and, in general, in the articles provided in the References section. The Binomial as
mark distribution allows us to illustrate the case of possible deletions of points, an
interesting feature to take into account. Additionally, the problem of simultaneous
sources of point occurrences is also interesting in many fields (see Snyder and Miller
1991; Dousse et al. 2005; Greenberg et al. 2008). On the other hand, the values of the
parameters of the distributions have not been chosen due to specific reasons, they are
mere examples.

Each simulation case consists on k = 100 sample paths in [0, 20] of a CCP.
As explained in Sect. 3, the mean process has been estimated in the future inter-
val (T1, T2] and it has been used to estimate the mean and the mode in an instant of
time s ∈ (T1, T2], as well as the probability of having a new point before s. Sev-
eral values of T1 and s will be chosen to illustrate the calculation of the mentioned
statistics.

The simulations and all the calculations were implemented in MATLAB R2016b
and all the figures were created with the same program.

Simulation case 1 The first simulation is a CCP whose intensity process is a
Gamma(4,0.5) with marks distributed as a Binomial(1,0.6) and B = {u; u = 1}
so
∫
B Pu(dU ) = p(1) = 0.6. This CCP can be interpreted as a CP with deletions

(points with mark u = 0).
Applying the corresponding PCP technique (see Eq. 9) and fixing the future

interval as (T1 = 5, T2 = 20], the mean process has been modeled as a
PCP(q2; p1, . . . , p j ) ≡ PCP(6; 4, 4, 0, 4, 3, 4). Initially, this model implies that
6 components of the future are used for the estimation and each one is explained with
4, 4, 0, 4, 3 and 4 of the past, respectively. However, examining the parameters of
the model in detail, it is remarkable that the third future component is not actually
explained by any from the past. Consequently, only 5 components of the future are
kept in themodel. Therefore, having computed the coefficients and taking into account
the null and non-null coefficients, the mean process for s ∈ (T1 = 5, T2 = 20] can be
written the following way

Λ̃6(s) = μ
2)
Λ (s)

+

⎛

⎜
⎜
⎜
⎜
⎝

− 1.024 0.962 − 1.654
− 2.903 1.488 − 3.965
− 0.425 0.162 − 0.263
− 0.061 0.115 0
− 0.457 0.212 − 0.404

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎝
ξ1
ξ3
ξ4

⎞

⎠ (g1(s), g2(s), g4(s), g5(s), g6(s)).

The same type of calculations should be done if another future interval is chosen.
Therefore, changing the time T1, another PCP model would be obtained. As T1 ∈
(T0, T2), it is not possible to show all the cases, however, three different values will
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be used to calculate the estimations. It is interesting to point out that if the instant T1
is very close to T0, the past interval is very small and so, the information available in
order to estimate and forecast the future, might not be enough to obtain good results.
On the other hand, having a fixed T1, the further the estimation time s is, the biggest
estimation error can be expected. Then, the estimation error tends to increase as s gets
closer to the end of the future interval, T2.

Table 1 shows the results of the estimations of the mean (see Eq. 10), mode (see
Eq. 11) and the probability of having a new point before a fixed instant of the future
(see Proposition 1) for this example. In order to be more illustrative, the estimations
are calculated for three different scenarios, when the future interval is considered
(T1 = 5, T2 = 20], (T1 = 10, T2 = 20] or (T1 = 15, T2 = 20]. Furthermore, the
estimations are calculated for several instants s within the future interval.

Simulation case 2 The second simulation is a CCP formed by four randomly simul-
taneous Poisson processes with intensities 5, 4, 6 and 3, respectively. Each of these
processes is operating with probability 0.5 at any instant of time. The marks are dis-
tributed as a Binomial(10,0.6) and B = {u; 6 ≤ u ≤ 8} so ∫B Pu(dU ) = 0.5867.
This CCP can be interpreted as the mixture of Poisson processes with simultaneous
occurrences where the mark at an instant of time is the number of occurrences at that
moment.

In this case, fixing again the future interval as (T1 = 5, T2 = 20], themean has been
modeled as a PCP(q2; p1, . . . , p j ) ≡ PCP(9; 4, 4, 0, 4, 4, 4, 4, 0, 4) (see Eq. (9)).
Reading carefully the notation and discarding the components with none explicative
components from the past, finally, only seven components of the future are used.
Having computed the coefficients, the mean process for s ∈ (T1 = 5, T2 = 20] is
written as

Λ̃9(s) = μ
2)
Λ (s) +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 0.696 − 4.007 − 3.017 − 2.367
1.876 1.099 1.427 0.650

− 0.988 0 − 0.365 − 0.327
− 0.194 − 0.387 0 0.004
0.021 0.134 0 − 0.134

− 0.594 0.093 0 0.107
0.019 0 0 0.364

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎝

ξ1
ξ2
ξ3
ξ4

⎞

⎟
⎟
⎠ (g1(s), g2(s), g4(s), g5(s), g6(s), g7(s), g9(s)).

Again, the same type of calculations should be done if any other future interval is
chosen.

Table 2 shows the results of the estimations for this simulation case using Eqs. (10),
(11) and Proposition 1. As in the first case, three different intervals of the future are
considered.
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Table 1 Estimation of the mean,
mode and the probability of
having a new point before s
(Prob) for simulation 1

T1 s Mean Mode Prob

5 6 7.217 6 7 0.511

7 8.438 7 8 0.865

8 9.651 8 9 0.959

9 10.865 9 10 0.988

10 12.072 11 12 0.996

11 13.300 12 13 0.998

12 14.496 13 14 0.999

13 15.685 14 15 0.999

14 16.900 15 16 0.999

15 18.109 17 18 0.999

16 19.286 18 19 0.999

17 20.492 19 20 0.999

18 21.684 20 21 0.999

19 22.884 21 22 0.999

20 24.061 23 24 0.999

10 11 13.300 12 13 0.661

12 14.496 13 14 0.904

13 15.685 14 15 0.971

14 16.900 15 16 0.991

15 18.109 17 18 0.997

16 19.286 18 19 0.999

17 20.492 18 19 0.999

18 21.684 20 21 0.999

19 22.884 21 22 0.999

20 24.061 23 24 0.999

15 16 19.286 18 19 0.579

17 20.492 19 20 0.886

18 21.684 20 21 0.965

19 22.884 21 22 0.989

20 24.061 23 24 0.996

Simulation case 3 The third simulation is the case presented in Sect. 4 used as an
example of CCP whose intensity is the phase type process given in Eq. (17), with
the marks following the same two-dimensional Normal distribution and choosing the
same set B.

Following the same steps as in the previous simulations, in this case, the mean
process has been modeled as a PCP(9; 4, 4, 0, 0, 4, 0, 0, 0, 4) [see Eq. (9)] for s ∈
(T1 = 5, T2 = 20]. Similarly as in the previous simulation cases, taking into account
the components of the future that have correlations with some of the past, this model
will finally use four components of the future and the expression is

123



Forecasting counting and time statistics… 251

Table 2 Estimation of the mean,
mode and the probability of
having a new point before s
(Prob) for simulation 2

T1 s Mean Mode Prob

5 6 31.882 31 32 0.983

7 37.194 36 37 0.999

8 42.420 41 42 0.999

9 47.738 46 47 0.999

10 52.989 52 53 0.999

11 58.271 57 58 0.999

12 63.578 62 63 1

13 68.879 67 68 1

14 74.226 73 74 1

15 79.495 78 79 1

16 84.770 83 84 1

17 90.085 89 90 1

18 95.436 94 95 1

19 100.715 99 100 1

20 105.875 104 105 1

10 11 58.271 57 58 0.999

12 63.578 62 63 0.999

13 68.879 67 68 0.999

14 74.226 73 74 0.999

15 79.495 78 79 0.999

16 84.770 83 84 0.999

17 90.085 89 90 1

18 95.436 94 95 1

19 100.715 99 100 1

20 105.875 104 105 1

15 16 84.770 83 84 0.999

17 90.085 89 90 0.999

18 95.436 94 95 0.999

19 100.715 99 100 0.999

20 105.875 104 105 0.999

Λ̃9(s) = μ
2)
Λ (s)

+

⎛

⎜
⎜
⎝

0 0 − 0.449 − 0.525
0.615 − 0.501 0.073 0.350

− 0.013 − 0.123 0.161 0.312
0 0 0.262 0.251

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

ξ1
ξ2
ξ3
ξ4

⎞

⎟
⎟
⎠ (g1(s), g2(s), g5(s), g9(s)).

Table 3 shows the results of the estimations using Eqs. (10), (11) and Proposition 1
for this case using the three different future intervals chosen as examples.
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Table 3 Estimation of the mean,
mode and the probability of
having a new point before s
(Prob) for simulation 3

T1 s Mean Mode Prob

5 6 11.041 10 11 0.831

7 12.941 11 12 0.977

8 14.769 13 14 0.996

9 16.629 15 16 0.999

10 18.452 17 18 0.999

11 20.265 19 20 0.999

12 22.183 21 22 0.999

13 24.085 23 24 0.999

14 25.911 24 25 0.999

15 27.751 26 27 0.999

16 29.559 28 29 0.999

17 31.259 30 31 0.999

18 33.285 32 33 0.999

19 35.166 34 35 0.999

20 36.936 35 36 0.999

10 11 20.265 19 20 0.583

12 22.183 21 22 0.972

13 24.085 23 24 0.995

14 25.911 24 25 0.999

15 27.751 26 27 0.999

16 29.559 28 29 0.999

17 31.359 30 31 0.999

18 33.285 32 33 0.999

19 35.166 34 35 0.999

20 36.936 35 36 0.999

15 16 29.559 28 29 0.95

17 31.359 30 31 0.970

18 33.285 32 33 0.996

19 35.166 34 35 0.999

20 36.936 35 36 0.999

5.1 Assessment of results

The estimations obtained for the simulation examples used the theoretical results of
previous sections. Let us assess the accuracy of the calculations.

The estimation of the mean of N (t, B) in a fixed future instant s, Eq. (10), is the
deterministic part of the estimation of the mean process given in Eq. (9). It has been
obtained by a PCP model within the functional data analysis techniques which are
well known and already proved to be a good methodology for estimation. Therefore,
it is not needed to prove that this estimation is accurate. However, it is illustrative to
compare the estimations of the mean given in Tables 1, 2 and 3 with the sample mean
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Table 4 Comparison of the
estimated mean and the sample
mean of N (s, B) from all the
simulated sample paths for
simulation 1

s Estimation of the mean Sample mean

T1 = 5 T1 = 10 T1 = 15

6 7.217 7.224

7 8.448 8.450

8 9.651 9.675

9 10.865 10.890

10 12.072 12.102

11 13.300 13.292

12 14.496 14.512

13 15.685 15.727

14 16.900 16.918

15 18.109 18.123

16 19.286 19.320

17 20.492 20.520

18 21.684 21.733

19 22.884 22.919

20 24.061 24.117

of N (t, B) for the same instants s computed with all the simulated sample paths.
Tables 4, 5 and 6, respectively for the simulation cases 1–3, present the estimated
means with the different three future intervals and the sample means.

The comparison between the estimations of the mean and the sample values of it
(Tables 4, 5, 6) shows that the similarity or small error is remarkable for all the cases.
It is also notable, as well as expected and explained in Sect. 5, that the estimations
are more similar to the sample values if the instant s is closer to the instant T1. Each
estimation is made in a different setting (different past intervals T1 = 5, 10 or 15) and
for different time points (s = 6, . . . , 20) so they are not comparable. Nevertheless, it
can be illustrative that the average errors are 0.026, 0.102 and 0.278 (this last one is
larger because of the last estimation value) for simulations 1, 2 and 3, respectively.

In order to study the estimation error of themode and the probability of having a new
point before s, 100 new sample paths were simulated. The accuracy of the estimations
can be evaluated for any T1, the instant of time which splits the observation interval
in past and future, and for any instant s of the future interval. This section will present
the study of the errors for T1 = 10 and s = 11, 15 and 20 as it would be impossible
to present it for every T1 and s.

The sample percentages of the number of points before an instant s are calculated
from the 100 new sample paths. Tables 7, 8 and 9 show, for three examples of s, the
most frequent values as well as their frequencies, respectively for the three simulation
cases. Comparing the values of these tables with the estimated mode in Tables 1, 2
and 3, respectively, it can be observed that the estimated mode is always one of the
most probable values. This observation was found to be a general behaviour for any s
and T1. Thus, the estimation of the mode can be considered reliable.
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Table 5 Comparison of the
estimated mean and the sample
mean of N (s, B) from all the
simulated sample paths for
simulation 2

s Estimation of the mean Sample mean

T1 = 5 T1 = 10 T1 = 15

6 31.882 31.900

7 37.194 37.155

8 42.420 42.466

9 47.738 47.712

10 52.271 53.038

11 58.271 58.264

12 63.578 63.532

13 68.879 68.842

14 74.226 74.126

15 79.495 79.470

16 84.770 84.718

17 90.085 89.997

18 95.436 95.312

19 100.715 100.646

20 105.875 105.955

Table 6 Comparison of the
estimated mean and the sample
mean of N (s, B) from all the
simulated sample paths for
simulation 3

s Estimation of the mean Sample mean

T1 = 5 T1 = 10 T1 = 15

6 11.041 11.147

7 12.941 12.993

8 14.769 14.891

9 16.629 16.716

10 18.452 18.588

11 20.265 20.414

12 22.183 22.225

13 24.085 24.118

14 25.919 26.016

15 27.751 27.843

16 29.559 29.711

17 31.359 31.528

18 33.285 33.308

19 35.166 35.246

20 39.936 37.112
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Table 7 Most frequent values of
number of points until s (Np)
and percentage of sample paths
with such number of points until
s (%) for simulation 1

s = 10 s = 15 s = 20

Np % Np % Np %

8 9 14 10 19 8

9 12 15 18 20 10

10 17 16 16 21 13

11 18 17 12 22 13

12 20 18 7 23 13

13 5 19 14 24 8

14 4 20 8 25 11

Table 8 Most frequent values of
number of points until s (Np)
and percentage of sample paths
with such number of points until
s (%) for simulation 2

s = 10 s = 15 s = 20

Np % Np % Np %

47 7 69 7 99 2

48 6 70 3 100 3

49 1 71 3 101 6

50 4 72 5 102 2

51 6 73 5 103 4

52 3 74 4 104 6

53 1 75 10 105 7

54 9 76 2 106 3

55 2 77 7 107 1

56 5 78 5 108 9

57 1 79 2 109 2

58 8 80 5 110 1

Finally, let us examine the behaviour of the estimations of the probability of having
a new point before s. Figures 4, 5 and 6 present the box-and-whisker plots of the
estimations of the mentioned probabilities given the same instants used above and
show the accuracy of the estimations, respectively for the three simulation cases.

6 Extreme values of temperatures in the South of Spain

Given the enormous socioeconomic and environmental impact of extreme meteoro-
logical events, providing predictive methods in this area has become increasingly
prevalent in recent decades. As in many other phenomena in a wide variety of frame-
works, the points which exceed some chosen limits are relevant and lead to a new
series of events. A series of this type of events may be modeled as a point process or
as the resulting counting process.

The data available for the example studied in this section are themaximum andmin-
imum temperatures collected at some weather stations in the South of Spain (Seville,
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Table 9 Most frequent values of
number of points until s (Np)
and percentage of sample paths
with such number of points until
s (%) for simulation 3

s = 10 s = 15 s = 20

Np % Np % Np %

7 1 14 6 26 8

8 5 15 6 27 5

9 4 16 4 28 3

10 5 17 7 29 5

11 10 18 6 30 11

12 7 19 8 31 4

13 8 20 6 32 8

14 11 21 5 33 4

15 8 22 3 34 3

16 7 23 7 35 5

17 10 24 4 36 6

18 5 25 9 37 3

19 3 26 4 38 4

0.3
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0.7

0.8

s=11

0.9945

0.995

0.9955

0.996

0.9965
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0.999992

0.999994

0.999996

s=20

Fig. 4 Box-and-whisker plot of the estimations of the probability of having a new point before s for T1 = 10
for simulation 1

Granada, Córdoba, etc.) belonging to the same climate zone. Let us consider the
extreme maximum temperatures as the events of primary interest, i.e. the maximum
temperatures over and under given thresholds. Then, these extreme values form a
counting process. A second counting process arises applying the same reasoning to
the extreme minima. In this paper, the CCP is proposed to model the both counting
processes.

Let us begin developing carefully the study for the extrememaximum temperatures;
afterwards, due to the parallelism, the case of the minima can be straightforward
presented.
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Fig. 5 Box-and-whisker plot of the estimations of the probability of having a new point before s for T1 = 10
for simulation 2.
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Fig. 6 Box-and-whisker plot of the estimations of the probability of having a new point before s for T1 = 10
for simulation 3.

6.1 Extrememaximum temperatures

First of all, the extremes need to be calculated from the raw data andwill be considered
as a point process with the associated counting process N (t) which mean process will
be modeled. Later, the subset of marks B will be defined so that the counting process
N (t, B) is obtained. Finally, the forecast of the statistics will be calculated.

The detailed description of the data is the following. The maximum temperatures
available belong to 15 weather stations within the same climate zone in the South
of Spain from 1991 to 2011. The thresholds chosen to consider the temperature as
an extreme value for each weather station were the limits around the sample mean
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Fig. 7 Daily maximum temperatures, extreme maxima and extreme maxima in B in the weather station in
Seville in 2011

accumulating the 80% of the observations for each day of the year using Chebyshev’s
inequality. The interval with that condition results to be (x̄ − 2.361 σ, x̄ + 2.361 σ).

Studying the extremes, it can be observed that there are some extremely high or low
values. Discarding these excessive extreme points, which can be caused by strange
circumstances, the remaining points represent the usual behaviour of extreme temper-
atures in the area. Therefore, considering the actual value of the temperatures as the
marks of the points, the process of final interest is formed by the extreme values in
the subset of marks B, where B is the union of the intervals (x̄ + 2.361 σ, x̄ + 2.5 σ)

and (x̄ − 2.361 σ, x̄ − 2.5 σ). As mentioned above, 2.361 is the value given by the
Chebyshev’s condition and 2.5 has been chosen to determine an upper and lower addi-
tional bounds for the marks. The probability associated to the subset B was estimated
as
∫
B Pu(dU ) = 0.5752.
The weather station in Seville has been chosen as an example to illustrate the

selection of the extreme values and the subset of marks B. Figure 7 shows the daily
maximum temperatures in Seville along 2011, the values considered extremes and the
values remaining in B. Figure 8 enhances the previous one for the first part of the year
in order to facilitate a more detailed visualization.

Repeating the procedure of selecting the data in B for every weather station and
considering the counting process generated, N (t, B), 15 sample paths are obtained.
The sample paths of N (t) and N (t, B) for all the weather stations are plotted in Fig. 9.

Concerning the time intervals involved in the performing of the FPCA and further
results given in this paper, the interval [T0, T2] is a year denoted by [T0 = 0, T2 = 12]
where 1, 2, . . . are the months. Following the steps mentioned in Sect. 3 and as the
temperatures have been observed during 21 years, a sample path of the mean process
will be estimated from 21 of the counting process for each of the 15 weather stations.
Then, 15 sample paths of the mean process have been obtained and will be used to
derive the corresponding PCP model. The mean process of the extreme maximum
temperatures in B has been modeled as a PCP(1; 2) and for s ∈ (T1 = 5, T2 = 12],
it can be written the following way
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Fig. 8 Daily maximum temperatures, extreme maxima and extreme maxima in B in the weather station in
Seville in the first 80 days of 2011
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Fig. 9 Sample paths of the counting process of extreme maximum temperatures and for extreme maxima
in the subset B for every weather station

Λ̃1(s) = μ
2)
Λ (s) + (− 0.705 1.9792

)
(

ξ1
ξ2

)

g1(s).

Having derived the prediction of the mean process, the statistics can be forecast
using Eqs. (10), (11) and Proposition 1. Table 10 shows the results of the forecast
of the mean, mode and the probability of having a new point before s (Prob) for the
extreme maximum temperatures in the subset B using three different future intervals
chosen as examples. The future intervals used begin in T1 = 4 which is the month
of April, 5 which is May and 6, June and the instants of forecast are the following
months.

As this is a real data example, an assessment of the results is not applicable, however
the comparison between the estimations of the mean and the mean sample values can
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Table 10 Estimation of the
mean, mode and the probability
of having a new point before s
(Prob) for the extreme maximum
temperatures in the subset B

T1 s Mean Mode Prob

4 5 1.561 0 1 0.226

6 1.876 0 1 0.435

7 2.221 1 2 0.599

8 2.473 1 2 0.689

9 2.8 1 2 0.776

10 3.077 2 3 0.830

11 3.455 2 3 0.883

5 6 1.876 1 1 0.270

7 2.221 2 1 0.483

8 2.473 2 3 0.598

9 2.8 2 3 0.710

10 3.077 3 3 0.780

11 3.455 3 3 0.843

6 7 2.221 2 1 0.088

8 2.473 2 3 0.438

9 2.8 2 3 0.602

10 3.077 3 3 0.699

11 3.455 3 3 0.794

Table 11 Comparison of the
estimated mean and the sample
mean of N (s, B) from all the
observed sample paths for the
extreme maximum temperatures
in the subset B

s Estimation of the mean Sample mean

T1 = 4 T1 = 5 T1 = 6

5 1.561 1.524

6 1.876 1.857

7 2.220 2.191

8 2.473 2.667

9 2.8 3.191

10 3.077 3.667

11 3.455 4

be helpful. In order to illustrate that the estimations are also good in this real case,
not only in the simulations, that comparison has been made in three scenarios of past
and future intervals. The first scenario consists of choosing T1 = 4, so the past is
the interval from the beginning of the year until April, the second considers the past
interval until May and the third, until June. The outcomes are shown in Table 11. It can
be observed that the differences are small and, as explained in the previous sections,
increasing as the instant s is further from the past interval.
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Fig. 10 Daily minimum temperatures, extreme minima and extreme minima in B in the weather station in
Seville in 2011
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Fig. 11 Daily minimum temperatures, extreme minima and extreme minima in B in the weather station in
Seville in the first 80 days of 2011

6.2 Extrememinimum temperatures

Having described in detail the process of applying the results of this paper from the raw
data in the case of the extreme maximum temperatures, there is no more to explain for
the case of the minima. The steps taken are completely parallel, including the same
boundaries to define the extremes and the subset B. It only remains to provide the
outcomes.

Once again, the weather station in Seville illustrates the selection of the extreme
minimum values and those in the subset of marks B. Figure 10 shows the whole year
2011 and Fig. 11 gives a closer look at the first part of the year.
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Fig. 12 Sample paths of the counting process of extreme minimum temperatures and for extreme minima
in the subset B for every weather station

Selecting the data for all theweather stations and considering the counting processes
associated with the points, the sample paths of N (t) and N (t, B) are obtained and
plotted in Fig. 12.

Using the sample paths of N (t), the mean process of the extreme minimum tem-
peratures has been modeled as a PCP(2; 1, 1) and for s ∈ (T1 = 5, T2 = 11], it can
be represented by

Λ̃2(s) = μ
2)
Λ (s) +

(
0.2277ξ1

−1.3651ξ1

)

(g1(s), g2(s)) .

Having the PCP model of the mean process, the statistics forecast for the extreme
minimum temperatures in the subset B using three different future intervals are pre-
sented in Table 12.

As in themaxima, the predictions onTable 12 cannot be assessed but the comparison
between the estimations of the mean and the mean sample values suggests that the
results can be considered reliable (Table 13).

7 Concluding comments

The CCP and the CCP formed only by those points which have specific fixed marks
are clearly interesting. This article derives closed-form expressions for the counting
and time statistics of these processes in terms of the intensity and/or mean which are
also stochastic. Then, it is notable that the mean or the intensity process that needs to
be taken into account in order to forecast the CCP with specific marks, is the one of
the counting process regardless the marks. This is important, firstly, because it allows
to use the information of all the occurrences; secondly, because only that intensity
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Table 12 Estimation of the
mean, mode and the probability
of having a new point before s
(Prob) for the extreme minimum
temperatures in the subset B

T1 s Mean Mode Prob

4 5 1.417 0 1 0.265

6 1.8 0 1 0.499

7 2.223 1 2 0.674

8 2.564 1 2 0.769

9 2.855 1 2 0.828

10 3.122 2 3 0.866

11 3.361 2 3 0.879

5 6 1.8 0 1 0.335

7 2.223 1 2 0.577

8 2.564 1 2 0.699

9 2.855 1 2 0.775

10 3.122 2 3 0.828

11 3.361 2 3 0.864

6 7 2.223 1 2 0.372

8 2.564 1 2 0.556

9 2.855 1 2 0.669

10 3.122 2 3 0.746

11 3.361 2 3 0.788

Table 13 Comparison of the
estimated mean and the sample
mean of N (s, B) from all the
observed sample paths for the
extreme minimum temperatures
in the subset B

s Estimation of the mean Sample mean

T1 = 4 T1 = 5 T1 = 6

5 1.417 1.571

6 1.800 1.714

7 2.223 2.143

8 2.564 2.381

9 2.856 2.714

10 3.122 2.905

11 3.361 3.191

or mean process must be forecast in order to forecast the statistics of every counting
process of points in any given subset of marks.

The forecasts of the statistics are performed using PCP models which implies that
themethodologyused is only based on the sample observations of the counting process.
Then, no assumptions on the intensity process, or the mean, need to be done to forecast
the CCP.

The intensity process of a CCP is a non-negative stochastic process. Section 4
already recalled the importance of PH distributions within the framework of non-
negative ones. Combining the topics of the lasts two sentences, this paper defines the
phase type process, a process whose marginals are PH distributions. Then, a new and
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versatile model for an intensity is provided and, as a result, a newmodel for a counting
process. The phase type process is used to implement one of the simulation examples.

Three simulation examples have been performed to illustrate the results obtained
throughout this paper. These examples were not chosen randomly; instead, they were
deliberately selected in order to present an example of CCP which is a generalization
of a CP with deletions (case 1), a CP with simultaneous occurrences (case 2) and a
time-space CP (case 3). The latter case includes the singularity of having a phase type
process as intensity. These diverse simulations are a small representation of all the
counting processes that can be modeled by a CCP.

The accuracy of the theoretical expressions derived to forecast the counting and
time statistics is assessed. The estimation of the mean is achieved by means of PCP
models. The abundant literature onPCPmodels have already proved that this technique
provides accurate estimations. The mode and the probability of having a new point
before a fixed instant of the future are estimated for the three simulation examples.
It would be impossible to present the estimation for every instant of time and any
possible future interval so, this paper presents them in three distinct scenarios of the
past and future intervals and for several instants of the future. As explained in the
corresponding section, the assessment shows that the estimations can be considered
accurate and robust for all the simulation cases and scenarios.

Finally, examining available data from different weather stations in the South of
Spain, the extreme values ofmaximumandminimum temperatures have beenmodeled
as CPP’s. Considering the point process of the extremes within a given subset, the
results obtained along this paper have been applied to the data. The PCP model for
the mean processes were obtained, the mean and the mode in a given future instant of
time and the probability of obtaining another point before an instant of time have been
calculated. Even it is not possible or applicable the assessment of the results in a real
data example, the comparison between the forecast of the mean and the mean sample
values suggests a good performance of the model and the forecast in both extreme
maximum and minimum temperatures.
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