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Abstract: A functional linear discriminant analysis approach to classify a set of kinematic data (human
movement curves of individuals performing different physical activities) is performed. Kinematic data,
usually collected in linear acceleration or angular rotation format, can be identified with functions
in a continuous domain (time, percentage of gait cycle, etc.). Since kinematic curves are measured in
the same sample of individuals performing different activities, they are a clear example of functional
data with repeated measures. On the other hand, the sample curves are observed with noise. Then,
a roughness penalty might be necessary in order to provide a smooth estimation of the discriminant
functions, which would make them more interpretable. Moreover, because of the infinite dimension
of functional data, a reduction dimension technique should be considered. To solve these problems,
we propose a multi-class approach for penalized functional partial least squares (FPLS) regression.
Then linear discriminant analysis (LDA) will be performed on the estimated FPLS components. This
methodology is motivated by two case studies. The first study considers the linear acceleration recorded
every two seconds in 30 subjects, related to three different activities (walking, climbing stairs and down
stairs). The second study works with the triaxial angular rotation, for each joint, in 51 children when
they completed a cycle walking under three conditions (walking, carrying a backpack and pulling a
trolley). A simulation study is also developed for comparing the performance of the proposed functional
LDA with respect to the corresponding multivariate and non-penalized approaches.
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1 Introduction

Biomechanical gait data are commonly used to differentiate between several gait
pathologies or different physical activities. Different statistical methodologies for
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classification of gait data have been developed in the literature with this aim. Gait
data are usually collected at different points in a continuous scale, such as time, so
that they are generated from an underlying time-varying function. In the applications
that motivate this research, acceleration curves are measured at real time every two
seconds, and rotation curves are measured in terms of the percentage of gait cycle.
In spite of the continuous nature of kinematics curves, in many of the biomechanical
studies the statistical analysis is made from a sample of summary measures for each
curve such as minima, maxima, area under the curve, angles at heel strike, range of
motion or the timing of specific events (Sadeghi et al., 1997; Sadeghi, 2003; Schmidt
and Docherty, 2010; Orantes-González et al., 2015).

Currently, data science tools are being developed to build accurate classification
and prediction models for gait research by using all the available information. One
of them is functional data analysis (FDA) that begins by reconstructing the true
functional form of each sample curve from discrete sampling points that could be
different for different subjects. This way all the available information about the
sample curves is exploited to explain the movement in the statistical analysis. A
detailed description of the most common FDA methodologies, and interesting FDA
applications with R and Matlab, are described in the pioneer books by Ramsay
and Silverman (1997), Ramsay and Silverman (2002) and Ramsay et al. (2009). A
complete study of nonparametric FDA techniques can be seen in Ferraty and Vieu
(2006). Statistical inference for functional data has been studied in Horvath and
Kokoszka (2012). A more recent book is by Kokoszka and Reimherr (2017), where
new methods for FDA are collected (functional time series, spatial functional data,
between others).

Biomechanical data are usually obtained over a number of discrete time points
(snapshots) and assumed to be generated by some underlying smooth function.
Because of this, the steps typically used when FDA is applied to the analysis of
biomechanical data are: basis expansion representation, curve registration (time
normalization or landmark registration) and functional principal component analysis
(FPCA) (dimension reduction and variability explanation in terms of uncorrelated
scalar variables). The first step consists of obtaining smooth representations of the
sample curves in terms of a basis of functions (Fourier, B-splines, wavelets, etc.).
In the second step, registration is used to reduce phase variability between curves
while preserving the individual curve’s shape and amplitude. The effect of different
registration methods on cyclical kinematic data is analysed in Crane et al. (2010).
In the third step, FPCA is successfully applied to explain the ways of variation
in biomechanics of sports injuries and coordination in race-walking, jumping and
running (Ryan et al., 2006; Harrison et al., 2007; Donoghue et al., 2008; Donà
et al., 2009). On the other hand, multivariate principal component analysis (PCA) on
the raw discrete-time observations of the biomechanics curves has also been applied
to provide biomechanics interpretation of the principal component scores and to
discriminate between healthy and sick subjects (Deluzio et al., 1997; Daffertshofer
et al., 2004; Milovanovic̀ and Popovic̀, 2012).

This work is motivated by two different sets of biomechanical data: the human
activity data and the gait data. The first dataset is based on the human activity
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recognition collected by Anguita et al. (2013). The original experiments were carried
out with a group of 30 volunteers within an age bracket of 19–48 years. Each person
performed three different activities wearing a smartphone on the waist (walking,
walking upstairs and walking downstairs). Using its embedded accelerometer and
gyroscope, they captured 3-axial linear acceleration and 3-axial angular velocity
at a constant rate of 50Hz every two seconds. The aim is to classify the curves
of acceleration according to the categorical variable given by the three mentioned
physical activities. The gait dataset comes from a wide experimental study developed
in the biomechanics laboratories of the Sport and Health Institute of the University of
Granada (iMUDS). In order to collect the data, 26 reflective markers were placed on
the skin of a total of 51 children between 8 and 11 years old. The data were recorded
by a 3D motion capture system meanwhile each subject completed a cycle walking
over the platform in three conditions (walking, carrying a backpack that weighs 20%
of the subject’s weight and pulling a trolley that weighs 20% of the subject’s weight).
For each subject, the 3-axial angular rotation were registered for each join (ankle,
foot progress, hip, knee, pelvis, thorax), and all conditions, in 101 equidistant points
of the complete gait cycle. Now, the aim is to classify the rotation curves according
to the three different load types.

Both case studies considered in this article are clear examples of functional
data with repeated measures because the functional variables of interest (angular
rotation and linear acceleration) are measured repeatedly on the same sample
individuals under different experimental conditions. Therefore, the aim of this article
is to classify a set of functional data with repeated measures (kinematic curves)
according to a categorical variable with more than two categories (measurement
conditions). In this article, an extension of linear discriminant analysis (LDA) to the
case of functional data with repeated measurements will be considered. Alternative
classification approaches based on logit regression were developed and successfully
applied in different areas as environment, medicine, marketing and so on (James,
2002; Escabias et al., 2004, 2005, 2007; Delaigle and Hall, 2012a; Aguilera-Morillo
and Aguilera, 2013; Escabias et al., 2014). An extension to functional data of
nonparametric Bayes classifiers based on simple density ratios was proposed in (Dai
et al., 2017) for the case of binary classification.

LDA is a popular and consolidate methodology for classification and dimension
reduction (Fisher, 1936). So, LDA provides a sequence of linear combinations of the
original predictor variables (linear discriminants) that maximize the between-class
variance relative to the within-class variance. An important problem is that LDA
overfits the data when we have a large number of highly correlated predictor
variables because the within-class covariance matrix is difficult to estimate. This
is the case of FDA that works with a large number of discrete-time observations
for each sample curve. A way to solve this problem is to introduce some kind of
regularization in the estimation of the covariance matrix (Friedman, 1989; Frank
and Friedman, 1989; Hastie et al., 1995). A general review of regularized techniques
in discriminant analysis was developed in Mkhadri et al. (1997). A Bayesian approach
for Fisher’s discriminant analysis of stochastic process was introduced in Shin (2008).
An alternative solution, for the case of irregularly sampled curves, is based on using
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as predictors a spline basis expansion of the discrete-time observations and assuming
Gaussian distribution of the vector of basis coefficients with common covariance
matrix for all classes, by analogy with LDA (James and Hastie, 2001). This functional
LDA approach was used to assessment of embryonic growth (Bottomley et al.,
2009). Other way of solution consists of projecting the predictor vectors (multivariate
analysis) or curves (FDA) onto a finite dimensional basis so that LDA, or any other
discrimination procedures, can then be used taking the resulting basis coefficients
as predictors. A common approach is based on the representation of the original
predictors by a small set of orthogonal scalar variables given by PCA or partial least
squares (PLS) regression. Both approaches are commonly used in chemometrics to
discriminate between essential properties of substances from discrete measurements
of the near-infrared (NIR) spectra. PCA was applied in Sato (1994) to classify NIR
spectral data of vegetable oils. PLS regression was performed in Li et al. (2000) to
discriminate edible fats and oils by Fourier transform NIR spectroscopy. Multivariate
classification techniques such as LDA, quadratic discriminant analysis (QDA) and
logit regression were applied in Indahl et al. (1999). In the functional data context,
reduction dimension techniques and regularization can be jointly used to get good
classification rates and accurate interpretation of the results. The functional LDA
approach presented in this article is inspired in this research line.

Functional PCA and functional PLS regression were introduced as natural
extensions of their multivariate counterparts to solve the problems of high dimension
and multicollinearity associated with the scalar-on-function linear model (Deville,
1974; Dauxois et al., 1982; Ocaña et al., 1999, 2007; Preda and Saporta, 2005;
Aguilera et al., 2016). Both methodologies were compared on different simulated
datasets concluding that they have similar forecasting performance, but the estimated
parameter function provided by functional PLS regression is more accurate and
needs fewer components (Reiss and Ogden, 2007; Aguilera et al., 2010; Delaigle
and Hall, 2012b,c). In addition, the performance of PCA for discrimination may not
be optimal, because PCA only identifies gross variability, and then it is not capable to
distinguish the between-groups and within-groups variability. In that sense, several
authors proposed to use PLS regression for dimension reduction, as for example
Barker and Rayens (2003), Pérez-Enciso and Tenenhaus (2003) in the multivariate
context and Preda et al. (2007) in the functional context.

From a methodological point of view, the originality of our work lies, on the one
hand, in proposing a penalized spline estimation of the PLS components to solve the
problem of lack of smoothness, and on the other hand, in considering a multi-class
approach for PLS regression based on the split-up variation to solve the problem of
repeated measures. Then, classic LDA is carried out on the estimated PLS components.
To the best of our knowledge, it is the first approach in the literature for functional
linear discriminant analysis (FLDA) with repeated measures based on functional PLS.
Then, in order to classify gait curves according to the kind of activity and take
into account both, the lack of smoothness in the data and the correlation between
repeated measurements, a new multi-class FLDA based on penalized functional PLS
regression for repeated measures is proposed in Section 2. The classification results of
the considered multi-class functional LDA-PLS approach on simulated data and both
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biomechanical datasets are presented and discussed in Sections 3 and 4. Conclusions
are finally included in Section 5.

2 Multi-class classification of functional data

Let us consider a categorical response variable Y = {1, . . . , K}, with K (K > 2)
categories and a functional predictor X = {X(t) : t ∈ T} (continuous and second
order stochastic process whose sample paths belong to the Hilbert space of
square-integrable functions L2(T)). Then, the aim is to predict Y from X(t). That
means to classify the sample curves according to the groups defined by the categories
of Y.

The aim of FLDA is to find linear combinations

�i(X) = ˛i +
∫

T

X(t)ˇi(t)dt, {i = 1, . . . , K − 1}, (2.1)

so that the between-class variance is maximized with respect to the total variance

maxˇ
V (E[�(X)|Y])

V (�(X))
.

Due to the high dimension of X(t) (the number of observed variables is usually
larger than the number of sample observations), the estimation of the discriminant
functions is an ill-posed problem because the standard estimate for the within-class
covariance matrix is singular so that it is impossible to apply the usual classification
rule. This problem is solved in this article by using a dimension reduction approach
based on functional PLS regression Preda et al. (2007). Then, the multi-class
classification problem from repeated measures is solved by using the following
two-step algorithm:

Step 1. Dimension reduction by penalized and non-penalized multi-class functional
PLS regression (for repeated measures) of the random vector ỸYY =
(Ỹ1, . . . , ỸK−1) on the functional predictor X(t), with {Ỹ i ∈ {0, 1} : i =
1, . . . , K − 1} being the dummy variables associated with the categorical
response Y.

Step 2. Functional LDA of Y on a reduced set of functional PLS components estimated
in the above step.

2.1 Multi-class functional PLS regression

In order to reduce the dimension, PLS regression of the vector Ỹ = (Ỹ1, . . . , ỸK−1) on
the functional predictor X(t), with {Ỹ i ∈ {0, 1} : i = 1, . . . , K − 1} is performed. In
that context, the non-penalized PLS components are generalized linear combinations,
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of type t = ∫
T X (t) w (t) dt, estimated by solving the following maximization problem

{w, c} = argmaxCov2

(∫
T

X (t) w (t) dt,

K−1∑
i=1

ciỸ i

)
(2.2)

‖w‖ = 1
‖c‖ = 1

with ‖ · ‖ representing the usual norms in the spaces L2[T] and RK−1 where the
component weights belong to, respectively, and c being the weight vector of Ỹ.

From Proposition 1 in Preda and Saporta (2005), it can be seen that the solution to
this maximization problem is reached for www and ccc, the eigenvectors associated with
the largest eigenvalue of UX and UỸ, respectively, defined by UX = CXỸ ◦ CỸX and
UỸ = CỸX ◦ CXỸ, with CỸX and CXỸ being the cross-covariance operators.

Then, the first PLS component, t1 = ∫
T X (t) w1 (t) dt, is estimated in terms of the

associated weight function, w1 (t) , which is solution to the following problem

CXỸ ◦ CỸX(w1) = �maxw1.

PLS regression is an iterative algorithm and the first PLS step is completed by
ordinary linear regression of X0(t) = X(t) and Ỹ0 = Ỹ on t1, obtaining the residuals,
X1(t) and Ỹ1, necessary to the following step

X1(t) = X0(t) − p1(t)t1 t ∈ T

Ỹ1,i = Ỹ0,i − c1,it1 i = 1, . . . , K − 1,

where p1 (t) = (
E(X0(t)t1)/E(t2

1)
)

and c1 = (
E(Y0t1)/E(t2

1)
)

.
In general, let us consider the hth PLS component, th = ∫

T Xh−1 (t) wh (t) dt, which
is estimated by the following problem

Ch−1
XỸ

◦ Ch−1
ỸX

(wh) = �maxwh,

where Ch−1
XỸ

and Ch−1
ỸX

are the cross covariance operators of Xh−1(t) and Ỹh−1,
respectively. The hth PLS step is completed by ordinary linear regression of Xh−1(t)
and Ỹh−1 on th, obtaining the residuals Xh(t) and Ỹh

Xh(t) = Xh−1(t) − ph(t)th t ∈ T

Ỹh,i = Ỹh−1,i − ch,ith i = 1, . . . , K − 1,

where ph (t) = (
E(Xh−1(t)th)/E(t2

h
)
)

and ch = (
E(Yh−1th)/E(t2

h
)
)

.
A basis representation approach
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Let us consider now the basis representation of the functional predictor and the
weight function, that is,

X (t) =
p∑

j=1

˛j�j (t) and w (t) =
p∑

j=1

wj�j (t) .

As a consequence, the maximization problem in Equation (2.2) can be written as
follows:

{w, c} = argmax
www′������˛Ỹcccccc′���′

˛Ỹ
�w�w�w

www′�w�w�w + ccc′ccc
,

with www = (
w1, . . . , wp

)′ being the vector of basis coefficients of w (t) and ���˛Ỹ =
(�ji)p×K−1 being the cross-covariance matrix between ˛̨̨ (the vector of basis coefficients
of X(t)) and ỸYY, where �ji = E[˛jỸ i], with {j = 1 . . . , p; i = 1, . . . , K − 1}.

The cross-covariance operators expressed in terms of the basis expansion of the
functional predictor X(t) are given by

CỸX : L2 (T) → RK−1

f =
p∑

j=1

fj�j (t) → CỸX(f ) = ���′
˛Ỹ

���fff

CXỸ : RK−1 → L2 (T)

xxx → f (t) = ∑K−1
j=1 fj�j (t) : fff = ���˛Ỹxxx,

where fff = (f1, . . . , fp)′ is the vector of basis coefficients of the function f.
Then, at the first PLS step, the weight function w1(t) is given by the eigenfunction

associated with the largest eigenvalue of UX so that

���˛Ỹ���′
˛Ỹ

���www1 = �www1, (2.3)

and the weight vector ccc1 is given by the eigenvector associated with the largest
eigenvalue of UỸ so that

���′
˛Ỹ

������˛Ỹccc1 = �ccc1.

Let us consider now the decomposition ��� = (
���1/2

) (
���1/2

)′
. Then,

www′
1���www1 = www′

1

(
���1/2) (���1/2)′ www1 = w̃ww′

1w̃ww1,
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with w̃ww1 = (
���1/2

)′
www1 (www1 = (���−1/2)′w̃ww1). This way, Equation (2.3) can be expressed

as follows
(
���1/2)′ ���˛Ỹ���′

˛Ỹ
���1/2w̃ww1 = �w̃ww1. (2.4)

At the hth PLS step, the hth PLS component is estimated in terms of the associated
weight function by solving to the following problem

(
���1/2)′ ���˛h−1Ỹh−1

���′
˛h−1Ỹh−1

���1/2w̃wwh = �w̃wwh, (2.5)

where ���˛h−1Ỹh−1
is the cross-covariance matrix between ˛̨̨h−1 (the vector of basis

coefficients of Xh−1(t)) and ỸYYh−1, and w̃wwh = (
���1/2

)′
wwwh (wwwh = (���−1/2)′w̃wwh).

In general, by considering Equations (2.4) and (2.5) and taking into account that(
���1/2

)′
���˛Ỹ is the cross-covariance matrix between ỸYY and (���1/2)′˛̨̨, it can be concluded

that FPLS with multiple response is equivalent to ordinary PLS of ỸYY on the random
vector (���1/2)′˛̨̨.

2.2 Penalized multi-class FPLS regression

As the biomechanical data analysed in this article are not smooth enough, a
penalized approach for multi-class functional partial least squares (FPLS) regression
is proposed.

Let us consider now the roughness penalty function

Pend(w) =
∫

T

[Dd(w)(t)]2dt,

with d = 2, as a measure of roughness of w (O’Sullivan, 1986). By considering the
basis expansion of w(t), the penalty function can be written as Pend(w) = www′PPPdwww,

where www = (
w1, . . . , wp

)′ is the vector of basis coefficients of w (t) and PPPd the matrix
of the cross inner products of the d-order derivatives of the basis functions. As
alternative, working in any context where regression on B-splines is useful, it can
be considered PPPd = (���d

)′ ���d, with ���d the matrix of d-order differences between the
adjacent basis coefficients (Eilers and Marx, 1996).

In this section the PLS components are estimated by solving the following problem

{w, c} = argmaxCov2

(∫
T

X (t) w (t) dt,

K−1∑
i=1

ciỸ i

)
,

‖w‖� = 1
‖c‖ = 1

Statistical Modelling 2020; 20(6): 592–616



600 M. Carmen Aguilera-Morillo and Ana M. Aguilera

with ‖ · ‖ being the norm in the space RK−1 and ‖ · ‖� being the norm associated
with an inner product defined by 〈fff ,ggg〉� = 〈fff ,ggg〉 + �(fff ′PPPdggg), with fff = (

f1, . . . , fp

)′ and
ggg = (

g1, . . . , gp

)′ being the vectors of basis coefficients of f (t) and g (t) , respectively.
Then, the hth PLS component (h > 1), th = ∫

T Xh−1 (t) wh (t) dt, is estimated by
solving the problem

{w, c} = argmaxCov2

(∫
T

Xh−1 (t) w (t) dt,

K−1∑
i=1

ciỸh−1,i

)
. (2.6)

‖w‖� = 1
‖c‖ = 1

By assuming the basis representation of the functional predictor and the weight
function, the problem in (2.6) can be written as follows

{w, c} = argmax
www′������˛h−1Ỹh−1

cccccc′���′
˛h−1Ỹh−1

�w�w�w

www′(��� + �PPPd)www + ccc′ccc
, (2.7)

with www = (
w1, . . . , wp

)′ being the vector of basis coefficients of w (t) , ���˛h−1Ỹh−1
=

(�ji)p×K−1 being the cross-covariance matrix between ˛h−1˛h−1˛h−1 and ỸYYh−1, where �ji =
E[˛h−1,jỸ i], with {j = 1 . . . , p; i = 1, . . . , K − 1}, and � and PPPd the smoothing
parameter and the penalty matrix, respectively.

Assuming the decomposition LLLLLL′ = ��� + �PPPd and defining w̃ww = LLL′www (www = (LLL−1)′w̃ww)
the problem in (2.7) can be expressed as follows

{w, c} = argmax
w̃ww′LLL−1������˛Ỹcccccc′���′

˛Ỹ
���(LLL−1)′w̃ww

w̃ww′w̃ww + ccc′ccc
.

By analogy with the non-penalized approach, the associated eigenproblem is

LLL−1������˛Ỹ���′(LLL−1)′w̃ww = �w̃ww, w̃ww ∈ Rp. (2.8)

In general, the hth PLS component, th = ∫
T X(t)wh(t)dt, is defined by wwwh = (LLL−1)′w̃wwh,

which is the vector of basis coefficients of wh(t), with w̃wwh being the eigenvector related
to the largest eigenvalue of the problem in (2.8).

Finally, taking into account that LLL−1������˛Ỹ is the cross-covariance matrix between
ỸYY andLLL−1���˛̨̨, the penalized approach is reduced to a classical PLS of ỸYY on the random
vector LLL−1���˛̨̨.
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2.3 The problem of repeated measures

In previous sections, penalized and non-penalized approaches for the multi-class FPLS
regression have been proposed. However, these approaches are based on ordinary
PLS, and then the between-subject and the within-subject variations are not studied
by separate.

As solution to the problem of repeated measures, in this section a multi-class
approach for penalized and non-penalized FPLS regression based on the split-up
variation is proposed. In the same spirit as in de Nord and Theobald (2005),
Westerhuis et al. (2010) and Liquet et al. (2012), this approach first decomposes
the variability in the data matrix and then applies the multi-class PLS regression on
the within-subject variation matrix.

For a more detailed explanation of the multi-class approach, let us consider {xi (t) :
t ∈ T, i = 1, . . . , n} a sample of the functional variable X(t) and {y1, y2, . . . , yn} a
random sample of Y associated with it, with yi = {1, 2, . . . , K}. Henceforth, let Ỹ
denote a N × (K − 1) matrix with zeros and ones, comprising the values associated
with the dummy variables obtained from Y.

Then, the sample estimation of the multi-class FPLS described in sections 2.1
(non-penalized) and 2.2 (penalized) is as follows:

• Non-penalized multi-class FPLS: multi-class PLS of ỸYY on the matrix XXX1
(N×p) =

AAA���1/2

• Penalized multi-class FPLS: multi-class PLS of ỸYY on the matrix XXX2
(N×p) =

AAA���(LLL−1)′, so that LLLLLL′ = ��� + �PPPd,

with AAA being the matrix of basis coefficients of the functional variable X, and ��� and
PPPd as in previous sections.

In practice, functional data are observed in a finite set of points. Because of this,
matrix A must be estimated. By assuming that the underline process to biomechanical
data is smooth, B-spline basis functions are considered, and the basis coefficients
are estimated by the least squares criterion. This approach is called regression
splines. Additionally, for data observed with noise, a penalized estimation of the
basis coefficients in terms of P-splines can be considered (see Eilers and Marx, 1996;
Aguilera and Aguilera-Morillo, 2013, for more details).
Split-up variation

In general, let us consider a data matrix XXXN×p containing the information related
to n subjects and each of the K possible stimulus (N = n × K), with p being the
number of basis functions (or variables in the multivariate setting). In that sense, let
x

j

ik
denote the value of the jth column of X for the ith subject under the kth stimulus.
Following the mixed-effect models philosophy, matrix X can be decomposed into

an offset term, a between-subject and a within-subject part so that

XXX = XXXoffset + XXXbetween−subject + XXXwithin−subject.
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But mixed models rely on assumptions such as Gaussian distribution of random
effects. As an alternative, a split-up variation approach, which does not require
the above-mentioned assumptions, is considered in this article. Exactly, the offset,
between-subject and within-subject variation matrices (XXXo, XXXb and XXXw, respectively)
can be obtained as follows: XXXo = 111(N×1)xxx

′
··(1×p), where xxx·· = (x1

··, . . . , x
p
··)′ and x

j
·· =

1
N

∑K
k=1

∑n
i=1 x

j

ik
. XXXb is obtained by concatenating the matrices 111(K×1)xxx

′
bi(1×p) for

each subject into XXXb, where xxxbi = (x1
i· − x1

··, . . . , x
p
i· − x

p
··)′ and x

j
i· = 1

K

∑K
k=1 x

j

ik
. XXXw =

XXX − XXXi·, withXXXi· obtained by concatenating the matrices111(K×1)xxx
′
i·(1×p) for each subject

into XXXi·, with xxxi· = (x1
i·, . . . , x

p
i·)

′.
Multi-class approach for FPLS

Once the split-up variation has been carried out, penalized and non-penalized
multi-class FPLS regression is performed on the within-subject variation matrix.
In that sense, the penalized and non-penalized multi-class approaches for FPLS
regression are given by

• Non-penalized multi-class FPLS: multi-class PLS of ỸYY on the matrix XXX1
w

• Penalized multi-class FPLS: multi-class PLS of ỸYY on the matrix XXX2
w,

where XXX1
w and XXX2

w are the within-subject variation matrices from XXX1 and XXX2,
respectively.

2.4 Functional LDA on a reduced set of functional PLS components

Let TTT be a n × q matrix comprising the columns of the first q PLS component scores
(by variability order). By considering the sample estimation of the penalized and
non-penalized multi-class approaches for FPLS regression proposed in Section 2.3,
the sample estimation of TTT is as follows

• Non-penalized multi-class FPLS: TTT = A�A�A�1/2VVV
• Penalized multi-class FPLS: TTT = A�A�A�(LLL−1)′VVV,

with VVV being the matrix comprising the columns of the eigenvectors w̃ww1, . . . , w̃wwq

associated with the t1, . . . , tq PLS components.
Once the PLS components have been estimated, LDA of the original sample values

of Y (y1, . . . , yn) on the matrix TTT is carried out. Then, linear combinations such
as �i(X) = ˛i + TTTˇ̌̌i

PLS, {i = 1, . . . , K − 1} are estimated, so that the between-class
variance is maximized with respect to the within-class variance, with ˇ̌̌ i

PLS =
(ˇi

PLS1
, . . . , ˇi

PLSq
)′ being the vector of discriminant coefficients.

But the aim is to estimate the discriminant functions ˇi(t), i = 1, . . . , K − 1
included in the linear combinations given in equation (2.1). To this end, let us
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consider the basis representation of the sample curves and the discriminant functions
(ˇi(t) = ∑p

j=1 ˇi
j�j(t)) and, as a consequence, equation (2.1) can be rewritten as

�i(X) = ˛i +
∫ T

0
X(t)ˇi(t)dt = ˛i + A�ˇA�ˇA�ˇi,

with ˇ̌̌ i being the vector of basis coefficients of the ith discriminant function.
Finally, taking into account the sample estimation of TTT, we can conclude that

• Non-penalized multi-class FPLS: ˇ̌̌ i = (���−1/2)′VVVˇ̌̌i
PLS, i = 1, . . . , K − 1

• Penalized multi-class FPLS: ˇ̌̌ i = (LLL−1)′VVVˇ̌̌i
PLS, i = 1, . . . , K − 1.

Once the random vector of discriminant functions ˇ(t) = (ˇ1(t), . . . , ˇK−1(t))′ is
obtained, the classification is then performed in the transformed space based on some
distance metric, such as Euclidean distance.

Then given a new sample observation x0(t), it is classified to

argmin
k

d

(∫
T

x0(t)ˇ(t),
∫

T

xk(t)ˇ(t)
)

, (2.9)

where xk(t) = 1
mk

∑
x(t)∈Ck

x(t) is the mean curve related to the kth class and mk the
number of sample observations in the kth class, with k = 1, . . . , K.

By assuming the basis representations of x0(t), ˇ(t) and xk(t)

x0(t) =
p∑

j=1

a0j
�j(t), ˇi(t) =

p∑
j=1

ˇi
j�j(t), xk(t) =

p∑
j=1

ak
j �j(t),

problem (2.9) can be rewritten as follows

argmin
k

d
(
aaa′

0���BBB,aaak′
���BBB

)
,

with aaa0p×1 being the vector of basis coefficients of x0(t), aaak
p×1 being the vector of basis

coefficients of xk(t), ���p×p being the inner product matrix, BBBp×(K−1) the matrix with
columns the vectors of basis coefficients of the K − 1 discriminant functions (i.e.,
ˇ̌̌1, . . . , ˇ̌̌K−1). Finally, the Euclidean distance between two vectors VVV1 = aaa0′���BBB and

VVV2 = aaak′
���BBB is computed as d(VVV1,VVV2) =

√∑K−1
i=1 (VVV1

i − VVV2
i )2.

The smoothing parameter � and the number of PLS components used in the LDA
approach based on Penalized multi-class FPLS have been selected by leave-one-out
cross-validation on a training sample, selecting the combination of both that
minimizes the misclassification rate obtained from LDA on the PLS components.
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In the non-penalized approach, only the number of PLS components is required, and
it is chosen by leave-one-out cross-validation on a training sample, minimizing the
misclassification rate obtained from functional LDA.

All the analysis in Sections 3 and 4 were carried out in a computer with an Intel
Core i5 processor at 3 GHz with 8Gb of RAM, running R-project version 3.5.1
(R Development Core Team, 2008). The two multi-class functional PLS approaches
were reduced to multi-class PLS regression (in the multivariate context), and then
they were implemented in R using the function spls available in the mixOmics R
package developed by Rohart et al. (2017).

Authors are preparing an R package that, among other things, includes the code
used in the manuscript. For readers wishing to use the software, it will be available
as soon as possible at the R repository website. However, you can contact the
corresponding author if you need more information regarding the code.

3 Simulation study

In order to test the performance of the proposed methods, a simulation study has
been carried out. Inspired by Cuevas et al. (2004), let us consider 120 sample curves,
40 for each of the 3 classes, according to the following process

Xk
i (t) = mk(t) + �k

i (t), t ∈ [0, 1], i = 1, . . . , 40, k = 1, 2, 3,

where mi(t) = t(k/5)(1 − t)(6−k/5). The process Xk
i (t) was generated in discretized

version Xk
i (tj), for j = 1, . . . , 101, with t1, . . . , t101 being equidistant points in [0, 1].

Finally, �k
i (tj) are i.i.d. random variables N(0, �� = 0.2).

But our work is focused on the presence of repeated measurements in the k classes,
and then an additional term must be considered in order to represent the subject effect.
In that sense, and inspired by Durbán et al. (2005), a specific-subject term has been
included in the above process so that

Xk
i (t) = mk(t) + ai sin(t	) + �k

i (t), t ∈ [0, 1], i = 1, . . . , 40, k = 1, 2, 3,

with ai ∼ N(
i, �s = 0.02) and 
i ∼ Uniform(0, 0.05). The sin(t	) function has been
considered in order to simulate curves taking the same value at the beginning and at
the end of the observation interval (as in the gait data study). Of the 120 simulated
sample curves, 90 (30 for each class) were considered as training sample and the
remaining 30 (10 for each class) as test sample.

The sample curves from two different subjects, and for each of the three classes,
are shown in Figure 1. As we can see, there is a clear dependency structure between
the three observations of the same subject, and the between-subjects variation is not
only given by a magnitude effect, but also by a shape variation. This is a realistic
simulation of the performance of kinematic data since it makes no sense to assume
that the curves of the different subjects are parallel.
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Figure 1 Simulation study. Sample paths related to classes 1, 2 and 3 (solid, dashed and dotted line,
respectively) for two subjects A and B, black and grey lines, respectively
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Figure 2 Simulation study. Smooth and noisy sample paths (left and right panel, respectively) related to
classes 1, 2 and 3 (solid line, dashed line and dotted line, respectively) for 30 subjects

In Figure 2, all the sample curves, with and without noise, are displayed
highlighting the three classes by different line types. In order to fit the regression
splines, a cubic B-spline basis defined on 15 basis knots has been considered.

The simulation scheme was run 500 times and the main results are summarized in
Figure 3. As we can see, the two functional approaches tend to select a larger number
of PLS components than the multivariate version, as covariates in the LDA. But there
is not a great difference between them. Regarding the correct classification rates
(CCR), there is a clear overfitting in the multivariate approach, which provides CCR
close to 1 in the cross-validation. Between the two proposed functional approaches,
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Figure 3 Simulation study. Box plots showing to the number of PLS components used in the LDA (bottom
panel), the correct classification rates from the cross-validation on the training sample and from the
classification of the test sample (top-left and top-right panels, respectively). Experiments run 500 times

the one based on penalized multi-class functional PLS regression provides the best
performance, with the highest CCR and the minimum variability.

4 Case studies

In this section, the results from the analysis of two real kinematic datasets are
summarized. In general, kinematic data from inertial sensors placed on human body
is usually collected in the format of linear acceleration or angular rotation. Linear
acceleration or angular rotation represent the trajectory of the human movement,
which can be identified with a function in time and frequency domain. In that
sense, data from kinematic studies can be considered as a functional dataset, and
then functional data techniques can be applied to analyse this type of data. In
addition, it is important to remark the presence of repeated measures in kinematic
studies. So, both the between-subject and within-subject variations must be taken
into account.
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4.1 Human activity data

The human activity dataset is part of a wider experiment, focused on the human
activity recognition, carried out by Anguita et al. (2013). In this article, let us consider
the linear acceleration (metre per second squared), measured on axis X and recorded
in 128 equidistant knots at the interval [0, 2.56] seconds, and related to three different
stimulus (walking, walking upstairs and walking downstairs). A total of 30 subjects
participated in this experiment. Then, a total of 90 sample paths are considered (one
sample path per stimulus and subject). Subject 23 was removed from the sample for
being an outlier. The remaining sample observations were distributed into training
and test sample, with observations (repeated measures) related to 20 and 9 subjects,
respectively. The raw data (displayed by stimulus) are shown in Figure 4. In order
to visualize the variability of the spectra between stimulus, in Figure 5 the spectra
related to the three activities have been overlapped for two subjects A and B, left and
right panel, respectively.
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Figure 4 Human activity data. Raw data. Sample paths displayed separately by stimulus: walking, walking
upstairs and walking downstairs, from left to right, respectively

The first step in the analysis was to approximate the sample curves by mean of
a basis representation and using a cubic B-spline basis defined on 25 equidistant
knots. In Figure 6 the raw data together with the regression spline can be seen. Once
the sample curves have been approximated, the aim is the human activity pattern
recognition. To this end FLDA based on a multi-class approach for functional PLS
regression (FLDA-MFPLS) was carried out to classify the sample curves according
to the stimulus which produced them. It could be assumed that the raw data, which
were collected by a smartphone on the waist of the subjects, are affected by some
error or noise. In that sense, and aiming to avoid a possible lack of smoothness in
the estimation of the discriminant functions, the penalized version of FLDA-MFPLS
(FLDA-PenMFPLS), proposed in section 2.3, was also considered.

The discriminant functions estimated from penalized and non-penalized functional
LDA can be seen in Figure 7. The necessity of smoothing in the estimation of the
discriminant functions is obvious, with penalized functional LDA providing the
smoothest and the most interpretable functions.
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Figure 5 Human activity data. Raw data. Sample paths related to walking (solid line), walking upstairs
(dashed line) and walking downstairs (dotted line) for two subjects A and B, left and right panel,
respectively
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Figure 6 Human activity data. A sample path for each stimulus (dashed line) together with the regression
spline (solid line) estimated with a cubic B-splines basis defined on 25 equidistant knots

In order to evaluate the ability of penalized and non-penalized approaches for
human activity pattern recognition, Table 1 summarizes information related to the
CCR based on a leave-one-out cross-validation on the training sample (CCRtraining),
and based on the test sample classification (CCRtest). In this table, a multivariate
version of LDA based on multi-class PLS regression (LDA-MPLS) is also considered
for comparison purpose.

It can be seen that functional LDA performs better than the multivariate approach.
Besides, between the two functional approaches (penalized and non-penalized), the
one based on penalized multi-class functional PLS (FLDA-PenMFPLS) achieves the
highest CCR in both, training and test samples. A considerable difference between
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Figure 7 Human activity data. Discriminant functions estimated by functional LDA based on
non-penalized (dashed line) and penalized (solid line) multi-class functional PLS regression, using 4 and 7
PLS components, respectively

Table 1 Human activity data. Correct classification rate based on a leave-one-out cross-validation on the
training sample (CCRtraining ) and based on the test sample classification (CCRtest ), and the number of PLS
components (#PLScp′s) used in the functional LDA based on penalized and non-penalized multi-class
functional PLS regression (FLDA-PenMFPLS and FLDA-MFPLS, respectively). � denotes the smoothing
parameter of the penalized approach. A multivariate version of LDA based on multi-class PLS regression
(LDA-MPLS) is also considered for comparison purpose

LDA-MPLS FLDA-MFPLS FLDA-PenMFPLS

CCRtraining (%) 83 95 93
CCRtest (%) 56 67 78
#PLScp′s 5 4 7
� – – 0.41

the CCR in training and test samples highlights a possible overfitting mainly in
the multivariate and in the non-penalized functional approaches. In the penalized
approach this fact is not so remarkable, providing then the best classification rate.

4.2 Gait data

The gait dataset comes from a wide experimental study developed in the biomechanics
laboratories of the iMUDS. A total of 51 participants (25 boys and 28 girls) between 8
and 11 years old were involved in this study. In order to collect the data, 26 reflective
markers were placed on the children’s skin. The kinematics data was recorded by a
3D motion capture system (Qualisys AB, Göteborg, Sweden). Each subject completed
a cycle walking over the platform in three conditions (walking, carrying a backpack
that weighs 20% of the subject’s weight and pulling a trolley that weighs 20% of the
subject’s weight). For each subject, the 3-axial angular rotation were registered for
each join (ankle, foot progress, hip, knee, pelvis, thorax) in all conditions. Finally,
the angular rotation curve represents the observation for the subject’s gait cycle for
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each join, axis direction and experimental condition. Interested readers could request
access to the data from Jose M. Heredia-Jiménez and Eva Orantes-González from
iMUDS.

In this section, only a part of the above-described experimental dataset has
been considered. Exactly, we are interested on the thorax angular position (radians)
measured on axis Z. This is a clear example of functional data with repeated measures
in the sense that three curves, concerning the three experimental conditions, are
available for each subject. In addition, each sample curve was recorded in 101
equidistant points of the gait cycle. So, the interval [0, 100] represents the percentage
of gait cycle completed by the subject.

Subject 10 was removed from the sample for being an outlier. The remaining
sample observations were distributed into training and test samples, with
observations (repeated measures) related to 39 and 11 subjects, respectively. The
raw data (displayed by experimental conditions) are shown in Figure 8.
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Figure 8 Gait data. Raw data. Sample paths displayed separately by type of activity: walking, carrying a
backpack and pulling a trolley, both weighing 20% of the children’s weight, from left to right, respectively

In order to visualize the within subjects and the between subjects variability, in
Figure 9 the spectra related to the three gait events have been overlapped for two
subjects A and B, left and right panel, respectively. It can be seen that walking and
walking with a trolley provide sample paths with a more similar shape than walking
with a backpack. Also it is interesting to highlight the between subjects variability
(differences in scale and shape).

The sample curves have been approximated by mean of a basis representation
using a cubic B-spline basis defined on 20 equidistant knots. In Figure 10 the raw
data and the regression splines have been displayed. Once the sample curves have
been approximated, the aim is the classification of the thorax angular rotation curves.
In that sense, the discriminant functions estimated by penalized and non-penalized
functional LDA can be seen in Figure 11. Once again the penalized approach
provides the smoothest functions, providing an intuitive interpretation in relation
with detecting periods in which the function is positive or negative.
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Figure 9 Gait data. Raw data. Sample paths related to walking (solid line), carrying a backpack (dashed
line) and pulling a trolley (dotted line), both weighing 20% of the children’s weight and walking downstairs
from two sample individuals A and B, left and right panel, respectively
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Figure 10 Gait data. A sample path for each stimulus (dashed line) together with the regression spline
(solid line) estimated with a cubic B-splines basis defined on 20 equidistant knots

The classification performance of the penalized and non-penalized approaches
is shown in Table 2. It obvious that functional LDA performs better than the
multivariate approach. Between the two functional approaches, the one based
on penalized multi-class functional PLS (FLDA-PenMFPLS) achieves the best
classification performance (the highest CCR on the test sample).

5 Conclusions

In this work, a methodological solution to the problem of multi-class classification
of functional data with repeated measures has been proposed. FLDA has been
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Figure 11 Gait data. Discriminant functions estimated by functional LDA based on non-penalized (dashed
line) and penalized (solid line) multi-class functional PLS regression, using 5 and 3 PLS components,
respectively

Table 2 Gait data. Correct classification rate based on leave-one-out cross-validation on the training
sample (CCRtraining ) and based on the test sample classification (CCRtest ), and the number of PLS
components (#PLScp′s) used in the functional LDA based on penalized and non-penalized multi-class
functional PLS regression (FLDA-PenMFPLS and FLDA-MFPLS, respectively). � denotes the smoothing
parameter of the penalized approach. A multivariate version of LDA based on multi-class PLS regression
(LDA-MPLS) is also considered for comparison purpose

LDA-MPLS FLDA-MFPLS FLDA-PenMFPLS

CCRtraining (%) 83 87 82
CCRtest (%) 33 61 85
#PLScp′s 3 5 3
� – – 2.87

considered as a classifier, by solving the problem of infinite dimension of the functional
data by means of a novel approach of functional PLS regression for repeated measures
described in Section 2. This work has been motivated by two real problems related to
kinematic data. In both cases, data is affected by some noise, and then some type of
penalization must be considered in the estimation of the discriminant functions. To
solve this problem in the case of functional data with repeated measures, a multi-class
approach for penalized functional PLS, that introduces a P-spline penalty in the
definition of the inner product in the PLS algorithm, is proposed in Sections 2.2
and 2.3.

In Sections 3 and 4, the performance of the two functional approaches (penalized
and non-penalized, FLDA-PenMFPLS and FLDA-MFPLS, respectively) are compared
with a multivariate version of LDA based on multi-class PLS regression (LDA-MPLS).
As we can see in Figure 3 and Tables 1 and 2, from a classification point of view,
functional approaches perform better than the multivariate version, increasing the
CCR on a test sample in a very significant way. Regarding the two functional
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approaches, the one based on penalized multi-class functional PLS achieves the best
classification ability, with a difference in the CCR of more than 10% in both case
studies.

The discriminant functions estimated from penalized and non-penalized functional
LDA are shown in Figures 7 and 11. It can be seen that the penalized version
(FLDA-PenMFPLS) provides smoother functions, which are more interpretable in
the sense of detecting periods in which the function is positive or negative.

Finally, it can be concluded that LDA based on a multi-class approach for penalized
functional PLS is the most competitive method from both classification and estimation
point of view.
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