
STATIONARY SOAP FILMS WITH VERTICAL POTENTIALS

RAFAEL LÓPEZ AND ÁLVARO PÁMPANO

Abstract. We classify cylindrical surfaces in the Euclidean space whose mean curvature
is a nth-power of the distance to a reference plane. The generating curves of these surfaces,
called n-elastic curves, have a variational characterization as critical points of a curvature
energy generalizing the classical elastic energy. We give a full description of such curves
obtaining, in some particular cases, closed curves including simple ones.

1. Introduction

We consider the equilibrium shape of a (possibly incompressible) fluid volume Ω of constant
mass density contained in the Euclidean 3-space R3 with a potential energy depending on the
height z. The boundary of the fluid bulk Ω will be regarded as an immersed smooth surface
Σ modeling the free interface between the interior and ambient fluids.

In this setting, the free surface energy is proportional to the surface area A[Σ], while the
incompressibility condition of the fluid volume can be included as a Lagrange multiplier fixing
the enclosed volume V[Ω]. When the domain Ω is not closed, V[Ω] will represent the algebraic
volume between the surface Σ and the plane z = 0. Similarly, if Ω is not embedded, V[Ω] will
be regarded as the signed algebraic volume. Finally, to account for the potential energy an
extra term will be added to the total energy which has the expression

(1) E[Σ] = σA[Σ] + η

∫
Ω
f(z) dV +$V[Ω] ,

where f is a smooth function depending on the height z and is defined on a suitable domain
Ω ⊂ R3 occupied by the fluid, whose boundary is described by the surface Σ. The energy
parameters σ > 0, η ∈ R and $ ∈ R are constants motivated by the physical applications.
To be precise, the parameter σ > 0 represents the surface tension, η is a constant depending
on the difference between the mass densities of the interior and ambient fluids and $ acts as
a Lagrange multiplier which enforces incompressibility, in such a way that if $ = 0 there is
no volume constraint.
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One of the physically most relevant cases appears when f(z) = z because the interface models
a homogeneous liquid drop adhering to a horizontal plane under the action of constant gravity.
When η < 0 it corresponds to a sessile drop, while if η > 0 we obtain a pendent drop. In
absence of gravity (η = 0), the surface has constant mean curvature. We refer to the book of
Finn for details ([8]). Also in early works of Serrin and Wente we can find different motivations
for considering potential energies depending on one space coordinate ([18, 21]). In this paper
we consider other possible potentials for arbitrary functions depending on the height z, which
may give rise to different physical scenarios, as for example f(z) = z−1 which represents a
potential energy associated to an inverse-square law force.

The equilibria for the energy E[Σ] can be obtained by the balance between the capillary force
that comes from the surface tension and the force associated with the potential energy acting
on the fluid volume. Therefore, the equilibrium shapes are governed by the Young-Laplace
equation

(2) 2σH = ηf(z) +$ on Σ ,

where H denotes the mean curvature of the surface Σ. In Section 2, we obtain this condition
as the Euler-Lagrange equation for the associated variational problem (Proposition 2.1) and
use it to show that in many cases there are not closed and embedded equilibria (Proposition
2.3).

In the rest of the paper we focus on equilibria that are invariant in one space direction. In such
a case the Young-Laplace equation (2) reduces to a problem of planar curves whose curvature
depends on the distance to a fixed straight line. The study of these types of problems goes
back to the 17th century when Bernouilli analyzed the lintearia which is the shape of a long
cloth sheet full of water, obtaining a relation with the classical elastic curves ([20]). This
particular case corresponds with the choice f(z) = z in (2).

Planar curves with prescribed curvature also have interest in physics by themselves, as for
instance, to understand some processes in dynamics of plasmas the motion of charged par-
ticles in specified fields are studied ([4, 12]). We briefly describe this application in what
follows. In classical physics, the equation of motion t 7→ q(t) = (x(t), y(t), z(t)) ∈ R3 for a
(nonrelativistic) particle of mass m and charge e under the action of a magnetic field B is
given by the Newton-Lorentz law

(3) mq̈ = e (q̇ ×B) ,

where the upper dot denotes the derivative with respect to time t. In general, these equations
cannot be integrated analytically and the associated trajectories are very complicated, with
the exception of some particular cases, such as when the vector field B is uniform. Assume
that B is parallel to a fixed direction and that its magnitude depends on the distance to
a plane parallel to this direction. After a change of coordinates we may suppose that the
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direction is e1 = (1, 0, 0) and that the plane is the xy-plane. Then B(x, y, z) = B(z)e1.
Writing down explicitly each coordinate of the vector equation (3) for the magnetic field
B(x, y, z) = (B(z), 0, 0) ∈ R3, we obtain the system of second order differential equations

(4)


ẍ(t) = 0

ÿ(t) =
e

m
B(z)ż(t)

z̈(t) = − e

m
B(z)ẏ(t) .

From the first equation, x(t) describes a uniform motion and the projection of q(t) on the
yz-plane is a trajectory which only depends on the z-coordinate. If we denote by q(t) again
this planar curve and after the change of variables γ(t) = q(−mt/e), the system (4) reduces to
γ̈ = JB(z)γ̇, where J is the counter-clockwise rotation of angle π/2 in the yz-plane. It turns
out that this equation can be viewed as a problem of prescribing the curvature for planar
curves. Indeed, observe first that the velocity ‖γ̇‖ of γ is constant since

d

dt
‖γ̇‖2 = 2〈γ̈(t), γ̇(t)〉 = 2B(z)〈Jγ̇(t), γ̇(t)〉 = 0 .

Second, since the curvature of γ is

κ(t) =
〈γ̈(t), Jγ̇(t)〉
‖γ̇(t)‖3

,

we obtain that

κ(t) =
B(z)

‖γ̇(t)‖
.

For instance, if γ has unit velocity, then κ(s) = B(z). As a first model for the motion of
plasma, bounded or even closed trajectories deserve further investigation. A special case
occurs when B is the identity so that κ(s) = z(s) obtaining elastic curves from the classical
theory of Bernouilli and Euler ([7]).

More generally, we will study planar curves whose curvature satisfies

κ(s) = zn + µ ,

with n, µ ∈ R. We will call these curves n-elastic curves and they will also arise as the gen-
erating curves of right cylinders satisfying (2) for f(z) = zn. In Section 3, we will prove that
n-elastic curves are solutions of a variational problem involving energy functionals depending
on the curvature (Theorem 3.4). Section 4 is devoted to the analysis of the geometric prop-
erties related to symmetries of n-elastic curves (Propositions 4.1 and 4.2) while on Section
5 we investigate the existence of closed curves (Proposition 5.2 and Theorem 5.3). Finally,
in Section 6 we classify the shapes of n-elastic curves giving a complete catalog of all the
possible types. Besides some horizontal straight lines (Proposition 3.2), among curves whose
arc length parameter is defined on the entire real line, which will be called complete curves,
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we obtain families of n-elastic curves which imitate all the shapes of Euler’s classification of
elastic curves (Figure 1) as well as different families of curves (Figure 3).

Following the terminology of classical elastic curves (see, for instance, the lecture notes of
Singer [19]) when the curvature is periodic we will distinguish two families of curves, orbitlike
n-elastic curves defined by the property that their periodic curvature has constant sign (see
Figure 1, (a)), and wavelike n-elastic curves which are those curves whose curvature κ oscillates
between a value κ0 and −κ0 increasing and decreasing as the parameter goes in the domain.
Among the family of wavelike n-elastic curves we may find multiloops (Figure 1, (c)), pseudo-
lemniscates (Figure 1, (d)), deep waves (both self-intersecting and simple, Figure 1, (e) and
(f), respectively), rectangular n-elastic curves (Figure 1, (g)) and shallow waves (Figure 1,
(h)).

As in the classical theory of elastic curves, in between the wavelike and orbitlike families of
n-elastic curves, we find the borderline n-elastic curve, which has nonperiodic curvature and
asymptotically approaches a horizontal n-elastic line (Figure 1, (b)).

(a) Orbitlike (b) Borderline (c) Multiloop (d) Ps.-Lemniscate

(e) Deep Waves (f) Deep Waves (g) Rectangular (h) Shallow Waves

Figure 1. A family of n-elastic curves for n = −2.5 and µ = −1.

All these shapes imitate the types of Euler’s elasticae (see for example [7] and, more recently,
[15]) although the equation of the classical elastica, 2κ′′ + κ3 − λκ = 0 for some constant
λ, is completely different for arbitrary choices of n and µ. Observe that n-elastic curves of
above types may have their loops pointing towards the other direction. This is the case, for
instance, of the classical elastic curves (n = 1 and µ = 0). Moreover, if n ∈ N, n-elastic
curves may cut the y-line, i.e., the line of equation z = 0, as well (compare, once again, with
classical elastic curves). In particular, if n ∈ N is even, among the n-elastic curves which cut
the y-line, we prove the existence of closed curves (Theorem 5.3). Some of these curves are
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also simple, which gives a first difference with respect to the theory of classical elastic curves.
See Figure 2.

Figure 2. Closed n-elastic curves for n = 4. From left to right: µ = 1, µ = 0,
µ = −0.35, µ = −1 and µ = −1.2.

Apart from this first difference regarding closed curves, among the general case of n-elastic
curves, there is a family consisting on curves essentially different to above cases. Indeed, we
have nonperiodic n-elastic curves that are not borderline. We call them catenary-like n-elastic
curves, since when n = −2 and µ = 0 we find the catenary. Some of these curves are simple
while others have self-intersections (Figure 3, (c) and (d)). The simple ones are graphs over
the y-line, either defined on a bounded interval (Figure 3, (e)) or entire graphs (Figure 3,
(f)-(h)).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. A family of n-elastic curves for n = −2.5 and µ = 0.

All the curves from Figures 1 and 3 are complete. However, if n > −1 and n /∈ N, n-elastic
curves are not defined at z = 0, but they may approach this line (Corollary 3.6). Consequently,
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Figure 4. Noncomplete n-elastic curves. Here n = 2.5 and µ = 1 (µ = −1
in the right one).

curves which are not complete and have shapes like in Figure 4 can also be obtained. These
curves are parts of previous complete curves.

All the figures of this paper have been obtained with the help of the software Mathematica
using the NDSolve command (no specific package). In all of them we show the n-elastic curve
together with the y-line.

2. Variational formulation of the problem

Let R3 be the Euclidean 3-space with coordinates (x, y, z) and X : Σ → R3 be a smooth
immersion of an oriented surface (with or without boundary) Σ. When the context is clear,
no distinction will be made between the abstract surface Σ and its image X(Σ) ⊂ R3. We
denote by ν : Σ → S2 ⊂ R3 the associated Gauss map, which will be identified with the
(globally defined) unit normal vector field along Σ.

The energy E[Σ] in (1) is a linear combination of the surface area A[Σ], the potential energy
depending on the height z and the (signed) algebraic volume between the surface Σ and the
plane z = 0. For an immersion X : Σ→ R3 the surface area is defined by

A[Σ] =

∫
Σ
dΣ .

On the other hand, if we denote by W = ze3, where e3 = (0, 0, 1), the divergence of W is
divW = 1. Similarly, let g(z) be a function such that g′(z) = f(z) and define W̃ = g(z)e3.
Then div W̃ = f(z). Therefore, after applying the divergence theorem, the other terms in the
energy E[Σ] are defined by∫

Ω
f(z) dV =

∫
Σ
〈W̃ , ν〉 dΣ , V[Ω] =

∫
Σ
〈W, ν〉 dΣ ,



STATIONARY SOAP FILMS WITH VERTICAL POTENTIALS 7

where Ω is the domain in R3 occupied by the bulk of the fluid volume. Consequently, for the
immersion X : Σ→ R3, we consider the total energy

(5) E[Σ] = σ

∫
Σ
dΣ + η

∫
Σ
g(z) 〈ν, e3〉 dΣ +$

∫
Σ
z 〈ν, e3〉 dΣ ,

where the constants σ > 0 and η, $ ∈ R are fixed.

We find the Euler-Lagrange equation associated to E[Σ] considering a one-parameter family
of variations X : Σ × (−t, t) → R3, t > 0, of the initial immersion X defined by Y (−, ε) =
X + ε δX + O(ε2) for some sufficiently smooth variation vector field δX. We denote the
variation of the functional E[Σ] by

δE[Σ] =
d

dε

∣∣∣
ε=0

E[X(ε)] .

In order to obtain the Euler-Lagrange equation characterizing equilibria on Σ, it is enough to
consider compactly supported normal variations. Let ψ ∈ C∞0 (Σ) and consider the variation
vector field δX = ψν. Then, using the standard formula δdΣ = −2HψdΣ (see [13, p. 16]) we
obtain the first variation of the first term in (5),

δ

(∫
Σ
dΣ

)
= −2

∫
Σ
H ψ dΣ .

For the second term in (5) we have

δ

(∫
Σ
g(z)〈ν, e3〉 dΣ

)
=

∫
Σ

(
g′(z)δz〈ν, e3〉+ g(z)〈δν, e3〉 − 2g(z)〈ν, e3〉H ψ

)
dΣ ,

where we have used once again δdΣ. Next, we conclude from δz = 〈δX, e3〉 = ψ〈ν, e3〉 and
δν = −∇ψ that

δ

(∫
Σ
g(z) 〈ν, e3〉 dΣ

)
=

∫
Σ

(
g′(z)〈ν, e3〉2ψ − g(z)〈∇ψ, e3〉 − 2g(z)〈ν, e3〉Hψ

)
dΣ

=

∫
Σ

(
g′(z)

(
〈ν, e3〉2 + ‖∇z‖2

)
+ g(z)∆z − 2g(z)〈ν, e3〉H

)
ψ dΣ

=

∫
Σ
g′(z)ψ dΣ ,

where in the second line we have integrated by parts the second term and in the third one
we have applied the classical formula ∆X = 2Hν (for details, see [13, p. 29]). Similarly, the
variation of the last term of (5) is (repeat above computations for g(z) = z)

δ

(∫
Σ
z 〈ν, e3〉 dΣ

)
=

∫
Σ
ψ dΣ .
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Consequently, combining everything, the first variation formula for E[Σ] is given by

δE[Σ] =

∫
Σ

(−2σH + ηf(z) +$)ψ dΣ .

The Fundamental Lemma of Calculus of Variations then gives the necessary condition to
be satisfied along equilibria, the so-called Euler-Lagrange equation. We sum up this in the
following proposition.

Proposition 2.1. Let X : Σ → R3 be an equilibrium immersion for the energy E[Σ]. Then,
regardless of the boundary conditions, the equation

(6) 2σH = ηf(z) +$ ,

must hold on Σ.

Previously we have shown a couple of interesting choices for f(z). One case is to consider f
constant giving rise to surfaces with constant mean curvature. In the particular case that the
densities in both sides of the interface Σ coincide, then Σ is a minimal surface. The case of
constant mean curvature surfaces also appears if we consider η = 0. Constant mean curvature
surfaces have been widely studied in the literature (we mention here [13] and the references
therein) and, hence, from now on we will discard this case. Another relevant case appears
when f(z) = z because Σ models a liquid drop or, more generally a fluid bubble, supporting or
hanging from a plane orthogonal to the z-direction under the action of constant gravity ([9]).
For a general function f(z), using a process of reflection and applying the Hopf’s maximum
principle, Wente deduced that an embedded surface inherits some symmetries of its boundary
([21]); see also similar results in the nonparametric case in [18].

An interesting problem which merits investigation is whether or not there exist closed surfaces
satisfying (6). A rescaling argument proves that in many cases these closed surfaces cannot
exist.

Proposition 2.2. Let X : Σ→ R3 be the immersion of a closed surface critical for the energy
E[Σ]. Then,

2σA[Σ] + η

∫
Ω

(
zf ′(z) + 3f(z)

)
dV + 3$V[Ω] = 0 ,

where Ω is the open domain of R3 bounded by Σ. In particular, if f(z) = zn and η(n+ 3)zn+
3$ ≥ 0, there are not closed critical surfaces.

Proof. Consider a rescaling of the surface Σ 7→ rΣ for r > 0. Then, the energy of rΣ is given
by

E[rΣ] = σr2A[Σ] + η

∫
Ω
f(rz)r3dV +$r3V[Ω] .
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Thus, since Σ (r = 1) is a critical surface, differentiating with respect to the rescaling param-
eter, we get

0 =
dE

dr
[Σ] = 2σA[Σ] + η

∫
Ω

(
zf ′(z) + 3f(z)

)
dV + 3$V[Ω] ,

proving the result. The second statement follows directly. �

If we also seek embedded surfaces, existence is even more restricted. The problem of finding
closed embedded surfaces satisfying (6) is motivated by the classical Alexandrov’s result which
asserts that the only embedded closed constant mean curvature surface is the round sphere
([1]). In the case that f(z) = z, there are not closed embedded surfaces ([9]). These results
are generalized for suitable choices of f(z) in the following proposition.

Proposition 2.3. If f(z) is increasing (or decreasing) almost everywhere, there are not closed
embedded surfaces whose mean curvature H satisfies 2σH = ηf(z) + $. In particular, the
result holds for f(z) = zn and n not even.

Proof. By contradiction, suppose that Σ is a closed embedded surface in R3 with mean curva-
ture H satisfying (6) and denote by Ω ⊂ R3 the open domain bounded by Σ. The divergence
of the vector field ξ = (ηf(z) + $)e3 defined in R3 is ηf ′(z). Hence the divergence theorem
implies

(7) η

∫
Ω
f ′(z) dV =

∫
Σ

(ηf(z) +$) 〈ν, e3〉 dΣ ,

where ν is the unit normal vector field on Σ pointing outwards Ω. The left-hand side of (7) is
nonzero by the assumption that f(z) is increasing almost everywhere (respectively decreasing)
and η 6= 0. On the other hand, computing the Laplacian with respect to the metric induced
on Σ of the height function z = 〈X, e3〉, we know

σ∆〈X, e3〉 = 2σH〈ν, e3〉 = (ηf(z) +$) 〈ν, e3〉 ,

where we have used the Euler-Lagrange equation (6). Since Σ is a closed surface, and using
(7), we get

0 = σ

∫
Σ

∆〈X, e3〉 dΣ =

∫
Σ

(ηf(z) +$) 〈ν, e3〉 dΣ = η

∫
Ω
f ′(z) dV 6= 0 ,

obtaining a contradiction. The last statement is immediate. �
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3. Critical cylinders

Among surfaces critical for the energy E[Σ], a special type which merits further investigation
are cylinders. As explained in the introduction, these surfaces extend the classical problem of
the lintearia (f(z) = z) to the consideration of more sophisticated vertical potential energies.

The purpose of this section is to study equilibrium immersions invariant under translations. If
the surface is invariant in the direction of a unit vector v ∈ R3, then Σ can be parameterized
as

(8) X(s, t) = γ(s) + tv ,

where γ(s) is a planar curve called the generating curve and contained in an orthogonal plane
to v. The parameter s ∈ I ⊂ R denotes the arc length parameter of γ. These surfaces are
referred as to right cylinders shaped on the curve γ.

Denote by T (s) = γ′(s) the unit tangent vector field along the planar curve γ(s), where
( )′ represents the derivative with respect to the arc length parameter s, and define the unit
normal vector field N(s) along γ(s) to be the counter-clockwise rotation of T (s) through an
angle π/2 in the plane where γ(s) lies, i.e., N(s) = JT (s). In this setting, the Frenet-Serret
equation

T ′(s) = κ(s)N(s) ,

defines the (signed) curvature κ(s) of γ(s).

The unit normal ν to the right cylinder X parameterized as (8) is ν(s, t) = N(s) and the
mean curvature is H(s, t) = κ(s)/2. Then the equilibrium condition (6) is

(9) σκ(s) = ηf (z(s, t)) +$ .

Here z(s, t) is the z-coordinate of X(s, t),

z(s, t) = 〈X(s, t), e3〉 = 〈γ(s), e3〉+ t〈v, e3〉 .
Differentiating (9) with respect to t, we have 0 = ηf ′(z)〈v, e3〉, hence 〈v, e3〉 = 0 (recall that
we are assuming η 6= 0 and f(z) nonconstant). Therefore the rulings of Σ are orthogonal to
the vertical direction e3 which, after a rotation about the direction e3 (this does not carry
any change on f(z)), we may assume parallel to e1 = (1, 0, 0). Consequently, Σ can be
parameterized as

(10) X(s, t) = γ(s) + te1 ,

where now γ(s) = (0, y(s), z(s)) is a planar curve contained in the yz-plane.

From now on we will consider planar curves γ : I ⊂ R → R2 and we will denote γ(s) =
(y(s), z(s)) the coordinate functions of γ. We will also restrict ourselves to the cases f(z) = zn
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for any real number n 6= 0. Then (9) reads

(11) σκ = η zn +$ ,

where zn = z(s)n. We show that the energy parameters σ and η can be fixed after reparam-
eterizations and dilations of γ. Indeed, if γ satisfies (11), reversing the orientation of γ, the
curve γ̃(s) = γ(−s) satisfies (11) by reversing the signs of η and $. Similarly, the dilation
γ̂(rs) = rγ(s) rescales the parameters η and $ by ηr−n−1 and $r−1, respectively. After these
simplifications, throughout this paper we will use the following definition.

Definition 3.1. An arc length parameterized planar curve γ(s) = (y(s), z(s)) is a n-elastic
curve, if its curvature κ(s) satisfies

(12) κ(s) = z(s)n + µ ,

for some real constant µ.

With this definition, which fixes some of the energy parameters, and the choice of the function
f(z) = zn the energy E[Σ] reads

E[Σ] = A[Σ] +

∫
Ω
zn dV + µV[Ω].

Equation (12) can be seen as a prescribed curvature equation for planar curves. In the present
case, the curvature depends on the distance to a fixed straight line.

First, we analyze the curves with constant curvature that are solutions of (12). If κ 6= 0 then
γ is a circle, which clearly does not satisfy (12). On the other hand, if κ = 0 then γ is a
straight line and by (12) it must be a horizontal line. We focus on this case in the following
result.

Proposition 3.2. Let γ be a curve whose constant curvature is a solution of (12). Then γ
is a horizontal straight line. Moreover:

(1) Case µ > 0. Then γ is z = n
√
−µ and it exists if and only if n is odd.

(2) Case µ = 0. Then γ is z = 0.
(3) Case µ < 0. If n is not even then γ is z = n

√
−µ and, if n is even γ is one of the two

straight lines z = ± n
√
−µ.

For those planar curves with nonconstant curvature which are solutions of (12) we will locally
characterize them as planar critical curves for a curvature energy. We briefly recall here the
general theory for curvature energies. Consider a general curvature energy functional

(13) Θ[C] =

∫
C
P (κ) ds ,
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where P (κ) is a smooth function defined in an adequate domain. By standard computations
involving integrating by parts we can calculate the first variation formula associated to Θ (see
details in [17]) obtaining the Euler-Lagrange equation

(14)
((
κṖ − P

)
T + ṖsN

)′
= 0 ,

where Ṗ (κ) denotes the derivative of P (κ) with respect to κ. Curves whose curvature κ(s) is
a solution of (14) are called critical curves throughout the paper, regardless of the boundary
conditions. We introduce the vector field

(15) J =
(
κṖ − P

)
T + ṖsN .

From (14) it is then clear that along a critical curve C, the vector field J is constant and,
therefore, ‖J ‖2 = d for some positive real constant d, represents a first integral of the Euler-
Lagrange equation. Expanding it, we obtain

(16) Ṗ 2
s + (κṖ − P )2 = d .

We next prove a result characterizing critical curves for Θ in terms of their parameterization.
Here we will use Killing vector fields along curves in the sense of Langer and Singer ([11]).

Proposition 3.3. Assume that Ṗs 6= 0. An arc length parameterized planar curve C(s)
with curvature κ(s) is critical for Θ if and only if there is a coordinate system such that
C(s) = (C1(s), C2(s)) and

(17) C2(s) =
1√
d
Ṗ (κ(s))

for any constant d > 0.

Proof. Let C(s) = (C1(s), C2(s)) be a planar critical curve for Θ. The vector field J is a
Killing vector field along C which can be uniquely extended to a Killing vector field on the
whole space R2. Since ‖J ‖2 = d is constant, the extension of J to R2 (also denoted by J )
is a translational Killing vector field. After a rigid motion if necessary, we can assume that
J = (

√
d , 0). Next, from (14) we obtain

κṖ − P = 〈T,J 〉 = 〈
(
C ′1, C

′
2

)
, (
√
d , 0)〉 =

√
dC ′1 ,

so that
C ′1(s) =

1√
d

(
κṖ − P

)
.

Finally, we use that C(s) is parameterized by arc length and that (16) is satisfied to conclude
that

C ′2(s) =
1√
d
Ṗs .

After integrating and translating, if necessary, we obtain the forward implication.
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For the reverse implication, assume that C(s) = (C1(s), C2(s)) is a planar curve parameterized
by arc length and such that (17) holds for some d > 0, where κ(s) denotes its curvature. We
consider the arc length parameterized curve

C̃(s) =
1√
d

(∫ (
κṖ − P

)
ds, Ṗ

)
,

which is critical for Θ since it satisfies (14). The curvature of C̃(s) locally coincides with
the curvature of C(s), κ(s). Therefore, by the Fundamental Theorem of Planar Curves,
C(s) = C̃(s), after a rigid motion. Consequently, C(s) = C̃(s) is critical for Θ. �

Observe that the restriction Ṗs 6= 0 is quite natural for our purposes. Indeed, since we are
assuming that κ is not constant, Ṗs = 0 if and only if P (κ) = aκ+ b, for real constants a and
b. If b = 0, Θ represents the total curvature whose associated Euler-Lagrange equation is an
identity. On the contrary, if b 6= 0, critical curves for Θ are straight lines (κ = 0), which are
out of our consideration.

Using Proposition 3.3, we prove the main result of this section.

Theorem 3.4. Let γ be a planar curve with nonconstant curvature. Then γ is a n-elastic
curve if and only if it satisfies the Euler-Lagrange equation associated to the curvature energies:

Case n 6= −1: Θ[γ] =

∫
γ

((κ− µ)p + λ) ds ,

Case n = −1: Θ̃[γ] =

∫
γ

(log (κ− µ) + λ) ds ,

where p = (n+ 1)/n and λ ∈ R. (If p ∈ R \ N or n = −1, above energies must be understood
as acting on spaces of curves satisfying κ > µ.)

Proof. For the forward implication, from (12) we have that z(s) = (κ(s)− µ)1/n. If we
take Ṗ (κ) = (κ − µ)1/n, the condition (17) of Proposition 3.3 is satisfied, concluding after
integrating that γ is critical for the energies of the statement.

For the converse, we consider first the case n 6= −1. Let γ(s) = (γ1(s), γ2(s)) be an arc length
parameterized planar critical curve for Θ. From Proposition 3.3 we know that there exists a
coordinate system in which γ can be parameterized as

(18) γ(s) =
1√
d

(∫ (
(κ− µ)p−1 ((p− 1)κ+ µ)− λ

)
ds, p (κ− µ)p−1

)
,

for some constant d > 0. After a rigid motion, reflection and dilation, if necessary, we may
assume that γ2(s) = z(s) = (κ− µ)p−1. Then, since p = (n+ 1)/n, (12) is satisfied.
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A similar argument for the case n = −1 gives that a critical curve γ for Θ̃ can be parameterized
as

(19) γ(s) =
1√
d

(∫ (
κ

κ− µ
− log(κ− µ)− λ

)
ds,

1

κ− µ

)
,

for some constant d > 0. As before, we may assume z(s) = (κ − µ)−1 so that (12) holds,
obtaining the result. �

We give some observations for particular choices of the constants λ, µ and p in Theorem 3.4:

(1) Case λ = µ = 0 and p = 2. Here we recover the classical bending energy of curves,
which corresponds with right cylinders that are critical for E[Σ] for n = 1 and $ = 0.
This relation was pointed out in [10], where the authors acknowledge the comments
of Prof. O. J. Garay.

(2) Case λ = µ = 0 and p = 1/2. This energy was studied by Blaschke in 1930 ([3])
obtaining that critical curves are catenaries.

(3) More generally, the case λ = 0, p = 1/2 and µ ∈ R gives rise to roulettes of conic foci
([2]). These cases correspond with the choice n = −2 in (12). Planar curves satisfying
(12) for n = −2 have been studied in [5, 16], although this variational characterization
was not described.

(4) Case λ = 0 and µ, p ∈ R. This case was used in the characterization of rotational
linear Weingarten surfaces in [14], where the authors gave a full classification of the
critical curves.

From the proof of Theorem 3.4, curves satisfying (12) can be parameterized, up to rescaling
and change of orientation, as (18) which combined with (12) yields

(20) γ(s) =

(
−
∫ s

0

(
1

n+ 1
z(s)n+1 + µz(s)− n

n+ 1
λ

)
ds, z(s)

)
when n 6= −1, while for the case n = −1 the parameterization of γ(s) is (19) and, once again,
combining it with (12),

(21) γ(s) =

(
−
∫ s

0
(µz(s) + log z(s) + 1− λ) ds, z(s)

)
.

We highlight here that these last two parameterizations are given in terms of just one quadra-
ture. In fact, we can combine (16) with the energies given in Theorem 3.4, to make a change
of variable in the integral of the parameterizations and, hence, obtaining locally a graph which
can be recovered after just one quadrature.
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Another observation of this variational approach and parameterizations is that curves sat-
isfying (12) are theoretically characterized as solutions of a first order ordinary differential
equation. Indeed, we have the following result.

Proposition 3.5. Let γ(s) = (y(s), z(s)) be a curve parameterized by arc length. Then γ is
a n-elastic curve if and only if z(s) satisfies the first order ordinary differential equation:

Case n 6= −1:
1

n+ 1
zn+1 + µz + ε

√
1− (z′(s))2 = c ,(22)

Case n = −1: log z + µz + ε

√
1− (z′(s))2 = c .(23)

In both cases, ε = ±1 and c is a suitable real constant.

Proof. As mentioned above, if n 6= −1 a n-elastic curve is parameterized by (20). From this
equation we obtain that

y′(s) = − 1

n+ 1
z(s)n+1 − µz(s) +

n

n+ 1
λ ,

which combined with the arc length condition y′(s)2 + z′(s)2 = 1 gives (22), where c =
nλ/(n+ 1).

Similarly, if n = −1 we use (21) together with y′(s) = ε
√

1− (z′(s))2 to conclude the result,
for c = λ− 1. �

Observe that the horizontal straight lines solution of (12) (see Proposition 3.2) can be included
in the statement of this proposition.

From Proposition 3.5 we directly conclude some geometric properties of n-elastic curves. First,
we observe that in the cases where n ≤ −1 the curve cannot meet the line of equation z = 0,
since if that happens equation (22) (or equation (23)) is not well defined.

Corollary 3.6. If n ≤ −1, a n-elastic curve cannot meet the y-line.

Second, by letting z → ∞ in (22) and (23), we give conditions so that the function z(s) is
bounded.

Corollary 3.7. If either µ 6= 0 or µ = 0 and n ≥ −1, the function z(s) is bounded.

From (22) and (23), we consider the function F of two variables defined by

(24) F (u, v) =


1

n+1u
n+1 + µu+ ε

√
1− v2, n 6= −1,

log u+ µu+ ε
√

1− v2, n = −1.
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Equations (22) and (23) tell us that for a n-elastic curve, the pair (z, z′) belongs to a level
curve of the function F (u, v) with u > 0 and 1− v2 ≥ 0. This function F can be understood
as a Morse function and, we can study its orbit space geometry to deduce the behavior of all
solutions of (12). For example, the equilibrium points are the zeroes of ∇F . In particular,
z′ = 0 and the solutions corresponding to the equilibrium points are horizontal straight lines,
as described in Proposition 3.2.

4. Geometric properties of n-elastic curves

In this section we study properties regarding symmetries of n-elastic curves. Because of the
presence of

√
1− v2 in the expression (24) of F , we will introduce here a different approach.

Let γ(s) = (y(s), z(s)), s ∈ I ⊂ R, be a n-elastic curve which is parameterized by the arc
length. Then y′(s) = cos θ(s) and z′(s) = sin θ(s), where θ is the angle between the tangent
vector of γ and the positive part of the y-axis. Then equation (12) is equivalent to

y′(s) = cos θ(s)

z′(s) = sin θ(s)

θ′(s) = z(s)n + µ .

(25)

In what follows, we will assume that the domain I = (s−, s+) ⊂ R of γ is the maximal interval
for which the solution of the system (25) exists. For example, if n ∈ Z, the maximal domain
of (25) is R. On the contrary, assume that s+ < ∞. Since z(s)n can take any real value if
n > 0 and that γ cannot meet the line z = 0 if n < 0 (Corollary 3.6), then necessarily θ blows
up at s+, so lims→s+ θ(s) = ∞. By the second equation of (25), z′ is bounded close to s+

and this implies that z is bounded near s+. Now by the third equation of (25), θ′ is bounded
near to s+, a contradiction. A similar argument works for the case where s− > −∞.

We now impose the initial conditions for (25). Since (25) is invariant by translations in the
y-direction, we can assume y(0) = 0. Fixing the initial value θ(0) for the function θ(s) is
equivalent to fixing the initial velocity γ′(0). For the classification of all solutions of (25), we
need to assume all initial conditions

(26) y(0) = 0 , z(0) = z0 , θ(0) = θ0 ,

with θ0 ∈ [0, 2π) and suitable real constant z0. For any n 6∈ Z, the function zn in (25) is only
defined for positive values of z, so that z0 > 0. In case that n ∈ Z, then z can also be negative
and so z0 ∈ R if n > 0 and z0 ∈ R \ {0} if n < 0.
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For the case where the power n is an integer, we prove some symmetries of the solutions.
Exactly, if n is even, we see that it suffices to consider nonnegative values z0 in (26), and if n
is odd, after a change on the sign of µ, if necessary, it also suffices to consider z0 ≥ 0.

Proposition 4.1 (Horizontal symmetry). Let γ(s) = (y(s), z(s)) be a solution of the system
of differential equations (25)–(26) with n ∈ Z and denote by γ̄ the curve obtained after applying
a symmetry with respect to the y-line to γ. Then:

(1) If n is even, γ̄ is a n-elastic curve for the same constant µ.
(2) If n is odd, γ̄ is a n-elastic curve for the constant −µ.

Proof. We consider first the case n even. Define ȳ(s) = y(−s), z̄(s) = −z(−s) and θ̄(s) =
π − θ(−s). Then it is immediate that {ȳ(s), z̄(s), θ̄(s)} satisfies (25) for the initial solution
{0,−z0, π − θ0}. Here the fact that n is even is essential since

θ̄′(s) = θ′(−s) = z(−s)n + µ = (−z̄(−s))n + µ = z̄(s)n + µ .

If n is odd, define ȳ(s) = y(s), z̄(s) = −z(s) and θ̄(s) = −θ(s). Then it is immediate that
{ȳ(s), z̄(s), θ̄(s)} satisfies (25) reversing the sign of µ and for the initial solution {0,−z0,−θ0}.
In this case,

θ̄′(s) = −θ′(s) = −z(s)n − µ = −(−z̄(s))n − µ = z̄(s)n − µ ,

where we have used the fact that n is odd in an essential way. �

In a second step of our program of classification, we study under what circumstances n-elastic
curves have a vertical symmetry. We will prove that this always occurs and, consequently, it
is enough to consider the cases θ0 = 0 and θ0 = π in the initial conditions (26).

Proposition 4.2 (Vertical symmetry). Any n-elastic curve γ has a point s0 where the tangent
vector γ′(s0) is horizontal. Furthermore, the trace of γ is symmetric about the vertical line of
equation y = y(s0).

Proof. The existence of s0 is proved by contradiction. Let γ(s) = (y(s), z(s)) be a solution
of (25)–(26) and let (s−, s+) be its maximal domain. If γ′(s) is never horizontal, this implies
that, up to an integer multiple of 2π, the image of θ(s) is included in (0, π) or in (π, 2π). We
prove the case θ0 ∈ (0, π), which also implies the case θ0 ∈ (π, 2π) after applying Proposition
4.1.

If n 6∈ N, then z0 > 0. If n ∈ Z, we apply Proposition 4.1 together with a change on the sign
of µ, if necessary, and suppose z0 > 0 if n ∈ Z− or z0 ≥ 0 if n ∈ N.
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Since θ(s−, s+) ⊂ (0, π), from z′(s) = sin θ(s), we have that z(s) is an increasing function. We
first prove that s+ =∞. Otherwise, and using that z(s) > z0 for s > 0, then z(s) cannot go
to 0 so this implies that θ′(s)→∞ as s→ s+. Since θ′ = zn + µ then zn →∞. Using again
that z(s) > z0 for s > 0, we obtain that n > 0 and z(s) → ∞ as s → s+, which contradicts
Corollary 3.7. Once proved that s+ = ∞, notice that if s− > −∞, then as s → s− we have
either θ′(s)→∞ or n 6∈ N with z(s)→ 0. We distinguish three cases depending on the sign
of µ:

(1) Case µ > 0. Then θ′(s) ≥ µ, so θ is an increasing function. Next, we use that s+ =∞,
to get lims→∞ θ(s) = +∞, a contradiction, because the rank of θ is bounded.

(2) Case µ = 0. Again θ is increasing and bounded from above, so lims→∞ θ
′(s) = 0.

This cannot occur if n > 0 because θ′(s) ≥ zn0 for s > 0: in case that n ∈ N and
z0 = 0, using that z is increasing, then θ′(s) = z(s)n ≥ z(δ)n > 0 for some fixed
δ > 0, obtaining a contradiction again. Therefore, n < 0. Then lims→∞ θ

′(s) = 0
implies lims→∞ z(s) = ∞, hence n < −1 by Corollary 3.7. If s− = −∞, since θ is
bounded and increasing, then lims→s− θ

′(s) = 0. This implies z(s)→∞, which is not
possible because z(s) is increasing. Thus s− > −∞ and lims→s− z(s) = 0, obtaining
a contradiction again from Corollary 3.6.

(3) Case µ < 0. From Corollary 3.7, z(s) is a function bounded from above. Because
z(s) is increasing, let z1 = lims→∞ z(s) > 0. Furthermore, lims→∞ z

′(s) = 0, so
lims→∞ θ(s) is 0 or π. Letting s → ∞, we have lims→∞ θ

′(s) = zn1 + µ. Since θ is
bounded, the above limit must be 0 so zn1 + µ = 0. Now the function θ′ is monotonic
at infinity because θ′′(s) = nz(s)n−1 → nzn−1

1 6= 0. This is a contradiction because θ′
is bounded at infinity.

Once proved the existence of s0, we see that γ is symmetric about the vertical line through
γ(s0). Since θ(s0) = mπ for m ∈ Z, then z′(s0) = sin θ(s0) = 0. The functions

ȳ(s) = 2y(s0)− y(2s0 − s) , z̄(s) = z(2s0 − s) , θ̄(s) = 2mπ − θ(2s0 − s)

satisfy the same equations (25) with the same initial conditions at s = s0 that {y(s), z(s), θ(s)}.
The proof follows from the uniqueness of solution of ordinary differential equations. �

In conclusion, after suitable symmetries described in Propositions 4.1 and 4.2, we can restrict
the initial conditions (26) to be θ0 = 0 or θ0 = π and z0 ≥ 0 (strictly positive if n 6∈ N).

Observe that integrating (25) we recover the curve γ(s) after two quadratures. A parame-
terization of γ(s) using only one quadrature was given in previous section. Of course, both
parameterizations are related and initial conditions coincide. Clearly y(0) = 0 is satisfied in
(20) and (21) due to the choice of the limits of integration. Moreover, the other two initial
conditions can be described in terms of the Lagrange multiplier λ restricting the length of the
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curve. In fact, assume that n 6= −1, differentiating y(s) in (20) once and combining it with
(25), we obtain

y′(s) = −z(s)
n+1

n+ 1
− µz(s) +

nλ

n+ 1
= cos θ(s) .

In particular, evaluating this at the initial value s = 0 and using (26), we obtain an expression
of λ in terms of z0 and θ0, namely,

(27) λ =
n+ 1

n
cos θ0 +

zn+1
0

n
+
n+ 1

n
µz0 .

In a similar way, the Lagrange multiplier λ for the case n = −1 can be described in terms of
the initial conditions (26) as λ = 1 + µz0 + log z0 + cos θ0.

Remark 4.3. We describe here the initial conditions of a couple of relevant families of n-
elastic curves:

(1) The case n = 1 and µ = 0 corresponds with the classical elastic curves. From (27) it
must be the case that

λ = 2 cos θ0 + z2
0

holds for the initial conditions (26). For arbitrary initial conditions, we recover all the
cases of Euler’s classification ([7]). Compare with Figure 1.

(2) Using the variational description of [2], Delaunay curves appear when n = −2 and
λ = 0. Delaunay curves are roulettes of conic foci and the profile curves of rotational
constant mean curvature surfaces ([6]). Using (27), the following relation must hold:

1 = z0 cos θ0 + µz2
0 .

In particular, we get undularies (µ < 0), catenaries (µ = 0) and nodaries (µ > 0).
See Figure 3 for the family of catenary-like curves.

5. Existence of closed n-elastic curves

As it was pointed out in the introduction, an interesting problem is to determine wether or
not there exist closed n-elastic curves. Looking in the classical theory of elastic curves (n = 1
and µ = 0), it is known the existence of a non-simple planar closed elastic curve, the so-called
Bernoulli’s lemniscate or the elastic figure-eight. This curve is also the only nontrivial planar
closed curve for n = 1 and arbitrary µ, since the total curvature is constant on a regular
homotopy class of planar curves. However, we will see that, apart from these types of curves
which we called pseudo-lemniscate (Figure 1, (d)), for n ∈ N even the family of closed n-elastic
curves is richer and also includes simple closed curves. See Figure 2.
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In order to have closed curves, a necessary but not sufficient condition is to have curves with
periodic curvature or, due to (12), equivalently, curves whose z-component is periodic. In the
following result we give sufficient conditions for that to happen.

Proposition 5.1. Suppose that γ(s) = (y(s), z(s)) is a solution of (25)–(26) such that the
image of the function θ(s) contains a closed interval of type [mπ, (m+ 1)π], m ∈ Z. Then the
curvature of γ is a periodic function and, consequently, the solution is defined in R. Moreover,
γ is either a closed curve or invariant by a discrete group of horizontal translations.

Proof. Since the solutions of (25)–(26) are the same if we change θ0 in (26) by θ0+2mπ,m ∈ Z,
we may suppose that the rank of θ contains the interval [0, π]. Assume that θ(0) = θ0 = 0
and let s0 > 0 be the first point such that θ(s0) = π. By Proposition 4.2, the solution
γ(s) = (y(s), z(s)) is symmetric about the vertical lines y = 0 and y = y(s0). Therefore,

y(s) = 2y(s0)− y(2s0 − s),
z(s) = z(2s0 − s),
θ(s) = 2π − θ(2s0 − s).

Consider the value ρ = 2s0. Then γ(ρ) = (2y(s0), z0) and θ(ρ) = 2π. Define

ȳ(s) = y(s+ ρ)− y(ρ), z̄(s) = z(s+ ρ), θ̄(s) = θ(s+ ρ)− 2π.

These functions satisfy (25) with initial conditions {0, z0, 0}. By uniqueness, these solutions
coincide with {y(s), z(s), θ(s)}. Consequently,

y(s+ ρ) = y(s) + y(ρ),

z(s+ ρ) = z(s),

θ(s+ ρ) = θ(s) + 2π.

The first two identities imply that γ(s + ρ) = γ(s) + (y(ρ), 0). If y(ρ) = 0, then γ is closed.
Otherwise, γ is invariant by the action of the group of horizontal translations generated by
the vector (y(ρ), 0). The second identity implies that z = z(s) is periodic, and by the third
equation in (25), the same occurs for the curvature function κ(s) = θ′(s). �

The first class of closed curves are the pseudo-lemniscates, which have the shape of a figure-
eight and play the role of Bernoulli’s lemniscate (Figure 1, (d)). These closed curves appear
whenever suitable closure conditions, obtained from (20) and (21), are satisfied. Indeed, as
mentioned in the proof of Proposition 5.1, a curve with periodic curvature κ(s), of period
ρ, will be closed if and only if y(ρ) = 0. It is then clear that this closure condition can be
rewritten as

(28)
∫ ρ

0

(
1

n+ 1
z(s)n+1 + µz(s)− n

n+ 1
λ

)
ds = 0 ,
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when n 6= −1, while for the case n = −1, the closure condition reads

(29)
∫ ρ

0
(µz(s) + log z(s) + 1− λ) ds = 0 .

For each case, an analysis of above integrals, which depend on λ, may be used to show the
existence of pseudo-lemniscates. In Figure 1, we have shown a complete deformation of n-
elastic curves obtained varying the Lagrange multiplier λ (equivalently, the initial conditions
z0 and θ0), which imitate the cases of classical elastic curves.

We next give a result for the nonexistence of simple closed n-elastic curves. The idea behind
is similar to that of Proposition 2.3.

Proposition 5.2. If n is not an even natural number, simple closed n-elastic curves do not
exist.

Proof. By contradiction, let us assume that γ is a simple closed n-elastic curve. On R2 we
consider the vector field ξ = (zn+µ)e2, where e2 = (0, 1). Then its divergence is div ξ = nzn−1.
If Ω ⊂ R2 is the domain bounded by γ, then the Frenet normal N(s) is outward pointing and
by the divergence theorem∫

Ω
nzn−1 dA =

∫
γ
(zn + µ)〈N(s), e2〉 ds =

∫
γ
〈κ(s)N(s), e2〉 ds

=

∫
γ
〈T ′(s), e2〉 ds =

∫
γ

d

ds
〈T (s), e2〉 ds = 0 .

However, if n < 0, the integrand in the left side has not change of sign because z is always
nonzero, obtaining a contradiction. Similarly, if n > 0 is not an even natural number, the left
hand side is always positive because n− 1 is not odd, obtaining again a contradiction. �

When n ∈ N is even, we prove the existence of closed n-elastic curves for arbitrary values of
µ, some of which are simple. See Figure 2.

Theorem 5.3. If n ∈ N is an even natural number, then there are closed n-elastic curves.
Moreover, if µ ≥ 0 or

µ < −
(
n+ 1

n

) n
n+1

,

the curve is simple.

Proof. The existence is obtained by choosing suitable conditions in (26). Let z0 = 0 and
θ0 = π/2. Recall that the maximal domain of the solution is R. Define the functions

ȳ(s) = y(−s), z̄(s) = −z(−s), θ̄(s) = π − θ(−s).



22 RAFAEL LÓPEZ AND ÁLVARO PÁMPANO

We check that these functions satisfy (25). For ȳ and z̄ is immediate. For θ̄, we have

θ̄′(s) = θ′(−s) = z(−s)n + µ = (−z̄(s))n + µ = z̄(s)n + µ,

where we have used that n is even. Since the initial conditions at s = 0 coincide with that of
{y(s), z(s), θ(s)}, uniqueness yields

y(s) = y(−s),
z(s) = −z(−s),
θ(s) = π − θ(−s).

This implies that the trace of γ has a horizontal symmetry about the y-axis. We also know
from Proposition 4.2 that γ has a vertical symmetry, so we conclude that γ is a closed curve.

We now prove that if µ is nonnegative, then γ is simple. Indeed, if µ ≥ 0, then θ is an
increasing function. Then the monotonicity of θ together with the symmetries of γ prove the
claim.

In case that µ is negative, then the curves may be simple or not depending on the relation
between n and µ. Due to z0 = 0, we know that θ′(0) = µ < 0, so θ is decreasing at s = 0,
i.e. it decreases from θ(0) = θ0 = π/2. Let s0 > 0 be the first value where γ is horizontal, so
θ(s0) = 0. Suppose that s1 > 0 and s1 ≤ s0 is the first value, if it exists, such that θ′(s1) = 0
and let z1 = z(s1) and θ1 = θ(s1). From (22) at s = 0, we deduce that c = 0. On the other
hand, θ′(s1) = 0 = zn1 + µ, hence µ = −zn1 . Then (22) gives

n

n+ 1
(−µ)

n+1
n = cos θ1 ∈ (0, 1].

For fixed n, above equality is not possible if
n

n+ 1
(−µ)

n+1
n > 1 .

This proves that, in those cases, θ′ cannot vanish so θ is a decreasing function and θ(s0) = 0.
Thus, θ is monotonic and the curve γ is simple. �

The initial conditions chosen in the proof of Theorem 5.3 imply that the Lagrange multiplier
λ is zero, that is, there is no constraint on the length of the curves. Thus critical curves
for this case are usually referred to as free n-elastic curves. The assumption λ = 0 is quite
reasonable since (free) n-elastic curves for n ∈ N cut the y-line perpendicularly. Clearly,
this is a necessary condition for the associated curve to close. Moreover, we also need that
after that point the curve goes backwards in the y-direction, instead of forward. From the
parameterization (20), we see that this happens, precisely, when n is even. The existence of
closed n-elastic curves other than pseudo-lemniscates is a huge difference, that deserves to be
pointed out, between the cases n odd (including the family of classical elastic curves) and n
even. Special mention deserves the existence of simple closed ones.
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Remark 5.4. For n ∈ N even, the variational characterization of Theorem 3.4 is local.
Indeed, the energy Θ acts on the space of curves satisfying κ > µ. Therefore, in particular,
the cuts with the y-line of the closed curves of Theorem 5.3 cannot be included. This prevents
a contradiction with a rescaling argument to prove the nonexistence of closed critical curves
for λ = 0.

6. Classification of n-elastic curves

In this section we give a classification of all shapes of n-elastic curves with nonconstant
curvature according to the parameters n and µ. Once we know θ in (25), the function y is
completely determined, and consequently we may simplify (25) by the autonomous system{

θ′ = zn + µ

z′ = sin θ
.

We will investigate the phase portrait associated to this system. Define the vector field

V (θ, z) = (V1(θ, z), V2(θ, z)) = (zn + µ, sin θ)

whose orbit space is equivalent to that of F in (24). The orbits (θ(s), z(s)) make a foliation by
regular proper C1 curves of the phase space except at the equilibrium points, which represent
horizontal straight lines.

Let Ω be the domain of V . When n 6∈ N, Ω = R × (0,∞) and if n ∈ N, then Ω = R2. In
the first case, L = R × {0} will denote the boundary of Ω. Let us observe that in the phase
portrait, the level curves are periodic in the θ-direction with period 2π.

A special case will occur when the level curve is defined for any s and, in addition, it is a
graph on L. Then the rank of θ is R and Proposition 5.1 implies that γ is either closed or
invariant by a discrete group of horizontal translations. In this case, we obtain either orbitlike
n-elastic curves (Figure 1, (a) and Figure 3, (a)-(b)) or wavelike n-elastic curves (see Figure
1, (c)-(h)). Apart from the closed curves obtained in Theorem 5.3 (Figure 2), we also have
pseudo-lemniscates (Figure 1, (d)).

On the other hand, if the rank of θ is not R, we may find complete curves with nonperiodic
curvature κ. For instance, if the associated orbit (θ(s), z(s)) goes to an equilibrium point
we have borderline n-elastic curves (Figure 1, (b)). By the uniqueness of the initial value
problem, in this case, the parameter s goes to ±∞. If the associated orbit does not approach
an equilibrium point, these curves are catenary-like n-elastic curves (Figure 3, (c)-(h)). A
complete deformation of n-elastic curves obtained varying λ, which goes from orbitlike to
catenary-like curves, has been shown in Figure 3.
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In other cases, the level curve meets L at two points (by the symmetry of Proposition 4.2)
and the maximal domain of γ is a bounded interval. See Figure 4.

The classification of n-elastic curves will consist in analyzing the geometry of the level curves
of the vector field V . If we find the equilibrium points of V , V (θ, z) = (0, 0), we deduce
that θ = mπ, m ∈ Z. Thus the existence of equilibrium points depends on the equation
zn + µ = 0. Whenever they exist, equilibrium points will be {(mπ,±(−µ)1/n) : m ∈ Z}.
If n /∈ N the z-coordinate is always positive so only the positive sign in the equilibrium
points should be considered. Moreover, if n ∈ N, and from Proposition 4.1, the equilibrium
points (mπ,−(−µ)1/n) can be viewed as the reflection about the y-line of those with positive
z-coordinate. Therefore, we will restrict ourself to the positive sign.

Let us compute now the partial derivatives of V ,

(30)

 ∂V1
∂θ

∂V1
∂z

∂V2
∂θ

∂V2
∂z

 =

(
0 nzn−1

cos θ 0

)
.

Depending on the sign of µ we have the following types of equilibrium points:

(1) Case µ > 0. Then n ∈ Z is odd and equilibria are unstable saddle points if n > 0 and
m is even (or if n < 0 and m is odd) and centers if n > 0 and m is odd (or if n < 0
and m is even).

(2) Case µ = 0. Then n ∈ N. If n = 1, we have unstable saddle points if m is even and
centers if m is odd. If n > 1, the matrix (30) is not diagonalizable with both the trace
and the determinant vanishing.

(3) Case µ < 0. Equilibria are unstable saddle points if n > 0 and m is even (or if n < 0
and m is odd) and centers if n > 0 and m is odd (or if n < 0 and m is even).

We next distinguish between the cases n ∈ Z even, n ∈ Z odd and n /∈ Z:

Theorem 6.1 (Case n ∈ Z even). Let γ be a n-elastic curve with n ∈ Z even. Then, either
γ is one of the closed curves of Theorem 5.3 (necessarily n > 0) or, depending on the values
of µ we have:

(1) Case µ > 0. Then γ is an orbitlike n-elastic curve.
(2) Case µ = 0. Then γ is either an orbitlike or a catenary-like n-elastic curve (the latter

is only possible if n < 0).
(3) Case µ < 0. Then γ is either an orbitlike, a borderline or a wavelike n-elastic curve.
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Proof. In all the cases, level curves are defined on R so all n-elastic curves are complete. As
shown in Theorem 5.3, when the initial conditions are θ0 = π/2 and z0 = 0, the n-elastic
curve is closed for any value of µ. Some of these curves are also simple.

Apart from these cases, phase portraits for the case µ > 0, both with n > 0 and n < 0, present
level curves that are entire graphs on L (Fig. 5 and 6, (a)), obtaining orbitlike n-elastic curves.

If µ = 0 and n > 0, the level curves are again entire graphs on L (Fig. 5, (b)), obtaining
orbitlike n-elastic curves. If µ = 0 and n < 0, the level curves are graphs on L when the
value z0 is close to 0 (Fig. 6, (b)) and, hence, we have curves of orbitlike type. However, if
z0 increases and θ0 = 0, level curves are graphs on small bounded intervals of L. This means
that γ is of catenary-type, which may be simple or not. In case that the curve is simple, the
curve must be convex.

Finally, assume µ < 0 (Fig. 5 and 6, (c)). Orbitlike n-elastic curves appear when z0 is
sufficiently big (n > 0) or close to zero (n < 0). Around the critical points of V which are
centers, and whenever z0 is closed to the value of the critical point, level curves correspond
with wavelike n-elastic curves because the rank of θ lies on a bounded interval. Moreover,
there are also borderline n-elastic curves asymptotic to the horizontal straight line of the
equilibrium point of saddle type. �
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Figure 5. Level curves of V (u, v) for the case n > 0 even. Here n = 4.

Theorem 6.2 (Case n ∈ Z odd). Let γ be a n-elastic curve with n ∈ Z odd. Then:

(1) If n < 0 and µ = 0, γ is either an orbitlike or a catenary-like n-elastic curve.
(2) In the rest of the cases, γ is either an orbitlike, a borderline or a wavelike n-elastic

curve.
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Figure 6. Level curves of V (u, v) for the case n < 0 even. Here n = −4.

Proof. As in the even case, all level curves are defined on R so associated n-elastic curves are
complete. Since n is odd, for any value of µ there are critical points of V , with the exception
of n < 0 and µ = 0. For the rest of the cases (Fig. 7, (a)-(c), and Fig. 8, (a) and (c)) and
for values z0 sufficiently big (if n > 0) or close to zero (if n < 0), level curves of V are entire
graphs on L, hence, the corresponding n-elastic curve is of orbitlike type. The level curves
around the critical points which are centers represent n-elastic curves on which the angle θ
varies in some bounded interval, thus, they are wavelike n-elastic curves. Moreover, there are
orbits approaching saddle critical points and, hence, representing borderline n-elastic curves.

In the case n < 0 and µ = 0 (Fig. 8, (b)), besides orbitlike n-elastic curves (z0 sufficiently
close to zero), we also have catenary-like n-elastic curves when θ0 = 0 for values z0 far from
zero. In this case, there are no critical points and so there are not borderline nor wavelike
n-elastic curves. �

Theorem 6.3 (Case n /∈ Z). Let γ be a n-elastic curve with n /∈ Z. If γ is complete, depending
on the values of µ we have:

(1) Case µ > 0. Then γ is an orbitlike n-elastic curve.
(2) Case µ = 0. Then γ is either an orbitlike or a catenary-like n-elastic curve (the latter

is only possible if n ≤ −1).
(3) Case µ < 0. Then γ is either an orbitlike, a borderline or a wavelike n-elastic curve.

Moreover, for n > −1 and any value of µ, we also have noncomplete n-elastic curves whose
end points intersect the y-line.
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Figure 7. Level curves of V (u, v) for the case n > 0 odd. Here n = 3.
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Figure 8. Level curves of V (u, v) for the case n < 0 odd. Here n = −3.

Proof. We first note that when n ≤ −1 or n > −1 and z0 sufficiently big, level curves are
defined on R. However, for n > −1 and z0 close to zero, level curves meet L at two points (see
Fig. 9 at θ0 = π) and, hence, γ intersects the y-line at two points. This proves the second
statement.

We focus now on complete n-elastic curves, i.e. on level curves defined on R. If µ > 0 (Fig.
9 and 10, (a)), there are no equilibria and level curves are entire graphs on L so we obtain
orbitlike n-elastic curves. The case µ = 0 and n > −1 (Fig. 9, (b)) is similar and we also
obtain orbitlike type curves.
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If µ = 0 and n ≤ −1 (Fig. 10, (b)) there are no equilibria. For z0 small enough we have
entire graphs on L producing orbitlike n-elastic curves, while if z0 is big enough and θ0 = 0,
we have catenary-like n-elastic curves.

Finally, if µ < 0, we may have both centers and saddle critical points. Therefore, a similar
argument as in previous cases shows the existence of orbitlike, borderline and wavelike n-
elastic curves. �
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Figure 9. Level curves of V (u, v) for the case n > 0 and n /∈ Z.
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Figure 10. Level curves of V (u, v) for the case n < 0 and n /∈ Z.

In each of the cases discussed above, we obtained the phase portrait of V using the Mathe-
matica software. The images were generated using the StreamPlot command.
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