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Abstract 

We demonstrate the feasibility of fabricating cost-effective and robust laser-induced graphene 

(LIG) flexible heaters with an innovative technique based on the photothermal production of 

graphene with a foam-like morphology. The produced devices are precisely defined on a bare 

polyimide substrate without the need of photomasks by employing a computer numerical 

control (CNC) driven laser diode. The electrical properties of the LIG-based heaters can be 

tailored by adjusting the laser power. The resulting conductive material exhibits electrical and 

chemical properties which are similar to the ones for graphene such as a negative temperature 

coefficient of -0.46 m°C-1 and a maximum operating temperature of around 400 ºC. The 

developed heaters can outperform the existing emerging technologies showing a very rapid 

and stable response up to 225 ºC with the extra features of flexibility, biocompatibility, and 

environmental friendliness. 

Keywords: CNC laser; flexible; graphene film heater; laser-induced graphene; laser 

ablation; micro-hotplate, polyimide 

1. Introduction 

Heaters are resistive structures operating under the principle of Joule's heating that results in a 

self-heating effect. Tailor-made heating devices that are thin, flexible, mechanically or 
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chemically robust are employed in many different applications ranging from gas sensing to 

microfluidics. In the former case, many gas sensors require high operating temperatures [1], 

[2] or they need to be actively recovered after being exposed to the target gas [3], [4]. For the 

active recovery, the heater is placed under the sensing element to achieve the required 

temperature to drive or to recover the sensor. One example of application can be found for 

microfluidic systems that carry out a polymerase chain reaction (PCR) on nucleotides of 

interest within microfluidic channels: a certain and precise temperature is needed to cultivate 

the biological samples to detect those nucleotides [5], [6]. 

Such devices have been conventionally fabricated based on silicon (Si) micromachining 

technologies [7], [8]. Also, there are examples where heaters have been integrated on porous 

silicon and glass substrates [9], [10]. In the last decades, the interest in flexible electronics has 

substantially been aroused [11]. In the case of the fabrication of heaters on flexible substrates, 

there are unique properties, i.e. mechanical flexibility and lower thermal conductivity, which 

cannot be found for devices based on rigid Si wafers [12]–[14]. For this kind of substrates, 

printing techniques are particularly interesting because of their scalable and low-cost 

fabrication in comparison with photolithography and etching processes that are commonly 

employed for Si-based devices. There are examples in the literature where heaters have been 

manufactured by inkjet printing of silver nanoparticles on polymeric films [15]–[17]. 

However, they are hindered at higher operation temperatures because of the non-stability due 

to electromigration and, in addition, their lifetime is limited by chemical degradation [18]. In 

other works, the use of metal nanowires (MNWs) such as silver (AgNW) and copper 

(CuNWs) nanowires deposited by spray deposition was reported for the production of 

transparent heaters [19], [20].  MNWs represent a very promising new material due to their 

high Figures of Merit (FoM) for the transparency and the sheet resistance that challenges the 

values for ITO. However, MNW-based heaters face important constraints for their use as 

robust and durable heaters [23]: i) CuNWs oxidize below a temperature of 100 °C [21], [22]; 

ii) the electromigration for AgNWs is critical at elevated electrical current densities; iii) the 

fragmentation temperatures for both materials are lowered substantially with regard to the 

melting points for the bulk counterparts. It should be noted that recently some authors have 

successfully considered the use of gold (Au) based heaters to enhance the stability at different 

operating conditions and guarantee biocompatibility, but the material costs obviously pose a 

large obstacle for commercial purposes [23]. In detail, Khan et al. have reported aerosol jetted 

heaters based on Au-nanoparticles on a polyimide substrate that cover an area of around 1 

mm2. Their heaters can operate at temperatures up to 250 °C with a power demand of 22 



mW [24]. These values yield to an increase in temperature over electrical power density of 

around 102 °C cm²/W, which is lowered by around 22% compared to the value reported in 

this work.  

All the aforementioned examples are based on the deposition of a self-heating layer, and 

therefore, requiring additional post-processing techniques, such as drying, curing or sintering 

[25]. In this work, we describe a low-cost and one-step process to integrate heaters directly in 

polymeric films. In particular, we exploit the fabrication process previously described in [26], 

where graphene films with a foam-like morphology (Laser-Induced Graphene, LIG) are 

produced by the photothermal ablation of Kapton® HN (DuPontTM) polyimide using a laser 

diode driven by a CNC unit. As shown in the previous work, the electrical conductivity of the 

film can be tailored by adjusting the laser power. This technique offers four main advantages 

over the existing deposition or printing methods: i) high-precision patterns can be defined on 

the polyimide surface without affecting the unexposed areas and without the need of using 

lithographic masks; ii) the heaters are fabricated directly from the polyimide substrate without 

the need of any chemical reagent, being, therefore, a clean and environmentally friendly 

method; iii) the process is intrinsically inexpensive and scalable; iv) as shown in this work the 

performance of the heaters is very competitive. (Rev#2Com#1) So far, the laser ablation 

process has been utilized to produce graphene films for various applications such as 

supercapacitors [27], [28], polymer-written and on-skin electronics [28], oxygen 

electrocatalysis [29], water oxidation catalysts [30], electrochemical devices [31] and 

desalination [32]. In this work, we apply for the first time this versatile fabrication technique 

for the production of flexible heaters developing a comprehensive study of their structural, 

chemical electrical and mechanical properties. The paper is structured as follows. The 

fabrication method for the LIG films is briefly described in Section 2 along with the 

characterization techniques implemented. In Section 3, the results are presented starting with 

the characterization of the structural, chemical, electrical and thermal properties of the laser-

scribed heaters, including the modelling of its temperature response. Then, the films are tested 

as heaters, and the transient thermal response of the devices is investigated and discussed as 

well as benchmarked with commercial heaters. Finally, the robustness of the heaters is studied 

with respect to their maximum operating temperature, long-term stability and flexibility in 

operation and standing idle. 



2. Materials and methods 

2.1 Fabrication of the LIG films 

The samples were fabricated using Kapton® HN polyimide films with a thickness of 125 µm 

from DuPontTM as substrate and raw material. The conductive patterns were obtained through 

photothermal ablation of this polyimide film using an in-house developed CNC-driven laser 

(Rev#1Com#5) diode from Q-BAIHETM (model: 405ML-300-2290). In particular, the 

substrate was located in a horizontal holder at a distance of 6 cm from the laser head, allowing 

a spatial resolution of about 20 µm at a fixed wavelength of 405 nm. As demonstrated in [26], 

a laser power of 100 mW constitutes the best trade-off between sheet resistance and the 

substrate stability in terms of thermal dissipation. At this power, LIG films with a sheet 

resistance below 250 Ω/sq. were produced without inducing a plastic deformation on the 

substrate. Therefore, all samples were fabricated using this power value. (Rev#1Com#4) The 

sheet resistances were measured using a four-point probe head from Jandel connected to a 

B2901A Keysight source measuring unit (SMU). In order to establish electrical percolation , 

as shown in Figure 4, a constant current of 3 mA was sourced for all measurements. 

2.2 Measurement of the film morphology 

A 3D profile of the LIG film was acquired using a DekTak XT profilometer from Bruker 

(USA). Field-emission scanning electron microscope (FESEM) images were recorded using 

an NVision40 from Carl Zeiss (Germany) at an acceleration voltage of 7.0 kV and an 

extraction voltage of 5.0 kV. 

2.3 Transient electrical and thermal measurements 

For the transient measurements, the LIG films were contacted with copper tape and 

conductive silver paint. The electrical input powers were applied and the data recorded using 

a LabVIEW controlled DC power supply 2200-30-5 from Keithley (USA) with a voltage and 

current resolution of 1 mV and 0.1 mA, respectively. Thermal images were recorded using a 

640x480 px infrared (IR) camera Testo890 from Testo (Germany). Using the software IRSoft 

from Testo (Germany) and a MATLAB script, the temperature transients were extracted from 

processing the IR images. The resulting temperature values represent a mean temperature that 

was determined by averaging over an area on the heaters of around 2x2 mm². An accurate 

emissivity value 𝜀 for the LIG films with 0 ≤ 𝜀 ≤ 1 of 0.75 was determined by placing the 

LIG samples on a hot plate with a set-point temperature of 75 °C. Subsequently, the 

temperature of the LIG film was measured using a contact technique, i.e. a Pt100 



thermoresistor, and the emissivity reading of the IR camera was adjusted such that the camera 

displayed temperature matches the measured one. 

2.4 Bending test 

A custom bending setup was designed and built for the bending tests. The setup consists of a 

LabVIEW 2016 controlled stepper motor (PD4-N5918M4204) equipped with a precision 

planetary gear (GPLE60) from Nanotec (Germany) that slides the movable clamp along an 

aluminum rail. The samples are mounted in the insulating Polyoxymethylene (POM) clamps 

and connected to a LabVIEW controlled Keithley 2700 multimeter from Keithley (USA). For 

the bending tests, the bending speed and minimum bending diameter were kept constant at 

10 mm/s and 4 mm, respectively. 

2.5 X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy (XPS) measurements were performed at a base pressure of 

5·10-10 mbar with a monochromatic aluminum 𝐾𝛼 anode as a x-ray source at an operating 

power of 350 W. The high resolution spectra were acquired using a SPECS Phoibos 

hemispherical analyser at a pass-energy of 20 eV with an energy resolution of 0.05 eV. 

3 Results and discussion 

In this section, we first show the structural, chemical electrical and thermal properties of the 

heaters fabricated by laser ablation of polyimide films. After that, the thermal stability of the 

devices is presented and finally, their response during bending cycles is shown. 

3.1 Structural, chemical, electrical and thermal properties 

Mechanical profilometer scans of the LIG over an area of 1x1 mm² are shown in Figure 1 (a) 

along with the line profiles in (b) x- and (c) y-direction, in accordance with the dashed lines 

drawn to Figure 1 (a). From the height profile and the optical image in the inset in 

Figure 1 (a), the mesh-like structure of the LIG film can be recognized. A mean height of 

18.7 ± 2.2 μm was determined for the LIG lines after considering the data of the indicated x-y 

line profiles. The reticulated pattern of the laser scribing process shown in Figure 1 (a) and in 

the SEM-image below in Figure 7 (c) is a direct consequence of the mechanical step size of 

the utilized CNC unit, which is larger than the spot size of the laser focused on the surface. 

This fact limits the surface coverage and, in turn, the minimum sheet resistance that can be 

achieved. 



 

Figure 1. (a) Profilometer scan for a LIG film on polyimide substrate over an area of 

1x1 mm². The inset shows a microscope image of the same sample. Line profiles in (b) x- and 

(c) y-direction were drawn in accordance with the arrows and dashed lines indicated in (a). 

Further, the chemical alterations that are induced by the laser ablation process have been 

studied by X-ray photoelectron spectroscopy (XPS), which allows extracting concentrations 

for the elements and identifying changes in the carbon-oxygen compounds. Survey scans, as 

well as high-resolution XPS spectra for the C 1s, N 1s and O 1s peak, are shown in the 

supporting information in Figure S1 and Figure S2, respectively. In accordance with the 

expectation that a graphene material is produced, the laser ablation process leads to an 

increase of the relative carbon content from 78% before to 85% after laser ablation, whereas 

the oxygen content decreases from 18% to 10%. Besides the change in the elemental 

composition, also a modification of the carbon-oxygen compounds can be observed. To 

understand this effect, the high-resolution C 1s spectra for the polyimide substrate 

(Kapton® HN) are depicted in Figure 2 (a) before and (b) after laser ablation.  

 

Figure 2. High-resolution XPS spectra for the C 1s core level (a) before and (b) after laser 

ablation. (c) Structural formula for the polyimide substrate (Kapton®HN) with the chemical 

formula 𝐶22𝐻11𝑁2𝑂5. 

Lehrstuhl für Musterverfahren
Fakultät für Mustertechnik
Technische Universität München

Graphite heaters

Longterm stability – 0.5x0.7 cm² kapton heater sample3, 0.56 cm²

x-direction [mm]

y
-d

ir
e

c
to

in
[m

m
]

1.0

0.8

0.6

0.4

0.2

0
0 1.00.80.60.40.2

10

5

0

-5

-10

-15

-20
0.0 0.2 0.4 0.6 0.8 1.0

-20

-15

-10

-5

0

5

10

15

H
e
ig

h
t 

[
m

]

y-direction [mm]

0.0 0.2 0.4 0.6 0.8 1.0
-20

-15

-10

-5

0

5

10

15

H
e
ig

h
t 

[
m

]

x-direction [mm]

   1    1     

   1      0   

   1      1   

100   Inset:

[  ]

(a) (b)

(c)

Height

Lehrstuhl für Musterverfahren
Fakultät für Mustertechnik
Technische Universität München

O

N

OO

OO
N

n(a) (b) (c)

292 290 288 286 284 282 280

0.0

0.5

1.0

1.5

2.0

In
te

n
s
it
y
 [
a

rb
.u

.]

Binding energy [eV]

 raw data

 C-C sp³

 C-O

 O-C-O

 O-C=O

 envelope

292 290 288 286 284 282 280

0.0

0.5

1.0

1.5

2.0

In
te

n
s
it
y
 [
a

rb
.u

.]

Binding energy [eV]

 raw data

 C-C sp²

 C-C sp³

 C-O

 O-C-O

 O-C=O

 -*

 envelope



After a careful comparison of the extensive literature for carbon-related XPS spectra [33]–

[38] including the few reports on Kapton® HN  [39], [40] , the C 1s raw spectra were 

deconvoluted into its different contributions, which are associated with C-C sp² hybridized 

carbon bonds (284.6 eV), C-C sp³ hybridized carbon bonds (285.6 eV), the carbon-oxygen 

compounds C-O (286.6 eV), O-C-O (287.6 eV) and O-C=O (289 eV) as well as 𝜋 − 𝜋∗ 

transitions (291 eV).  For the untreated polyimide substrate, a large contribution of sp³ 

hybridized carbon atoms and carbon-oxygen compounds from the aromatic rings can be seen, 

in accordance with the structural formula of the polyimide shown in Figure 2 (c). 

The extracted concentrations before and after ablation for sp² and sp³ hybridized carbon and 

the carbon-oxygen compounds are summarized in Table S1. From this summary, it can be 

concluded that, after ablation, the concentrations of carbon-oxygen compounds and sp³ 

hybridized carbon decreased, which goes along with the appearance of a large content of sp2 

hybridized carbon. This formation of sp2 hybridized carbon is a clear indication for the 

production of amorphous graphene-derived species [41], [42] and gives rise to the name of the 

material, i.e. laser-induced graphene.  

As previously shown, the laser writing breaks the carbon-nitrogen and carbon-oxygen 

compound bonds, i.e. C-N, C-O-C, and C=O, that are the main contributions for the 

polyimide substrate [26]. The observed decrease in the portion of oxygen-containing carbon 

compounds is also in agreement with the overall decrease in oxygen species shown in the 

high-resolution spectra in Figure S2. 

Next, the electrical properties of the LIG material are explored. For this, the I-V curves for 

two LIG heaters with different active areas were recorded and displayed in Figure 3 (a). From 

the relatively constant resistance-current behavior shown in Figure 3 (b), it can be recognized 

that the LIG heaters show an ohmic behavior. Both LIG films were fabricated using the same 

parameters and show a sheet resistance of around 250 Ω/sq. The difference in resistance of 

the LIG films arises due to the different electrode dimensions that are formed after contacting 

with copper tape and conductive silver paint.  However, two additional effects can be 

identified: i) the resistance shows a drastic drop for low currents and ii) the resistance is 

slightly and gradually lowered for increasing currents. The first effect can be ascribed to the 

onset of electrical percolation that requires a finite current density, whereas the latter effect 

can be explained by the current induced heating of the LIG film. The increase in temperature 

leads to a reduction in resistance and will be discussed later. 



 

Figure 3. (a) Current-voltage (I-V) curves for two LIG films with different heated areas on a 

polyimide substrate. (b) Resistances for the two LIG films as a function of the sourced 

current. 

Next, the onset of electrical percolation was studied in more detail; Figure 4 shows the 

resistance of a LIG heater for step-wise increases of the current as a function of time. The first 

finite resistance of around 328 Ω could be recorded around a current of 0.59 mA, which 

corresponds to a current density of 5.9 A/m². For increasing currents and current densities of 

10 mA and 100 A/m², respectively, the measured resistance value shows a reduction of 

around 26% compared to the first recording, leading to a resistance of 243 Ω. The drop in 

resistance is not ascribed to the resistance-temperature behavior that, for graphitic materials 

yields to a negative temperature coefficient [43], but to the requirement for a finite current 

density to establish electrical percolation. This effect has already been observed by Bellew et 

al. [44] who contacted individual silver nanowire junctions and found a current of around 1 – 

10 μA to be required to establish percolation. In their work, this effect was compared with the 

electroforming process in resistive switching materials that is required to generate an initial 

conductive state [45]. 
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Figure 4. Resistance and current of a LIG film as a function of the time. The measurement 

was conducted to study the percolation onset of LIG films at low currents. 

The transient response of LIG based thin film heaters for increasing powers is shown in 

Figure 5 for (a) the temperature and (b) the resistance. It can be recognized that the resistance 

response follows the overall trend of the temperature response. The rise in temperature as a 

function of the effectively heated area of the LIG film/polyimide substrate is illustrated in 

Figure 5 (c) and shows an almost linear behavior with a slope that yields to 131 ± 5 

°C·cm2/W. This value compares well or it is superior to the ones reported for AgNWs 134 -

179 °C·cm2/W [46], [47], ITO (88 – 388 °C·cm2/W) [47]–[49], or CNTs (27 – 212 

°C·cm2/W) [50]–[52].  

 

Figure 5. Transient (a) thermal and (b) resistance curves for a LIG heater on a polyimide 

substrate. The actively heated area is 1 cm². The labels in (a) at the saturation temperatures 
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correspond to the IR-images (e-j) extracted for each power step. (c) Temperature as a function 

of the applied electrical power density for two LIG heaters. The solid line represents a linear 

fit to the experimental data. (d) Normalized resistance R/R0 for two LIG films as a function of 

the mean temperature of the heated film. The solid line represents a linear fit to the 

experimental data. IR-images of a LIG film heater with an actively heated area of 1 cm² for 

increasing power densities of (e) 0.2, (f) 0.4, (g) 0.6, (h) 0.8, (i) 1.0 and (j) 1.4 W/cm². The 

area of around 2x2 mm² that was used to determine a mean value for the temperature is 

indicated as dashed white square in (e). The scale bar in (e) also applies to the images (f-j). 

Subsequently, the transient thermal response depicted in Figure 5 (a) is modeled and the total 

heat transfer coefficient h is determined. (Rev#1Com#1) The coefficient h is composed of a 

convective heat loss hC and a radiative heat loss hR. For simplicity and in agreement with 

previous works [52], [53], it is assumed that the radiative losses per unit time 𝑃R, which are 

described by the Stefan-Boltzman law below, can be linearized with regard to the temperature 

as follows: 

𝑃R  𝜖 ∙ 𝜎 ∙ 𝐴(𝑇
4 − 𝑇0

4)  𝜖 ∙ 𝜎 ∙ 𝐴(𝑇2 + 𝑇0
2)(𝑇 + 𝑇0)(𝑇 − 𝑇0)  𝐴 ∙  R(𝑇 − 𝑇0) (1) 

where 𝜖 denotes the emissivity, 𝜎 the Stefan-Boltzmann constant, 𝐴 the area of the heater, 𝑇 

the temperature on the heated side, 𝑇0 the ambient temperature and  R the radiative heat 

transfer coefficient, respectively. Similarly to previous publications,  R is considered to be a 

constant since the convective heat losses (Rev#1Com#1) that also rise linearly with the 

temperature [46] are the dominating. This assumption eases the derivation of a simple 

analytical solution for the differential equation below. The temperature response can be 

modelled by considering the in- and outgoing heat fluxes at the film-heater/air interface, as 

sketched in Figure S4, for the ON state: 

 p ∙ 𝜌 ∙ 𝑉 ∙ d𝑇  𝑃el ∙ d𝑡 −   𝐴(𝑇 − 𝑇0)d𝑡                      (𝑃el > 0) (2) 

where  p denotes the isobaric specific heat capacity, 𝜌 the mass density and 𝑉 the volume of 

the polyimide film, respectively, and 𝑃el the electrical input power. For the OFF state, i.e. 

without electrical input power, Eq. 2 is reduced to: 

 p ∙ 𝜌 ∙ 𝑉 ∙ d𝑇  −  𝐴(𝑇 − 𝑇0)d𝑡                                     (𝑃el  0) (3) 

A factor of 2 is included to consider the front and the back sides of the film heater. For Eq. 2 

and 3, simple analytical solution can be derived, as follows: 

𝑇(𝑡)   𝑇0 +
𝑃el
  𝐴

(1 −  
−
2ℎ𝐴
𝑐p∙𝜌∙𝑉

∙(𝑡−𝑡on)
)  𝑇0 + 𝑇diff (1 −  

−
(𝑡−𝑡on)

𝜏 )     (𝑃el > 0) (4) 



where 𝑡on denotes the on-switching time, 𝑇diff the increase in temperature due to heating and 

𝜏 the response time, which is defined as 𝜏    p ∙ 𝜌 ∙ 𝑉  𝐴    p ∙ 𝜌 ∙ 𝑑  , where 𝑑 denotes 

the thickness of the heater. For the off-state, following expression is derived: 

𝑇(𝑡)   𝑇0 + (𝑇sat − 𝑇0) 
−
(𝑡−𝑡off)

𝜏                                    (𝑃el > 0) 
(5) 

where 𝑡off denotes the off-switching time. Eq. 4 and 5 were used to fit the experimental data 

for the transient thermal response of the LIG heater shown in Figure 5 (a). The results are 

drawn in Figure S3 as bold red lines (ON state) and dashed red lines (OFF state) for all the 

electrical powers and in the inset in Figure 6 (b) exemplarily for three different powers. The 

fitting of the experimental data allows determining 𝜏 for the ON and the OFF state of the 

heater, as plotted in Figure 6 (a). 𝜏 is defined as the time it takes until the temperature of the 

heater increases by ( − 1)  ∙ 100% ≈   % with respect to the absolute temperature 

increase 𝑇diff. From Figure 6 (a) it can be concluded that 𝜏OFF for the OFF states of the heater 

stays in a narrow range from 18 s to 22 s for all temperatures, whereas 𝜏ON for the ON states 

is gradually decreasing from around 20 s to 8 s, in a temperature range from 50  to 207 °C. 

This deviation for 𝜏OFF and 𝜏ON was reported by Ji et al. in a previous study on thin-film 

heaters. It can be attributed to the oversimplified Eqs. 4 and 5 that are based on the 

assumption that the temperature dependence of  p, 𝜌, d and h can be neglected. The 

temperature dependence of the heat loss h shown in Figure 6 (b) is solely determined by 𝑇diff, 

in accordance with Eq. 4. For our heaters, h lies in a range of 35 to 39 W/m²K and gradually 

increases over a temperature range of 50 to 207 °C. These values for h compare well to the 

ones reported in the literature for carbon-based film heaters made of multi-walled CNTs on 

PET (22 W/m²K) [54], single-walled CNTs on glass (33-100 W/m²K) [51], and CNT/AgNW 

composite (11-18 W/m²K) [55]. In agreement with Eq. 4, for a constant electrical power, a 

low h leads to a high saturation temperature but a low heat transfer to the surroundings via 

radiation or conduction. 
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Figure 6. (a) Response times 𝜏 for the ON and the OFF state of the LIG heater shown in 

Figure 5 (a), defined in accordance with Eqs. 5 and 6, as a function of the saturation 

temperatures. (b) Heat loss coefficients for increasing saturation temperatures, extracted from 

fitting Eq. 4 to the transient thermal responses illustrated in Figure 5 (a). The inset in (b) 

depicts fits (bold and dashed red lines) of the Eqs. 4 and 5 to the experimental data. 

The temperature-dependent resistance R normalized with respect to the ambient resistance R0 

at ambient temperature T0 is illustrated in Figure 5 (d). The R-T curve shows a linear 

dependence from slightly elevated temperatures of around 50 °C on, which yields to a 

temperature coefficient of α = -0.46 ± 0.04 m·°C-1 that was extracted in accordance with the 

simple empirical formula: 

𝑅(𝑇)  𝑅0(1 + 𝛼(𝑇 − T0)) (1) 

The extracted temperature coefficient is negative, as reported for polycrystalline graphite 

below a temperature of 1400 °C [56], and compares well to the literature values for graphite 

and graphene of around -0.5 m·°C-1 [57], [58], for both materials. At this point, it should not 

be omitted that the resistance shows a large drop of around 3.3% in the temperature range of 

25 – 50 °C, which does not fit to the lower and linear decrease for 𝑅 𝑅0 of around 6.5% in the 

temperature range 50 – 175 °C. This behaviour is in good agreement with the finding from 

Figure 4, where a minimum current density is required to establish good electrical percolation. 

The IR-images that are used to produce the transient temperature curves are depicted in 

Figure 5 (e-j) for different electrical energy densities up to 1.4 W/cm². From these Figures, it 

is evident that the temperature distribution across the actively heated area is relatively 

homogeneous and shows a drastic drop at the LIG-polyimide transition. 

3.2 Thermal stability 

After studying the structural, electrical and thermal properties of the LIG heaters, their 

thermal stability will be investigated with regard to i) their maximum operating temperature 

and ii) their stability under prolonged operation for increasing current densities. To study the 

maximum operating temperature and in turn also the maximum electrical input power density, 

the normalized resistance 𝑅 𝑅0 shown in Figure 7 was recorded as a function of the time for 

step-wise increases in (a) the temperature that is induced by step-wise increases in (b) the 

applied power densities. For the change in resistance, two regimes that are indicated in 

Figure 7 (b) can be identified: i) an operation regime that can be considered as stable since 

the resistance shows a step-wise and ii) linear decrease in resistance with temperature, in 

accordance with the temperature coefficient extracted from Figure 5 (d). In this region, the 

temperature and power density range is around 25 – 200 °C and 0 – 2.3 W/cm², respectively. 



For a temperature and power density range of 200 – 400 °C and 2.3 – 4.5 W/cm², 

respectively, the heaters undergo a gradual degradation that is accompanied by an increase in 

resistance. Around an electrical power density of 4.5 W/cm² and a temperature of 400 °C, 

𝑅 𝑅0 shows an abrupt increase and ultimately electrical breakdown for slightly higher power 

densities. As shown in the SEM-images in Figure 7, this breakdown is accompanied by a 

change in morphology of both (c) the raw substrate and (d) the LIG film. It is evident that the 

maximum operation temperature is limited by the polyimide substrate, which is reported to be 

stable up to a temperature range of 300 – 400 °C [59], [60], in accordance with the literature 

and up to 400 °C, according to the manufacturer. In contrast to polyimides, purely carbon-

based allotropes exhibit a higher thermal stability. From thermogravimetric (TGA) analysis, 

graphite has shown to be stable up to a temperature of around 550 °C, under air flow [61], 

whereas, from Raman measurements, mono- and bilayer graphene start to show defects 

around a temperature range of 500 – 600 °C [62]. Further, an important difference in the 

thermal properties is the linear thermal expansion coefficient, which is reported in the range 

of (32 – 44)·10-6/°C for polyimide and -8·10-6/°C for graphene, both at room 

temperature [63], [64]. Since, on the one hand, the thermal expansion of the polyimide 

substrate is at least a factor of 5 higher than for the LIG films; the rupture of the LIG line 

shown in Figure 7 (d) is induced. On the other hand, the robust LIG mesh clings together the 

expanding polyimide substrate and induces a mechanical stress, which results in the 

polyimide cracks visible in Figure 7 (c). The onset of the electrical breakdown is further 

studied from the IR-images shown in Figure 7 that capture the moment of breakdown with 

respect to fully the operational device with no change in the heat distribution (Figure 7 (e)), 

1 min after the onset of rapid degradation, 2 min later and after 3 min (Figure 7 (f)-(h), 

respectively). The LIG film is burnt off on the top section (Figure 7 (f)), whereas the overall 

breakdown occurs on a timescale below 3 min. The maximum achieved operation temperature 

under ambient conditions of around 400 °C for the LIG film heaters is superior to the one 

reported for other novel film heater materials. For example, heaters based on AgNWs show 

fragmentation in the range 250 – 300 °C [19], [65], [66] and those made of CuNWs readily 

oxidize above 100 – 150 °C [20], [21]. In addition, graphene and its derivatives are known for 

their high chemical stability, which is comparable to the one of diamond at atmospheric 

pressure [67]. 



 

Figure 7. (a) Normalized resistance R/R0 and temperature for two LIG film heaters as a 

function of the time. (b) Normalized resistance R/R0 and power density for two LIG film 

heaters as a function of the time. SEM-images for a degraded LIG film heater that show (c) 

the rupture of the polyimide substrate and (d) the damaging of the LIG lines. (e-h) IR images 

that depict the moment of breakdown for a LIG film heater in time steps of 1 min between 

two adjacent images. 

Next, the degradation of the LIG films is studied for prolonged operation under current flow, 

as depicted in Figure 8 (a) that shows the resistance of a LIG heater as a function of the 

operation time for increasing power densities. For each power density, 8 heating steps with a 

duration of 2 h are followed by cooling steps with a duration of 30 min. The change in 

resistance after each heating cycle with respect to the initial resistance is shown in 

Figure 8 (b) as a function of the number of cycles for increasing power densities. This plot 

allows a rough classification of the heater into different degradation regimes. For a power 

density of up to 1.8 W/cm² that corresponds to a temperature of 225 °C, the change in 

resistance lies below 4%, whereas, for power densities above 2.7 W/cm² corresponding to a 

temperature of 250 – 275 °C, the change is more pronounced, as highlighted by the 

percentage values in Figure 8 (b). 
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Figure 8. (a) Long-term stability test for a LIG film heater that is subjected to increasing 

power densities. In total, 8 cycles with 2 h heating and 0.5 h cooling per cycle were conducted 

for each power density step. (b) Normalized increase in resistance Roff/R0 for increasing cycles 

and power densities. Roff denotes the resistance in the off state of the film heater after one 

heating cycle. 

The increase in resistance for prolonged operation of the LIG films can be attributed to two 

effects: i) mechanical and ii) chemical degradation. The mechanical degradation is induced by 

the large thermal expansion coefficient of the polyimide substrate that leads to a rupture of the 

LIG lines, which is gradually increasing over time. The chemical degradation is induced by 

the oxidation of carbon. The thermal behavior under air flow and elevated temperatures of 

carbon-based materials such as fullerenes (C60 and C70), diamond, carbon nanotubes and 

graphene was the subject of previous studies [68]–[73]. In summary, the thermal robustness of 

those materials can be grouped as follows: 

Diamond, nanotubes > graphene > C60 > C70 

From TGA measurements, Cataldo et al. observed a clear onset of the reactivity between O2 

molecules and graphite in a temperature range of 400 – 500 °C [61]. This range is slightly 

higher than the temperatures that were investigated for a long-term test in this study. 

However, it is likely that the carbon atoms in the LIG heaters undergo a slow but gradual 

chemical degradation even below 400 °C.  

3.3 Flexibility and adhesion 

Flexible heaters can e.g. be used for wearable electronics such as for wearable articular 

thermotherapy, as proposed by Choi et al. in 2015 [74].  So far, flexible thin-film heaters were 

fabricated using solution-processed metal nanowires such as AgNWs [75], graphitic materials 

such as graphene [49], [76] and CNTs as well as composite materials such as AgNWs/CNTs 

[55] or AgNWs/PEDOT:PSS [47]. In detail, the utilized flexible materials were polyimide 
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[76], PDMS [77], PET [55], PEN [78] and a polyacrylate-based polymer [79]. The novelty in 

this study is that the heaters are directly produced on a bare polyimide substrate, which 

inherently guarantees that the active film adapts the shape of the underlying substrate. This 

circumstance should aid to improve the flexibility of the fabricated devices. It should be noted 

that, for the presented heaters, it is mainly important to achieve a uniform LIG film and, 

hence, a uniform heat flux and temperature distribution across the device. Thus, novel flexible 

and eventually also semi-transparent heaters are often fabricated by scalable spraying 

processes. In the case of metal nanowires, this process results in the formation of a random 

nanowire mesh that uniformly conducts [19], [20], [80]. Besides spray coating, other 

deposition techniques such as drop casting [81], vacuum filtration [77] or spinning [54] were 

also reported for the fabrication of self-heating films. However, these techniques possess large 

drawbacks like the lack of homogeneity and scalability. In the end, it should be emphasized 

that the versatile CNC-driven fabrication process can also be utilized to form more complex 

structures such as graphene-based and biocompatible interdigitated electrodes (IDEs) to 

fabricate biosensors, self-recovering sensors, or environmental and health monitoring 

systems [82]. In this work, the flexibility of the presented devices was studied for subsequent 

bending cycles, as shown in Figure 9 that depicts the change in resistance R with respect to 

the initial resistance R0 for an increasing number of bending cycles. Photos for (a) the relaxed 

and (b) the bent state of the film heater with a minimum bending diameter of 4 mm are shown 

in the inset of Figure 9. It can be recognized that even after 10000 bending cycles, the change 

in the normalized resistance is below 4%. (Rev#1Com#5) It should be mentioned that there 

exist enormous future opportunities for flexible heaters such as for wearable devices or low-

cost point-of-care chips for combinatorial studies [83]. (Rev#1Com#4) For the multimeter 

measurement, a probe current of 3 mA was passed through the device to establish a good 

electrical percolation, in agreement with Figure 4. However, of interest is also the stability of 

the devices in operation, i.e. when subjected to high electrical currents or power densities. For 

this, the same bending experiment was performed at an electrical input power density of 

1 W/cm², as shown by the IR images in the inset of Figure 9 that depicts the LIG heater in (c) 

the relaxed and (d) the bent state. No increase in resistance or change in the IR-images could 

be observed after 100 bending cycles (see supporting information video S1). 



 

Figure 9. Change in resistance R with respect to the initial resistance 𝑅0 for an increasing 

number of bending cycles. The sample under test is bent to a minimum diameter of around 

4 mm. For this test, only a small probe current was applied. The inset (a) and (b) show the 

sample in the relaxed and bent position whereas the insets (c) and (d) show the infrared 

images for the LIG heater in the relaxed and bent position, respectively, subjected to an 

electrical power of 1 W. 

4 Commercialization potential 

Before concluding our work, we would like to emphasize the commercial potential of the 

laser-scribing technique in combination with the proposed substrate for manufacturing cost-

effective heaters. For this, nanographene heaters with an area of 7 x 5=35 cm² were 

fabricated, as shown in Figure 10 (a), and compared with a commercial heater based on metal 

serpentine-structures that is depicted in Figure 10 (b). The patterned areas of the heaters are 

identical. For both heaters, polyimide was employed as the substrate. Electrical contacts to the 

nanographene heater were formed by screen printing a solution-based silver paste (Loctite 

1010). Next, the two types of heaters are compared with each other with regard to the 

homogeneity of their heat distribution, which is depicted in Figure 10 for (c) the 

nanographene heater and (d) the commercial heater 3616107 from thermos technologies 

(Germany), at an electrical input power of 3.5 W. From these images, it can be seen that our 

nanographene heater shows a high uniformity, whereas for the commercial heaters, hot areas 

are formed. (Rev#1Com#2) The presented LIG heaters can be fabricated under ambient 

conditions, whereas common thin film heaters are typically produced under high-vacuum, 

which is very costly and difficult to realize for larger areas [84], [85]. Besides the 

homogeneous heat distribution of the nanographene heater and the facile fabrication process, 
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another advantage over the commercial one is its robustness to mechanical stress. For the case 

that the serpentine-like structure of the commercial heater is interrupted at some position, the 

heater is broken, whereas the nanographene heater can still be operated with a reduction in 

uniformity of the heat distribution and, eventually, also an increase in resistance. From an 

economic point of view, the laser-scribed heaters are also attractive since they are around a 

factor of 31 cheaper than the commercial ones (see supporting information for this 

estimation). Finally, despite of the already very promising robustness, it should be mentioned 

that our heaters are susceptible to scratching. However, we believe that this issue can easily be 

solved by employing polymer-based coatings such as polymethyl methacrylate (PMMA) [21] 

or parylene [86], which have widely been reported for encapsulation. 

 

Figure 10. Photographies of (a) a photothermally scribed nanographene heater with screen 

printed and silver-based bias electrodes and (b) a commercial polyimide heater. Infrared 

images for (c) the nanographene and (d) the commercial heater. 

5 Conclusion 

In this paper, we describe the manufacturing of flexible and cost-effective heaters by an 

innovative and simple laser-scribing process on bare polyimide films. This technique offers a 

reproducible and easy fabrication process, which modified the electrical properties of such a 

polyimide. (Rev#1Com#3) In contrast to commercial flexible heaters, the LIG heaters show a 

much higher heat uniformity and can be fabricated under ambient conditions. The resulting 

material shows electrical properties comparable to the ones of graphene, such as the 

temperature coefficient. In particular, the fabricated heaters can operate up to 400 ºC, only 

limited by the mechanical stability of the substrate. These devices have a very stable response 

up to 225 ºC, even while bending them. The temperature response of around 131 Wcm²/°C, 

when subjected to Joule heating, compares well or is even superior to most values reported in 
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the literature. Besides, an efficient generation of high temperatures at low input powers, an 

important parameter for sensing applications is also the response time, which is around 8 s for 

electrical input power densities up to 1.4 W/cm². 

Furthermore, the films are low-cost, environmentally friendly and the flexible heaters can be 

directly integrated on the substrate by laser-scribing, without requiring any extra fabrication 

steps such as thermal or photonic sintering. All these features open a wide range of 

possibilities for the presented devices that can be integrated easily in biosensor systems, 

environmental and health monitoring applications, reducing fabrication costs and complexity 

and at the same time providing a high performance. 
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The XPS survey scans over an area of around 5x5 mm² for polyimide substrate (black) before and 

(red) after laser ablation are depicted in Figure S1. The C 1s, N 1s and O 1s core level peaks that are 

associated with carbon, nitrogen, and oxygen-containing specimen, which are all present in the 

polyimide film, can clearly be identified. 

 

Figure S1. XPS survey scan for polyimide Kapton® HN (DuPontTM) substrate before (black) and 

after laser ablation (red). The relevant core-level peaks O 1s, N 1s and C 1s that are associated with 

oxygen, nitrogen, and carbon species are indicated by arrows. 

XPS high-resolution scans are shown in Figure S2 for the (a) C 1s, (b) O 1s and (c) N 1s peak along 

with (d) the concentrations for each element. The concentrations were determined by considering the 

relative sensitivity factors (RSF) for the C 1s, O 1s and N 1s peaks of 0.25, 0.66 and 0.42 [1], 

respectively. All spectra were normalized by their area and weighted with the determined 

concentration of the respective element. From table (d) it can be concluded that the concentrations 

extracted for the polyimide film are in very good agreement with the concentrations expected by 

considering the chemical formula of polyimide, i.e. C22H11N2O5. For this estimate, the hydrogen 

content was neglected since it cannot be resolved by XPS. The experimentally determined 

concentrations for nitrogen are lower than expected, which can be attributed to residual contamination 

and a thin water layer that is present on most films. The contamination and water film contribute to an 

increase in the C 1s and O 1s signal, which in turn leads to a decrease of the N 1s signal. 
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Figure S2. High-resolution XPS spectra for the (a) C 1s, (b) O 1s and (c) N 1s peaks before black and 

after laser ablation (red). (d) Table that summarizes the concentrations for carbon, oxygen and the 

nitrogen-related specimen in the polyimide sample i) before, ii) after ablation and iii) the expected 

values, in accordance with the chemical formula. 

Table S1. Summary for the different contributions of the deconvoluted C 1s raw spectra shown in 

Figure 2. 

 Concentrations 

Contributions C-C sp²  

(284.6 eV) 

C-C sp³  

(285.6 eV) 

C-O  

(286.6 eV) 

O-C-O 

(287.6 eV) 

O-C=O 

(289 eV) 
𝜋 − 𝜋∗ 

(291 eV) 
Polyimide 0% 71.9% 7.6% 13.4% 7.1% 0% 

LIG film 56.6% 24% 7.2% 4.0% 5.8% 2.4% 
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Figure S3. Transient thermal temperature responses of the LIG heater shown in Figure 5 (a). In 

agreement with the Eqs. 4 and 5, the analytical expressions of the temperature-time dependence for the 

ON (bold red line) and the OFF (dashed red line) states were fitted to the experimental data. 

 

Lehrstuhl für Musterverfahren
Fakultät für Mustertechnik
Technische Universität München

Graphite heaters

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

25

50

75

100

125

150

175

200

225
T

e
m

p
e

ra
tu

re
 [

°C
]

Time [min]

 0.2 W

 0.4 W

 0.6 W

 0.8 W

 1.0 W

 1.4 W

 ON (model)

 OFF (model)



 

Figure S4. Schematic of the LIG heater that shows the structure as well as the heat losses composed 

of radiative and convective losses. The in- and outgoing powers are indicated by the red arrow and the 

blue arrows, respectively, in agreement with Eq. 3. 

 

Estimation of the LIG heater costs: 

The commercial polyimide heater was purchased from www.conrad.de (order number: 1594183 – 

62) for 20.38 €. The price for the polyimide foil purchased from www.cshyde.com is around 

0.014 €/cm², whereas the CNC unit costs 160 €. The power consumption can be neglected for a cost 

estimate. Considering an area of 35 cm² for the heaters the fabrication of a total of 10.000 units, the 

price per heater can be estimated to be 0.65 €, which is around a factor of 31 lowered than the price for 

the commercial heater. 

http://www.conrad.de/
http://www.cshyde.com/

