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ABSTRACT 

 

Time series statistical analyses (TSSA) have been employed to evaluate the 

variability of resistive switching memories, and to model the set and reset voltages for 

modeling purposes. The conventional procedures behind time series theory have been 

used to obtain autocorrelation and partial autocorrelation functions and determine the 

simplest analytical models to forecast the set and reset voltages in long series of 

resistive switching processes. To do so, and for the sake of generality in our study, a 

wide range of devices have been fabricated and measured. Different oxides and 

electrodes have been employed, including bilayer dielectrics in devices such as: 



2 
 

Ni/HfO2/Si-n+, Cu/HfO2/Si-n+ and Au/Ti/TiO2/SiOx/Si-n+. The TSSA models obtained 

allowed to forecast the reset and set voltages in a series if previous values were known. 

The study of autocorrelation data between different cycles in the series allows 

estimating the inertia between cycles in long resistive switching series. Overall, TSSA 

seems to be a very promising method to evaluate the intrinsic variability of resistive 

switching memories. 

 

Index Terms—Resistive switching memory, RRAM, Conductive filaments, 

Variability, Time series modelling, Autocovariance, Stationary time series.  

 

 

1 - INTRODUCTION 

 

Resistive random access memories (RRAM) have shown an outstanding 

potential for information storage, especially for internet of things (IoT) and related 

applications, due to their excellent scalability, low power operation, fast switching 

speed, easy fabrication and good compatibility with the well-established complementary 

metal-oxide-semiconductor (CMOS) technology [1, 2, 3, 4, 5, 6, 7]. The most promising 

RRAM unit cells consist of matrixes of two-terminal metal/insulator/metal (MIM) 

nanocells, in which the electrical resistance of the insulating film can be switched 

between a high resistive state (HRS) and a low resistive state (LRS) depending on the 

electrical impulses applied between the two metallic electrodes. However, after more 

than one decade of intense research, RRAM devices still have not been mass produced 

by the industry, nor entered in the market of non-volatile memories (NVM), mainly due 

to variability problems [1, 2, 5, 8, 9, 10]. In RRAM devices the resistive switching (RS) 
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is related to the formation and rupture of defect-rich conductive filaments (CFs) within 

the dielectric layer, which leads to a HRS-to-LRS (set) and a LRS-to-HRS (reset) 

transition (respectively). Set and reset transitions are related to diffusion, redox and 

nucleation of different chemical species within the MIM nanocells [1, 2, 5, 7, 10], 

which take place with a very high degree of randomness from one cycle to another, 

leading to an intrinsic high variability. Consequently, the electrical characteristics 

measured in a RRAM device reflects the stochasticity of these physical processes, and 

produces the so-called cycle-to-cycle variability.  

In the past few years, the variability of RRAM devices has been statistically 

analysed in most cases using the Weibull distribution (WD) [1, 11, 12]. The WD comes 

out in the field of reliability physics [13] and its use makes sense for RRAMs under 

filamentary conduction since it is a weakest-link type distribution, i.e. the failure of the 

whole is dominated by the degradation rate for the weakest element. However, this 

method does not describe all the inherent statistical particularities of RRAM devices: 

and although it has been previously employed to deepen on the experimental data 

characteristic obtained for different technologies [1, 11, 12], it does not entirely capture 

the essence of the RS process. In fact, classical reliability analyses with the Weibull 

distribution assume that times to failure, in our case set voltage (VSET) and/or reset 

voltage (VRESET), are independent within a RS series. This assumption may not be valid 

in the case of stochastic processes associated with RRAMs because successive 

observations could be highly dependent (in fact, a CF is formed making use of broken 

parts of previous ones). It is worth highlighting that other mathematical approaches 

have been proposed to tackle different facets of the statistical study of variability in 

RRAMs and, in a more general scope, thin dielectrics. Among them, the use of a 

clustering statistical approach complementing the use of the WD [14] can be counted; in 
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line with this, convolution-based modelling is also interesting being noticed [15]. 

Strategies making use of completely different distribution functions have also been 

reported; for example, the employment of phase-type distribution functions for certain 

devices led to interesting results [16]. Markov models have also been employed in the 

analysis of these devices [17, 18]. Kinetic Monte Carlo (KMC) and related simulations 

can also be considered as statistical tools to analyse RRAM variability, as they allow 

modifying very specific physical parameters of the devices (i.e. concentration of atomic 

vacancies/dopants, insulator thickness fluctuations) within a reasonable range and 

analyse the deviation of the electrical characteristics. A broad number of contributions 

have been presented in this respect [10, 19-25]. The only drawback of KMC simulations 

is the longer computational time, which obligates researchers to make assumptions that 

simplify the calculations, leading in some cases to a loss of accuracy.  

It is clear that variability is still an unresolved problem in RRAM devices both 

from the technological and the modelling viewpoint, and developing new analytical 

methods to shed light into this problem is highly necessary. Times series statistical 

analyses (TSSA) are powerful numerical methods that have been successfully applied 

for decades in the fields of economics and sociology, and more recently they have been 

also sporadically used in the field of engineering and reliability of electronic devices 

[26-27]. TSSA may be useful to analyse the variability of RRAM devices because: i) 

the data (VSET and VRESET) are collected in a continuous manner over the time (cycle-to-

cycle) for a long RS series [28-29]; ii) TSSA is appropriate for physical processes that 

exhibit any kind of inertia in some of their particular features [30, 31]. In this respect, in 

RS cycling, the CF is formed (set process) making use of the remnants of the CFs 

ruptured in the previous cycle (reset process). Therefore, from a statistical point of view 

it is relevant to analyse any numerical relations between neighbouring cycles and assess 
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the system “memory” in a long RS series (to put it in formal words, the parameters that 

characterize consecutive cycles in a RS series can be correlated and, therefore, the term 

autocorrelation comes up naturally). And iii) under certain mathematical conditions (i.e. 

time series stationarity, an assumption that our data distributions fulfil) a comprehensive 

analysis can be performed through a time series analysis approach [30, 31]. However, 

despite this strong parallelism, to the best of our knowledge, TSSA have never been 

employed to evaluate the variability of RRAM devices. In this work we present the first 

variability study of three different types of RRAM devices using the TSSA, and observe 

that in all cases essential RS parameters, such as VSET and VRESET, can be reasonably 

forecasted making use of mathematical models and the information of these parameters 

in previous cycles. In addition, in long RS series the dependence of forthcoming cycles 

on previous ones can be correctly studied by means of correlation and autocorrelation 

analyses, characterizing in this manner the inertia of RS operation in RRAMs for 

different technologies.   

The manuscript is organized as follows: in Section II the new model is described 

in depth, in Section III the fabricated devices and measurement process details are 

given, in Section IV the new statistical analysis is explained, and in Section V the main 

results and discussion are presented. Finally, the main conclusions are drawn in Section 

VI. 
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2 – MODEL DESCRIPTION 

 

Back in 1927, G.U. Yule introduced modern TSSA formulating a model for a 

pendulum dynamic movement time dependency [32]. After rearrangements in the 

corresponding equation describing the pendulum movement he came out with a second 

order autoregressive time series model where the pendulum displacement (zt) from the 

equilibrium position was regressed on the two previous observations (zt-1) and (zt-2) —

the physics governing the pendulum is linked to a second order differential equation—. 

In our study, we model the values of VSET and VRESET of different RRAM devices over 

long series of RS cycles by considering the values of previous cycles using TSSA [30, 

31, 33]. One of the main difficulties is to find the order of the model, i.e. how many 

VSET or VRESET values from previous cycles we need to forecast the current cycle (for a 

general model previous cycles are usually considered, see Equation 1). In addition, it is 

also necessary to find the weights (Φ1…Φp) of the autoregressive model we are seeking 

(see Equation 1). 

 

𝑉𝑟𝑒𝑠𝑒𝑡𝑡
= Φ1𝑉𝑟𝑒𝑠𝑒𝑡𝑡−1

+ Φ2𝑉𝑟𝑒𝑠𝑒𝑡𝑡−2
+ ⋯ + Φ𝑝𝑉𝑟𝑒𝑠𝑒𝑡𝑡−𝑝

+ 𝜀𝑡 (Eq. 1) 

 

The order of the model (p) depends on the physics governing RS, but we will not 

assume any knowledge of it and we will only make use of the information within the 

experimental data because the underlying physics and the technological details of the 

fabrication process are “hidden” in the RS data collected. Therefore, the models 

obtained with this approach are empirical and the TSSA output will consist of the order 

of the model (p) and the weights set (Φ1, ..., Φp). Sometimes a model such as the one 
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described in Equation 1 works better for the centred variables; e.g., 𝑉𝑅𝐸𝑆𝐸𝑇 − 𝜇, where µ 

stands for VRESET mean in the RS series (this formulation is equivalent to include a 

constant term Φ0 in the model). The term εt, as usually employed in time series studies, 

stands for a residual that accounts for the model error (the difference between the 

measured value and the modelled value). This term is obtained in TSSA theory by 

generating random numbers with a normal distribution whose variance corresponds to 

the one calculated from the measured data. Nevertheless, for the sake of simplicity, this 

term will not be included in the models developed here, following the conventional 

notation in the engineering context. In this approach, the algebraic equations are 

employed in the form usually seen in compact modelling, i.e., the current value of reset 

or set voltages are given as a function of variables already known, such as reset and set 

voltages of previous cycles. The existence of a difference between the measured and 

modelled values is assumed. Equation 1 shows what is called an autoregressive (AR) 

model [30]; however, not always such an easy model can be obtained. Occasionally 

more complex models are needed; if this is the case, an autoregressive moving average 

(ARMA) model that includes AR and moving average (MA) parts are considered [30]. 

MA models are a linear combination of past residuals [30-32]. The general expression 

of an ARMA model is described in the Supplementary Information (see Equation A1). 

We have employed TSSA to study and model the data obtained from RRAMs 

made of different materials. Three types of devices were considered, two of them 

including HfO2 as the dielectric, sandwiched by different electrode materials (Ni and 

Cu), and another one based on a bilayer (TiO2/SiOX) insulating stack.  
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3 – DEVICE FABRICATION AND MEASUREMENT  

 

The HfO2-based RRAM devices consisted of Ni/HfO2/Si-n+ and Cu/HfO2/Si-n+ 

(20nm thick dielectric layers were used) stacks [28]. The active area of the MIM cells 

was 5 µm×5 µm, and the devices were patterned by photolithography. A HP-4155B 

semiconductor parameter analyser was used in the measurement process, which 

consisted of collecting long sequences (series) of current vs. voltage (I-V) curves by 

applying ramped voltage stress (RVS). The Si-n+ substrate (bottom) electrode was 

grounded and a negative voltage was applied to the Ni (0.3V/s ramps) or Cu (0.5V/s 

ramps) (top) electrode, although for simplicity we have assumed the absolute value of 

the applied voltage henceforth [28]. The RS phenomenon observed for both type of 

devices was unipolar, as displayed by the I-V curves (see Figures 1a, 1b) [5]. 

A RS series of 2800 cycles was obtained for the Ni/HfO2/Si-n+ RRAMs, and a 

series of 280 cycles for the Cu/HfO2/Si-n+ RRAMs. The values of VSET and VRESET were 

extracted from the I-V curves as reported in [1, 28, 34], and plotted in Figures 1b-1f. 

The variability of VSET and VRESET from one cycle to another can be clearly observed. 
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Figure 1. Typical I-V curves observed in (a) Ni/HfO2/Si-n+ and (d) Cu/HfO2/Si-n+ 

RRAMs. Experimental values of VSET (b, e) and VRESET (c, f) versus cycle number for a 

series of continuous RS cycles under RVS for RRAMs based on Ni/HfO2/Si-n+ and 

Cu/HfO2/Si-n+ stacks.  

 

The third type of RRAM devices was fabricated using an Au/Ti/TiO2/SiOX/Si-n+ 

structure. A 2nm TiO2 film was grown by atomic layer deposition (ALD), on Si-n+ 

wafer with a ~1.5 nm thick native SiOX layer. The device area was 5 µm x 5 µm and the 
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thicknesses of other layers were Au (60nm) and Ti (20nm). The Ti interfacial top 

electrode was employed as a gathering layer for oxygen accumulation. More details 

about the fabrication process of these structures are given in Ref. [29]. 0.5V/s ramps 

were employed for the series measured in this case. 

 

 

 

 

Figure 2. (a) Typical I-V curves observed in Au/Ti/TiO2/SiOX/Si-n+ RRAMs. 

Experimental values of VSET (b) and VRESET (c) versus cycle number for a series of 

continuous resistive switching cycles under RVS.  

 

Some of the I-V curves for the Au/Ti/TiO2/SiOX/Si-n+ devices are plotted in 

Figure 2, which shows clear bipolar RS behaviour, and the extracted values of the set 

and reset voltages for a RS series of 100 cycles. As it can be seen, the different type of 

RS (bipolar) compared to Figure 1 (unipolar) also leads to different patterns in the VSET 

and VRESET plots. For the devices based on HfO2 dielectrics the set (reset) voltage were 
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determined by detecting a 70% current increase (decrease) with respect to the previous 

current point. For the devices with the TiO2 dielectric the current maximum was 

selected to determine the reset voltage and the maximum change in the derivative was 

the choice for the determination of the set voltage. More details on these methods are 

given in Ref. [34]. 

 

4 - NEW STATISTICAL METHODOLOGY 

 

We have employed TSSA to analyze the experimental VSET and VRESET plotted in 

Figure 1 and Figure 2 for the technologies under consideration. A detailed description of 

this statistical methodology is given in the Supplementary Information. This new 

statistical approach for RRAM variability modeling was implemented with the packages 

TSA and forecast in R language [35].  

The first step of our methodology is to prove that our data constitute a stationary 

series [30, 31, 33]. This implies that the mean and variance are constant in time (RS 

cycle). Figure 1 indicates that the values are distributed around the mean value and no 

pattern in the data fluctuation can be found. This fact suggests that both the data mean 

and variance are constant all along the series, i.e. for all the cycle intervals considered 

—a numerical check of these issues has been also performed—. Therefore, according to 

the explanation given in the Supplementary Information, all the data series under 

consideration for the devices Ni/HfO2/Si-n+ and Cu/HfO2/Si-n+ are stationary. For the 

Au/Ti/TiO2/SiOx/Si-n+ devices we obtain similar results in what is related to the 

stationarity of the series, i.e. the data are distributed around the mean value and no data 

fluctuation patterns are seen. 
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The second step is to select the most parsimonious ARMA model to forecast the 

voltage to reset/set in one cycle in terms of the voltages to reset/set in previous cycles. 

A parsimonious model is the simplest model (algebraically speaking) that can be used to 

correctly model a certain phenomenon [31]. 

 

4.1 – Modeling VSET 

 

For the VSET distributions considered in this investigation, the mean values are 

μ̂VSET=2.934 V (Ni/HfO2/Si-n+ devices) and μ̂VSET=4.433 V (Cu/HfO2/Si-n+ devices). 

The autocorrelation functions (ACFs) and partial autocorrelation functions (PACFs) of 

the data samples are shown in Figure 3. The ACF is a function of the number of cycles k 

and measures the influence/connection between VSET/VRESET separated by k cycles (k 

distant lags). On the other hand, the PACF measures the same correlation but 

eliminating the dependency due to the intermediated lags (1, 2, ..., k-1). That is, in the 

PACF the dependencies of each two cycles are evaluated making sure that statistical 

crossed dependencies by means of cycles in between are eliminated. A simple example 

to illustrate this concept can be built with a 3 elements series. For this series, the 

calculation of PACF between the first and third elements would need the elimination of 

the dependencies provided by the second on the first and the second on the third 

elements; in this way, the direct dependencies of the first on the third could be 

calculated. 
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Figure 3. (a) ACF and (b) PACF versus cycle lag (distance apart in cycles within a RS 

series; for a cycle lag 1 the ACF and PACF of consecutive cycles are measured and so 

on) for the VSET series described in Figure 1, corresponding to Ni/HfO2/Si-n+ and 

Cu/HfO2/Si-n+ devices. The ACF and PACF minimum threshold bounds for the 

Cu/HfO2/Si-n+ and Ni/HfO2/Si-n+ devices are 0.117 and 0.037 respectively, shown with 

dashed lines.  

 

As Figure 3a shows, the ACF for Cu/HfO2/Si-n+ devices is higher than for 

Ni/HfO2/Si-n+ devices for the first two lag cycles (see that the blue columns are higher). 

In fact, we have just one component, the corresponding to the previous cycle, that 

dominates over the rest. These values have to be compared with the threshold bounds 

(Equation A10 in the Supplementary Information for ACF, which depends on the 

number of cycles of the series). In the PACF plot shown in Figure 3b (see also Equation 

A9 in the Supplementary Information), only the first value is above the threshold bound. 

Consequently, following the procedure to select the simplest model depicted in the 

Supplementary Information (Model identification section), an AR (1) model is proposed 

for the Cu/HfO2/Si-n+ devices (ACF decreases and PACF has only one significant 

value). This can be translated to Equation 2, that reflects that the VSET model of a current 

cycle just depends on the value of the previous cycle: 

𝑉𝑆𝐸𝑇𝑡
(𝑉) = 2.4263 + 0.4527𝑉𝑆𝐸𝑇𝑡−1

. (Eq. 2 ) 

The numbers included in Equation 2 can be obtained as described in the 

Supplementary Information (Parameter estimation section). In this case and henceforth, 



14 
 

as explained in the introduction, we will not include the residual for the current cycle 

(εt), as usually done in a mathematician context. For Ni/HfO2/Si-n+ devices, the ACF 

and PACF have several values outside the corresponding thresholds (the minimum 

threshold bounds for the Cu/HfO2/Si-n+ and Ni/HfO2/Si-n+ devices are 0.117 and 0.037 

respectively) and both functions decrease. The model selection procedure suggests an 

ARMA (1,1) model. Thus, VSET for the Ni/HfO2/Si-n+ RRAMs can be described by 

means of Equation 3: 

𝑉𝑆𝐸𝑇𝑡
(𝑉) = 0.2380 + 0.9189𝑉𝑆𝐸𝑇𝑡−1

+ 0.8049𝜀𝑡−1. (Eq. 3 ) 

As it can be seen, the structure of the autocorrelation relations between cycles 

for the set voltage series lead to a more complex model for the Ni/HfO2/Si-n+ devices. 

Finally, the residuals (i.e. the difference between the measured and modeled values for 

each cycle) of both models (Equations 2 and 3) were computed and the white noise 

behavior (uncorrelated errors) was satisfactorily checked, as it is usually done. 

For the Au/Ti/TiO2/SiOx/Si-n+ devices the ACF and PACF have several values 

outside the corresponding thresholds and both functions decrease.  

 

Figure 4. (a) ACF and (b) PACF versus cycle lag (distance apart in cycles within a RS 

series; for a cycle lag 1 the ACF and PACF of consecutive cycles are measured and so 

on) for the VSET series described in Figure 2, corresponding to Au/Ti/TiO2/SiOx/Si-n+ 

devices. The ACF and PACF minimum threshold bounds is 0.2, shown in solid line.  
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The model selection procedure suggests an AR (2) model with a null coefficient 

for the previous cycle component (VSET(t-1)). Therefore, for this case VSET is given in 

Equation 4: 

𝑉𝑆𝐸𝑇𝑡
(𝑉) = 0.6051 + 0.2926 𝑉𝑆𝐸𝑇𝑡−2

(𝑉). (Eq. 4 ) 

 

4.2 – Modeling VRESET 

 

For the VRESET model we have proceeded in a similar manner. The mean values 

are the following: μ̂VRESET=2.358 V (Cu/HfO2/Si-n+) and μ̂VRESET=1.665 V (Ni/HfO2/Si-

n+). The sample ACF for the measured series of Figure 1 are given in Figure 5a, and the 

sample PACF is given in Figure 5b. The greater height of the blue bars in Figure 5, both 

in the ACF and PACF, indicate a higher autocorrelation function for Cu/HfO2/Si-n+ 

devices in comparison to Ni/HfO2/Si-n+ devices.  

 

 

Figure 5. (a) ACF and (b) PACF versus cycle lag for the reset voltage of the 

Cu/HfO2/Si-n+ and Ni/HfO2/Si-n+ devices under study and the RS series described in 

section II. The ACF minimum threshold bounds for the Cu/HfO2/Si-n+ and Ni/HfO2/Si-

n+ devices are 0.117 and 0.037 respectively, shown with dashed lines.  
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See that the sample PACF for Cu/HfO2/Si-n+ RRAMs has only two values (the 

first and second lagged cycles) above the threshold bound (Equation A9), so that an AR 

(2) model could be considered. However, taking into consideration that the second 

component is close to the threshold bound an AR (1) can be reasonable. After the AR 

(1) is adjusted all the validation considerations are satisfied. The VRESET model for these 

devices is given in Equation 5: 

 

𝑉𝑅𝐸𝑆𝐸𝑇𝑡
(𝑉) = 0.8577 + 0.5711 𝑉𝑅𝐸𝑆𝐸𝑇𝑡−1

. (Eq. 5 ) 

 

For the Ni/HfO2/Si-n+ devices, the VRESET model works similarly to what was 

determined for the set voltage modeling (ACF and PACF decrease). Then an ARMA 

(1,1) model (Equation 5) holds for the VRESET time series for Ni/HfO2/Si-n+ devices: 

𝑉𝑅𝐸𝑆𝐸𝑇𝑡
(𝑉) = 0.2377 + 0.8573𝑉𝑅𝐸𝑆𝐸𝑇𝑡−1

+ 0.6523𝜀𝑡−1. (Eq. 6) 

 

The residuals of the VRESET models depicted in Equations 5 and 6 have white 

noise behavior again, and confirm the appropriateness of the modeling procedure. 

 

For the Au/Ti/TiO2/SiOx/Si-n+ devices the ACF and PACF are given in Figure 6. 

In this case, the influence of other lagged cycles is more important than in previous 

cases; therefore, the reset voltage can be given by a linear combination of reset voltages 

obtained in the previous cycles. The model is a factorized AR (6) type. 
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Figure 6. (a) ACF and (b) PACF versus cycle lag for the reset voltage of the 

Au/Ti/TiO2/SiOx/Si-n+ devices under study and the RS series described in section II. 

The ACF and PACF minimum threshold bounds are 0.2 respectively, shown in blue 

lines.  

  

The analytical expression for the TSSA description of the set voltage in 

Au/Ti/TiO2/SiOx/Si-n+ devices is given by Equation 7. 

 

𝑉𝑅𝐸𝑆𝐸𝑇𝑡
(𝑉) = 0.3228 + 0.3198 𝑉𝑅𝐸𝑆𝐸𝑇𝑡−1

(𝑉) + 0.2197 𝑉𝑅𝐸𝑆𝐸𝑇𝑡−5
(𝑉)

− 0.0703 𝑉𝑅𝐸𝑆𝐸𝑇𝑡−6
(𝑉) 

(Eq. 7) 

  

The residuals of the VRESET models depicted in Equation 7 have white noise 

behavior again and consequently the modeling procedure is correct. Note that the 

coefficient of the (t-6) component is the product of the components (t-5) and (t-1) 

because of the characteristics of the parameter calculation procedure. 

The three technologies under study here show stationarity in the set and reset 

voltages series. Nevertheless, for other technologies a drift in the mean and variance 

shows up. In these cases, stationarity does not hold, therefore stationarity is not a 

general rule. If we are faced with a nonstationary data series, the methodology described 

in the Supplementary Information would not be appropriate and no models can be 

extracted. In this situations there can be other options since the TSSA theory proposes 
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changes of variables that lead the newly derived series to fulfill the stationary 

requirements that are needed prior to the modeling process.  Autoregressive integrated 

moving average (ARIMA) approaches can be employed instead of the AR or ARMA 

modeling schemes explained above, Ref [30, 31]. 

 

5 - RESULTS AND DISCUSSION 

 

In order to test the accuracy of the models previously developed we superposed 

in the same graphic the measured VSET and VRESET with the modeled ones for the devices 

under consideration in this manuscript. The modeling is a forecast of the actual value 

considering previous measured values, as it is conventionally done in TSSA. These 

results for VSET (Figure 7) and VRESET (Figure 8) are plotted taking into consideration 

Ni/HfO2/Si-n+ and Cu/HfO2/Si-n+ devices. As can be seen, the VSET mean general trend 

is described reasonably well by Equations 2 and 3. The main dependencies have been 

correctly analyzed and incorporated with our procedure; hence, within the time series 

context, the model works well. We have validated this point by studying the residuals 

correlation, and we did not obtain any significant correlation between the residuals of 

the current cycle and those of the lagged ones (this constitutes the validation step, as 

explained in the Supplementary Information). Consequently, no more dependencies 

have to be incorporated to the models, since no information is statistically “hidden”. 

Although the scales and the modeling strategies are different for VSET, i.e. AR (1) 

for Cu/HfO2/Si-n+ devices and ARMA (1,1) for Ni/HfO2/Si-n+ devices, the accuracy is 

similarly reasonable, as Figure 7 shows. The model error (εt), as highlighted before, 

presents a white noise structure. We have also checked that the model accuracy is 

maintained if the number interval is changed.  
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Figure 7. VSET versus cycle number for the RS series under consideration. The 

measured values are shown in blue lines and the modelled ones in red. (a) Ni/HfO2/Si-

n+ RRAMs, cycles 1000-1200, (b) Ni/HfO2/Si-n+ RRAMs, cycles 1800-2000 (c) 

Cu/HfO2/Si-n+ RRAMs, cycles 50-150, (d) Cu/HfO2/Si-n+ RRAMs, cycles 50-250.  

 

The results for VRESET are in line with those of VSET. In this case, an AR (1) 

model is used for the Cu/HfO2/Si-n+ devices and ARMA(1,1) for Ni/HfO2/Si-n+ 

devices. Again, the model reproduces accurately the VRESET mean evolution for all the 

cycle number intervals considered, as displayed in Figure 8.  
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Figure 8. VRESET versus cycle number for the RS series under consideration. The 

measured values are shown in blue lines and the modeled ones in red. (a) Ni/HfO2/Si-n+ 

RRAMs, cycles 1000-1200, (b) Ni/HfO2/Si-n+ RRAMs, cycles 1500-1700 (c) 

Cu/HfO2/Si-n+ RRAMs, cycles 50-150, (d) Cu/HfO2/Si-n+ RRAMs, cycles 50-250.  

 

For the Au/Ti/TiO2/SiOx/Si-n+ devices the comparison between measured and 

modelled data is shown in Figure 9. The prediction is also reasonable although more 

values of set (Equation 4) and reset (Equation 7) voltages of previous cycles are 

considered. 
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Figure 9. (a) Set (b) Reset voltage versus cycle number for the RS series under 

consideration. The measured values are shown in blue lines and the modeled ones in 

red. Au/Ti/TiO2/SiOx/Si-n+ devices are considered here.  

 

It can be observed in the figures above that in certain cases the fit is smaller than current 

values. This effect is seen when values much different than the mean show up. 

However, we would like to highlight that the modeling methodology we are presenting 

deals well with the prediction of the set and reset voltage mean. The current voltage 

values are also predicted well in most cases by using the statistical information of 

previous cycles. Therefore, taking into account that current models in the literature do 

not have this information, and that prediction of variability is interesting in devices 

(RRAMs) that show inherent stochasticity, we believe that, although it is not a modeling 

final solution, this technique is a step forward that can be worthwhile to characterize the 

device physics and help with variability modeling. 

It is important to highlight that Figure 3 and Figure 5 (in addition to the data 

needed for model building) provide information about the RS processes of the HfO2-

based devices analysed. In Figure 3a, we can see that the correlation between cycles is 

higher for the Cu/HfO2/Si-n+ devices for the first lag cycles with respect to the set 

voltage. In Figure 5a, a similar trend can be observed for the reset voltage series. So, in 

general, the influence of previous cycles in Cu/HfO2/Si-n+ devices is higher; i.e., the CF 
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a higher correlation comes out for the set voltage values when several lag cycles are 

considered. 

The qualitative explanation for this behaviour could be in the nature of RS in 

these devices. It is known that devices with Cu and Ag electrodes are employed in 

conductive-bridge RAMs [2, 36, 37] because of the capacity of Cu and Ag cations to 

diffuse in the dielectric and form, after a reduction process, a metallic-like conductive 

filament. In these devices, the reduction and oxidation potential are described by a 

thermally activated process whose activation energy depends on the number of atoms 

surrounding the one which is taken into consideration [1, 23, 24]. In this manner, the 

formation of the percolation path introduces “inertia” as the reduced atom clusters grow 

denser in the dielectric since they tend to maintain their shape hindering the oxidation 

processes of their atoms. This behaviour could explain the higher RS “inertia” shown by 

Cu/HfO2/Si-n+ devices since they maintain better the CF form and size that determine 

VSET and VRESET values. These effects would be reflected in the ACF plot with higher 

autocorrelation values for cycles not distant away in the series. 

The lower autocorrelation (Figures 3a and 5a) for the Ni/HfO2/Si-n+ devices 

reflects a lower RS “inertia”, as highlighted above. That could also be linked to a 

mixture of RS phenomena, since oxygen vacancies could be also involved in their 

resistive switching operation, as suggested in Ref. [38]. In this respect, the effects linked 

to activation energy lowering for oxidation of clustered metal atoms from the electrode 

would be mitigated, producing less correlation between the set and reset values of 

consecutive cycles. 

In both cases, Ni/HfO2/Si-n+ and Cu/HfO2/Si-n+ devices, the most significant 

dependency (correlation) is with the previous value (first lag). In line with these latter 

issues, the results of Au/Ti/TiO2/SiOx/Si-n+ devices can be analysed. In Figures 4 and 6, 
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the cycles correlated in the ACF and PACF (mostly for the reset voltage) is higher than 

for the technologies studied previously. In particular, for the reset voltage, the 

correlation of cycles 9, 11, 13 is high with respect to the previous cases. This fact shows 

again an important inertia in the RS features of this technology in comparison to the 

devices based on HfO2. The nature of CFs in TiO2 for the filamentary current 

component and the presence of a volume current component (this component is linked 

to the ion distribution that is spread out in the dielectric and that can affect several 

consecutive cycles in a RS series, as it was shown in devices of this kind [29]), is key to 

explain the higher correlation highlighted above.  

It is important to highlight that the autocorrelation and partial autocorrelation functions 

employed to in the analysis presented above (Figures 3-6) can be used separately from 

the TSSA modeling. They reflect the correlation of set and reset voltages between the 

different cycles, this means extracting the dependencies of the current cycle on the 

previous ones. This information is useful even if no TSSA modeling is performed since 

it shows that the values studied as independent data, are, in fact, dependent, and this fact 

has implications in the study of cycle-to-cycle variability.  It is important to highlight 

that ACF and PACF analysis could be easily performed on RRAM measured data to 

assess the correlation between the characteristics of successive RS cycles.  

 

From the modeling viewpoint, TSSA models could be implemented in circuit simulators 

with Verilog-A compilers. TSSA models could be embedded in previous models to 

account for the RRAM stochastic behavior and for the correlation of certain parameters 

such as set and reset voltages in long RS series, as explained above. We have done so 

making use of the RRAM Standford model [40]. In our case, a log file of previous set 

and reset values for the RRAMs has been employed in a model built upon the TSSA 
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approach making use of regressed values. The file was written with the current values of 

set and reset voltages every time a set or reset was performed. Previously, in order to 

simulate the RVS case we described experimentally above, we implemented a 

modification of the local enhancement factor (γ) [41] to be able to obtain the 

corresponding set and reset voltages, since these latter parameters are not model 

parameters. 

 

 

Finally, we would like to comment on the fact that the operation regime of these devices 

would be characterized by pulses if they are used as storage-class memory in different 

chips or spikes of a variety of shapes if employed to mimic synapses in neuromorphic 

circuits. The device conductance depends on the pulse number for each signal 

amplitude, because of the different thermal inertia that is produced in each operation 

regime [39]. In this respect, we have chosen RVS measurements to show a particular 

application of the TSSA in a well-known characterization approach. This approach 

could be considered as the DC facet of a classical compact model, further developments 

could be needed to deal with transient events in a more general model where thermal 

and capacitive effects would be needed.   

 

 

VI.-CONCLUSIONS 

Times series statistical analyses (TSSA) have been used to study long series of 

resistive switching processes. The experimental data analyzed here were measured in 

resistive random access memories with Ni/HfO2/Si-n+, Cu/HfO2/Si-n+, 

Au/Ti/TiO2/SiOx/Si-n+ structures. The conventional time series techniques were applied 
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to model the VSET and VRESET of these devices; to do so, autocorrelation functions and 

partial autocorrelation functions were obtained for all the types of RRAMs. 

Autoregressive models were obtained for Cu/HfO2/Si-n+ devices and the autocorrelation 

function between cycles was high, showing an important inertia between resistive 

switching cycles. The better diffusion of Cu ions in the dielectric is behind this 

behaviour. For Ni/HfO2/Si-n+ devices more complex models are needed and 

autocorrelation data show less inertia between resistive switching cycles. Finally, for 

Au/Ti/TiO2/SiOx/Si-n+ devices a significant correlation can be observed for more distant 

cycles in the reset voltage description. A physical explanation has been developed in 

connection with the correlation results found. The models obtained can be used to 

forecast the values of set and reset voltages in a resistive switching series if previous 

values are known. The information obtained in this context can be employed in 

modelling and in the characterization of RRAM variability.   

  



26 
 

Supplementary Information 

 

In this paper, Box-Jenkins methodology [31] is applied for modeling the time 

series of reset and set voltages in resistive RRAMs. The formulation of an ARMA(p,q) 

model is given as follows (the considerations would be the same for the set voltage), 

 

𝑉𝑅𝐸𝑆𝐸𝑇𝑡
= Φ0 + Φ1𝑉𝑅𝐸𝑆𝐸𝑇𝑡−1

+ ⋯ + Φ𝑝𝑉𝑅𝐸𝑆𝐸𝑇𝑡−𝑝
− 𝜃1𝜀𝑡−1 + ⋯ − 𝜃𝑞𝜀𝑡−𝑞 

 

(A1) 

 

where VRESETt
 is the modeled reset voltage in the current cycle of an RS series, 

and VRESETt−k
 are the modelled reset voltages lagged k cycles (i.e., the k reset voltage 

values of the previous RS cycles), εt−k are the errors (residuals) made in the modeling 

process from earlier cycles, with Φi(i=1, …, p) and θj(j=1, …, q) being the unknown 

regression coefficients to be estimated in the modelling process. In time series 

methodology the term 𝜀𝑡 is also included in the model but, in our case, we assume it. A 

similar description holds for the set voltage. 

The current value of the modeled reset voltage can be calculated by means of 

two linear polynomials, one for the autoregressive part (AR, in this case the reset 

voltage is modeled as a linear function of some of its past values), and the other for the 

moving average part (MA, a linear combination of the past model errors or residuals). 

The parameters p and q are the orders of the autoregressive part and the moving average 

part, respectively.  

The ARMA approach assumes that the time series is stationary and the model 

error εt  shows white noise behaviour (uncorrelated random errors). The ARMA 
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modeling process can be performed in five main steps: checking stationarity, model 

identification, parameter estimation, validation and prediction. 
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