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EQUATION VIA HARRIS'S THEOREM\ast 
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Abstract. We study the long-time behavior of the growth-fragmentation equation, a nonlocal
linear evolution equation describing a wide range of phenomena in structured population dynamics.
We show the existence of a spectral gap under conditions that generalize those in the literature
by using a method based on Harris's theorem, a result coming from the study of equilibration of
Markov processes. The difficulty posed by the nonconservativeness of the equation is overcome by
performing an h-transform, after solving the dual Perron eigenvalue problem. The existence of the
direct Perron eigenvector is then a consequence of our methods, which prove exponential contraction
of the evolution equation. Moreover the rate of convergence is explicitly quantifiable in terms of the
dual eigenfunction and the coefficients of the equation.
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1. Introduction and main result. The growth-fragmentation equation is a
linear, partial integro-differential equation which is commonly used in structured pop-
ulation dynamics for modeling various phenomena including the time evolution of cell
populations in biology such as in [1, 11, 12, 22, 35, 50, 57, 63, 65], single species
populations [66], or carbon content in a forest [23]; some aggregation and growth phe-
nomena in physics or biophysics as in [6, 28, 41, 43, 55, 56]; neuroscience in [25, 62],
and even TCP/IP communication protocols such as in [3, 10, 31]. The general form
of the growth-fragmentation equation is given by

(1)

\partial 

\partial t
n(t, x) +

\partial 

\partial x
(g(x)n(t, x)) +B(x)n(t, x) =

\int +\infty 

x

\kappa (y, x)n(t, y) dy, t, x > 0,

n(t, 0) = 0, t \geq 0,

n(0, x) = n0(x), x > 0,
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5186 JOS\'E A. CA\~NIZO, PIERRE GABRIEL, AND HAVVA YOLDA\c S

where n(t, x) represents the population density of individuals structured by a variable
x > 0 at a time t \geq 0. The structuring variable x could be age, size, length, weight,
DNA content, biochemical composition, etc., depending on the modeling context. Here
we refer to it as ``size"" for simplicity. Equation (1) is coupled with an initial condition
n0(x) at time t = 0 and a Dirichlet boundary condition which models the fact that
no individuals are newly created at size 0. The function g is the growth rate and B is
the total division/fragmentation rate of individuals of size x \geq 0. The fragmentation
kernel \kappa (y, x) is the rate at which individuals of size x are obtained as the result of a
fragmentation event of an individual of size y. When fixing x, \kappa (x, \cdot ) is a nonnegative
measure on (0, x]. The total fragmentation rate B is always obtained as

(2) B(x) =

\int y

0

y

x
\kappa (x, y) dy, x > 0.

Important particular cases are

\kappa (x, y) = B(x)
2

x
\delta \{ y= x

2 \} ,

which corresponds to the mitosis process, suitable for modeling of biological cells,
where individuals can only break into two equal fragments; and

\kappa (x, y) = B(x)
2

x
,

which is the case with uniform fragment distribution, where fragmentation gives frag-
ments of any size less than the original one with equal probability. This case is used
for example in modeling the dynamics of polymer chains, as in [41].

Two opposing dynamics, growth and fragmentation, are balanced through (1).
The growth term tends to increase the average size of the population and the frag-
mentation term increases the total number of individuals but breaks the population
into smaller sizes. If the growth rate g(x) vanishes, then only fragmentation takes
place and the equation is known as the pure fragmentation equation. Similarly when
B and \kappa are both 0, (1) is the pure growth equation.

We are concerned here with the mathematical theory of this equation and, more
precisely, with its long-time behavior as t \rightarrow +\infty . Under suitable conditions on the
coefficients \kappa and g, the typical behavior is that the total population tends to grow
exponentially at a rate e\lambda t for some \lambda > 0, and the normalized population distribution
tends to approach a universal profile for large times, independently of the initial
condition. This has been investigated in a large number of previous works, of which
we give a short summary. The first mathematical study of this type of equation
was done in [35] for the mitosis case, in a work inspired by some biophysical papers
[11, 12, 66]. In [35], the authors considered the mitosis kernel with the size variable in
a bounded interval and proved exponential growth at a rate \lambda , and exponentially fast
approach to the universal profile. In [60], the authors considered the size variable in
(0,+\infty ) and introduced the general relative entropy method for several linear PDEs
including the growth-fragmentation equation. They proved relaxation to equilibrium
in Lp spaces without an explicit rate. Following [64] and [54], providing an explicit
rate of convergence to a universal profile under reasonable assumptions became a
topic of research for many other works. New functional inequalities were proved in
[26, 27] in order to obtain explicit rates of convergence; see also [46]. Some authors
used a semigroup approach [2, 5, 7, 15, 40, 47, 61] or a probabilistic approach [10, 16,
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17, 18, 19, 20, 21, 23, 29, 30, 31, 32], and some authors provided explicit solutions as
in [69]. In this paper we are able to give more general results regarding the speed of
convergence to equilibrium: we obtain constructive results which cover a wide range
of bounded and unbounded fragmentation rates, and which apply both in mitosis and
uniform fragmentation situations.

When the equal mitosis kernel is considered, there is a special case with a linear
growth rate where the solutions exhibit oscillatory behavior in the long time. This
property was first proved mathematically in [47] when the equation is posed in a
compact set. Recently, this result was extended to (0,+\infty ) by the general relative
entropy argument in suitably weighted L2 or measure spaces in [13, 45] and by means
of the Mellin transform in L1 space by [68].

An important tool when studying the asymptotic behavior of (1) is the Perron
eigenvalue problem: finding a positive eigenfunction for the operator which defines
the equation, associated with a simple, real eigenvalue which is also equal to the
spectral radius; see [38, 59] for general existence results. In [4], the authors gave
some estimates on the principal eigenfunctions of the growth-fragmentation operator,
giving their first order behavior close to 0 and +\infty . Then they proved a spectral gap
result by means of entropy-entropy dissipation inequalities, with tools similar to those
of [26, 27]. They assumed that the growth and the fragmentation coefficients behave
asymptotically like power laws.

In this paper we use a probabilistic approach, namely, Harris's theorem, for show-
ing the spectral gap property. We give a novel approach based on estimating solutions
to the PDE, and obtain results which can be applied to general growth and fragmen-
tation rates including mitosis and uniform fragmentation cases. Detailed hypotheses
and results are given later in this introduction. The method is also completely con-
structive and gives explicit estimates. However, in some cases these estimates depend
on estimates on the first dual eigenfunction, which may be not easy to obtain, but con-
stitute a separate question. After stating our results we also give a brief comparison
to other spectral gap results in the literature.

Applications of this type of argument to biological and kinetic models which can
be described as Markov processes has become a subject of many works recently, and
has been extended to models which are not Markov processes but share similar prop-
erties. The predecessor of Harris's theorem, namely, Doeblin's argument is used in
[44] for proving exponential relaxation of solutions to the equilibrium for the conser-
vative renewal equation. In [25] and [39], the authors study population models which
describe the dynamics of interacting neurons, structured by elapsed time in [25] or
by voltage in [39], and the existence of a spectral gap property in the no-connectivity
setting is proved by Doeblin's theorem. Moreover, there are some recent works for
the extension of this method into the nonconservative setting. In [8], the authors
consider several types of linear PDEs including a growth-diffusion model with a time-
space varying environment and some renewal equations with time-fluctuating (e.g.,
periodic) coefficients. They provide quantitative estimates in total variation distance
for the associated nonconservative and nonhomogeneous semigroups by means of gen-
eralized Doeblin's conditions. The full Harris's theorem is used in [21, 23] for deriving
exponential convergence to the equilibrium in the conservative form of the growth-
fragmentation equation. In the present work, we are interested in the long-time
behavior of the more challenging nonconservative case, namely, when no quantity is
preserved along time. Our method is in the spirit of [9], where a nonconservative ver-
sion of Harris's theorem is proposed and applied to the growth-fragmentation equation
with constant growth rate g and increasing total division rate B; see also [33] for an
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5188 JOS\'E A. CA\~NIZO, PIERRE GABRIEL, AND HAVVA YOLDA\c S

application to a mutation-selection model which is similar to growth-fragmentation.
The difference here is that we first build a solution to the dual Perron eigenproblem by
using Krein--Rutman's theorem and a maximum principle. Then we take advantage
of the dual eigenfunction to perform a so-called (Doob) h-transform [36], similarly
to [7, 32], in order to apply Harris's theorem. It allows us to consider very general
growth and fragmentation rates. The drawback is that the spectral gap is given ex-
plicitly in terms of the dual eigenfunction, for which quantitative estimates are in
general hard to obtain. However, for certain specific coefficients that are worthy of
interest, the dual eigenfunction is known explicitly. It is the case of the so-called self-
similar fragmentation equation, widely studied in the literature, for which we provide
new quantitative estimates on the spectral gap.

Let us now make precise the functional analytic setting of our work and what we
mean by solutions to (1). We are interested in measure solutions to this equation,
which is a relevant notion in population dynamics; see, e.g., [24, 44]. We say that
a family (n(t, \cdot ))t\geq 0 of positive measures on (0,+\infty ) is a solution to (1) if for all
f \in C1

c ([0,+\infty )) the function t \mapsto \rightarrow \langle n(t, \cdot ), f\rangle is continuously differentiable and for all
t \geq 0

(3)
d

dt
\langle n(t, \cdot ), f\rangle = \langle n(t, \cdot ),\scrL \ast [f ]\rangle ,

where

\scrL \ast [f ](x) := g(x)
\partial 

\partial x
f(x) +

\int x

0

\kappa (x, y)f(y) dy  - B(x)f(x)

is the dual operator of the growth-fragmentation operator

\scrL [n](x) :=  - \partial 

\partial x
(g(x)n(x)) - B(x)n(x) +

\int +\infty 

x

\kappa (y, x)n(y) dy,

which appears in (1). We refer to [9, 45] for (the method of) proof that (1) is well-
posed in the set of positive (or signed Radon) measures \mu such that the weighted total
variation norm

(4) \| \mu \| V =

\int +\infty 

0

V (x)| \mu | (dx)

is finite, when V (x) = xk + xK with k \leq 0 and K > 1.
The Perron eigenvalue problem consists of finding suitable eigenelements (\lambda ,N, \phi )

with \lambda > 0 and N,\phi : (0,+\infty ) \rightarrow [0,+\infty ), N,\phi \not \equiv 0, satisfying the following:

(5) \scrL [N ] = \lambda N, (gN)(0) = 0,

(6) \scrL \ast [\phi ] = \lambda \phi .

If such a triple exists then \lambda is actually the dominant eigenvalue of (1), and the
solution is expected to converge to a universal profile whose shape is given by the
eigenfunction N(x). The convergence rate is given by the gap between the dominant
eigenvalue \lambda > 0 and the rest of the spectrum. If we scale the equation by defining
m(t, x) := n(t, x)e - \lambda t we obtain
(7)
\partial 

\partial t
m(t, x) +

\partial 

\partial x
(g(x)m(t, x)) + (B(x) + \lambda )m(t, x) =

\int +\infty 

x

\kappa (y, x)m(t, y) dy, t, x \geq 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0.
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We remark thatN(x) is the stationary solution of (7) and \phi (x) provides a conservation
law for (7) since

d

dt

\int +\infty 

0

\phi (x)m(t, x) dx = 0.

Since the existence and uniqueness of the eigenelements provide useful information
about the long-time behavior of the growth-fragmentation equation (1), it has been
a popular topic of research. We refer to [38] for a general recent result. From now
on we consider (7) instead of (1) since it is more convenient to study the long-time
behavior of the former and we can easily recover the nature of the latter.

We now list all the assumptions we need throughout the paper.
As we will explain in section 3, Harris's method relies on a local Doeblin's mi-

norization condition. The computations for checking this condition strongly depend
on the fragmentation kernel. In [25] a global Doeblin condition is proved (for a sim-
ilar equation) for kernels \kappa which satisfy, for some \epsilon , \eta , x\ast > 0, the condition that
\kappa (x, y) \geq \epsilon for all x \in [0, \eta ] and y \geq x\ast . Here we rather consider kernels that are of
self-similar form, which is commonly assumed in the literature about spectral gaps
for the growth-fragmentation equation [4, 9, 15, 27, 29, 61] and includes the classical
kernels appearing in applications (in particular equal or unequal mitosis and uniform
fragment distribution; see below).

Hypothesis 1.1. We assume that \kappa (x, y), the fragmentation kernel, is of the self-
similar form such that

\kappa (x, y) =
1

x
p
\Bigl( y
x

\Bigr) 
B(x) for y > x > 0,

where p, the ``fragment distribution,"" is a nonnegative measure on (0, 1] such that
zp(z) is a probability measure, that is,\int 

(0,1]

zp(z) dz = 1.

Remark 1.1. It is useful to define pk for k \in \BbbR , as the kth moment of p:

pk :=

\int 1

0

zkp(z) dz.

With this notation, Hypothesis 1.1 ensures that p1 = 1, so the relation (2) is guaran-
teed.

Our next hypothesis states that we consider only the two extreme cases of the frag-
ment distribution, namely, the very singular equal mitosis case and the very smooth
uniform fragment distribution. One can find conditions for our methods to work in in-
termediate cases, but we have preferred to give simple proofs that show both singular
and smooth cases can be treated.

Hypothesis 1.2. We assume that the fragment distribution p is either the one
corresponding to the equal mitosis,

(8) p( dz) = 2\delta 1
2
( dz),

or the uniform fragment distribution,

(9) p( dz) = 2 dz.
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Remark 1.2. We restrict to these two particular fragmentation kernels because
they naturally appear in the modeling of natural phenomena. They are also good
representatives of two opposite mathematical situations: a very regular, strictly pos-
itive case and a singular case which is positive only at z = 1/2. However, the results
which we prove to be valid for the uniform kernel can be readily extended to self-
similar kernels with p satisfying

(10) p(z) \geq c > 0 for all z in some interval (z1, z2) \subseteq (0, 1)

and either

p0 < +\infty if

\int 1

0

1

g(x)
dx < +\infty 

or

\exists k < 0 with pk < +\infty if

\int 1

0

1

g(x)
dx = +\infty .

In the particular case of the linear growth rate, g(x) = x, it is enough to assume that

\exists k < 1 with pk < +\infty .

Notice that under condition (10), similarly as for (8) and (9), the function k \mapsto \rightarrow pk
is strictly decreasing on the interval where it takes finite values. (The only case in
which pk is not strictly decreasing is that of p(z) concentrated at z = 1, which actually
means no fragmentation at all is happening.)

In the case of constant growth rate, a more general condition than (10) is assumed
in [9] that covers the unequal mitosis kernels p( dz) = \delta \alpha ( dz) + \delta 1 - \alpha ( dz) with 0 <
\alpha < 1. In our proofs we can also consider this generalization with straightforward
modifications when the growth rate g satisfies forthcoming Hypothesis 1.4.

Regarding non-self-similar kernels, there are results of exponential convergence
to the stationary distribution in the literature, but only for bounded fragmentation
rates; see [54, 62] for PDE-based arguments and [17, 19, 29] for a probabilistic point
of view. We also point out that an optimal condition on the fragment distribution is
given in [17] for a spectral gap to exist (for bounded fragmentation rates).

Next we have a general assumption on the growth rate g and the total fragmen-
tation rate B.

Hypothesis 1.3. We assume that g : (0,+\infty ) \rightarrow (0,+\infty ) is a locally Lipschitz
function such that g(x) = \scrO (x) as x \rightarrow +\infty and g(x) = \scrO (x - \xi ) as x \rightarrow 0 for some
\xi \geq 0. The total fragmentation rate B : [0,+\infty ) \rightarrow [0,+\infty ) is a continuous function
and the following holds:

(11)

\int 1

0

B(x)

g(x)
dx < +\infty ,

xB(x)

g(x)
 - \rightarrow 
x\rightarrow 0

0,
xB(x)

g(x)
 - \rightarrow 

x\rightarrow +\infty 
+\infty .

This assumption is very mild, and was always present in the previous works to
ensure the existence of an equilibrium and a dual eigenfunction. If B behaves like a
power of exponent b and g behaves like a power of exponent a, conditions (11) are
equivalent to the more familiar b  - a + 1 > 0. The condition g = \scrO (x) for large x
ensures that the characteristics corresponding to the growth part are defined for all
times (i.e., clusters do not grow to infinite size in finite time). A stronger assumption
which is implicit in Hypothesis 1.3 is that B is bounded above on intervals of the form
[0, R] (since it is continuous there), so we do not allow fragmentation rates B which
blow up at 0. This is used in the proof of Lemma 5.1.
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A consequence of Hypothesis 1.3, we will later need the following:

(12)
there exists tB > 0 such that B is bounded below by a positive
quantity on any interval of the form [tB , \theta ] with \theta > tB .

One sees this from the last limit in (11), which implies that for large enough tB we
have

B(x) \geq g(x)

x
.

This easily implies (12), since, g(x)/x is continuous and strictly positive, so bounded
below by some positive quantity on any compact interval.

Our last assumption gives a stronger requirement on the growth rate g when the
mitosis kernel is considered. In this case, some additional requirement is necessary,
since, when the linear growth rate with equal mitosis is considered, it is known that
there is no spectral gap [13, 45, 68]. We point out that the sharp assumption of ``there
exists a point x > 0 with g(2x) \not = 2g(x)"" is enough to show convergence to the profile
N without a rate and only in particular cases, as proved in [65, section 6.3.3]. Our
assumption is stronger than this, but also leads to a stronger result.

Hypothesis 1.4. When p is the equal mitosis kernel (8), we assume that the growth
rate g satisfies

\omega g(x) < g(\omega x) for all x > 0 and \omega \in (0, 1),

H(z) :=

\int z

0

1

g(x)
dx < +\infty for all z > 0,

and also H - 1 (the inverse of H) does not grow too fast, in the sense that for all r > 0
we have

(13) lim
z\rightarrow +\infty 

H - 1(z + r)

H - 1(z)
= 1.

If we consider just powers, examples of growth and fragmentation rates which
satisfy all of the above are

B(x) = xb, g(x) = xa

with
\bullet any b \geq 0,  - \infty < a \leq 1 in the uniform fragment distribution case, excluding
the case (b, a) = (0, 1);

\bullet any b \geq 0,  - \infty < a < 1 in the mitosis case.
Under Hypothesis 1.1, the rescaled growth-fragmentation equation (7) takes the

form

\partial 

\partial t
m(t, x) +

\partial 

\partial x
(g(x)m(t, x)) + c(x)m(t, x) = \scrA (t, x), t, x \geq 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0,

(14)

where
c(x) := B(x) + \lambda 

and

\scrA (t, x) :=

\int +\infty 

x

B(y)

y
p

\biggl( 
x

y

\biggr) 
m(t, y) dy.

According to Hypothesis 1.2, we only allow p(z) = 2 or p(z) = 2\delta 1
2
(z).
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Our main result is given by the following theorem.

Theorem 1.3. Assume that Hypotheses 1.1, 1.2, 1.3, and 1.4 are satisifed. Then
there exists a solution (\lambda ,N, \phi ) to the Perron eigenvalue problem (5)--(6) with the
normalization

\int 
N =

\int 
\phi N = 1, \lambda > 0, and there exist C, \rho > 0 such that the solution

n = n(t, x) \equiv nt(x) to (1) with initial data given by a nonnegative finite measure n0

with \| n0\| V < +\infty satisfies

(15)

\bigm\| \bigm\| \bigm\| \bigm\| e - \lambda tnt  - 
\Bigl( \int 

\phi n0

\Bigr) 
N

\bigm\| \bigm\| \bigm\| \bigm\| 
V

\leq Ce - \rho t

\bigm\| \bigm\| \bigm\| \bigm\| n0  - 
\Bigl( \int 

\phi n0

\Bigr) 
N

\bigm\| \bigm\| \bigm\| \bigm\| 
V

for all t \geq 0,

where the weight V of the total variation norm \| \cdot \| V defined in (4) is given by

V (x) = 1 + xK , 1 + \xi < K if

\int 1

0

1

g(x)
dx < +\infty ,

V (x) = xk + xK ,  - 1 < k < 0, 1 + \xi < K if

\int 1

0

1

g(x)
dx = +\infty .

In the specific case of g(x) = x, the weight V (x) can be taken to be

V (x) = xk + xK ,  - 1 < k < 1 < K.

It is worth noticing that we obtain a spectral gap in spaces with essentially optimal
weights. Indeed it was proved in [14] that there is no spectral gap in a weighted
L1 space with the dual eigenfunction \phi when B is bounded (see the estimates in
Theorem 2.1 below).

To the best of our knowledge, even the existence of the Perron eigenelements
in such generality is new (allowing a total fragmentation rate with any growth at
infinity, and with no required connectivity condition on its support), and hence so is
the existence of a spectral gap. However, since our approach for the existence of the
principal eigenfunction N is a byproduct of the contraction result provided by Harris's
theorem, this precludes the case of self-similar fragmentation with equal mitosis and
growth rate g(x) = x for which convergence to a universal profile does not hold, as
we already mentioned. In that case the existence of a Perron eigenfunction has to be
tackled with other spectral methods, as in [38, 51, 53, 59].

Note also that our result is valid for the measure solutions of (1), thus improving
the result in [34] where the general relative entropy method is extended to measure
solutions, providing convergence to Malthusian behavior but without a rate and under
restrictive assumptions on the coefficients.

Regarding the assumptions on the coefficients, the only existing spectral gap
results that consider general growth rates are the ones in [4] and [15]. In these papers,
the fragmentation rate is assumed to behave like a power law, which we relax here
by only requiring Hypothesis 1.3 on B. The other results in the literature focus on
constant or linear growth rates and, except in [9], they also consider division rates
that grow like power laws.

Finally, when explicit estimates are available for \phi , our method allows us to derive
quantitative estimates on the spectral gap. It is the case for instance when g(x) = x
since then \phi (x) = x. An important particular case is to consider additionally that
B(x) = xb for some b > 0. This corresponds to the so-called self-similar fragmenta-
tion equation, which appears as a rescaling of the pure fragmentation equation; see,
e.g., [37, 42]. To illustrate the quantification of the spectral gap, we prove that for the
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homogeneous fragmentation kernel and the choice V (x) = 1 + x2, the inequality (15)
holds true for

(16) \rho =

 - log
\Bigl( 
1 - \alpha 

2(1 + 2\alpha )

\Bigr) 
2 log 2

,

where

\alpha = 2 log 2Rb+3e - 2(4R)b/b with R = 80
\Bigl( 15
2

\Bigr) 1
b+

b
2

.

This seems to simplify the computable bound in [61, Proposition 6.7]. It can also
be compared to [46] where the spectral gap in L2(x dx) is proved to be at least 1

2 ,
but only for b \geq 2. Similarly as in [61], our method also allows for deriving explicit
estimates for more general fragmentation kernels since it does not change the function
\phi .

Historically, the first explicit spectral gap was obtained for constant growth and
division rates and the equal mitosis kernel in [64], and then in [10, 31]. The conditions
were relaxed [54] and in particular general fragmentation kernels were considered. Our
method also allows us to get an explicit spectral gap in the case of constant growth
rates, when the division rate is affine and the fragmentation kernel is self-similar.
Indeed if g(x) = 1 and B(x) = ax+ b, then we easily check that \phi (x) = \alpha x+ 1 with

\alpha = (p0 - 1)b
2

\bigl[ \sqrt{} 
1 + 4a

(p0 - 1)b2  - 1
\bigr] 
, where we recall that p0 is the mass of the self-similar

kernel p, and the Perron eigenvalue is given by \lambda = (p0 - 1)b
2

\bigl[ \sqrt{} 
1 + 4a

(p0 - 1)b2 +1
\bigr] 
. It is a

particular case of the one treated in [9] where B is only assumed to be nonincreasing,
but it extends the historical case of constant division rate.

This paper is organized as follows. We devote section 2 to showing existence of
the dual eigenfuction and some bounds on it. In section 3, we recall some introductory
concepts from the theory of Markov processes and state Harris's theorem 3.3 based
on the previous literature. Eventually for the proof of Theorem 1.3 which is given
by applying Harris's theorem, we need to have Hypotheses 3.2 and 3.3 satisfied for
(14). In sections 4 and 5, we prove that Hypotheses 3.2 and 3.3 are verified for
(14), respectively. Finally in section 6 we give the proof of Theorem 1.3 and the
computations leading to (16).

2. Existence of the dual eigenfunction. In this section, we prove the follow-
ing theorem which implies existence and boundedness of the dual Perron eigenfunction
\phi , a solution to the dual eigenproblem (6):

Theorem 2.1 (existence and bounds on the eigenfunction \phi ). We assume that
Hypotheses 1.1 and 1.3 hold true and assume also that p0 < +\infty . Then there exist a
continuous function \phi which is a solution to (6) and C > 0 such that for any k > 1,

0 < \phi (x) \leq C(1 + xk) for all x > 0.

Additionally we have \phi (0) > 0 when
\int 1

0
1
g < +\infty and \phi (0) = 0 when

\int 1

0
1
g = +\infty .

Notice that our only assumption on p is that p0 < +\infty (see Remark 1.2). We
prove this theorem at the end of the section.

Following the idea introduced in [64] and also used in [4, 38], we begin with
defining a truncated version of the dual Perron eigenproblem (6) in an interval [0, R]
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for some R > 0:

 - g(x)
\partial 

\partial x
\phi R(x) + (B(x) + \lambda R)\phi R(x) =

B(x)

x

\int R

0

p
\Bigl( y
x

\Bigr) 
\phi R(y) dy,

\phi R(x) > 0 for x \in (0, R), \phi R(R) = 0.

(17)

Now we give some lemmas which will be used in the proof of Theorem 2.1. The
existence of a solution to (17) is a consequence of the Krein--Rutman theorem (see
the appendices in [38] and [4]). Moreover in [4], the authors proved that there exists
R0 > 0 large enough such that for all R > R0 we have \lambda R > 0. We thus have the
following result.

Lemma 2.2. For any R > 0, the truncated dual Perron eigenproblem (17) admits
a solution (\lambda R, \phi R) with \phi R a Lipschitz function. Moreover there exists R0 > 0 such
that \lambda R > 0 for all R > R0.

Before proving uniform estimates on (\lambda R, \phi R), we first recall a maximum principle.
We begin by defining an operator \scrL \ast 

R, acting on once-differentiable functions \varphi \in 
\scrC 1([0, R]):

\scrL \ast 
R\varphi (x) :=  - g(x)\varphi \prime (x) + (\lambda R +B(x))\varphi (x) - B(x)

x

\int x

0

p
\Bigl( y
x

\Bigr) 
\varphi (y) dy.

We have the following maximum principle; see [38, Appendix C] or [4, section 3.2].

Lemma 2.3. Suppose that \varphi (x) \geq 0 for x \in [0, A] for some A \in (0, R) with
\varphi (R) \geq 0 and \scrL \ast 

R\varphi (x) > 0 on [A,R]. Then \varphi (x) \geq 0 on [0, R].

This maximum principle allows us to get a uniform upper bound on \phi R for a
suitable normalization.

Lemma 2.4. Consider that Hypotheses 1.1 and 1.3 are satisfied, and that p0 <
+\infty . For any k > 1, there exists A > 0 such that if \phi R is normalized such that

(18) sup
x\in [0,A]

\phi R(x) = 1,

then for all R > max\{ A,R0\} and for all x \in (0, R] we have

0 < \phi R(x) \leq 1 + xk.

Additionally, \phi R(0) > 0 when
\int 1

0
1
g < +\infty and \phi R(0) = 0 when

\int 1

0
1
g = +\infty .

Proof. For the bound from above we want to use the maximum principle in
Lemma 2.3. Therefore we want to prove that \scrL \ast 

R\varphi (x) > 0 for x \in (A,R) with
A \in (0, R) as in Lemma 2.3. We take \varphi (x) = 1+xk for some k > 1. Then for R \geq R0

we have

\scrL \ast 
R\varphi (x) = \lambda R(1 + xk) - kg(x)xk - 1 +B(x)

\biggl( 
(1 + xk) - 1

x

\int x

0

(1 + yk)p
\Bigl( y
x

\Bigr) 
dy

\biggr) 
= \lambda R(1 + xk) - kg(x)xk - 1 +B(x)(1 + xk  - p0  - xkpk)

> xk - 1
\bigl( 
 - kg(x) - B(x)x1 - k + (1 - pk)B(x)x

\bigr) 
:= \varrho (x)

since p0 = 2 and 0 < pk < 1 = p1 for k > 1. Moreover assuming (11) gives that the
behavior of \varrho will be dominated by the positive term (1 - pk)B(x)xk > 0. Therefore,
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we can find A(k) > 0 such that for all A(k) < x < R, we have \scrL \ast 
R\varphi (x) > 0. We

fix such an A > 0 and normalize \phi R by (18). Then by the maximum principle in
Lemma 2.3 we obtain that \phi R(x) \leq 1 + xk. The positivity or nullity of \phi R(0) is a
direct consequence of [4, Theorem 1.10].

Lemma 2.5. Under Hypotheses 1.1 and 1.3 with p0 < +\infty , there exists a constant
C > 0 such that \lambda R \leq C for all R > R0.

Proof. Since \phi R is continuous and by (18), there exists xR \in [0, A] such that

\phi R(xR) = 1. Notice that necessarily xR > 0 when
\int 1

0
1
g = +\infty , since \phi R(0) = 0 is the

case. Moreover, the equation \scrL \ast 
R\phi R = 0 ensures that for all x > 0 we have

\biggl( 
\phi R(x) exp

\biggl( 
 - 
\int x

xR

\lambda R +B(s)

g(s)
ds

\biggr) \biggr) \prime 

=  - B(x)

xg(x)
exp

\biggl( 
 - 
\int x

xR

\lambda R +B(s)

g(s)
ds

\biggr) \int x

0

p
\Bigl( y
x

\Bigr) 
\phi R(y) dy.

By integrating this from xR to x \geq xR,

\phi R(x) exp

\biggl( 
 - 
\int x

xR

\lambda R +B(s)

g(s)
ds

\biggr) 
 - 1

=  - 
\int x

xR

B(y)

yg(y)
exp

\biggl( 
 - 
\int y

xR

\lambda R +B(s)

g(s)
ds

\biggr) \int y

0

p

\biggl( 
z

y

\biggr) 
\phi R(z) dz dy.

By using the upper bound on \phi R we obtain, for R > R0,

\phi R(x) exp

\biggl( 
 - 
\int x

xR

\lambda R +B(s)

g(s)
ds

\biggr) 
\geq 1 - 

\int x

xR

B(y)

yg(y)
exp

\biggl( 
 - 
\int y

xR

\lambda R +B(s)

g(s)
ds

\biggr) \int y

0

p

\biggl( 
z

y

\biggr) 
(1 + zk) dz dy

\geq 1 - 
\int x

xR

B(y)

g(y)
exp

\biggl( 
 - 
\int y

xR

\lambda R +B(s)

g(s)
ds

\biggr) \bigl( 
p0 + pky

k
\bigr) 
dy.

Since \phi R(R) = 0 we deduce that for all R > R0,

(19)

\int R

xR

B(y)

g(y)
exp

\biggl( 
 - 
\int y

xR

\lambda R +B(s)

g(s)
ds

\biggr) \bigl( 
p0 + pky

k
\bigr) 
dy \geq 1,

and this enforces \lambda R to be bounded from above. Indeed, otherwise, there would exist
a sequence (Rn)n\geq 0 and x\infty \in [0, A] such that

Rn \rightarrow +\infty , \lambda Rn
\rightarrow +\infty , xRn

\rightarrow x\infty .

But in that case, since

1[xRn ,Rn](y)
B(y)

g(y)
exp

\Biggl( 
 - 
\int y

xRn

\lambda Rn
+B(s)

g(s)
ds

\Biggr) \bigl( 
p0 + pky

k
\bigr) 

\leq B(y)

g(y)
exp

\biggl( 
 - 
\int y

A

B(s)

g(s)
ds

\biggr) \bigl( 
p0 + pky

k
\bigr) D
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and the latter function is integrable on [0,+\infty ) (carry out an integration by parts
and use (11)), the dominated convergence theorem ensures that\int Rn

xRn

B(y)

g(y)
exp

\Biggl( 
 - 
\int y

xRn

\lambda Rn +B(s)

g(s)
ds

\Biggr) \bigl( 
p0 + pky

k
\bigr) 
dy \rightarrow 0,

which contradicts (19).

Lemma 2.6. Under Hypotheses 1.1 and 1.3 with p0 < +\infty , | \phi \prime 
R(x)| is uniformly

bounded on compact intervals for all R > R0.

Proof. By the equation \scrL \ast 
R\phi R(x) = 0 and bounds on \phi R(x) and \lambda R we obtain

| \phi \prime 
R(x)| =

\lambda R\phi R(x)

g(x)
+

B(x)

g(x)

\bigm| \bigm| \bigm| \bigm| \phi R(x) - 
1

x

\int x

0

p
\Bigl( y
x

\Bigr) 
\phi R(y) dy

\bigm| \bigm| \bigm| \bigm| 
\leq \lambda R

g(x)
(1 + xk) +

B(x)

g(x)

\bigm| \bigm| \bigm| \bigm| 1 + xk  - 1

x
(1 + xk)

\int x

0

p
\Bigl( y
x

\Bigr) 
dy

\bigm| \bigm| \bigm| \bigm| 
\leq \lambda R

g(x)
(1 + xk) +

B(x)

g(x)

\bigm| \bigm| \bigm| \bigm| 1 + xk  - 1

x
(1 + xk)xp0

\bigm| \bigm| \bigm| \bigm| 
\leq \lambda R

g(x)
(1 + xk) +

B(x)

g(x)
| 1 - p0| ,

which gives a bound on \phi \prime 
R(x) for all R > R0, taking into account that \lambda R is uniformly

bounded for all R > R0 thanks to Lemma 2.5.

Proof of Theorem 2.1. Lemmas 2.2, 2.4, 2.5, and 2.6 give the proof. Since there
exists a solution to the truncated dual Perron eigenproblem (17) for any R > 0 by
Lemma 2.2, it only remains to prove that the terms are bounded in order to pass
to the limit as R \rightarrow +\infty . We provide the bounds on \phi R, \lambda R, and \phi \prime 

R by Lemmas
2.4, 2.5, 2.6, respectively. These bounds ensure that we can extract a subsequence
of (\lambda R) which converges to \lambda > 0 and a subsequence of (\phi R) which converges locally
uniformly to a limit \phi which satisfies 0 < \phi (x) \leq 1+ xk. Clearly (\lambda , \phi ) is the solution
to the dual Perron eigenproblem (6), and \phi \not \equiv 0 since supx\in [0,A] \phi (x) = 1. Similarly,
the proof of the positivity or nullity of \phi (0) is a direct consequence of [4, Theorem
1.10].

3. Harris's theorem. In this section, we state Harris's theorem based on [48]
and [49]. The original idea comes from the study of discrete-time Markov processes
and dates back to Doeblin and [52] where conditions of existence and uniqueness of
having an equilibrium (or an invariant measure) for a Markov process are investigated.
It is a probabilistic method which relies on both a minorization property and a drift
condition (also called the Foster--Lyapunov condition), which we describe below.

We use Harris's theorem applied to continuous-time Markov processes in order to
show that solutions to rescaled growth-fragmentation equation (14), under suitable
assumptions, converge towards a universal profile at an exponential rate.

We assume that \Omega is a Polish space and (\Omega ,\Sigma ) is a measurable space together
with its Borel \sigma -algebra \Sigma , so that \Omega endowed with any probability measure is a
Lebesgue space. Moreover we denote the space of finite measures on \Omega by \scrM (\Omega ) and
the space of probability measures on \Omega by \scrP (\Omega ).

A discrete-time Markov process x is defined through a transition probability func-
tion. A linear, measurable function S : \Omega \times \Sigma \mapsto \rightarrow \scrP (\Omega ) is a transition probability
function if S(x, \cdot ) is a probability measure for every x and x \mapsto \rightarrow S(\cdot , A) is a measurable
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function for every A \in \Sigma . By using the transition probability function we can define
the associated Markov operator \scrS acting on the space of signed measures on \Omega and
its adjoint \scrS \ast acting on the space of bounded measurable functions \varphi : \Omega \mapsto \rightarrow [0,+\infty )
in the following way:

(\scrS \mu )(A) =

\int 
\Omega 

S(x,A)\mu ( dx), (\scrS \ast \varphi )(x) =

\int 
\Omega 

\varphi (y)S(x, dy).

On the other hand, a continuous-time Markov process is no longer described by a single
transition function, but by a family of transition probability functions St defined for
each time t > 0, with the property that the associated operators \scrS t satisfy

\bullet the semigroup property, \scrS s+t = \scrS s\scrS t;
\bullet and \scrS 0 is the identity or, equivalently, S0(x, \cdot ) = \delta x for all x \in \Omega .

We notice that \scrS t is linear, mass preserving, and positivity preserving. An invariant
measure of a continuous-time Markov process (\scrS t)t\geq 0 is a probability measure \mu on \Omega 
such that \scrS t\mu = \mu for every t \geq 0, and it is the main concept we need to investigate
when studying the asymptotic behavior of a Markov process.

Let us state Doeblin's and Harris's theorems along with some hypotheses. We
always assume (\scrS t)t\geq 0 is a continuous-time Markov semigroup. For their proofs we
refer to [58] or [48, 49].

Hypothesis 3.1 (Doeblin's condition). There exists a time t0 > 0, a probability
distribution \nu , and a constant \alpha \in (0, 1) such that for any initial condition x0 in the
domain we have

\scrS t0\delta x0
\geq \alpha \nu .

Using this we prove the following theorem.

Theorem 3.1 (Doeblin's theorem). If we have a Markov semigroup (\scrS t)t\geq 0

satisfying Doeblin's condition (Hypothesis 3.1) then for any two finite measures \mu 1

and \mu 2 and any integer n \geq 0 we have that\bigm\| \bigm\| \scrS n
t0(\mu 1  - \mu 2)

\bigm\| \bigm\| 
TV

\leq (1 - \alpha )n \| \mu 1  - \mu 2\| TV .

As a consequence, the semigroup has a unique invariant probability measure \mu \ast , and
for all probability measures \mu ,

\| \scrS t(\mu  - \mu \ast )\| TV \leq Ce - \rho t \| \mu  - \mu \ast \| TV , t \geq 0,

where

C :=
1

1 - \alpha 
> 0, \rho :=

 - log(1 - \alpha )

t0
> 0.

Harris's theorem is an extension of Doeblin's theorem to situations in which one
cannot prove a uniform minorization condition as in Hypothesis 3.1. This is often
the case when the state space is unbounded. Instead, we use Doeblin's condition
only in a given region, and then show that the stochastic process will return to that
region often enough. This is established by finding a so-called Lyapunov, or Foster--
Lyapunov function. Both conditions then imply the existence of a spectral gap in a
weighted total variation norm. Precisely, we need the following two hypotheses to be
satisfied:

Hypothesis 3.2 (Foster--Lyapunov condition). There exist \gamma \in (0, 1), K \geq 0, some
time t0 > 0, and a measurable function V : [0,+\infty ) \mapsto \rightarrow [1,+\infty ) such that

(20) (\scrS \ast 
t0V )(x) \leq \gamma V (x) +K

for all x.
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Remark 3.2. When our continuous-time Markov process is obtained by solving a
particular PDE we often denote

(\scrS tm0)(x) \equiv m(t, x),

where m is the solution to the PDE with initial condition m0. Then the previous
condition is equivalent to\int 

\Omega 

m(t0, x)V (x) dx \leq \gamma 

\int 
\Omega 

m0(x)V (x) dx+K,

to be satisfied for all m0 \in \scrP (\Omega ). One can verify this by proving the inequality

d

dt

\int 
\Omega 

m(t, x)V (x) dx \leq  - \lambda 

\int +\infty 

0

m(t, x)V (x) dx+D

for some positive constants D and \lambda , which then implies (20) with \gamma = e - \lambda t0 and
K = D/\lambda .

The next hypothesis is a minorization condition like Hypothesis 3.1, but only on
a sufficiently large region.

Hypothesis 3.3 (small set condition). There exist a probability measure \nu , a con-
stant \alpha \in (0, 1) and some time t0 > 0 such that

\scrS t0\delta x0 \geq \alpha \nu 

for all x0 \in \scrC , where
\scrC = \{ x : V (x) \leq R\} 

for some R > 2K/(1 - \gamma ), where K, \gamma are as in Hypothesis 3.2.

Finally we state Harris's theorem under these hypotheses.

Theorem 3.3 (Harris's theorem). If we have a Markov semigroup (\scrS t)t\geq 0 sat-
isfying Hypotheses 3.2 and 3.3 then there exist \beta > 0 and \=\alpha \in (0, 1) such that

\| \scrS t0\mu 1  - \scrS t0\mu 2\| V,\beta \leq \=\alpha \| \mu 1  - \mu 2\| V,\beta 

for all nonnegative measures
\int 
\mu 1 =

\int 
\mu 2, where the norm \| \cdot \| V,\beta is defined by

\| \mu 1  - \mu 2\| V,\beta :=

\int 
(1 + \beta V (x))| \mu 1  - \mu 2| dx.

Moreover, the semigroup has a unique invariant probability measure \mu \ast and there exist
C > 0 and \rho > 0 (depending only on t0, \alpha , \gamma ,K,R, and \beta ) such that

\| \scrS t(\mu  - \mu \ast )\| V,\beta \leq Ce - \rho t \| \mu  - \mu \ast \| V,\beta for all t \geq 0.

Explicitly if we set \gamma 0 \in [\gamma + 2K/R, 1) for any \alpha 0 \in (0, \alpha ) we can choose \beta = \alpha 0/K
and \=\alpha = max \{ 1 - \alpha + \alpha 0, (2 +R\beta \gamma 0)/(2 +R\beta )\} . Then we have C = 1/\=\alpha and \rho =
 - (log \=\alpha )/t0.

Proofs of Theorems 3.1 and 3.3 can be found for example in [48, 49, 58, 67].

4. Foster--Lyapunov condition. In this section we prove that Hypothesis 3.2
is verified for the semigroup generated by rescaled growth-fragmentation equation
(14), when we consider the evolution of f(t, x) := \phi (x)m(t, x). We divide the proof
of Hypothesis 3.2 into three cases which require slightly different calculations.
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4.1. Linear growth rate. First we treat the linear growth case g(x) = x with
a constant fragmentation kernel. (As remarked before, we do not consider the mitosis
kernel when g(x) = x since there is no spectral gap in that case). In this case the
Perron eigenvalue and the corresponding dual eigenfunction are known (\lambda = 1 and
\phi (x) = x), and the rescaled growth-fragmentation equation is given by

(21)
\partial 

\partial t
m(t, x) +

\partial 

\partial x
(xm(t, x)) = 2

\int +\infty 

x

B(y)

y
m(t, y) dy  - (B(x) + 1)m(t, x),

coupled with the usual initial and boundary conditions.

Lemma 4.1. We consider (21) under Hypotheses 1.1, 1.3 with a growth rate
g(x) = x and the constant fragment distribution p(z) = 2 for z \in (0, 1]. Then the fol-
lowing holds true for any K > 1 > k >  - 1, for some C1, \=C > 0, and any nonnegative
measure solution m = m(t, x):\int +\infty 

0

V (x)f(t, x) dx \leq e - C1t

\int +\infty 

0

V (x)f0(x) dx+ \=C

\int +\infty 

0

f0(x) dx(22)

for all t \geq 0, where f(t, x) := xm(t, x), f0(x) = xm0(x), \| f0\| V < +\infty , and V (x) =
xk - 1 + xK - 1.

Proof. Let \varphi : \BbbR \rightarrow [0, 1] be a nonincreasing C1 function such that \varphi (x) = 1 for
x \leq 0 and \varphi (x) = 0 for x \geq 1. For \ell > 0 we define \varphi \ell (x) = \varphi (x - \ell ). Starting from (3)
we have

d

dt

\int +\infty 

0

\bigl( 
xk + xK

\bigr) 
\varphi \ell (x)m(t, x) dx

=

\int +\infty 

0

\bigl( \bigl( 
kxk - 1 +KxK - 1

\bigr) 
\varphi \ell (x) +

\bigl( 
xk + xK

\bigr) 
\varphi \prime 
\ell (x)

\bigr) 
xm(t, x) dx

+ 2

\int +\infty 

0

B(x)

x
m(t, x)

\int x

0

\bigl( 
yk + yK

\bigr) 
\varphi \ell (y) dy dx

 - 
\int +\infty 

0

\bigl( 
1 +B(x)

\bigr) \bigl( 
xk + xK

\bigr) 
\varphi \ell (x)m(t, x) dx.

Since \varphi \ell is nonincreasing we get

d

dt

\int +\infty 

0

\bigl( 
xk + xK

\bigr) 
\varphi \ell (x)m(t, x) dx

\leq 
\int +\infty 

0

\bigl( 
kxk - 1 +KxK - 1

\bigr) 
\varphi \ell (x)xm(t, x) dx

+ 2

\int +\infty 

0

B(x)

\biggl( 
xk - 1

k + 1
+

xK - 1

K + 1

\biggr) 
\varphi \ell (x)xm(t, x) dx

 - 
\int +\infty 

0

\bigl( 
1 +B(x)

\bigr) \bigl( 
xk - 1 + xK - 1

\bigr) 
\varphi \ell (x)xm(t, x) dx

\leq  - 1

2
(1 - k)

\int +\infty 

0

(xk - 1 + xK - 1)\varphi \ell (x)xm(t, x) dx

+

\int +\infty 

0

\bigl( 
c1B(x)xK - 1 + c2x

K - 1 + c3B(x)xk - 1 + c4x
k - 1
\bigr) 
\varphi \ell (x)xm(t, x) dx,
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where

 - 1 < c1 :=
1 - K

1 +K
< 0, c2 := K  - k + 1

2
> 0, c3 :=

1 - k

1 + k
> 0, c4 :=

k  - 1

2
< 0.

We define

(23) \Phi (x) := c1B(x)xK - 1 + c2x
K - 1 + c3B(x)xk - 1 + c4x

k - 1.

Due to Hypothesis 1.3, the total fragmentation rate B : [0,+\infty ) \rightarrow [0,+\infty ) satisfies
B(x) \rightarrow 0 as x \rightarrow 0 and B(x) \rightarrow +\infty as x \rightarrow +\infty . Hence in the latter expression
the behavior as x \rightarrow +\infty is dominated by the first term; thus \Phi (x) will approach
 - \infty . Similarly when x \rightarrow 0, the last term will dominate the behavior of \Phi , which
is negative as well. Since B is continuous we can always bound supx\geq 0 \Phi (x) \leq C2

with some positive quantity C2 > 0. Therefore by denoting f(t, x) = xm(t, x) and
f0(x) = xm0(x) we obtain, since \varphi \ell \leq 1 and

\int 
f(t, x) dx =

\int 
f0(x) dx,

d

dt

\int +\infty 

0

(xk - 1 + xK - 1)\varphi \ell (x)f(t, x) dx

\leq  - C1

\int +\infty 

0

(xk - 1 + xK - 1)\varphi \ell (x)f(t, x) dx+ C2

\int +\infty 

0

f0(x) dx,

where C1 = (1 - k)/2 > 0. Then Gr\"onwall's lemma implies\int +\infty 

0

V (x)\varphi \ell (x)f(t, x) dx \leq e - C1t

\int +\infty 

0

V (x)\varphi \ell (x)f0(x) dx+ \=C

\int +\infty 

0

f0(x) dx

with \=C = C2/C1. Due to the monotone convergence theorem we deduce (22) by
letting \ell go to +\infty .

4.2. Sublinear growth rate close to 0. In this section we assume that
\int 1

0
1
g <

+\infty , which we sometimes refer to as the case of sublinear growth rate at x = 0.

Lemma 4.2. We consider (14) under Hypotheses 1.1, 1.3, and
\int 1

0
1
g < +\infty . We

take K > 1+ \xi . Then the following holds true for C1 = \lambda (the first eigenvalue), some
C2 > 0, and any nonnegative measure solution m = m(t, x):

(24)
d

dt

\int +\infty 

0

xKm(t, x) dx \leq  - C1

\int +\infty 

0

xKm(t, x) dx+ C2

\int +\infty 

0

\phi (x)m(t, x) dx

for all t \geq 0.

Proof. For the sake of conciseness and clarity, we skip the truncation procedure
here. But the same method as for Lemma 4.1 can be used to make the calculations
rigorous by using the truncation function \varphi \ell . We have

d

dt

\int +\infty 

0

xKm(t, x) dx

=  - 
\int +\infty 

0

xK \partial 

\partial x
(g(x)m(t, x)) dx - 

\int +\infty 

0

xK(B(x) + \lambda )m(t, x) dx

+

\int +\infty 

0

xK

\int +\infty 

x

B(y)

y
p

\biggl( 
x

y

\biggr) 
m(t, y) dy dx

=  - \lambda 

\int +\infty 

0

xKm(t, x) dx+

\int +\infty 

0

\bigl( 
(pK  - 1)xKB(x) +KxK - 1g(x)

\bigr) 
m(t, x) dx.
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We define

\Phi (x) := (pK  - 1)xKB(x) +KxK - 1g(x)

and notice that supx\geq 0 \Phi (x) \leq C2\phi (x) for some C2 > 0 due to Hypothesis 1.3 con-
cerning the behavior of xB(x)/g(x) as x \rightarrow +\infty and x \rightarrow 0, and the fact that \phi (0) > 0

since
\int 1

0
1
g < +\infty which is a result of Theorem 2.1.

We now give a translation of this lemma in terms of f = \phi m, since this is needed
in order to apply Harris's theorem to the evolution of f .

Corollary 4.3. We consider (14) under Hypotheses 1.1, 1.3, and
\int 1

0
1
g < +\infty .

For V (x) = 1 + xK

\phi (x) , where K > 1 + \xi and f(t, x) := \phi (x)m(t, x) with f0(x) =

\phi (x)m0(x), \| f0\| V < +\infty , there exist C1, \~C > 0 such that for all t \geq 0

(25)

\int +\infty 

0

V (x)f(t, x) dx \leq e - C1t

\int +\infty 

0

V (x)f0(x) dx+ \~C

\int +\infty 

0

f0(x) dx.

Proof. By adding \phi (x) to both sides of (24) we obtain

d

dt

\int +\infty 

0

xKm(t, x) dx =
d

dt

\int +\infty 

0

(xK + \phi (x))m(t, x) dx

\leq  - C1

\int +\infty 

0

(xK + \phi (x))m(t, x) dx+ (C1 + C2)

\int +\infty 

0

\phi (x)m(t, x) dx.

Therefore, we have for f(t, x) = \phi (x)m(t, x),

d

dt

\int +\infty 

0

\biggl( 
1 +

xK

\phi (x)

\biggr) 
f(t, x) dx

\leq  - C1

\int +\infty 

0

\biggl( 
1 +

xK

\phi (x)

\biggr) 
f(t, x) dx+ (C1 + C2)

\int +\infty 

0

f0(x) dx,

since
\int 
f(t, x)dx =

\int 
f0(x)dx. Gr\"onwall's lemma then implies (25) with \~C = 1 +

C2/C1.

4.3. Superlinear growth rate close to 0. Now we assume that
\int 1

0
1
g = +\infty ,

which implies linear or superlinear behavior for the growth rate x close to 0. This, of
course, includes the case g(x) = x from section 4.1, but the general result we obtain
now is slightly more restrictive. In the case of exact linear growth, Lemma 4.1 is
slightly more precise.

Lemma 4.4. We consider (14) under Hypotheses 1.1, 1.3, and
\int 1

0
1
g = +\infty . We

take k < 0 and K > 1+\xi . Then the following holds true for any nonnegative measure
solution m = m(t, x):

d

dt

\int +\infty 

0

(xk+xK)m(t, x) dx \leq  - C1

\int +\infty 

0

(xk+xK)m(t, x) dx+C2

\int +\infty 

0

\phi (x)m(t, x) dx

for all t \geq 0, where C1 = \lambda > 0 and C2 > 0 is some constant independent of the
solution m.

D
ow

nl
oa

de
d 

09
/3

0/
21

 to
 1

50
.2

14
.2

05
.9

7 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

5202 JOS\'E A. CA\~NIZO, PIERRE GABRIEL, AND HAVVA YOLDA\c S

Proof. Here again we skip the truncation procedure and refer to the proof of
Lemma 4.1 for the method which allows making the calculations rigorous. We have

d

dt

\int +\infty 

0

(xk + xK)m(t, x) dx

=  - 
\int +\infty 

0

(xk + xK)
\partial 

\partial x
(g(x)m(t, x)) dx - 

\int +\infty 

0

(xk + xK)(B(x) + \lambda )m(t, x) dx

+

\int +\infty 

0

B(y)

y
m(t, y)

\int 1

0

(ykzk + yKzK)p (z) y dz dy

=  - \lambda 

\int +\infty 

0

(xk + xK)m(t, x) dx

+

\int +\infty 

0

\bigl( 
(pk  - 1)xkB(x) + (pK  - 1)xKB(x) + kxk - 1g(x) +KxK - 1g(x)

\bigr) 
m(t, x) dx.

Similarly to previous proofs, we define

\Phi (x) := (pk  - 1)xkB(x) + (pK  - 1)xKB(x) + kxk - 1g(x) +KxK - 1g(x)

and notice that supx>0 \Phi (x) \leq C2\phi (x) for some C2 > 0 due to Hypothesis 1.3 concern-
ing the behavior of xB(x)/g(x) as x \rightarrow +\infty and x \rightarrow 0, and the fact that pK  - 1 < 0
and k < 0.

Corollary 4.5. We consider (14) under Hypotheses 1.1, 1.3 and
\int 1

0
1
g = +\infty .

For V (x) = xk+xK

\phi (x) with k < 0, K > 1 + \xi , and f(t, x) := \phi (x)m(t, x) with f0(x) =

\phi (x)m0(x), \| f0\| V < +\infty , there exist C1, \~C > 0 such that for all t \geq 0,

(26)

\int +\infty 

0

V (x)f(t, x) dx \leq e - C1t

\int +\infty 

0

V (x)f0(x) dx+ \~C

\int +\infty 

0

f0(x) dx.

Proof. The inequality in Lemma 4.4 yields, for f(t, x) := \phi (x)m(t, x),

d

dt

\int +\infty 

0

xk + xK

\phi (x)
f(t, x) dx \leq  - C1

\int +\infty 

0

xk + xK

\phi (x)
f(t, x) dx + (C1+C2)

\int +\infty 

0

f0(x) dx,

since
\int 
f(t, x)dx =

\int 
f0(x)dx.

Then Gr\"onwall's lemma implies (26) with \~C = 1 + C2/C1.

5. Minorization condition. In this section, we show that Hypothesis 3.3 is
verified for the semigroup generated by rescaled growth-fragmentation equation (14).
We give the proof in two parts where the uniform fragment distribution and the equal
mitosis are considered separately.

We start by recalling some known results on the solution of the transport part of
(14). Consider the equation

(27)

\partial 

\partial t
m(t, x) +

\partial 

\partial x
(g(x)m(t, x)) =  - c(x)m(t, x), t, x > 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0,

which is the same as (14) without the positive part of the fragmentation operator.
We remark that Hypothesis 1.3 ensures that the characteristic ordinary differential
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equation

d

dt
Xt(x0) = g(Xt(x0)),

X0(x0) = x0,
(28)

has a unique solution, defined for t \in [0,+\infty ), for any initial condition x0 > 0. In
fact, it is defined in some interval (t\ast (x0),+\infty ) for some t\ast (x0) < 0. The solution can
be explicitly given in terms of H - 1, where

H(x) :=

\int x

1

1

g(y)
dy, x \geq 0.

We notice that H is strictly increasing with H0 := H(0) = limx\rightarrow 0 H(x) < 0 and
limx\rightarrow +\infty H(x) = +\infty (since g grows sublinearly as x \rightarrow +\infty ), so that it is invertible
as a map from (0,+\infty ) to (H0,+\infty ). (We allow H0 =  - \infty if 1/g is not integrable
close to x = 0.) It can easily be checked that

Xt(x0) = H - 1(t+H(x0)) for x0 > 0 and t > H0  - H(x0),

so that that the maximal time interval where the solution of (28) is defined is precisely
as (H0  - H(x0),+\infty ). Since it will be convenient later, we define

Xt(0) := lim
x0\rightarrow 0

Xt(x0) =

\Biggl\{ 
0 if H0 =  - \infty ,

H - 1(t+H0) if H0 \in ( - \infty , 0).

This reflects the fact that the characteristics take a very long time to escape from 0
when 1/g is not integrable close to 0; while they escape in finite time if 1/g is inte-
grable close to 0. For each t \geq 0, we have thus defined the flow map Xt : (0,+\infty ) \rightarrow 
(Xt(0),+\infty ), which is strictly increasing. For negative times, we may consider
X - t : (Xt(0),+\infty ) \rightarrow (0,+\infty ) (where t > 0). Of course, X - t = (Xt)

 - 1.
If n0 is a nonnegative measure, it is well known that the unique measure solution

to (27) is given by

(29)
m(t, x) = Xt\#n0(x) exp

\biggl( 
 - 
\int t

0

c(X - \tau (x)) d\tau 

\biggr) 
, t \geq 0, x > Xt(0),

m(t, x) = 0, t \geq 0, x \leq Xt(0),

where we abuse notation by evaluating the measures m(t, \cdot ) and Xt\#n0 at a point
x > 0. For a Borel measurable map X : (0,+\infty ) \rightarrow (0,+\infty ), the expression X\#n0

denotes the transport, or push forward, of the measure n0 by the map X, defined by
duality through \int \infty 

0

\varphi (x)X\#n0(x) dx :=

\int \infty 

0

\varphi (X(y))n0(y) dy

for all continuous, compactly supported \varphi : (0,+\infty ) \rightarrow \BbbR . We use the notation \scrT t for
this flow map:

(30) \scrT tn0(x) := Xt\#n0(x) for all t \geq 0,

so \scrT t is the semigroup associated with transport equation (27).
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If additionally n0 is a function and X has a left inverse X - 1 : (a, b) \rightarrow (0,+\infty ),
one has

X\#n0(x) =

\Biggl\{ 
n0(X

 - 1(x))
\bigm| \bigm| \bigm| d
dx (X

 - 1)(x))
\bigm| \bigm| \bigm| if x \in (a, b),

0 otherwise.

Using this for the solution to (27), if n0 is a function we may write m in the equivalent
form

(31) m(t, x) = n0(X - t(x))
d

dx
X - t(x) exp

\biggl( 
 - 
\int t

0

c(X - \tau (x)) d\tau 

\biggr) 
when t \geq 0 and x > Xt(0), and m(t, x) = 0 otherwise. Using that Yt(x) :=

d
dxXt(x)

satisfies d
dtYt(x) = g\prime (Xt(x))Yt(x), we note for later that

(32)
d

dx
X - t(x) = exp

\biggl( 
 - 
\int t

0

g\prime (X - \tau (x)) d\tau 

\biggr) 
, t \geq 0, x > Xt(0).

5.1. Uniform fragment distribution. Let us consider the case of uniform
fragment distribution p(z) = 2, corresponding to the fragmentation kernel of the form
\kappa (x, y) = 2

xB(x)1\{ 0\leq x\leq y\} . The growth-fragmentation equation in this case is widely
studied and depending on some assumptions made on growth and total division rates,
existence (in some cases exact values) of eigenelements are known. The rescaled
growth-fragmentation equation in this case becomes

(33)

\partial 

\partial t
m+

\partial 

\partial x
(g(x)m) = 2

\int +\infty 

x

B(y)

y
m(t, y) dy  - (B(x) + \lambda )m, t, x \geq 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0,

where m = m(t, x) whenever variables are not explicitly written. If we consider a
linear growth g(x) = g0x and a power like total division B(x) = b0x

\gamma with \gamma > 0, and
g0, b0 > 0, the Perron eigenvalue and the corresponding dual eigenfunction are given
by

\lambda = g0 and \phi (x) =
x\int 

yN(y)
.

In this case, eigenelements can be computed explicitly (see, for example, [38]):

\lambda = g0, N(x) =

\biggl( 
b0
\gamma g0

\biggr) 1/\gamma 
\gamma 

\Gamma 
\bigl( 
1
\gamma 

\bigr) exp\biggl(  - 1

\gamma 

b0
g0

x\gamma 

\biggr) 
, \phi (x) =

\biggl( 
b0
\gamma g0

\biggr) 1/\gamma \Gamma 
\bigl( 
1
\gamma 

\bigr) 
\Gamma 
\bigl( 
2
\gamma 

\bigr) x.
Moreover, in [4], the authors give the asymptotics of the profileN and accurate bounds
on the dual eigenfunction \phi in a more general form of the growth-fragmentation
equation, where growth and total division rates behave like a power law for large and
small x.

Lemma 5.1 (lower bound for the uniform fragment distribution). Assume Hy-
potheses 1.1 and 1.3 hold true with a constant distribution of fragments p(z) = 2 for
z \in (0, 1]. Let (\scrS t)t\geq 0 be the linear semigroup associated with (33). For all 0 < \eta < \theta 
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SPECTRAL GAP FOR THE GROWTH-FRAGMENTATION EQUATION 5205

given, there exists t0 > 0 such that for all t > t0 and x0 \in (\eta , \theta ] it holds that

\scrS t\delta x0
(x) \geq C(\eta , \theta , t) for all x \in It,

where It is an open interval which depends on \eta , the time t, and for some quantity
C = C(\eta , \theta , t) depending only on \eta , \theta , and t. If in addition we assume that\int 1

0

1

g(x)
dx < +\infty ,

then the above result also holds when taking \eta = 0.

Proof. Recall that (\scrT t)t\geq 0 is the semigroup associated with the transport equation

\partial 

\partial t
m(t, x) +

\partial 

\partial x
(g(x)m(t, x)) + c(x)m(t, x) = 0,

where c(x) = B(x) + \lambda . By Duhamel's formula we have

\scrS tn0(x) = m(t, x) = \scrT tn0(x) +

\int t

0

\scrT t - \tau (\scrA (\tau , .))(x) d\tau ,

where \scrA (t, x) := 2
\int +\infty 
x

B(y)
y m(t, y) dy. Fix 0 \leq \eta < \theta , and take any x0 \in (\eta , \theta ].

If n0 = \delta x0
, a simple bound gives

\scrS t\delta x0 \geq \scrT t\delta x0 = Xt\#\delta x0 exp

\biggl( 
 - 
\int t

0

c(Xt - \tau (x0)) d\tau 

\biggr) 
,

where we have used the expression of \scrT t given in (29) and the fact that the support
of Xt\#\delta x0 is the single point \{ Xt(x0)\} . By Hypothesis 1.3 (in particular since B is
continuous on [0, Xt(\theta )]), for some C1 = C1(\theta , t) which is increasing in t, we have

c(x) = B(x) + \lambda \leq C1 for all x \in (0, Xt(\theta )].

We deduce that

(34) \scrS t\delta x0
\geq Xt\#\delta x0

e - C1t = \delta Xt(x0)e
 - C1t.

Using this we obtain

\scrA (t, x) \geq 2e - C1t
B(Xt(x0))

Xt(x0)
for all t > 0 and x < Xt(x0).

We use that there is some xB > 0 for which B is bounded below by a positive quantity
on any interval of the form [xB , R]. There is some tB > 0 such that for t > tB we have
Xt(x0) > xB for all x0 > \eta (for this to hold, notice we may take \eta = 0 in the case

that
\int 1

0
1/g < +\infty , but we need \eta > 0 otherwise). Hence, for some C2 = C2(\eta , \theta , t)

which is decreasing in t, we obtain

\scrA (t, x) \geq C2e
 - C1t for all t > tB and x < Xt(x0).

Take now t > tB , which will stay fixed until the end of the proof. The previous bound
shows that

\scrA (\tau , x) \geq C2(\eta , \theta , \tau )e
 - C1(\theta ,\tau )\tau \geq C2(\eta , \theta , t)e

 - C1(\theta ,t)\tau =: \~C2e
 - \~C1\tau 
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5206 JOS\'E A. CA\~NIZO, PIERRE GABRIEL, AND HAVVA YOLDA\c S

for all t > tB , tB < \tau < t, and all x < X\tau (x0). As a consequence, using (31) and (32),

\scrT t - \tau \scrA (\tau , x) \geq \~C2e
 - \~C1\tau exp

\biggl( 
 - 
\int t - \tau 

0

c(X - s(x)) ds

\biggr) 
exp

\biggl( 
 - 
\int t - \tau 

0

g\prime (X - s(x)) ds

\biggr) 
for all tB < \tau < t and Xt - \tau (0) < x < Xt(x0). Since X - s(x) \leq Xt(x0) in this range,
we can bound this by

\scrT t - \tau \scrA (\tau , x) \geq \~C2e
 - 2 \~C1t exp

\biggl( 
 - 
\int t - \tau 

0

g\prime (X - s(x)) ds

\biggr) 
,

again for all tB < \tau < t and Xt - \tau (0) < x < Xt(x0). In order to find a lower bound
for the last exponential we restrict to a smaller x interval. Since the bound holds for
all x with

Xt - \tau (0) < x < Xt(x0),

it holds in particular for all x with

(35) Xt - tB (\eta ) < x < Xt(\eta ).

Again this is a point where we need to take \eta > 0 in the case
\int 1

0
1/g = +\infty , since

otherwise this gives an empty range of x. In the case
\int 1

0
1/g < +\infty , \eta = 0 is allowed.

In this range, the quantity X - s(x) inside the exponential satisfies

X\tau  - tB (\eta ) \leq X - s(x) \leq Xt(\eta ).

Choose \delta > 0 such that tB+\delta < t. Then for all x satisfying (35) and all \tau \in (tB+\delta , t)
we have

X\delta (\eta ) \leq X - s(x) \leq Xt(\eta ).

Using that g\prime (X) \leq C3 for all X \in [X\delta (\eta ), Xt(\eta )] we have

\scrT t - \tau \scrA (\tau , x) \geq \~C2e
 - \~C1\tau e - C3(t - \tau ) \geq \~C2e

 - C4t

for all x satisfying (35) and all \tau \in (tB + \delta , t). A final integration gives, for x in the
same interval,\int t

0

\scrT t - \tau (\scrA (\tau , \cdot ))(x) d\tau \geq \~C2e
 - C4t

\int t

tB+\delta 

d\tau = \~C2e
 - C4t(t - tB  - \delta ).

Taking t0 := tB gives the result.

5.2. Equal mitosis. We now consider the fragment distribution p(z) = 2\delta 1
2
(z)

which describes the process of equal mitosis, in which cells of size x split into two
equal daughter cells of size x/2. In (14), we then have \scrA (t, x) := 4B(2x)m(t, 2x) and
the rescaled growth-fragmentation equation takes the form
(36)

\partial 

\partial t
m(t, x) +

\partial 

\partial x
(g(x)m(t, x)) = 4B(2x)m(t, 2x) - (B(x) + \lambda )m(t, x), t, x \geq 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0.
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The case where g and B are constant was the subject of numerous works in the past,
most notably [10, 31, 50, 61, 64, 68]. For g(x) = 1 and B(x) = 1, eigenelements are
given by

\lambda = 1, N(x) =

+\infty \sum 
n=0

( - 1)n\alpha ne
 - 2n+1x, \phi (x) \equiv 1,

with \alpha n = 2
2n - 1\alpha n - 1 and \alpha 0 > 0 a suitable normalization constant, and the solution

m(t, x) converges exponentially fast to the universal profile N(x), which vanishes as
x \rightarrow 0 and x \rightarrow +\infty . However, when a linear growth rate g(x) = x is considered (36)
exhibits oscillatory behavior in the long-time. This is because instead of a dominant
real eigenvalue, there are nonzero imaginary eigenvalues, so that there exists a set of
dominant eigenvalues. This type of periodic long-time behavior was first observed in
[35] and then it was proved in [47] by using the theory of positive semigroups combined
with spectral analysis to obtain the convergence to a semigroup of rotations. Since the
method relies on some compactness arguments, the authors considered the equation
in a compact subset of (0,+\infty ). Recently in [45], the authors proved the oscillatory
behavior in the framework of measure solutions for general division rates on (0,+\infty ).
The proof relies on a general relative entropy argument combined with the use of
Harris's theorem on discrete subproblems. It provides an explicit rate of convergence
in the weighted total variation norm. Here we consider a sublinear growth rate and a
more general division rate than those so far considered in the literature. We exclude
of course the case g(x) = x, for which we know the lower bound (and the exponential
convergence) does not hold.

We first need a technical lemma which gives an expression for the time integration
of a measure moving in time.

Lemma 5.2. Let t > 0 and F : [0, t] \rightarrow \BbbR an injective, differentiable function.
Then \int t

0

\delta F (\tau )(x) d\tau =
\bigl( 
F - 1

\bigr) \prime 
(x)1\{ F (0)\leq x\leq F (t)\} .

Proof. Integrating against a smooth test function \varphi (x) we obtain\int +\infty 

0

\varphi (x)

\int t

0

\delta F (\tau )(x) d\tau dx =

\int t

0

\int +\infty 

0

\varphi (x)\delta F (\tau )(x) dxd\tau 

=

\int t

0

\varphi (F (\tau )) d\tau =

\int F (t)

F (0)

\varphi (y)
\bigl( 
F - 1

\bigr) \prime 
(y) dy

by using the change of variable y = F (\tau ).

The following result will ensure a certain sublinearity of the characteristic flow
Xt which we will need later:

Lemma 5.3. Assume that the growth rate g : (0,+\infty ) \rightarrow (0,+\infty ) is locally Lip-
schitz and satisfies

\omega g(x) < g(\omega x) for all x > 0 and \omega \in (0, 1).

Then for any t > 0 the characteristic flow Xt satisfies

\omega Xt(x) < Xt(\omega x) for all x > 0 and \omega \in (0, 1).
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5208 JOS\'E A. CA\~NIZO, PIERRE GABRIEL, AND HAVVA YOLDA\c S

Proof. Call h1(t) := \omega Xt(x) and h2(t) := Xt(\omega x). The second one satisfies the
ODE

h\prime 
2(t) = g(h2(t)),

while the first one satisfies

h\prime 
1(t) = \omega g(Xt(x)) < g(\omega Xt(x)) = g(h1(t)).

Since they have the same initial condition, this differential inequality implies h1(t) <
h2(t) for all t > 0.

Our main lower bound for the mitosis case is the following.

Lemma 5.4 (lower bound for equal mitosis). Assume Hypotheses 1.1, 1.3, and
1.4 hold true with the mitosis kernel p(z) = 2\delta 1

2
(z). Let (\scrS t)t\geq 0 be the semigroup

associated with (36). For any \theta > 0 there exists t0 = t0(\theta ) > 0 such that for all t > t0
and x0 \in (0, \theta ] it holds that

\scrS t\delta x0
(x) \geq C(t0, \theta ) for all x \in It,

where It is an open interval which depends on time t, and for some quantity C =
C(t, \theta ) depending only on t and \theta .

Proof. Fix \theta > 0 and take any x0 \in (0, \theta ]. We follow the same strategy as in
the proof of Lemma 5.1. Here the only different part is \scrA (t, x). We consider the
semigroup (\scrT t)t\geq 0 defined as in (30) and (\scrS t)t\geq 0 defined as the semigroup associated
with (36) with \scrA (t, x) = 4B(2x)m(t, 2x). Using (34) we have

\scrT t\delta x0
(2x) \geq Xt\#\delta x0

(2x)e - C1t =
1

2
\delta 1

2Xt(x0)(x)e
 - C1t

for C1 = C1(\theta , t), increasing in t. we obtain

\scrA (t, x) \geq 2e - C1tB (Xt (x0)) \delta 1
2Xt(x0)(x) for all t > 0.

We know that there exists some xB > 0 for which B is bounded below by a positive
quantity in each interval of the form [xB , R]. Take tB > 0 such that for t > tB we
have Xt (x0) > xB for all x0 > 0. Hence, for some C2 = C2(\theta , t) > 0, decreasing in t,

\scrA (t, x) \geq C2e
 - C1t\delta 1

2Xt(x0)(x) for all t > tB .

Fix now any t > tB . For tB < \tau < t we have

\scrA (\tau , x) \geq C2(\theta , \tau )e
 - C1(\theta ,\tau )\tau \delta 1

2X\tau (x0)(x)

\geq C2(\theta , t)e
 - C1(\theta ,t)t\delta 1

2X\tau (x0)(x) =: \~C2e
 - \~C1t\delta 1

2X\tau (x0)(x).

Hence using (29) we have

\scrT t - \tau \scrA (\tau , x) \geq \~C2e
 - \~C1t\delta Xt - \tau ( 1

2X\tau (x0))(x) exp

\biggl( 
 - 
\int t - \tau 

0

c(X - s(x)) ds

\biggr) 
\geq \~C2e

 - 2 \~C1t\delta Xt - \tau ( 1
2X\tau (x0))(x)

D
ow

nl
oa

de
d 

09
/3

0/
21

 to
 1

50
.2

14
.2

05
.9

7 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPECTRAL GAP FOR THE GROWTH-FRAGMENTATION EQUATION 5209

for all \tau \in (tB , t). Define F (\tau ) := Xt - \tau 

\bigl( 
1
2X\tau (x0)

\bigr) 
, and notice that it is a strictly

decreasing function, since Lemma 5.3 ensures that for \tau 1 < \tau 2

F (\tau 2) = Xt - \tau 2

\biggl( 
1

2
X\tau 2(x0)

\biggr) 
< Xt - \tau 2X\tau 2 - \tau 1

\biggl( 
1

2
X\tau 1(x0)

\biggr) 
= F (\tau 1).

By Lemma 5.2 we obtain\int t

0

\scrT t - \tau \scrA (\tau , x) d\tau \geq 
\int t

tB

\scrT t - \tau \scrA (\tau , x) d\tau \geq \~C2e
 - 2 \~C1t

\int t

tB

\delta Xt - \tau ( 1
2X\tau (x0))(x) d\tau 

\geq \~C2e
 - 2 \~C1t (F (\tau ))

\prime 
(x)1\scrI x0

,

where we define

\scrI x0
:=

\biggl[ 
1

2
Xt (x0) , Xt - tB

\biggl( 
1

2
XtB (x0)

\biggr) \biggr] 
.

Again by Lemma 5.3 we see that this interval is nonempty. Since we need a bound
which is independent of x0, we consider the intersection of all these intervals as x0

moves in the interval (0, \theta ). That intersection is

\scrI t :=
\biggl[ 
1

2
Xt (\theta ) , Xt - tB

\biggl( 
1

2
XtB (0)

\biggr) \biggr] 
.

Condition (13) shows that this interval is nonempty for t large enough, since

Xt (\theta )

Xt - tB

\bigl( 
1
2XtB (0)

\bigr) =
H - 1(t+ \theta )

H - 1
\bigl( 
t - tB + 1

2XtB (0)
\bigr) \rightarrow 1 as t \rightarrow +\infty .

This gives the result.

6. Proof of the main result. We conclude by giving the proof of Theorem 1.3.
It is a direct application of Harris's theorem 3.3. Hypotheses 3.2 and 3.3 need to be
verified. We already verified Hypothesis 3.2 (Lyapunov condition) in section 4 (see
the corollary given in each case); in fact, we have proved that given any t0 > 0 we
can satisfy Hypothesis 3.2 for any t \geq t0 with constants \gamma , K which are independent
of t (since we can always take \gamma := e - C1t0 , K := \~C).

Regarding Hypothesis 3.3, the lower bounds we obtained in section 5 are for
m(t, x) which is a solution to (14). However we need to satisfy the minorization
condition for f(t, x) = \phi (x)m(t, x) since the equation on f conserves mass; thus the
associated semigroup is Markovian, and we may apply Harris's theorem to it. The
equation satisfied by f is

(37)

\partial 

\partial t
f(t, x) + \phi (x)

\partial 

\partial x

\biggl( 
g(x)

\phi (x)
f(t, x)

\biggr) 
+ (B(x) + \lambda )f(t, x)

= \phi (x)

\int +\infty 

x

B(y)

y
p

\biggl( 
x

y

\biggr) 
f(t, y) dy, t, x \geq 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0.

We define (\scrF t)t\geq 0 as the semigroup associated with (37) or, alternatively, by the
relationship

\scrF t(\phi n0) := \phi \scrS tn0

for any nonnegative measure n0 such that \phi n0 is a finite measure on (0,+\infty ).
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Lemma 6.1 (minorization condition for f(t, x)). We assume Hypotheses 1.1, 1.2,
1.3, and 1.4 hold true. Let (\scrF t)t\geq 0 be the semigroup associated with (37). For any
0 > \eta > \theta there exists t0 = t0(\eta , \theta ) > 0 such that for all t > t0 and x0 \in [\eta , \theta ] it holds
that

\scrF t\delta x0
(x) \geq \u C(\eta , \theta , t) for all x \in It,

where It is an open interval which depends on time t, and for some quantity \u C =
\u C(\eta , \theta , t) depending only on \eta , \theta , and t. If in addition we assume that\int 1

0

1

g(x)
dx < +\infty ,

then the above result also holds when taking \eta = 0.

Proof. Let (\scrS t)t\geq 0 and (\scrF t)t\geq 0 be the semigroups associated with (14) and (37),
respectively. Under the conditions of Lemma 5.1 we have a lower bound for \scrS t\delta x0(x) \geq 
C(\eta , \theta , t). It immediately translates to a lower bound on \scrF t in all cases:

1. If
\int 1

0
1

g(x) dx = +\infty , we know from [4] that \phi (x) is bounded in each interval

of the form (0, \theta ] (since it is continuous and tends to a positive constant at
x = 0).

2. If
\int 1

0
1

g(x) dx = +\infty , then since \phi (x) is continuous there exist constants

\^C1(\eta , \theta ), \^C2(\eta , \theta ) > 0 such that \^C1 \leq \phi (y) \leq \^C2 for all y \in [\eta , \theta ].
On the other hand, under the conditions of Lemma 5.4 we know again that \phi (x) is
bounded above and below by positive constants in each interval of the form (0, \theta ].

Therefore we obtain, for x0 \in [\eta , \theta ],

\scrF t\delta x0(x) =
\phi (x)

\phi (x0)
\scrS t\delta x0(x) \geq 

\^C1(\eta , \theta )

\^C2(\eta , \theta )
C(\eta , \theta , t) := \u C(\eta , \theta , t),

allowing \eta = 0 if
\int 1

0
1/g < +\infty .

Proof of Theorem 1.3. As remarked above, the semigroup (\scrF t)t\geq 0 satisfies the
Lyapunov condition in Hypothesis 3.2 in all cases, for t \geq 1 with a weight V and
constants \gamma , K which are independent of t. In order to satisfy Hypothesis 3.3 it is
enough then to find any time t \geq 1 for which we have a uniform lower bound whenever
the initial condition is a delta function supported on a region of the form

\scrC := \{ x > 0 | V (x) \leq R\} 

for some R > 2K/(1 - \gamma ). Lemma 6.1 gives this in all cases. Notice that in the cases
in which the lower bound is only available for x0 \in [\eta , \theta ] with \eta > 0, the function V
we give in section 4 is unbounded at x = 0, and thus the region \scrC is contained in an
interval of that form.

Explicit calculations for the self-similar fragmentation case. We recall
that the so-called self-similar fragmentation equation corresponds to a linear growth
rate g(x) = x, a monomial total fragmentation rate B(x) = xb, b > 0, and a self-
similar kernel (here we take the homogeneous self-similar kernel p(z) \equiv 2). In that
case, all the constants appearing in Harris's theorem can be quantified. This is due
to the explicit expression \phi (x) = x of the dual eigenfunction when g(x) = x. For
the computations we choose, for instance, the parameters k = 0 and K = 2, which
correspond to the Lyapunov function V (x) = (xk + xK)/\phi (x) = 1/x + x. We start
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with Hypothesis 3.2. Using that B(x) = xb we can make the proof of Lemma 4.1
more quantitative. Indeed the function \Phi defined in (23) reads in the present case

\Phi (x) =  - 1

3
xb+1 +

3

2
x+ xb - 1  - 1

2
x - 1.

Treating separately the cases x \leq 1, x \geq 1, and b \leq 2, b \geq 2, we can check that

\Phi (x) \leq  - 1

3
xb+1 +

3

2
x+ xb - 1 \leq 5

\Bigl( 15
2

\Bigr) 1
b+

b
2

for all x > 0. So Hypothesis 3.2 is verified for any t0 > 0 with the constants

\gamma = e - 
t0
2 and K = 10

\Bigl( 15
2

\Bigr) 1
b+

b
2

.

We now turn to Hypothesis 3.3. We choose

R =
4K

1 - \gamma 

and we notice that since V (x) = 1/x+ x

\scrC = \{ x : V (x) \leq R\} \subset [1/R,R].

For \phi (x) = x and p(z) \equiv 2, (37) reads

\partial 

\partial t
f(t, x) +

\partial 

\partial x
(xf(t, x)) +B(x)f(t, x) = 2

\int +\infty 

x

B(y)f(t, y)
x

y
dy

and we can prove directly on this equation, proceeding similarly as in Lemma 5.1,
that for any t0 > 0 and all x0 \in [1/R,R]

\scrF t0\delta x0
\geq \alpha \nu 

with

\nu ( dy) =
2e - 2t0

R
1[0,Ret0 ](y)y dy and \alpha = Rb+3t0 exp

\Bigl( 
 - 2R\gamma e

bt0

b

\Bigr) 
.

We are now in position to apply Harris's theorem. Choosing in Theorem 3.3

\alpha 0 =
\alpha 

2
and \gamma 0 = \gamma +

2K

R

we obtain

\=\alpha = max

\Biggl\{ 
1 - \alpha 

2
,
1 - \gamma + 1+\gamma 

2 \alpha 

1 - \gamma + \alpha 

\Biggr\} 
.

Choosing t0 = 2 log 2 we get

\gamma =
1

2
, R = 80

\Bigl( 15
2

\Bigr) 1
b+

b
2

, \alpha = 2 log 2Rb+3e - 2(4R)b/b,

and

\=\alpha = max

\biggl\{ 
1 - \alpha 

2
, 1 - \alpha 

2(1 + 2\alpha )

\biggr\} 
= 1 - \alpha 

2(1 + 2\alpha )
.

This proves that we can choose \rho as in (16).
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