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Time-series thresholding and the definition of avalanche size
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Avalanches whose sizes and durations are distributed as power laws appear in many contexts, from physics to
geophysics and biology. Here we show that there is a hidden peril in thresholding continuous times series—from
either empirical or synthetic data—for the identification of avalanches. In particular, we consider two possible
alternative definitions of avalanche size used, e.g., in the empirical determination of avalanche exponents in the
analysis of neural-activity data. By performing analytical and computational studies of an Ornstein-Uhlenbeck
process (taken as a guiding example) we show that (1) if relatively large threshold values are employed to
determine the beginning and ending of avalanches and (2) if—as sometimes done in the literature—avalanche
sizes are defined as the total area (above zero) of the avalanche, then true asymptotic scaling behavior is not seen,
instead the observations are dominated by transient effects. This problem—that we have detected in some recent
works—leads to misinterpretations of the resulting scaling regimes.
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I. INTRODUCTION

Episodic outbursts of activity or “avalanches” of highly
variable durations and sizes are observed in a large vari-
ety of scenarios in condensed matter physics (vortices of
type II superconductors [1] and Barkhaussen noise [2,3]),
high-energy astrophysics (x-ray flares [4]), geophysics (earth-
quakes [5]), meteorology (rainfall [6]), and neuroscience
(neuronal avalanches [7]), as well as in other biological sys-
tems (gene knock-out cascades) [8]) and man-made systems
(failures on electrical power grids [9]). The probability distri-
butions of sizes and durations of such avalanches often exhibit
a “fat-tail” that can be fitted as a power-law distribution,
i.e., the fingerprint of scaling behavior. Such scaling or scale
invariance is often considered as evidence of underlying criti-
cality, and many of the above systems are claimed to operate at
(tuned or self-organized) critical points [10–14]. In particular,
in the context of biology the idea that living systems (parts,
aspects, or groups of them) may extract important functional
advantages from operating at criticality—i.e., at the edge of
two different phases—has been deeply explored in recent
years [15,16].

In this regard, ground-breaking experimental evidence
by Beggs and Plenz [7] revealed the existence of scale-
invariant episodes of electrochemical activity in neural tissues
thereafter named neural avalanches. Subsequently, neural
avalanches were robustly detected across a large variety of
experimental settings, tissues, and species [7,17–23]. In par-
ticular, neuronal avalanche sizes, S, were robustly observed
to be distributed as a power law P(S) ∼ S−τ with τ ≈ 3/2
up to some upper cutoff; similarly, avalanche durations T
were well fitted by P(T ) ∼ T −α with α ≈ 2 up to some
characteristic maximum time [7]. Furthermore, fundamental
scaling relationships [24] were observed to be fulfilled: e.g.,

the averaged avalanche size scales as 〈S〉 ∼ T γ and the set of
exponents obey γ = (α − 1)/(τ − 1) [25].

This set of empirically reported exponent values is in
agreement with that of the well-known critical (or “unbiased”)
branching processes, also called Galton-Watson process, orig-
inally introduced to describe the statistics of the extinction
of family names) [26–29]. Actually, the set of exponent val-
ues τ = 3/2, α = 2, and γ = 2 are extremely universal as
they are shared by many different propagation processes in
high-dimensional systems as well as in many types of net-
works [2,30]. In particular, they are the mean-field exponents
shared by models such as the contact process, directed and
isotropic percolation, susceptible-infected-susceptible, and a
large list of other prototypical models for spreading or prop-
agation dynamics above their respective upper critical dimen-
sions [24,31–34].

Thus, it was conjectured that neuronal systems might
operate close to the edge of marginal propagation of neural
(electro-chemical) activity [7,35], opening the door to exciting
theoretical perspectives and some debate (see Ref. [16] for
a recent review). However, as extensively discussed in the
literature, diverse generative processes for the emergence of
power laws exist [36–38], and not all power-law distributions
can be taken as a signature of criticality. For instance, a
diverging correlation length needs to be identified to assign a
given phenomenon to criticality. In recent years, some authors
have suggested that the origin of the observed power-law
scaling in neural systems might stem from other types of
criticality (rather than marginal propagation) [39–41] or even
be unrelated to critical behavior [42,43].

In the present brief paper—leaving aside the putative
connection with criticality—we contribute with an additional
piece of information to the already controversial discussion
about the statistics of neuronal avalanches. In particular, we
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show that some of the reported empirical evidence in favor
of the value τ = 3/2—and, thus, seemingly in favor of the
existence of an underlying critical branching process—might
be misleading as there is a technical problem in the way
avalanches are measured, which hinders the observation of
the true asymptotic behavior. More in general, we underline
that particular attention needs to be taken when avalanches of
activity—defined by thresholding—are inferred from a con-
tinuous time series of activity. Our findings, add to the recent
literature warning on the “perils” associated with thresholding
in time series [44–46].

II. DEFINITION OF AVALANCHES

As discussed in the introduction, avalanching phenomena
are best described, at least in mean field, as branching pro-
cesses. Such processes can reach the value 0, which is an ab-
sorbing state: Avalanches are naturally defined as excursions
away from such a state caused by small perturbations [47].
However, in many contexts—including neuroscience but not
only—the term “avalanche” is used to refer to excursions of
time series above some given (arbitrary) threshold, regardless
of absorbing states the existence of any absorbing state. In this
section we discuss such avalanches and their statistics.

A. Avalanches in the Wiener and Ornstein-Uhlenbeck processes

Let us consider, for argument’s sake, a time series for a
stochastic real variable x—as illustrated in Fig. 1—generated
by a Wiener Process, i.e., by a continuous-time unbiased
random walk (RW) defined by the following Langevin
equation [48]:

ẋ(t ) = ση(t ), (1)

where η(t ) is a Gaussian white noise with zero mean and
unit variance, and σ is the noise amplitude. For such a
time series (which can be thought of as describing the time
course of the activity of some arbitrary system) the duration
T of an avalanche is the amount of time for which x stays

(a)

(b) (c) (d)

FIG. 1. Illustration of how avalanche duration T and size S are
defined for an unbiased RW. (a) Illustration of a particular time series,
in which two avalanches of durations T1 and T2 and sizes S1 and S2,
respectively, are emphasized. The threshold is set to 0 in this case
(red dashed line). Lower panels show the probability distributions of
(b) sizes, (c) durations, and (d) average size for a fixed given duration
(straight lines correspond to the well-known analytical predictions,
and symbols stand for computational results).

TABLE I. Summary of the avalanche (mean-field) exponents:
Size (τ ), duration (α), and averaged avalanche size (γ ) for the
(unbiased) branching process (BP) and the (unbiased) random walk
(RW); see, e.g., Ref. [47].

P(S) ∼ S−τ P(T ) ∼ S−α P(S | T ) ∼ T γ

BP τ = 3/2 α = 2 γ = 2
RW τ = 4/3 α = 3/2 γ = 3/2

above a given threshold, i.e., an avalanche begins and ends
when the activity signal crosses the threshold from below and
above; the avalanche size S is the area covered between the
walk trajectory and the threshold reference line (see Fig. 1).
Observe that similarly, given the symmetry of the process, one
could also define avalanches as excursions below threshold.

The probability distribution of avalanche durations T can
be straightforwardly identified with the first-return time statis-
tics of RWs (see Fig. 1), which is well known to scale with
an exponent α = 3/2. Similarly, also the size-distribution
exponent τ = 4/3 and the remaining exponent γ = 3/2 are
well known for RWs (see Fig. 1 and Table I); pedagogical
derivations of these results, as well as a comparison with the
branching process class, can be found in, e.g., Refs. [47,49].
Importantly, these results for the RW do not depend of the
value of the chosen threshold.

In the more general case in which the walker is confined
to hover around a given mean value, one can describe the
problem, in first approximation, as an Ornstein-Uhlenbeck
process [48]:

ẋ(t ) = −ax(t ) + ση(t ), (2)

where there is an additional linear force term, −ax (corre-
sponding to the negative derivative of the parabolic potential
bounding the walker close to x = 0). Such a force introduces
an upper cutoff in the first-return times statistics of the unbi-
ased RW (see, e.g., Ref. [49] for a detailed derivation). Thus,
avalanches intended as excursions above a given threshold in
a process with a well-defined steady-state value have power-
law-distributed sizes and durations, with the exponents of the
RW class (as in Table I and as in Fig. 1), but only up to
an upper-cutoff scale controlled by 1/a, such that it goes to
infinity, i.e., it disappears when a vanishes.

As a corollary of all this, let us remark that many real time
series describing (e.g., biological) problems in which some
stochastic variable fluctuates symmetrically around a given
mean value exhibit effective avalanching behavior that—up
to a certain scale of size and time—can be described by
the exponent values of the RW. Let us stress again that, as
argued above, it can be a matter of debate whether this type
of behavior—describable in terms of RW excursions above
a threshold—can be called “avalanching.” Actually, for most
of the examples of interest in physics, as discussed at the
beginning of this paper, this does not constitute an adequate
description because it does not include any absorbing state.

B. On the definition of avalanche size

In many other circumstances time series exhibit
asymmetric excursions around a mean value and/or may
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FIG. 2. Sketch of a nonsymmetric stochastic process for a pos-
itive definite variable (describing, e.g., density of neural activity).
θ (red dashed line) signals the arbitrarily fixed threshold employed
to define avalanches. For the large avalanche in the center of the
graph, S is the avalanche size using criterion A (area above threshold,
colored in orange) and T is its duration. On the other hand, using
criterion B, � = S + s∗ (where s∗ is the area of the rectangle between
zero and the threshold, colored in blueish color, with s∗ ∝ T ) is an
often-used alternative definition of avalanche size. As discussed in
the text this definition may induce misleading interpretations of the
resulting exponents.

become trapped at some absorbing state. An example
of this is obtained when the variable under scrutiny is a
positive-definite density (e.g., of neural activity), which, by
definition, is constrained to take positive values, x(t ) > 0. In
such cases, especially in the ones when there is always some
lingering activity so that the zero value is hardly reached
(see Fig. 2) a threshold θ > 0 is often employed to define
avalanches as periods during which the activity remains
above such a threshold. In these situations, two alternative
possibilities are often used in the literature to measure the
size of so-defined avalanches [50]:

(A) Following the RW analogy, as done above, for a given
avalanche, one can define its size S as the area in between the
time-series curve and the threshold (θ ) reference line.

(B) Alternatively, one can define the avalanche size � as
the overall integral of the time series during the avalanche,
i.e., above the reference line x = 0 (see, e.g., Refs. [51,52],
but there are other works making this choice).

The difference between the two criteria to define avalanche
sizes is sketched in Fig. 2. �, the total integral of the activity
is equal to � = s∗ + S, where S is the integral of the signal
above threshold, and s∗ is the area of the rectangle under the
threshold.

In what follows, we compare the statistics of avalanches
obtained using these two alternative definitions of size A and
B for an Ornstein-Uhlenbeck process. This will serve as an
illustration of a more general phenomenon that may also occur
for other processes, such as the one sketched in Fig. 2.

First, we discuss computational results, and then we em-
ploy scaling arguments to explain the findings. On the one
hand, as already shown in Fig. 1 using S, i.e., criterion A,
one reproduces the expected theoretical results for all three
avalanche exponents. On the other hand, as illustrated in
Fig. 3, the statistics of avalanche sizes, as determined employ-
ing � for an Ornstein-Uhlenbeck process, is anomalous and
does not match the expectations for the theoretically known
values, i.e., the measured value τ ≈ 3/2 does not coincide
with the expected value τ = 4/3. In particular, the numerical

(a) (b)

(c)
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FIG. 3. Statistics of avalanches of activity in a stochastic pro-
cess (Ornstein-Uhlenbeck with a = 0.1) employing as a measure
of the avalanche size. Observe that both (a) avalanche-size and
(b) avalanche-duration distributions obey scaling with the same
exponent value for many orders of magnitude (a base-10 logarithmic
scale is used for both axes in all three plots). However, the exponent
values τ = α = 3/2 and, consequently, as depicted in panel (c),
γ = 1.0 [satisfying the important scaling relation γ = (α − 1)/(τ −
1)] do not coincide with the expectations for an Ornstein-Uhlenbeck
process.

observation of, τ ≈ 3/2 could be (wrongly) taken as evidence
of branching process-like scaling [51,52]. The fact that there
is something suspicious with definition (2) can be noticed
observing that both sizes and durations scale in the same
way, entailing γ = (α − 1)/(τ − 1) = 1, which would imply
a locally linear (i.e., “tentlike”) shape of avalanches [53–55].

C. Scaling arguments

The correction s∗ for a given avalanche (such that � =
S + s∗) is nothing but s∗ = θT , where T is the avalanche
duration. The distribution of first-passage times for the Wiener
process is given by P(T ) ∼ T −3/2. As said above, the same
result holds for the Ornstein-Uhlenbeck case up to an upper
cutoff. Thus, � has a correction s∗ with respect to S that scales
as the avalanche duration: P(s∗) ∼ s∗−3/2. Assuming that the
probability to observe a given size S conditioned to a given
avalanche duration T , P(S|T ), is a peaked function around its
mean value (as usually occurs for avalanches [24]) and using
the fact that 〈S〉 ∼ T γ , with γ = 3/2, then

�(T ) = S(T ) + s∗(T ) = c̃T 3/2 + θT, (3)

from where it follows that

d� = (cT 1/2 + θ )dT . (4)

Thus, we can readily write (using the implicit function theo-
rem):

P[�(T )] = P(T )
dT

d�
= N T −3/2

cT 1/2 + θ
. (5)

From this, in the limit of vanishing threshold θ in Eq. (4), one
has

P(�) ≈ N
c

T −2 ≈ N
c

[(�/c)2/3]−2 ∼ �−4/3, (6)

which is the correct result for the avalanche size distribution of
an Ornstein-Uhlenbeck process. On the other hand, for larger
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values of the threshold θ and relatively small values of T (and,
thus, also typically small values of �), one has

P(�) ≈ N
θ

T −3/2 ≈ N
θ

[�/θ ]−3/2 ∼ �−3/2, (7)

in agreement with the numerical observation above. In other
words, the additional contribution s∗ dominates the scaling
behavior of the avalanche size � when θ is relatively large.
It is important to emphasize that, in any case, one should
recover the correct asymptotic value—i.e., the behavior for
large values of �—of the avalanche size exponent (τ = 4/3)
for any value of θ , but this requires going to larger and
larger avalanche sizes as θ is chosen larger and larger. In
particular, Fig. 4 illustrates that there is a crossover from the
value τ ≈ 3/2 measured for small avalanche sizes to the true
asymptotic scaling τ = 4/3, for larger sizes. The crossover
point grows with θ , so that the effect is not observed for θ ≈ 0,
but may extend for many scales even for moderate values of
θ . In particular, given that an upper cutoff to scaling may exist
(controlled, e.g., by 1/a in the case of an Ornstein-Uhlenbeck
process that we are considering here or by finite-size effects),
the transient behavior usually extends all the way up to the

(a)

(b)
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FIG. 4. Distribution of avalanche sizes for a stochastic (Ornstein-
Uhlenbeck) process employing � for the measure of avalanche sizes.
(a) Avalanche-size distribution for the case θ = 1 (with a = 0 and
σ = 1 in this case): Observe that the true exponent value τ = 4/3 is
asymptotically recovered for large avalanche sizes. (b) Distribution
of avalanche sizes for different values of the threshold parameter,
θ . The associated exponent changes continuously between the two
limiting exponents 3/2 (for large thresholds) and 4/3 for suffi-
ciently small ones (parameter values: a = 0.1, σ = 0.5; thresholds
as marked in the legend).

cutoff, so that the true asymptotic behavior can be unobserv-
able with criterion B if large values of θ are considered.

Thus, summing up, considering criterion B for the defini-
tion of avalanche sizes together with relatively large threshold
values or not sufficiently large statistics may lead to the
observation of an effective value τ ≈ 3/2; this may induce a
misinterpretation of the scaling universality class, suggesting
it is branching-process-like rather than what it actually is: A
RW-like process.

Let us emphasize that the previous discussion has been
done for an Ornstein-Uhlenbeck process. However, it per-
fectly illustrates the problem associated with criterion B in
more general circumstances, e.g., it also applies to asymmetric
processes as the one sketched in Fig. 2. In any case, criterion
B mixes the scalings of actual sizes and times, leading to
potential interpretation errors in general stochastic processes.
This problem is at the origin of misclassification of scaling
behavior in existing works analyzing neuronal avalanches
(see, e.g., Refs. [51,52]).

III. CONCLUSION

In this brief paper we have shown that an inappropri-
ate definition of avalanche sizes as measured as excursions
above a given threshold in continuous time series can lead
to misleading conclusions. To illustrate this, we have studied
a simple Ornstein-Uhlenbeck process (representing, e.g., the
time course of activity in a mesoscopic model of neural
activity) and have measured avalanches sizes in two possible
ways: (1) as the integrated activity S over a given thresh-
old and (2) integrating the total activity signal between two
threshold crossings, as illustrated in Fig. 2. We have shown
both computationally and using scaling arguments that this
latest definition can induce strong biases in the determination
of the avalanche-size exponent τ .

In particular, if large values of the threshold θ are consid-
ered, then—for relatively small avalanches—one observes the
exponent value τ ≈ 3/2, which could lead to the erroneous
interpretation that an effective unbiased branching process
dynamics exists. On the other hand, for sufficiently small
threshold values and for sufficiently large avalanche sizes the
correct scaling τ = 4/3 is recovered. As discussed above the
problem associated with criterion B extends to any type of
stochastic process because it mixes up the scaling of actual
sizes with that of durations, giving rise to misleading results.

This is the underlying reason why recent analyses of
avalanches in mesoscopic models of neural activity that con-
sider relatively large thresholds [50–52]) obtain τ ≈ 3/2—
compatible with the scaling of a critical branching process—a
result that our analysis reveals is not asymptotic. Their corre-
sponding underlying dynamics describe fluctuations around a
given mean value, and, thus, the associated avalanches should
be related to excursions of random walkers and not to critical
branching processes.

As an important final remark, let us stress that it is
essential—and it should always be done—to consider the full
set of avalanche exponents, i.e., τ , α, and γ as well as the
scaling relations between them, in order to avoid possible
errors and misleading interpretations and properly identify the
type of scaling behavior.
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