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Tensor force and deformation in even-even nuclei
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The variational principle is used to build a model which describes open shell nuclei with ground state
deformations. Hartree-Fock equations are solved by using single particle wave functions whose radial parts
depend on the projection of the angular momentum on the quantisation axis. Pairing effects are taken into account
by solving Bardeen-Cooper-Schrieffer equations in each step of the minimization procedure. The Gogny D1S
finite-range interaction and an extension of it that includes tensor terms are consistently used in both parts of our
calculations. The model is applied to study a set of isotopes with 34 protons and of isotones with 34 neutrons.
Total energies, density distributions, their radii, and single particle energies are analyzed and the results of our
calculations are compared with the available experimental data. We focused our attention on the effects of the
deformation and of the tensor force on these observables. Our model describes open shell nuclei from a peculiar
perspective and opens the possibility of future theoretical developments.
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I. INTRODUCTION

The basic approach to describe nuclear deformations in
terms of nucleons is the Nilsson model [1]. In this model,
the nucleons move independently of each other in a deformed
potential and the single particle (s.p.) wave functions depend
on the projection of the corresponding angular momenta on
the quantization z axis. For a fixed value of the s.p. angular
momentum, the states with smaller absolute values of this
projection are more bound in the case of prolate deformations,
and the inverse happens in oblate nuclei [2,3].

While in the Nilsson model the deformed potential is an
external input, in the model we present here this potential
is obtained by considering an effective nucleon-nucleon in-
teraction and the variational principle. By searching for the
minimum of the energy functional in the Hilbert sub-space
formed by Slater determinants, a set of Hartree-Fock (HF)
equations is obtained [3] and we make the s.p. wave functions
used to build up these Slater determinant explicitly depen-
dent on the z projection of their total angular momentum.
In the minimization procedure, we take care of the pairing
interaction by carrying out Bardeen-Cooper-Schrieffer (BCS)
calculations that modify the occupation probabilities of the
s.p. states. In our model, which we call HFBCS, the deforma-
tion emerges because not all the s.p. states with the same total
angular momentum, but with different z axis projection, are
occupied.

In this article, we present our model and apply it to the
description of the ground state of even-even nuclei. As a
testing ground, we have considered a set of medium-heavy
nuclei where the occupation of the s.p. states ends in the f -p
shell. Specifically, we have studied a set of Se isotopes, having

34 protons, and a set of isotones with 34 neutrons. We focused
our attention to the emergence of the deformations and, since
we have considered effective nucleon-nucleon interactions
which include tensor terms, on the role of these tensor terms.

The results obtained within the HFBCS model for the
aforementioned even-even nuclei have been compared with
those found in deformed Hartree-Fock-Bogoliubov (HFB)
calculations and with the available empirical values of their
binding energies and their charge radii and distributions. In
addition, also the angular momenta of the neighboring odd-
even nuclei have been analyzed. The relevance of the use of
this new set of s.p. wave functions is studied by comparing
our results with those of the spherical HF + BCS model of
Ref. [4].

We present in Sec. II the theoretical background of our
model, and, in Sec. III, the technical details of our calcula-
tions. In Sec. IV we show and discuss the results we have
obtained, focusing on deformations and the role of the tensor
force. The conclusions of our study are summarized in Sec. V.

II. THE MODEL

In our description of an even-even nucleus, composed of A
nucleons, the basic ingredient is the set of s.p. wave functions
used to build the Slater determinants. We assume that these
s.p. wave functions, φk (x), can be factorized as

φk (x) = Rk (r) |k̃〉 χtk , (1)

where we have indicated with x the generalized coordinate,
which includes the position r with respect to the nuclear
center, the spin and the isospin of the considered nucleon.
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The radial part of the s.p. wave function,

Rk (r) ≡ Rtk
nk lk jk , mk

(r), (2)

is a function of r ≡ |r| and depends not only on the principal
quantum number nk , on the orbital orbital angular momentum
quantum number lk , on the total angular momentum quantum
number jk , and on the isospin third component tk , but also on
the projection of jk on the z axis, mk . The part of the s.p. wave
function depending on the angular coordinates, �k ≡ (θk, φk ),
and on the spin third component, sk , is

|k̃〉 ≡
∣∣∣∣lk 1

2
jkmk

〉
=
∑
μksk

〈
lkμk

1

2
sk

∣∣∣∣ jkmk

〉
Ylkμk (�k ) χsk , (3)

where Ylkμk is a spherical harmonic, the symbol 〈|〉 indicates a
Clebsch-Gordan coefficient, and χsk is a Pauli spinor. Finally,
in Eq. (1), χtk indicates the Pauli spinor related to the isospin.

We assume time-reversal invariance [2]; this means that, in
our approach, Rtk

nk lk jk , mk
(r) = Rtk

nk lk jk ,−mk
(r), and each s.p. level

is twofold degenerated. This also implies that the nucleus has
the shape of an ellipsoid whose symmetry axis is the z axis.

We build a Slater determinant � with the s.p. wave func-
tions φk of Eq. (1), and the application of the variational

principle to search for the minimum of the corresponding en-
ergy functional, E [�], leads to a set of differential equations
of the type[

〈k̃| − h̄2

2m
∇2|k̃〉 + Uk (r1) + K(r1)

]
Rk (r1)

−
∫

dr2 r2
2 Wk (r1, r2) Rk (r2) = εk Rk (r1).

As indicated by the first term, that of the kinetic energy, this
expression has been obtained by integrating and summing on
the angular and spin coordinates. In the above equation, εk

indicates the s.p. energy, and the terms depending on the two-
body effective nucleon-nucleon interaction, V (r1, r2), are the
so-called Hartree potential,

Uk (r1) =
A∑

i=1

v2
i

∫
dr2 r2

2 R2
i (r2) 〈k̃ĩ|V (r1, r2)|k̃ĩ〉 , (4)

the Fock-Dirac term,

Wk (r1, r2) =
A∑

i=1

v2
i [R∗

i (r2) Ri(r1) 〈k̃ĩ|V (r1, r2)|ĩk̃〉], (5)

and a term related to the density dependence of the interaction:

K(r1) = 1

4π

A∑
i, j=1

v2
i v2

j

∫
dr2 r2

2

[
R∗

i (r1) R∗
j (r2) 〈ĩ j̃|∂V (r1, r2)

∂ρ
|ĩ j̃〉 Ri(r1) Rj (r2)

− R∗
i (r1) R∗

j (r2) 〈ĩ j̃|∂V (r1, r2)

∂ρ
| j̃ ĩ〉 Rj (r1) Ri(r2)

]
. (6)

The effective force V (r1, r2) used in our calculations is a
finite-range interaction that includes the four traditional cen-
tral terms (scalar, isospin, spin, and spin-isospin), a zero-range
spin-orbit term, a scalar density dependent term, and tensor
and tensor-isospin dependent terms. More explicit expressions
of U , W , and K are presented in Appendix A.

In Eqs. (4)–(6), we have indicated with v2
k the occupation

probabilities of the s.p. states. Their values are obtained by
solving the set of BCS equations,

v2
k = 1

2

[
1 − εk − λ

(εk − λ)2 − �2
k

]
, (7)

where λ, the energy gap, is given by

λ =
2
∑

k
v2

k −∑
k

(
1 − εk√

ε2
k + �2

k

)
∑

k

εk√
ε2

k + �2
k

. (8)

The quantity �k satisfies the relation

�k = −1

2

∑
i

�i√
(εi − λ)2 + �2

i

〈kk 00|V (r1, r2)|ii 00〉 ,

(9)

with |αα 00〉 indicating a state where the s.p. states φα are cou-
pled to total angular momentum J = 0 and z axis projection
M = 0.

The set of Eqs. (7)–(9) are the BCS equations. The
effective nucleon-nucleon interaction enters in the matrix el-
ement of Eq. (9), whose detailed expression is presented in
Appendix B. As said above, we have adopted a finite-range
interaction, and this allows us to use it, without any change, in
both the HF and the BCS parts of our calculations [5].

Our HFBCS calculations give a description of the nuclear
ground state in terms of the s.p. wave functions. The total en-
ergy of the even-even nucleus with A nucleons and Z protons
can be expressed as

E ≡ E (A, Z ) =
∑

k

v2
k εk − 1

2

∑
k

v2
k

∫ ∞

0
dr1 r2

1 [Uk (r1)

+ 2K(r1)] R2
k (r1)

+ 1

2

∑
k

v2
k

∫ ∞

0
dr1 dr2 r2

1 r2
2Wk (r1, r2)

× Rk (r1) Rk (r2). (10)

The density distribution of the system does not have any
more spherical symmetry, but it depends also on the angular
coordinates. In order to have an estimate of the nonspher-
ical components of the nuclear density, we expand it in
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multipoles:

ρ(r) =
∑

k

|φk (x)|2 =
∑

L

ρL(r)YL0(�), (11)

where the terms of the density expansion are given by

ρL(r) =
∫

d�YL0(�) ρ(r,�)

= 1√
4π

∑
k

lk∑
μk=−lk

∑
sk=±1/2

v2
k (−1)μk l̂k

2
ĵk

2
L̂ R2

k (r)

×
(

lk lk L
0 0 0

)(
lk lk L
μk −μk 0

)
×
(

lk
1
2 jk

μk sk −mk

)2

. (12)

In this last expression, we have used the Wigner 3 j symbols
[6] instead of the Clebsch-Gordan coefficients.

We have considered the proton (p) and neutron (n) root
mean square (r.m.s.) radii, which summarize the characteris-
tics of the density distributions and are defined as:

Rα =
[∫

d3r r2 ρα (r)∫
d3r ρα (r)

] 1
2

=
[∫

dr r4 ρα
0 (r)∫

dr r2 ρα
0 (r)

] 1
2

,

α ≡ p, n. (13)

Here ρα
0 (r) indicates the L = 0 multipole of the proton or

neutron density, which is calculated by using Eq. (12) but
restricting the sum on k to proton or neutron s.p. states only.

Nuclear deformations have been estimated by using the
parameter

β2 =
√

5π

9

1

AR2
Q20, (14)

which simplifies the comparison between nuclei with different
size and number of nucleons. In the previous equation, R =
1.2 A1/3 fm and

Q20 =
√

16π

5
〈�|r2Y20|�〉 =

√
16π

5

∫
dr r4ρ2(r) (15)

indicates the quadrupole moment of the density distribution,
with ρ2(r) the L = 2 term of the nuclear density, defined in
Eq. (12).

We have also calculated the charge radii, which are given
by

Rcharge =
[∫

dr r4 ρcharge(r)∫
dr r2 ρcharge(r)

] 1
2

. (16)

The charge distribution, ρcharge(r), is obtained by folding the
pointlike proton density, ρp(r), with the charge proton form
factor. We have used a dipole parametrization of this form fac-
tor [7], having verified that other, more accurate expressions
produce differences smaller than the numerical accuracy of
our calculations.

III. DETAILS OF THE CALCULATIONS

The only physics input of our calculations is the effective
nucleon-nucleon interaction. We have used a finite-range in-
teraction of Gogny type, specifically the D1S parametrization
[8]. In addition, we have considered the interaction D1ST2a
[9], obtained by adding to the D1S force a tensor part of the
form

Vtensor (r1, r2) = [VT + VT τ τ(1) · τ(2)] S12

× exp

[
− (r1 − r2)2

μ2
T

]
. (17)

In the above expression, τ(i) indicates the Pauli operator act-
ing on the isospin of the ith nucleon, and S12 the usual tensor
operator [see Eq. (A3)].

The values of the parameters of the D1ST2a interaction
are those of the D1S force in the common channels. For
the parameters of the tensor part of D1ST2a, the values
VT = −77.5 MeV, VT τ = 57.5 MeV, and μT = 1.2 fm have
been chosen to reproduce the experimental energy splitting
between the 1 f s.p. levels of the 48Ca nucleus, in a HF cal-
culation, and the empirical excitation energy of the first 0−
state of the 16O nucleus, in a Random Phase Approximation
calculation [9].

As indicated in Appendix A, we separate the contribu-
tion of the two space coordinates r1 and r2 by considering
the Fourier transform of the effective nucleon-nucleon in-
teraction. The required integrations in both coordinate and
momentum spaces are carried out with Simpson’s technique.
A good convergence of up to six significant figures is found by
using a set of equally spaced points of 0.1 fm in r space and of
0.5 fm−1 in q space and, respectively, upper integration limits
of 15 fm and 10 fm−1.

The radial HF differential equations are solved by using
the plane wave expansion technique described in detail in
Refs. [10,11]. The iterative procedure stops when the total
energies of two consecutive solutions differ by less than η =
10−6 MeV. We have used this convergence benchmark in all
our calculations.

In principle, after every iteration where the HF Eq. (4) are
solved, the s.p. wave functions just obtained are used in BCS
equations in order to modify their occupation probabilities.
In practice, we have activated the BCS calculation only when
the difference between the total energies of two consecutive
HF solutions is less than a factor f η. We have found that, in
practice, values of f between 500 and 1000 allow us to obtain
a stable convergence of the solutions of the whole problem.

The iterative procedure starts by using the s.p. wave func-
tions obtained by solving the Schrödinger equation for a
deformed Woods-Saxon potential:

VWoods-Saxon(r,�) = U0

1 + exp(u)
+ Uso

r

exp(u)

[1 + exp(u)]2
l · s

+VC − �Y20(�), (18)

where u = (r − R0)/a, l and s indicate the s.p. orbital angu-
lar momentum and spin operators, respectively, and VC the
Coulomb potential. Even though the final result of the iter-
ative procedure is independent of the starting set of s.p. wave
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functions, an appropriate choice of the values of the parame-
ters U0, Uso, a, R0 is crucial to speed up the convergence. In our
calculations, we have used the values indicated in Ref. [12],
where they have been chosen to reproduce s.p. energies of the
odd-even neighboring nuclei.

Pragmatically, we have found that values of |�| of the
order of tens of MeV are needed to produce a deformed
solution. Specifically, we have always used � = ± 30 MeV.
In all the calculations we have carried out, we observed that
our procedure finds an energy minimum with the same type of
deformation as that of the starting set of s.p. wave functions.
For example, when we started with a prolate deformation, by
setting � > 0, we found an energy minimum that maintained
the prolate deformation, and vice versa. For this reason, in
Sec. IV sometimes we show results obtained for both types of
deformations.

Since the energies of the oblate and prolate solutions ob-
tained for a given nucleus are different, we named optimal
solution that with the smaller value of E (A, Z ); in other words,
the solution providing more binding to the system.

The relevance of the use of the new set of deformed s.p.
wave functions has been studied by comparing the HFBCS
results with those calculated within the HF + BCS approach
of Ref. [4], where a spherical approximation is adopted. In
this latter model, each s.p. state of angular momentum j is
2 j + 1 times degenerated, the occupation of each s.p. state
is equally distributed on all the possible z-axis projections,
and the full system conserves a spherical symmetry. For this
reason we have indicated as spherical the results of the HF +
BCS calculations. This is the most important difference, from
the physics point of view, between the HFBCS and the HF +
BCS models.

A second and more technical difference between the two
approaches is in the treatment of the pairing. In HF + BCS
we first carry out a HF calculation and, afterwards, we use the
obtained s.p. wave functions to perform a BCS calculation.
In HFBCS, the BCS calculations are inserted in the global
iterative minimization procedure, connected to the solution of
the HF equations.

We have also compared our HFBCS results with those
of the deformed HFB calculations performed within a triax-
ial basis [3,13,14]. In these latter calculations, the solutions
are expanded on an orthonormal basis of harmonic oscilla-
tor wave functions with oscillator length b0. The numbers
of harmonic oscillators considered in each quantization axis,
(nx, ny, nz ), must satisfy the following condition for the en-
ergy truncation [14]:

ax nx + ay ny + az nz � N0. (19)

Here ax = (qp)1/3, ay = q1/3 p−2/3, and az = p1/3q−2/3, where
p = Ry/Rx and q = Rz/Rx are ratios between the semiaxes
of the matter distribution. The results we have presented
here have been obtained with N0 = 9 and by using b0 =
1.01 A1/6 fm as indicated in Ref. [3].

By adequately choosing the values of p and q, a defor-
mation shape can be selected. In our calculations we have
used p = 1, that imposes the symmetry around the z axis,
and q = 1.3 or q = 0.7 to select either a prolate or an oblate
initial deformation, respectively. As it occurred in the HFBCS

calculations, the deformation initially selected is maintained
in the final solution provided by the HFB calculations.

We have tested the validity of our HFB results by verifying
that the values of the total energies and density r.m.s. radii
coincide with those presented in the compilation of Bruyères
[15,16].

We close this section by mentioning what is known in
the literature as the neutron gas problem [17]. The BCS
calculations allow the presence of a long unphysical tail of
the nuclear density distributions due to the contributions of
slightly bound nucleons. We have shown in Ref. [18] that
this is only a formal problem, since in actual calculations the
numerical impact of these tails is irrelevant.

IV. RESULTS

In this section we present some selected results of our
calculations with the goal of pointing out the combined effects
of deformation and tensor force. We have considered 16 even-
even Z = 34 isotopes, from 64Se to 94Se, and 10 even-even
N = 34 isotones: 52Ar, 54Ca, 56Ti, 58Cr, 60Fe, 62Ni, 64Zn,
66Ge, 68Se, and 70Kr.

A. Comparison with HFB and HFBCS calculations

In the first step of our study, we have tested the reliability
of our calculations. For this purpose, we have compared our
HFBCS results with those of well established nuclear models.
In our case, we refer to the deformed HFB results of the
Bruyères compilation [15,16] and to those we have obtained
by using the HFB approach of Ref. [14] described in Sec. III.

The total energies per nucleon, E/A, with E given by
Eq. (10), of the nuclei considered are shown in Fig. 1. Our
HFBCS results are indicated by the full circles and the bench-
mark HFB results by the empty squares. Since, as pointed
out in Sec. III, in both calculations the deformation initially
selected is maintained in the iterative procedure up to the
final solution, we show separately the results obtained for
prolate (upper panel) and oblate (lower panel) deformations.
The differences between the two calculations are emphasized
in the insets, where the relative differences

�EHFBCS
HFB = (E/A)HFBCS − (E/A)HFB

(E/A)HFB
, (20)

between the corresponding results are shown.
The comparison between the energies obtained with the

two nuclear models is very satisfactory. The relative dif-
ferences �EHFBCS

HFB are smaller than 1% for both type of
deformations. We observe that most of the HFB energies in the
prolate solutions (upper panel) are smaller than those of the
HFBCS calculations. This is clearly indicated by the negative
values of relative differences shown in the inset. The oblate
solutions (lower panel) exhibit the opposite behavior.

We show in Fig. 2 the differences between the absolute
values of the total energies per nucleon of the prolate and
oblate solutions:

δmin = |(E/A)prolate| − |(E/A)oblate|. (21)
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(a)

(b)

FIG. 1. Total energies per nucleon of the nuclei considered calcu-
lated with the D1S interaction. Our HFBCS results (full circles) are
compared to those of the HFB approach of Ref. [14]. The energies
obtained for the prolate and oblate solutions are shown in the upper
and lower panels, respectively. In the insets, we show the relative
differences �EHFBCS

HFB , in percentage, as defined in Eq. (20). We use
the red color to indicate the results of the N = 34 isotones and the
green color for those of the Se, Z = 34, isotopes. The lines are drawn
to guide the eyes.

Positive (negative) values of δmin indicate that the optimal
solution has prolate (oblate) deformation.

For HFBCS (full circles), these differences are, at most,
80 keV, in absolute value, and for HFB (empty squares) they
are even smaller. These numbers are close to the numerical
uncertainty of the calculations, which is of a few tens of keV.
This fact has been named shape coexistence [19]. It means
that, in practice, the optimal solution, and consequently the
nuclear shape, is not so well defined in many cases.

According to these results, mean-field-like approaches
might not be enough to have a good description of these
nuclei, and dynamical, beyond mean-field correlations could
be important. Within this context, angular momentum and
particle number projections and fluctuations of the collective
deformation parameters might play a relevant role [20–22].

The results of Fig. 2 also indicate that, often, the defor-
mation of the optimal solution is not the same in HFB and
HFBCS calculations. This happens for all the nuclei up to

(a)

(b)

FIG. 2. Values of δmin, defined in Eq. (21), obtained in HFBCS
(full circles) and HFB (empty squares) calculations carried out with
the D1S interaction. The results for the N = 34 isotones are shown
in panel (a) and those of the Se isotopes in panel (b).

A = 62 in the N = 34 chain, and for quite a few Se isotopes.
We have found that, in some cases, this also occurs when we
compare our HFB results and those of Bruyères [15].

It is worth pointing out that the total energies of the opti-
mal solutions obtained in HFBCS are slightly lower (0.5% at
most) than those of the HFB for all cases considered, with the
exception of the five nuclei with A = 62–66.

If the agreement between the total energies obtained with
HFBCS and HFB is satisfactory, the situation is quite different
when the deformation parameters are considered. We show in
Fig. 3 the β2 values obtained in HFBCS (full circles) and HFB
(empty squares) calculations. Positive and negative values
of β2 refer to prolate and oblate deformations, respectively.
The values of the β2 of the HFBCS solutions are always
remarkably smaller, in absolute value, than those found with
HFB, although their overall behavior, as A varies, is similar
in both calculations. The more relevant exception is that of
62Ni, which is spherical in HFBCS and deformed in HFB,
especially in the case of the oblate solution. On the other
hand, the 54Ca and 84Se nuclei are clearly spherical in both
approaches.

Finally, the effects of the deformation have been evaluated
by comparing the total energies obtained in the HFBCS calcu-
lations with those calculated within the HF + BCS approach
of Ref. [4], where a spherical approximation is adopted, as we
have briefly discussed in Sec. III. The results of the two types
of calculations are very similar, the relative differences being
±1.5% at most. In general, the deformed HFBCS produces
optimal solutions that are more bound than the spherical ones.
We have found only three exceptions: 54Ca, 62Ni, and 64Zn.
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(a)

(b)

FIG. 3. Deformation parameter β2, defined in Eq. (14), obtained
for (a) the N = 34 isotones and (b) the Se isotopes considered. The
full circles indicate the HFBCS results, and the empty squares those
found in the HFB calculations, all of them carried out with the D1S
interaction. The values found for both prolate (β2 > 0) and oblate
(β2 < 0) solutions are shown.

B. Tensor effects

The impact of the tensor force on the HFBCS total energies
is shown in Fig. 4, where we compare the results obtained with
the D1ST2a (empty circles) and the D1S (full circles) forces.
Also in this case, we present separately the E/A values corre-
sponding to the prolate (upper panel) and oblate (lower panel)
deformations. We show in the insets the relative differences
between the results obtained with the two interactions:

�ED1ST2a
D1S = (E/A)D1ST2a − (E/A)D1S

(E/A)D1S
. (22)

In general, the tensor interaction generates less binding.
The only exceptions we have found are those of 54Ca, for both
deformations, and of 84Se, for the oblate solution. On the other
hand, and in agreement with our previous studies [9], we no-
tice that the role of the tensor force on this observable is rather
small. We identify values of the relative differences which are
2% at most. These differences are, in any case, larger than
those between the HFBCS and HFB energies obtained with
the D1S interaction (see Fig. 1).

In Fig. 5 we show the differences δmin, defined in Eq. (21),
calculated with D1ST2a (empty circles) and D1S (full circles)
forces. As already pointed out, a change in the sign of δmin

implies a change of the deformation of the optimal solution,
and one can see that this occurs in about half of the nuclei
investigated.

The differences |δmin| between prolate and oblate energies
are, on average, smaller when the tensor interaction is consid-
ered. We have obtained an average value of about 17 keV for
D1ST2a against about 34 keV for D1S. In the case of the HFB

(a)

(b)

FIG. 4. Total energies per nucleon obtained within the HFBCS
approach by using the D1S (full circles) and D1ST2a (empty circles).
In the upper and lower panels we show the results of the prolate and
oblate solutions, respectively. Red symbols indicate the results corre-
sponding to the N = 34 isotones, while green symbols show those of
the Se nuclei. In the insets we give the relative differences between
D1ST2a and D1S results, in percentage, calculated as indicated by
Eq. (22).

calculations with the D1S force (empty squares in Fig. 2), the
average value found is ≈7 keV.

The effects of tensor force on the deformation are shown
in Fig. 6, where the values of β2 calculated with the D1S (full
circles) and D1ST2a (empty circles) interactions are shown.
Also in this case, we show separately the results obtained for
prolate and oblate deformations.

The values of β2 for the prolate deformation are almost
the same for the two interactions. In the case of the oblate
solutions, we have found noticeable differences in many of the
nuclei investigated; the most noteworthy are those of the 62Ni
nucleus, which loses its spherical shape when the D1ST2a
force is used, and of the 74Se and 90Se nuclei, which, on the
contrary, become spherical.

Up to now, we have presented our results separately for
both prolate and oblate deformations. For the comparison
with the experimental data we consider only the results of
the optimal solutions. We show in Table I the corresponding
β2 values calculated with the D1S and D1ST2a interactions.
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(a)

(b)

FIG. 5. Values of δmin, defined in Eq. (21), obtained in HFBCS
calculations with the D1S (full circles) and the D1ST2a (empty
circles) interactions. The results for the N = 34 isotones are shown
in panel (a) and those of the Se in panel (b).

We remark that, quite often, the types of deformation of the
optimal solutions for the two interactions are different. Out
of the 26 nuclei considered, only eight, two of which are
spherical, maintain the same type of deformation when the
tensor terms are included in the interaction.

(a)

(b)

FIG. 6. Values of the deformation parameter β2, defined in
Eq. (14), calculated with our HFBCS approach for (a) the N = 34
and (b) the Z = 34 chains and for both the prolate (β2 > 0) and
oblate (β2 < 0) solutions. The results obtained with the D1S inter-
action are shown by the full circles and those found with the D1ST2a
force by the empty circles.

TABLE I. Values of the deformation parameter β2 for the optimal
solutions of the nuclei studied in the present work.

N = 34 Z = 34

Nucleus D1S D1ST2a Nucleus D1S D1ST2a

52Ar 0.000 0.000 64Se 0.023 0.054
54Ca 0.000 0.000 66Se −0.106 −0.113
56Ti −0.042 −0.044 68Se −0.089 0.047
58Cr −0.043 0.045 70Se −0.086 0.045
60Fe −0.032 0.050 72Se −0.075 0.032
62Ni 0.002 −0.104 74Se −0.071 0.000
64Zn −0.026 0.040 76Se −0.032 −0.074
66Ge −0.107 0.046 78Se −0.042 −0.043
68Se −0.089 0.047 80Se 0.044 0.045
70Kr −0.087 0.047 82Se 0.036 0.036

84Se −0.002 0.000
86Se −0.022 −0.020
88Se 0.025 0.025
90Se −0.070 0.000
92Se −0.078 0.044
94Se −0.073 −0.074

The total energies per nucleon corresponding to the optimal
solutions obtained in HFBCS with the D1S (full circles) and
D1ST2a (empty circles) interactions are compared in Fig. 7
with the experimental data of Ref. [23] (full black squares).
We show in the inset the relative differences between our
results and the experimental values:

�EHFBCS
exp = (E/A)HFBCS − (E/A)exp

(E/A)exp
. (23)

The differences with the experimental energies are quite
small: they are, at most, 1% for the D1S interaction and reach
values of about 2% for D1ST2a. The HFBCS optimal solu-
tions obtained with both interactions are less bound than the

FIG. 7. Total energies per nucleon of the HFBCS optimal solu-
tions obtained with the D1S (full circles) and D1ST2a (empty circles)
interactions, compared to the experimental values of Ref. [23] (full
squares). The insets show the relative differences between theory
and experiment, as defined in Eq. (23), for the D1S and the D1ST2a
forces, with full and empty symbols respectively.
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(a)

(b)

(c)

(d)

FIG. 8. Upper panels: deformation parameters β2 of the HFBCS
optimal solutions obtained with the D1S (full circles) and D1ST2a
(empty circles) interactions compared to the values tabulated by
Möller et al. [25] (blue full squares). Lower panels: absolute values
of the β2 obtained for the HFBCS optimal solutions compared to the
available experimental values of Ref. [23] (black full squares).

experimental values. From the point of view of the variational
principle, this is quite reassuring.

The effect of the tensor force consists of a reduction of the
nuclear binding. This has been already indicated for prolate
and oblate solutions separately, and Fig. 7 shows that it is
also true for the optimal solutions. A critical discussion of
these results is in order, since the better agreement of the
D1S results with the experimental data can be misinterpreted.
The values of the parameters of the D1S interactions have
been optimized to reproduce experimental binding energies
and charge r.m.s. radii [8,24]. As said above, the tensor terms
in D1ST2a have been added without changing the other pa-
rameters of the force. For this reason, it is plausible that the
inclusion of a new term in the interaction is worsening the
overall agreement with the experiment.

In the Se isotope chain, the nuclei with the largest binding
energy per nucleon are 78Se and 80Se. Our results indicate
that 78Se is more bound than 80Se, in agreement with the
experiment. In fact, 78Se is the nucleus showing the smallest
difference between our HFBCS (D1S) results and the exper-
iment. In the N = 34 isotones the experimental |E (A, Z )/A|
value is slightly smaller in 60Fe than in 62Ni while the opposite
occurs in the HFBCS calculation.

We have investigated the two-neutron separation energies
for the N = 34 isotones and the two-proton separation ener-
gies for the Se isotopes. We have not found relevant effects
due to the presence of the tensor force. On the other hand, the
agreement with the experiment is good.

We present in Fig. 8 the values of β2 of the optimal
solutions obtained in the HFBCS calculations by using the
D1S (full circles) and D1ST2a (empty circles) forces, and we
compare them with some empirical estimations. In the upper
panels the comparison is done with the values of the semiem-
pirical model of Möller et al. [25] (blue full squares). Even
though no specific patterns are observed, our deformations

are smaller, in absolute value, than those of Ref. [25]. Quite
often, the deformation of the optimal solution obtained with
the D1ST2a interaction has different sign than that of the D1S
interaction, but also in this case we cannot identify any trend.

In the lower panels of Fig. 8 our HFBCS results are com-
pared with the empirical data of Ref. [23] (full black squares).
In this case, we have considered |β2|, since the sign of the
deformation in these empirical data is usually undetermined.
Again, it is evident that our approach generates smaller |β2|
values than the experimental ones. However, also this com-
parison should be considered with caution. The β2 values of
Ref. [23] have been obtained by assuming that the first 2+
excited state is due to a rotation of the deformed nucleus
described with a semiempirical liquid drop model. The as-
sumptions of this procedure are quite strong, and they lead to
assign ground state deformations even to nuclei that are well
know to be spherical; for example, β2 = 0.353 is quoted for
16O due to the presence of a 2+ state at 6.917 MeV.

C. Density distributions and r.m.s. radii

In this section, we present the results of our HFBCS model
concerning proton, neutron, and charge density distributions,
and their r.m.s. radii.

We have tested the reliability of our study by comparing
our HFBCS results with those of HFB calculations carried out
with the D1S interaction. The relative differences between the
corresponding r.m.s. radii of the proton and neutron density
distributions are smaller than 3% and 1.5% for the oblate and
prolate solutions, respectively. On the other hand, the relative
differences obtained with the D1S and D1ST2a interactions
in the HFBCS approach are even smaller: at most 1.1% for
the prolate solutions and 1.7% for the oblate ones. Contrary
to what we have found for the total energies, in this case, the
effect of the tensor is smaller than the differences between
HFB and HFBCS results.

In order to study the effect of the deformation, we have
calculated the r.m.s. radii with the HF + BCS approach. We
have found that the largest relative difference with the HFBCS
r.m.s. radii of the optimal solutions is about 1%.

The situation is well summarized in Fig. 9, where we show
the r.m.s. charge radii of the HFBCS optimal solutions of the
nuclei studied, calculated, according to Eq. (16), with both the
D1S (full circles) and D1ST2a (empty circles) interactions.
These results are compared to the experimental values taken
from the compilation of Ref. [26] (black full squares) and to
those obtained in HFB with the D1S force (empty squares).
These latter charge radii have been calculated by using the
proton distributions of Ref. [16].

For the D1S interaction, the HFB radii are larger than
those of our HFBCS calculations by 3% at most. Also the
charge radii obtained with the D1ST2a force in HFBCS are
slightly larger than those found with the D1S interaction, but
the differences are smaller than 1.5%.

The comparison with the experimental data is limited to
only seven nuclei. These few data are well described by all
the three types of calculations, even though, globally, the best
agreement is obtained for the HFBCS calculations with the
D1S interaction.
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(a)

(b)

FIG. 9. Charge radii for the nuclei considered calculated ac-
cording to Eq. (16). The values of the HFBCS optimal solutions
obtained with the D1ST2a interaction (empty circles) and with the
D1S interaction (full circles) are compared to the values found in
HFB calculations [14] by using the D1S force (empty squares) and
to the experimental values of Ref. [26] (full black squares). Results
for the N = 34 isotones are shown in panel (a) and those for the Se
isotopes in panel (b).

We have analyzed in detail the density distributions and, as
example of this study, we show in Fig. 10 the results for the
two nuclei of our set of isotopes and isotones whose charge
distributions are available in the compilation of Ref. [27]: 62Ni
and 64Zn.

In the upper panels of the figure, we compare the HFBCS
charge distributions with the empirical ones. The agreement
between them is excellent at the surface, and this explains the
good description of the experimental charge radii, which are
mostly sensitive to this part of the distributions. Remarkable
differences are evident in the nuclear interior, the region where
correlations of various types, long- and short-ranged, are most
effective [28]. The oscillations of the distributions obtained
with the D1S force are smoothed by the presence of the tensor
force, which produces charge densities closer to the empirical
ones.

In order to frame the above discussion in a proper per-
spective, we remember that the empirical charge densities are
tailored to fit elastic electron scattering cross sections. These
experimental data have been measured within a restricted
range of momentum transfer values, which, in our case, for
both nuclei considered, goes up to qmax = 2.2 fm−1 [27].
In the lower panels of Fig. 10 we show the elastic electron
scattering cross sections calculated with the Distorted Wave
Born Approximation [29] by using the charge densities shown
in the upper panels. We have assumed an incident electron
energy of 300 MeV. In these kinematic conditions the value
of qmax is reached at θmax = 93.79 deg, which is indicated in

(a)

(b)

(c)

(d)

FIG. 10. Upper panels: charge densities calculated with the D1S
(dotted lines) and D1ST2a (dashed lines) interactions compared to
the empirical densities of Ref. [27] (full lines) for the nuclei 62Ni,
panel (a), and 64Zn, panel (c). Lower panels: elastic electron scat-
tering cross sections calculated by using the charge densities shown
in the upper panels. We have considered an electron initial energy
of 300 MeV. The vertical dashed lines indicate the scattering angle
corresponding to the maximum value of the momentum transfer of
the data considered in the fit to the empirical densities.

the figure by the vertical dashed lines. As a consequence, the
comparison between theoretical and empirical cross sections
is meaningful only for θ < θmax, where a good agreement with
the experiment is observed.

The effects of the deformation on the density distributions
are related to the presence of terms with L > 0 in the expan-
sion of Eq. (11). In Fig. 11 we show the L = 0 and L = 2
components of the proton and neutron HFBCS densities of
62Ni and 72Se. In each panel of the figure, we compare the
results corresponding to the optimal solution obtained with
the D1S force (solid curves) with the analogous components
of both the prolate (dashed curves) and oblate (dotted curves)
solutions obtained with the D1ST2a interaction. We indicate
with a star the D1ST2a optimal solutions.

At the nuclear surface, all the ρ0 distributions have, es-
sentially, the same values. The differences show up in the
interior, where the results obtained with the D1S interaction
present larger oscillations than the other ones. In the case of
the 72Se nucleus the behavior of the ρ0 distributions remains
the same, because the tensor force only produces a damping
of the oscillations (see the dashed curves in Figs. 11(e) and
11(g). The case of the 62Ni is more complex. The prolate
D1ST2a solution shows proton and neutron densities similar
to the D1S ones, even though the oscillations are damped. On
the contrary, the densities of the oblate minimum, which is, by
the way, the optimal solution, present a completely different
trend [dotted curves in Figs. 11(a) and 11(c)].
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 11. Components ρ0 and ρ2, as defined in Eq. (12), of the
proton (p) and neutron (n) density distributions for the 62Ni and
72Se nuclei. The full lines indicate the optimal solutions found with
the D1S force. Dashed and dotted lines are the distributions of the
prolate and oblate solutions, respectively, obtained for the D1ST2a
interaction. The optimal solutions of the latter two are labeled with
a star. The components ρ

p
0 of the protons are shown in the panels

(a) and (e) and the ρn
0 of the neutrons in the panels (c) and (g). In the

panels (b) and (f) we show the proton ρ
p
2 components and in panels

(d) and (h) the ρn
2 of the neutrons. In the case of the 62Ni, some of

the ρ2 terms have been multiplied by the numbers indicated to make
them visible at the scale of the figure.

The optimal solution found for the 62Ni in the HFBCS
calculation with the D1S force is spherical: the corresponding
proton and neutron ρ2 components must be multiplied by 100
and 20 to be seen at the scale of the figure [see Figs. 11(b)
and 11(d)]. When the tensor is added, the optimal solution
becomes oblate, with β2 ≈ −0.1. It is worth pointing out
that the solution obtained with the D1ST2a interaction by
starting with a set of prolate Wood-Saxon s.p. wave functions
(dashed curves in the left panels) has spherical symmetry: it
is necessary to use multiplicative factors of 5000 and 1000 in
order to show the proton and neutron L = 2 terms at the scale
of the figure.

For the 72Se nucleus, the optimal solution is oblate, with
β2 ≈ −0.075, when the D1S interaction is considered, and
changes its shape after including the tensor terms in the force,
becoming a prolate nucleus, with β2 ≈ 0.032. The ρ2 obtained
with the D1ST2a interaction for the oblate solution are of the
same order of magnitude than those found with the D1S force,
in particular the proton one that remains almost unaltered.

(b)

(a)

(d)

(c)

FIG. 12. Spreads, defined in Eq. (24), of the s.p. energies of the
1d3/2, 1d5/2, 1 f5/2, and 1 f7/2 states vs the deformation parameter β2.
The values are those obtained for the optimal solutions. The full and
empty circles indicate the results found with the D1S and D1ST2a
interactions, respectively. The red symbols show the results for the
N = 34 isotone chain and refer to neutron s.p. states. The green
symbols, instead, refer to the Z = 34 isotope chain and present the
results of proton s.p. states. The lines show linear fits to the data: the
dashed lines fit the D1S results and the full lines those of the D1ST2a
interaction. The values of the fitting parameters are given in Table II.

D. Single particle energies

As said above, in our model, the deformation is obtained
by breaking the degeneracy of the s.p. states with the same
n, l , and j quantum numbers since states with different z-
axis projection m have different energy. Because we assumed
time-reversal invariance, those s.p. states with the same |m|
remain degenerated. In order to study the combined effects of
the deformation and of the tensor force on the s.p. energies
we have considered two quantities: the spread, �α

nl j , and the
centroid splitting, ��α

nl .
The spread is defined as the difference

�α
nl j = εα

nl j,m= j − εα
nl j,m=1/2, α ≡ p, n. (24)

According to this definition, the spread is zero for spherical
nuclei, positive for prolate solutions, and negative for the
oblate ones.

We have found a strong relation between the spread of the
s.p. energies and the deformation. This is evident in Fig. 12
where we present the s.p. energy spreads of the 1d3/2, 1d5/2,
1 f5/2, and 1 f7/2 states against the values of β2. These results
are those of the optimal solution for each nucleus consid-
ered and have been obtained with the D1S (full circles) and
D1ST2a (empty circles) interactions. The values for the nuclei
of the N = 34 isotone chain (red symbols) refer to neutron s.p.
states, while those of Z = 34 isotope chain (green symbols)
stand for proton s.p. states. Finally, the straight lines fit the
D1S (dashed) and D1ST2a (full) results separately.

It is evident that �nl j and β2 are linearly correlated. This
is confirmed by the large values of correlation coefficients
obtained in the linear fits to the data and shown in Table II.
Even more, this correlation is the same independently of the
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TABLE II. Parameters of the linear fits of �nl j and ��nl j , as a function of β2, shown in Figs. 12 and 14. In both cases, the fitting function
is y = a + bβ2. The uncertainties of the parameters and the linear correlation coefficients, r, are also given.

D1S D1ST2a

Quantity a b r a b r

�1d3/2 −0.11 ± 0.20 119.73 ± 3.30 0.991 −0.05 ± 0.11 113.44 ± 2.09 0.996
�1d5/2 −0.17 ± 0.21 154.18 ± 3.46 0.994 −0.03 ± 0.13 149.61 ± 2.60 0.996
�1 f 5/2 −0.11 ± 0.25 134.00 ± 4.17 0.989 −0.24 ± 0.14 124.68 ± 2.81 0.994
�1 f 7/2 −0.22 ± 0.24 159.03 ± 3.96 0.993 −0.27 ± 0.14 147.84 ± 2.81 0.996
��1p 2.68 ± 0.17 5.03 ± 2.86 0.337 1.65 ± 0.20 −3.51 ± 3.63 −0.194
��1d 4.99 ± 0.21 5.13 ± 3.51 0.286 3.35 ± 0.27 −5.32 ± 4.96 −0.214
��1 f 7.71 ± 0.19 1.86 ± 3.20 0.118 5.80 ± 0.29 −3.97 ± 5.26 −0.152

isotonic or isotopic chain analyzed. The slopes of the dashed
and full lines are very similar, indicating a small effect of the
tensor force. On the other hand, the lines fitting the data of
the s.p. states with j = l + 1/2 [Figs. 12(a) and 12(c)] are
steeper than those corresponding to j = l − 1/2 [Figs. 12(b)
and 12(d)] as indicated by the values of the coefficients shown
in Table II.

The second quantity that we have used in our study of the
s.p. energies is the centroid splitting:

��α
nl = �α

nl, j=l−1/2 − �α
nl, j=l+1/2, (25)

where we have indicated with

�α
nl j = 2

2 j + 1

j∑
m= 1

2

εα
nl jm, α ≡ p, n, (26)

the centroid of the s.p. energies of the multiplet with quantum
numbers n, l , and j.

In Fig. 13 we show the values of ��α obtained in our
HFBCS calculations for the 1d (upper panels) and 1 f (lower

(b)

(a)

(d)

(c)

FIG. 13. Splittings between centroid energies of spin-orbit part-
ner multiplets, Eq. (25), obtained in the optimal solutions. In the
upper panels we show the results for the 1d states, and in the lower
panels those for the 1 f states. The results of panels (a) and (b) are
those of the neutron s.p. states of the N = 34 isotone chain. Those
of the panels (c) and (d) refer to the proton s.p. states of the Z = 34
isotope chain. The full circles indicate the results obtained with the
D1S interaction and the empty circles those of the calculations done
with the D1ST2a interaction.

panels) multiplets. The left panels indicate the results for
the neutron s.p. states of the N = 34 isotones and the right
panels those of the proton s.p. states of the Z = 34 isotopes.
The results obtained with the D1S and D1ST2a forces are
indicated by the full and empty circles, respectively.

The tensor force reduces the value of ��α . This behavior
is similar to the well-known effect that has been pointed out,
discussed, and explained for spherical systems by Otsuka
and collaborators [30,31]. In that case, the tensor produces a
reduction of the splitting between spin-orbit partners, which is
precisely a quantity equivalent to the centroid splitting defined
in Eq. (25) for the deformed nuclei. We have checked that this
effect also occurs in the results of the spherical HF + BCS
calculations that we have performed for all the nuclei here
considered.

Since we have found a good correlation between s.p. en-
ergy spread and deformation, see Fig. 12, we repeated an
analogous study also for the centroid splitting. We present
in Fig. 14 the values of ��α against the deformation pa-
rameter β2. The results are those obtained for the optimal
solutions of each nucleus considered, in the cases of the 1p
[Fig. 12(a)], 1d [Fig. 12(b)], and 1 f [Fig. 12(c)] s.p. states.
We show the results for the neutron states in the case of the
N = 34 isotones (red symbols) and for the proton states in the
case of the Z = 34 isotopes (green symbols). Full and empty
circles indicate the values obtained by using D1S and D1ST2a
interactions, respectively. The data do not show any evident
correlation with β2. The linear fits of the D1S (dashed lines)
and D1ST2a (full lines) data remain almost constant against
the changes of the deformation parameter. The absence of
correlation between ��nl j and β2 is quantitatively defined by
the low values of the correlation coefficients given in Table II.

The tensor terms of the force modify the sequence of s.p.
states in the deformed nuclei. As an example of this effect,
we show in Fig. 15 the proton and neutron s.p. spectra of the
optimal solutions of the 60Fe and 90Se nuclei obtained with
the D1S and D1ST2a interactions.

The 60Fe nucleus is oblate for D1S, with β2 = −0.032, and
prolate for D1ST2a, with β2 = 0.050. In the case of the 90Se
nucleus, the optimal solution obtained with the D1S force is
oblate, with β = −0.07, while for the D1ST2a interaction we
obtain a value of β2 = 8.7 × 10−5, indicating an essentially
spherical shape.

The effect of the tensor is quite evident in 60Fe. There is
a slight increase of the spreading for the states with the same
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(b)

(a)

(c)

FIG. 14. Splittings between centroid energies, Eq. (25), of the
1p [panel (a)], 1d [panel (b)], and 1 f [panel (c)] s.p. states vs
the deformation parameter β2. The results are those of the optimal
solutions. The red symbols show the results for the neutrons states of
the N = 34 isotones, the green symbols those of the proton states of
the Z = 34 isotopes. The results obtained with the D1S interaction
are indicated by the full circles and those with the D1ST2a by empty
circles. Linear fits to the D1S and D1ST2a results are indicated
by the dashed and full lines, respectively. The values of the fitting
parameters are given in Table II.

(n, l, j) values, and the inversion of the order of the levels
with different |m|, due to the change of shape. The result of
these two combined effects is that for the 1d states a level
with j = 3/2, the 1d3/2,1/2 state, has an energy lower than a
state with j = 5/2, the 1d5/2,5/2 level.

A said above, the optimal solution obtained with the
D1ST2a interaction for 90Se has a spherical shape. This is
evident because all the s.p. levels with the same n, l , and
j quantum numbers and different |m| converge to a unique
energy value. The deformed results obtained with the D1S
force show, in some case, an inversion of the levels with
different j by placing states with j = l − 1/2 below states
with j = l + 1/2. This happens for the 1 f5/2,5/2 level whose
energy is smaller than that of the three 1 f7/2,|m| states, and for
the the 1 f7/2,7/2 level whose energy lies between those of the
1d5/2,1/2 and 1d5/2,3/2 levels.

Single particle states with their specific characteristics are
the basic entities of our model. In order to have the possibility
of comparing our predictions with some empirical observation
we exploit the Koopman’s theorem [3], which establishes that,

TABLE III. Ground state angular momenta and parities of the
odd-even nuclei of the N = 34 and Z = 34 chains, obtained accord-
ing the Koopman’s theorem. The experimental values taken from
Ref. [23] are shown for comparison. The values between parentheses
indicate that the corresponding assignments are not yet definite.

N = 34 Z = 34

Nucleus D1S D1ST2a Expt. Nucleus D1S D1ST2a Expt.

51Cl 3
2

+ 1
2

+
, 3

2

+ 65Se 7
2

− 7
2

− (
3
2

−)
53K 3

2

+ 1
2

+ (
3
2

+) 67Se 7
2

− 5
2

−

55Sc 7
2

− 7
2

− (
7
2 )− 69Se 1

2

− 3
2

− 1
2

−

57V 7
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− 7
2
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7
2

−) 71Se 3
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2
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5
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− 1
2
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−
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2

+
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2

+ 9
2

+ 7
2

+
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2
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2
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2
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2
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+
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2
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+
, 3

2

+
, 5

2

+ (
1
2

+)

in mean-field models, the global properties of odd-even nuclei
are fully determined by those of the s.p. states of the unpaired
nucleon.

By considering this approach, we have evaluated the an-
gular momenta and parities of the ground states of those
nuclei having one proton less than those considered in the
N = 34 chain of isotones. For the case of the Z = 34 isotopes,
we considered those odd-even nuclei with one neutron less
than the even-even isotope partner. The angular momenta and
parities of these odd-even nuclei are presented in Table III and
compared to the empirical data taken from the compilation
of Ref. [23]. The parentheses in some of these experimental
assignments indicate that they are not fully identified. Since
our model considers partial occupations of the s.p. levels,
sometimes the definition of the Fermi level is quite ambigu-
ous, and this generates uncertainty in the definition of the
last occupied level, which, on the contrary, would be well
identified in pure HF calculations.

By using the data of Table III we can better analyze the
results of Fig. 15. The spin-parity of the ground state of the
59Mn obtained in our calculation is 7/2− while the exper-
imental value indicated in [23] is 5/2−, even though there
are uncertainties on the spin assignment. In our calculations,
both with and without tensor force, the energies of the proton
1 f5/2 states are always larger than those of the 1 f7/2 states,
therefore our model does not account for that spin. From the
neutron point of view, we remark that the empirical value of
the 59Fe nucleus given in [23] is 3/2−, properly predicted by
the calculation with the D1ST2a interaction.
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FIG. 15. Proton (p) and neutron (n) s.p. spectra of the 60Fe and 90Se nuclei for the optimal solutions obtained with the D1S and D1ST2a
interactions. The subindexes identify j and |m|. The states with an occupation probability v2 < 0.5 are indicated by dashes lines. The thick
grey lines show the Fermi levels.

The experimental spin-parity assignment of the 89Se
ground state is (5/2)−, correctly described by our calculation
performed with the tensor force. Since the spin-parity of the
89As is unknown, we cannot make a comparison with our
predictions for the neutrons.

The results shown in Table III indicate that experimental
spin-parity assignments are reproduced in only about half of
the cases. Our calculations are unable to provide adequate
results in all the Se isotopes up to 81Se with the only exception
of the 69Se nucleus, for the D1S interaction. In nine of the
nuclei investigated the results obtained with the D1S and
D1ST2a interactions are different.

V. SUMMARY AND CONCLUSIONS

In this article, we have presented a model describing open
shell nuclei. This model is based on the variational principle
and uses Slater determinants built with s.p. wave functions
whose radial part depends on m, the projection of the total
angular momentum j on the quantization axis z. This fea-
ture automatically introduces a deformation in the many-body
state. Each step of the iterative procedure minimising the
energy functional with these trial wave functions consists of
two different calculations. In the first one we solve the HF
Eqs. (4) generating the s.p. wave functions, and in the second

calculation we solve a set of BCS equations which modify the
occupation probabilities of the s.p. states. Since the solution
of HF and BCS equations is considered in each step of the
minimization procedure, we named HFBCS our model, to
distinguish it from the approach of Ref. [4] where the solution
of the BCS equations is carried out after the full solution of the
HF equations has been found. We called HF + BCS this latter
approach which, by the way, uses spherical s.p. wave func-
tions. We consistently use the same finite-range interaction to
carry out both HF and BCS calculations. We have considered
the Gogny type D1S interaction [5] and an extension of it, the
D1ST2a force, which also contains tensor terms [9].

The iterative procedure starts from trial wave functions
which already have a deformation. In all our calculations we
have found that the type of deformation is conserved until
convergence is reached. This means that prolate or oblate trial
wave functions lead to final results with the same type of de-
formation. We found the same feature in the HFB calculations
of Ref. [14].

In general the two solutions, oblate and prolate, obtained
for each nucleus considered, have very similar total nuclear
energies. We have called optimal solution that with the small-
est energy value.

The aim of our study was the investigation of how the
deformation of the nuclear ground state emerged in our model,
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the effects on observable quantities, the effects of the tensor
terms of the effective interaction, and the eventual relation
between deformation and tensor force. We presented results of
our HFBCS model regarding energies, density distributions,
and single particle properties of medium-heavy nuclei belong-
ing to the N = 34 isotone chain and to the Se, Z = 34, isotope
chain.

Deformation effects on energies and radii are rather small.
The total energies obtained in our HFBCS calculations are
lower, at most of 1.5%, with respect to those of the spherical
HF + BCS results. The differences between the r.m.s. radii
obtained with these two different approaches are even smaller.

The effects of the tensor force are more evident. Calcula-
tions carried out with the D1ST2a interaction produce nuclei
which are slightly less bound than those described by the D1S
force. The relative differences between the results of the two
calculations are smaller than 2% for all the cases considered,
but the effect is clear and consistent in all nuclei investigated.
This effect is worsening the agreement with the experimen-
tal energies, which are smaller than those obtained without
tensor by 1% at most. All these facts are in compliance with
the variational principle, which provides upper limits of the
correct energy eigenvalues, and with the fact that the global fit
to the experimental energies and radii carried out to select the
parameters of the interaction has been done for the interaction
without tensor.

Also the effects of the tensor force on the density radii are
quite small; relative differences with the results obtained with-
out tensor are smaller than 1%. These effects have the same
sign in almost all the nuclei we have studied. Calculations
carried out with tensor terms in the interaction produce r.m.s.
radii larger than those obtained without them.

A detailed investigation of proton, neutron and charge den-
sity distributions has shown that the most evident differences
between the results of the various calculations show up in
the interior of the nucleus. Densities without tensor present
a rather oscillating behavior in the nuclear interior. The tensor
is smoothing these oscillations and, for the cases where results
are available, we found a better agreement with the empirical
charge densities.

The s.p. energies are the quantities most affected by defor-
mation and tensor force, which both generate a reordering of
the s.p. level scheme. The deformation destroys the 2 j + 1
degeneracy of the spherical s.p. states characterised by the
n, l , and, obviously, j quantum numbers. We have assumed
rotational symmetry around the z axis and time-reversal sym-
metry; therefore, we obtain different s.p. energies for each
value of |m|. Each spherical and 2 j + 1 degenerated s.p.
state is split into j + 1/2 different states. We have defined
the spread as the difference between the s.p. energies of the
two extreme states with the same j (those with |m| = j and
|m| = 1/2) and we found a strong linear correlation between
its values and those of the deformation parameter β2. This
correlation is present for both oblate and prolate solutions
obtained with or without tensor force.

The tensor force changes the type of deformation of the
optimal solution and therefore the last occupied proton or neu-
tron s.p. state. A comparison between the measured angular
momenta of odd-even nuclei and those of the last occupied

states does not show any specific trend and does not provide
a real preference between calculations carried out with or
without tensor. The only clear facts are that the two type of
calculations produce different results in some of the cases
analyzed, and only in half of the nuclei considered is one of
the two calculations able to predict the experimental values.

The parameter which better summarizes the information on
the deformation is β2, defined in Eq. (14). Our calculations
generate β2 values remarkably smaller, in absolute value, than
those obtained in HFB calculations. Also the comparison with
the values obtained by an empirical model [25] and those
indicated as experimental data [23] shows that our results
are smaller, in absolute value. The size of the deformation is
essentially the same for calculations carried out with and with-
out tensor force, even though, in general, the optimal solutions
with tensor force are less deformed than those without it.

The results of our study clearly indicate that the present
accuracy of the experimental data on binding energies, charge
radii, and distributions imposes a new global fit of a force con-
taining tensor terms in such a way that all the force parameters
will be modified.

Our HFBCS approach proposes a peculiar manner to
describe open-shell nuclei which automatically generates de-
formations in nuclear ground states. Under many aspects this
approach is simpler than that of the HFB model, and shows
s.p. properties that are still well recognizable. The extension
of this approach to describe odd-even nuclei is under way. The
set of s.p. wave functions with their occupation probabilities
is the starting point to build up a Deformed Quasi-Particle
Random Phase Approximation.
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APPENDIX A: THE HF POTENTIAL TERMS

We express the effective nucleon-nucleon interaction in
terms of operator channels as done in the Argonne-Urbana
potentials [32]:

V (r12) =
6∑

p=1

Vp(r12) Op(1, 2)

+VCoul(r12)
[1 + τz(1)] [1 + τz(2)]

4
+VLS L12 · S12 δ(r1 − r2)

+ [V c
ρ + V s

ρ σ(1) · σ(2)
]

P(ρ) δ(r1 − r2). (A1)

Here r12 = |r1 − r2| is the distance between the two inter-
acting nucleons and the six operators {Op, p = 1, . . . , 6} are,
respectively,

1, τ(1) · τ(2), σ(1) · σ(2), σ(1) · σ(2) τ(1) · τ(2),

S12, S12 τ(1) · τ(2), (A2)
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with σ(i) the Pauli operator corresponding to the spin of the
ith nucleon and S12 the tensor operator, which we define as

S12 = 3
[σ(1) · r12] [σ(2) · r12]

r2
12

− σ(1) · σ(2). (A3)

In Eq. (A1), τz = 1 for protons and 0 for neutrons, L12 is
the total angular momentum of the nucleonic interacting pair,
and S12 its total spin. Finally, P(ρ) is a scalar function of the
nuclear density which we define below, in Eq. (A15).

Using the expression of the operators and potential terms
in the momentum space, Õp(1, 2) and Ṽp(q), respectively, we
handle the finite-range part of the interaction by considering
the inverse Fourier transform

Vp(r12) Op(1, 2) = 1

(2π )3/2

∫
d3q exp[i (r1 − r2) · q]

× Ṽp(q) Õp(1, 2), (A4)

separating the two exponentials and expanding them in mul-
tipoles. For the four central channels, only the zeroth-order
spherical terms contribute, while, for the two tensor channels
(p = 5, 6), the only term of the expansion contributing is that
of the second order. Then it is useful to define the integrals

Ip(r1, r2, L1, L2) =
∫ ∞

0
dq q2 jL1 (qr1) jL2 (qr2) Ṽp(q).

(A5)
Here jL indicates the spherical Bessel function of Lth order.

Taking into account Eqs. (1)–(3), and using the short
notation ĵ = √

2 j + 1 for the indexes indicating angular mo-
menta, we obtain the expressions of the various contributions
to the potentials U , W and K. The direct, Hartree potential U
for the terms p = 1, 2 can be expressed as

U p=1,2
k (r1) =

√
2

π

∑
i

∑
L

v2
i (−1)mk+mi+1 ĵk

2
ĵi

2
L̂2 ξ (L)

∫
dr2 r2

2 R2
i (r2) Ip(r1, r2, L, L)

×
(

jk L jk
−mk 0 mk

)(
jk L jk
1
2 0 − 1

2

)(
ji L ji

−mi 0 mi

)(
ji L ji
1
2 0 − 1

2

)
T p
U , (A6)

with ξ (n) = 1 if n is even, and 0 otherwise, and

T p
U =

{
1, p = 1,

4 tk ti, p = 2.
(A7)

Here the t’s represent the eigenvalue of the isospin third component operator that we have chosen to be 1/2 for protons and
−1/2 for neutrons. All the other terms of the interaction do not contribute to U .

The contributions of the various interaction terms to the exchange, Fock-Dirac potential W can be expressed as

W p=1,2
k (r1, r2) =

√
2

π

∑
i

∑
L

v2
i ĵk

2
ĵi

2
L̂2 ξ (lk + li + L) R∗

i (r1) Ri(r2) Ip(r1, r2, L, L)

×
(

ji L jk
−mi −M mk

)2 ( ji L jk
1
2 0 − 1

2

)2

T p
W , (A8)

W p=3,4
k (r1, r2) = 6

√
2

π

∑
i

∑
L J

v2
i l̂k

2
l̂i

2
ĵk

2
ĵi

2
L̂2 Ĵ2 R∗

i (r1) Ri(r2) Ip(r1, r2, L, L)

×
(

lk li L
0 0 0

)2 (
jk J ji

−mk M mi

)2
⎧⎨⎩

lk
1
2 jk

li
1
2 ji

L 1 J

⎫⎬⎭
2

T p
W , (A9)

W p=5,6
k (r1, r2) = 12

√
5

3π

∑
i

∑
L1 L2 J

v2
i (−1)J (−i)L1−L2 l̂k

2
l̂i

2
ĵk

2
ĵi

2
L̂1

2
L̂2

2
Ĵ2 R∗

i (r1) Ri(r2)

× Ip(r1, r2, L1, L2)

(
lk li L1

0 0 0

)(
lk li L2

0 0 0

)(
jk J ji

−mk M mi

)

×
{

L1 L2 2
1 1 J

}(
L1 L2 2
0 0 0

)⎧⎨⎩
lk

1
2 jk

li
1
2 ji

L1 1 J

⎫⎬⎭
⎧⎨⎩

lk
1
2 jk

li
1
2 ji

L2 1 J

⎫⎬⎭ T p
W . (A10)

In the previous equations, the isospin term is given by

T p
W =

{
δtk ,ti , p = 1, 3, 5,

2 − δtk ,ti , p = 2, 4, 6.
(A11)
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The contributions of the Coulomb force are, for the Hartree term,

UCoul
k (r1) = e2

∑
i

∑
L

v2
i (−1)mk+mi+1 ĵk

2
ĵi

2
ξ (L)

∫ ∞

0
dr2 r2

2
rL
<

rL+1
>

R2
i (r2)

×
(

jk L jk
−mk 0 mk

)(
jk L jk
1
2 0 − 1

2

)(
ji L ji

−mi 0 mi

)(
ji L ji
1
2 0 − 1

2

)
δtk ,ti δtk ,

1
2
,

and, for the Fock-Dirac term,

WCoul
k (r1, r2) = e2

∑
i

∑
L

v2
i ĵk

2
ĵi

2
ξ (lk + li + L)

rL
<

rL+1
>

R∗
i (r1) Ri(r2)

×
(

ji L jk
−mi −M mk

)2 ( ji L jk
1
2 0 − 1

2

)2

δtk ,ti δtk ,
1
2
. (A12)

Here e is the elementary charge and we have indicated, respectively, with r< and r> the smaller and the larger values between r1

and r2.
The two zero-range components of our interaction are the density dependent term and the spin-orbit one. The direct, Z ≡ U ,

and exchange, Z ≡ W , contributions of the latter are given by

ZLS
k (r1) = 1

4π
VLS

∑
i

∑
μi,si

v2
i ĵi

2
(

li
1
2 ji

μi si −mi

)2

T LS
Z

{[
jk ( jk + 1) − lk (lk + 1) − 3

4

]
1

r1
Ri(r1)

dRi(r1)

dr1

−
[

ji( ji + 1) − li(li + 1) − 3

4

] [
1

r
Ri(r1)

dRi(r1)

dr1
− 1

2 r1
R2

i (r1)

]}
, (A13)

where

T LS
Z =

{
1, Z ≡ U ,

δtk ,ti , Z ≡ W .
(A14)

In the case of the density dependent term we have used for the function P(ρ) the expression

P(ρ) =
[
ρ0(r1) + ρ0(r2)

2

]γ

, (A15)

where ρ0(r) = ρ
p
0 (r) + ρn

0 (r) is defined in Eq. (12). The contributions of this density dependent term can be expressed as

Uρ

k (r1) = V c
ρ [ρ0(r1)]γ+1 (A16)

for the direct potential,

Wρ

k (r1, r2) = (
V c

ρ + 3V σ
ρ

) [1 + tk
2

ρ
p
0 (r1) + 1 − tk

2
ρn

0 (r1)

]
[ρ0(r1)]γ δ(r1 − r2) (A17)

for the exchange one, and

Kρ (r1) = γ [ρ0(r1)]γ−1

{
V c

ρ [ρ0(r1)]2 − (
V c

ρ + 3V σ
ρ

) [ρp
0 (r1)

]2 + [
ρn

0 (r1)
]2

2

}
(A18)

for the genuine density-dependent term of Eq. (6).

APPENDIX B: THE BCS MATRIX ELEMENTS

In our calculations, the Coulomb, spin-orbit, and density
dependent terms of the interaction (A1) are not considered in
the BCS equations. The pairing interaction that we use is

Vpairing(r12) =
6∑

p=1

Vp(r12) Op(1, 2). (B1)

Since we consider the pairing to be active only between like
particles, the expressions of the interaction terms of Eq. (9)
differing only by the isospin operator τ(1) · τ(2) are identical.
Taking this into account, we have

�k =
6∑

p=1

�
p
k , (B2)
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where the scalar terms are

�
p=1,2
k =

√
2

π

∑
i

∑
L

(−1)L ĵk
2

ĵi
2

L̂2 ξ (lk + li + L)
∫

dr2
1 dr2

2 Rk (r1) Rk (r2) Ri(r1) Ri(r2) Ip(r1, r2, L, L)

×
(

jk L ji
mk M −mi

)2 ( jk L ji
1
2 0 − 1

2

)2

, (B3)

the spin terms can be expressed as

�
p=3,4
k = 6

√
2

π

∑
i

∑
L J

(−1)L+1 l̂k
2

l̂i
2

ĵk
2

ĵi
2

L̂2 Ĵ2
∫

dr2
1 dr2

2 Rk (r1) Rk (r2) Ri(r1) Ri(r2)Ip(r1, r2, L, L)

×
(

lk L li
0 0 0

)2( jk J ji
1
2 0 − 1

2

)2
⎧⎨⎩lk

1
2 jk

li
1
2 ji

L 1 J

⎫⎬⎭
2

,

(B4)

and, finally, the tensor terms are

�
p=5,6
k = 3

√
30

π2

∑
i

∑
L1 L2 J

(−i)L1−L2 (−1)L+J+1 l̂k
2

l̂i
2

ĵk
2

ĵi
2

L̂1
2

L̂2
2

Ĵ2
∫

dr2
1 dr2

2 Rk (r1) Rk (r2)

× Ri(r1) Ri(r2) Ip(r1, r2, L1, L2)

(
lk L1 li
0 0 0

)(
lk L2 li
0 0 0

)(
L1 L2 2
0 0 0

){
L1 L2 2
1 1 J

}

×
(

jk J ji
mk M −mi

)2

⎧⎪⎨⎪⎩
lk

1
2 jk

li
1
2 ji

L1 1 J

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

lk
1
2 jk

li
1
2 ji

L2 1 J

⎫⎪⎬⎪⎭. (B5)
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