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Abstract— Since the pioneering work of Heinrich Hertz,
perfect-electric conductor (PEC) loop antennas for RF appli-
cations have been studied extensively. Meanwhile, nanoloops
are promising in the optical regime for their applications in a
wide range of emerging technologies. Unfortunately, analytical
expressions for the radiation properties of conducting loops have
not been extended to the optical regime. This paper presents
closed-form expressions for the electric fields, total radiated
power, directivity, and gain for thin-wire nanoloops operating in
the terahertz, infrared and optical regimes. This is accomplished
by extending the formulation for PEC loops to include the
effects of dispersion and loss. The expressions derived for a
gold nanoloop are implemented and the results agree well with
full-wave computational simulations, but with a speed increase
of more than 300×. This allows the scientist or engineer to
quickly prototype designs and gain a deeper understanding
of the underlying physics. Moreover, through rapid numerical
experimentation, these closed-form expressions made possible the
discovery that broadband superdirectivity occurs naturally for
nanoloops of a specific size and material composition. This is an
unexpected and potentially transformative result that does not
occur for PEC loops. Additionally, the Appendices give useful
guidelines on how to efficiently compute the required integrals.

Index Terms— Antenna theory, loop antennas, nanotechnology,
submillimeter wave technology.

I. INTRODUCTION

W IRELESS communications are expected to play a
key role in the future development of practical

nanotechnology-enabled devices, with applications ranging
from energy harvesting to implantable medical devices [1].
The design of nanoantennas is particularly challenging for
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integration with such devices, which may be targeted for
operation anywhere from the optical to terahertz regimes [2].
Metals no longer behave like perfect electric conduc-
tors (PECs) at these frequencies, instead exhibiting substantial
dispersion and loss [3]. This has a dramatic impact on the
radiation properties of nanoantennas, including directivity,
efficiency, and total radiated power [4]. Antennas in the RF
regime have been rigorously studied, and systematic design
procedures exist [5]. The most popular and fundamental
designs are the dipole and the loop, due to their simplicity,
versatility, and utility in a wide variety of applications [6].
It has been found through simulation and measurement that
these designs cannot simply be scaled to the optical regime—
for example, optical dipoles resonate at lengths much shorter
than one-half the wavelength [7]. In comparison to the large
body of literature devoted to linear dipole-type nanowire
antennas [7]–[8], much less work has been done to understand
the radiation properties of nanoloop antennas. These structures
are extremely promising for their potential applications in
sensing [9], spectroscopy [10], and light-trapping in solar
cells [11]. A few nanoloop structures have been designed using
the finite-difference time-domain [12] and the finite integration
technique [13]. However, these full-wave simulations require a
large amount of computational resources as well as time and,
furthermore, provide limited intuition into the physical nature
of the solution. This paper will provide closed-form analytical
expressions for the radiation properties of a nanoloop, which
will lead to a more fundamental understanding of such devices
and greatly reduced design cycle times.

Early experimental and theoretical results for the far-field
radiation of PEC thin-wire circular loops of all sizes have been
well documented [14], [15]. More recently, this theory has
been extended to include the derivation of exact expressions
for the near fields, which can be found in [16] and [17].
The accuracy of these expressions relies on knowledge of the
current on the thin-wire loop, which is achieved by considering
a Fourier series expansion of the surface current density [18].
Then, the 1-D integral equation (IE) that arises from enforcing
the appropriate boundary condition at the surface of the loop
can be solved [19]. The problem was revisited for the purpose
of analyzing the resonance properties of loops in the context of
metamaterials research [20]. This paper was later extended by
the same authors to include the analysis of thin-wire nanoloops
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operating in the infrared and optical regimes [21], [22]. Knowl-
edge of the currents and input impedance facilitates the deriva-
tion of exact analytical expressions for the radiation parameters
of these antennas. Previous work has presented analytical
expressions for radiation properties of plasmonic nanoparticle
arrays [23] and nanorods [24]. However, these derivations have
proven to be extremely challenging for nanoloop geometries
(even thin-wire PEC loops), mainly due to the complex form
of the integrals that must be solved [16], [17], [25]–[28].
In this paper, valuable closed-form expressions are derived for
the total radiated power, radiation resistance, directivity, and
gain of a thin-wire nanoloop antenna. Prior to this work, sim-
ple and efficient closed-form expressions for these radiation
quantities were not available in the literature.

Section II presents exact expressions for the electromag-
netic far-fields radiated by a nanoloop, which are valid from
the microwave to optical regimes. Section III validates the
resulting analytical expressions by considering two particular
cases and comparing the theoretical results with those obtained
through the application of full-wave numerical methods.
In addition, the differences between the behavior of thin-wire
PEC and gold nanoloops are considered. Finally, guidelines
for the efficient numerical evaluation of the required integrals
(e.g., integrals involving Bessel and Lommel–Weber func-
tions, and Q-type integrals) are provided in the Appendix.
It is important to note that the final derived expressions
do not involve any integrals and therefore do not require
any specialized numerical integration software to implement.
In fact, we show in the Appendix that the various power series
representations we derive are considerably more efficient than
numerical quadrature.

II. THEORETICAL FORMULATION

First, we will briefly summarize the classic works by
Storer [18] and Wu [19] in which the current on a PEC loop is
expressed in terms of a Fourier series. Next, we will discuss
how McKinley et al. [22] extended this formulation to the
optical regime by including the effects of material dispersion
and loss. Using these analytical representations together with
those derived by Werner [16] for the far-zone electric fields
radiated by a thin-wire PEC loop as a starting point, we will
derive the first closed-form expressions for the radiated power,
radiation efficiency, directivity, and gain associated with thin-
wire nanoloops operating in the terahertz, infrared and optical
regimes.

Fig. 1 shows the geometry of a thin circular loop with wire
radius a and loop radius b. We will start with a Fourier series
solution for the current on a PEC loop [18], which can be
generalized in terms of resonant modes as [20]

I (ϕ) =
∞∑

m=−∞
Ime jmϕ = V0

[
Y0 +

∞∑

m=1

Ym cos (mϕ)

]
(1)

where the input impedance for each mode is given by

Y0 = Z−1
0 = [ jπη0a0]−1

Ym = Z−1
m = [ jπη0 (am/2)]−1 (2)

Fig. 1. Geometry of the thin circular loop (a2 � b2). An infinitesimal
voltage source with constant voltage V0 is placed at ϕ = 0.

in which η0 is the characteristic impedance of free space, and
the terms am are determined from [18], [19]

am = a−m = kb

(
Nm+1 + Nm−1

2

)
− m2

kb
Nm . (3)

The variable kb = 2πb/λ appearing in (3) is a unit-less
quantity that depends on the loop radius. For m ≥ 1, the
auxiliary functions Nm are defined as

Nm = N−m = 1

π

[
K0

(ma

b

)
I0

(ma

b

)
+ Cm

]

− 1

2

∫ 2kb

0
[�2m (x) + j J2m (x)] dx

Cm = ln (4m) + γ−2
m−1∑

k=0

1

(2k + 1)
(4)

where γ ≈ 0.5772 is the Euler–Mascheroni constant and
�m, Jm , I0, and K0 are Lommel–Weber functions, Bessel
functions of the first kind, and modified Bessel functions of the
first and second kind, respectively. For the case where m = 0,
we have

N0 = 1

π
ln

(
8

b

a

)
− 1

2

∫ 2kb

0
[�0(x) + j J0(x)] dx . (5)

The electric current given by (1) and (2) can be extended
into the optical regime by taking into account the lossy and
dispersive properties of the constituent materials (e.g., noble
metals), an effect captured by the characteristic impedance
of the metal, Zs . The characteristic impedance is not to be
confused with the source impedance, often also abbreviated
as Zs . For the case of a cylindrical wire, the characteristic
impedance can be expressed in terms of the transverse propa-
gation constant, γ , and the conductivity of the material, σ , in
the following form [29], [30]:

Zs = γ

σ

J0 (γ a)

J1 (γ a)
(6)

where the propagation constant and the conductivity are related
to the refractive index of the material, η = n − jκ , by

γ = ω

c
η (7)

σ = jωε0(η
2−1). (8)

The refractive index (from the microwave to optical
regimes) can be represented by a Drude-like model [3]
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extended to include critical points of the band transitions as
Lorentzian resonances [31], [32]. This leads to a convenient
analytical formulation [22]

η2 = 1 − f0ω
2
p

ω

(
1

ω − j2�0
+ α

ω − j2β�0

)

+
M∑

m=1

fmω2
p

2ωm

(
e j π

γm

ωm − ω + j�m
+ e− j π

γm

ωm + ω − j�m

)

(9)

where M is the number of critical points, ωp is the plasma
frequency, fm are the quantum probabilities of transition, ωm

are the critical points, �m are the Lorentz broadening terms,
and the coefficients α and β are chosen to fit experimental
data based on the DC conductivity.

Next, the surface current on the loop (1), (2) can be extended
for imperfect conductors by modifying the impedances in the
following way, where the prime notation indicates that the
characteristic impedance Zs of the wire has been included:

I (ϕ) = V0

[
Y ′

0 +
∞∑

m=1

Y ′
m cos (mϕ)

]
(10)

where

Y ′
0 = [ jπη0a0 + (b/a) Zs]−1

Y ′
m = [ jπη0 (am/2) + (b/a) (Zs/2)]−1 . (11)

The knowledge of the surface currents given
by (10) and (11) enables the derivation of expressions
for the far-zone electromagnetic fields and, consequently, the
associated far-zone antenna parameters. Hence, the far-zone
electric field may be expressed in spherical coordinates
(θ , ϕ) as [16], [17]

Eθ = −η0e− j k0r cot θ

2r

∞∑

m=1

m jm Im sin (mϕ) Jm (kb sin θ)

Eϕ = −η0e− j k0r kb

2r

∞∑

m=0

jm Im cos (mϕ) J ′
m (kb sin θ) (12)

where J ′
m is the derivative (with respect to the argument) of

the Bessel function of order m, and the modal currents Im are
derived from (10) and (11) as

Im = Dm V0

jπη0am + Zs
= Y ′

m V0 = (
Z ′

m

)−1
V0 (13)

with D0 = 1, Dm = 2 (m = 1, 2, . . .), while Y ′
m and Z ′

m are
the modal input admittance and impedance, respectively. The
computational implementation of (13) requires the solution of
certain integrals involving Lommel–Weber and Bessel func-
tions, which are found in (4) and (5). An extended discussion
of the procedures and their numerical implementation are
provided in Appendices A and B. Now that these fundamental
expressions from previous papers have been presented, they
are used in the following sections as the basis to derive the
first closed-form representations for the radiation properties of
a thin-wire nanoloop antenna.

A. Input Impedance, Radiated Power, Radiation Resistance,
and Efficiency

In this section, convenient analytical representations for
the important parameters which characterize the radiation
properties of a loop antenna are derived. The input impedance
of the thin-wire loop is directly obtained from (10) as

Z in = V0

Iin
=

[
Y ′

0 +
∞∑

m=1

Y ′
m

]−1

. (14)

Next, the total radiated power can be determined from (12)
by utilizing the following expression:

Pr (kb) =
∫ 2π

0

∫ π

0

|E |2
2η0

r2 sin θdθdϕ (15)

where |E |2 = Eθ E∗
θ + Eϕ E∗

ϕ . By invoking the orthogonality
properties of sinusoidal functions

∫ 2π

0
sin (mϕ) sin (nϕ) dϕ =

{
0, m �= n
π, m = n

∫ 2π

0
cos (mϕ) cos (nϕ) dϕ =

{
0, m �= n
π, m = n

(16)

the integral (15) can be simplified by means of

∫ 2π

0
Eθ E∗

θ dϕ = πη2
0 cot2 θ

4r2

∞∑

m=1

m2 |Im |2 J 2
m (kbsinθ)

∫ 2π

0
Eϕ E∗

ϕdϕ = πη2
0k2

b

4r2

∞∑

m=0

|Im |2 J
′2
m (kbsinθ) . (17)

Hence, by substituting (17) into (15), the total radiated
power can be represented as

Pr (kb) = η0πk2
b

8

∞∑

m=0

|Im |2
[∫ π

0
sin θ J

′2
m (kb sin θ) dθ

+m2

k2
b

∫ π

0
cos2 θ sin−1 θ J 2

m (kb sin θ) dθ

]
.

(18)

A more compact version of (18) can be derived by consid-
ering the Q-type integrals (see [25]–[28] for thin-wire PEC
loops), which are defined as

Q(p)
mn (x) =

∫ π
2

0
Jm (x sin θ) Jn (x sin θ) sinp θdθ. (19)

Based on (19), a useful recurrence relation can be derived
for the case where n = m

Q(−1)
mm (x) = x2

4m2

[
Q(1)

m−1m−1 (x) + 2Q(1)
m−1m+1 (x)

+ Q(1)
m+1m+1 (x)

]
. (20)

Next, by making use of (19) and (20), the expression for
the total radiated power given in (18) can be simplified to

Pr (kb) = η0πk2
b

4
|V0|2 T (kb) (21)
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where the modal current has been expressed in terms of the
driving voltage V0 and modal admittances Y ′

m . The function
T can be expressed in terms of Q-type integrals

T (kb) =
∞∑

m=0

∣∣Y ′
m

∣∣2

[
1

2
Q(1)

m−1m−1 (kb) + 1

2
Q(1)

m+1m+1 (kb)

−m2

k2
b

Q(1)
mm (kb)

]
. (22)

Details for an efficient and accurate computational implemen-
tation for evaluating the Q-type integrals can be found in
Appendix C.

The input radiation resistance is defined in [5] in terms of
the total radiated power and the input current as

Rrad,in = 2Pr (kb)

|Iin|2
= 2 |Z in|2 Pr (kb)

|V0|2
. (23a)

This expression can also be rewritten in terms of Q-type
integrals and modal admittances by using (21)

Rrad,in = k2
bπη0

2
|Z in|2 T (kb) . (23b)

An alternate version of radiation resistance defined in [5] is
relative to the current maximum and is given by

Rrad = 2Pr (kb)

|Imax|2
. (24a)

Most of the time, the current maximum occurs at the input
terminals (ϕ = 0°) or at ϕ = 180°. For the case of the input
terminals, the two definitions for radiation resistance yield
identical results. For the case of ϕ = 180°, Rrad is given by

Rrad = k2
bπη0

2

T (kb)∣∣∣∣Y
′
0 +

∞∑
m=1

(−1)mY ′
m

∣∣∣∣
2 . (24b)

Next, the loss resistance is defined as [27]

Rloss = b

a

Re (Zs)

|Iin|2
1

2π

2π∫

0

|I (ϕ)|2 dϕ

= Re (Zs)
b

a

|Z in|2
2

[
2
∣∣Y ′

0

∣∣2 +
∞∑

m=1

∣∣Y ′
m

∣∣2

]
. (25)

An expression for the radiation efficiency can be now be
derived using (23b) and (25)

e = Rrad,in

Rrad,in + Rloss

=
[

1 + b

a

Re (Zs)

k2
bπη0T (kb)

(
2
∣∣Y ′

0

∣∣2 +
∞∑

m=1

∣∣Y ′
m

∣∣2

)]−1

. (26)

The implementation of the expressions presented in this
section requires the truncation of the infinite series of modal
impedances. As a general rule, the larger the value of kb the
higher the number of modes would be required to achieve
reasonable accuracy. Fig. 2 illustrates this fact by presenting
the efficiency of a gold nanoloop with a 600 nm radius (further
analyzed in Section III) as the number of modes is increased.
Also, we remark that underflow errors can arise for extremely
large kb and modes m, as further explained in the Appendices.

Fig. 2. Efficiency versus kb for different values of the maximum number
of modes considered for a gold nanoloop with circumference 2πb = 600 nm
and wire radius a = b/64.21 nm (� = 12).

B. Radiation Intensity, Directivity, and Gain

The radiation intensity at (θ ,ϕ) can be defined in terms of
the normalized far-zone electric fields E0

θ = re jk0r Eθ , E0
ϕ =

re jk0r Eϕ , in the form

U (θ, ϕ) = 1

2η0

[∣∣∣E0
θ

∣∣∣
2 + |E0

ϕ|2
]

(27)

where from (12)

|E0
θ |2 = |V0|2 η

2
0 cot2 θ

4

×
∞∑

m=1

∞∑

n=1

[
mn (−1)n jm+nY ′

mY ′∗
n sin (mϕ) ·

sin (nϕ) Jm (kb sin θ) Jn (kb sin θ)

]

|E0
ϕ|2 = |V0|2 η

2
0k2

b

4

×
∞∑

m=0

∞∑

n=0

[
(−1)n jm+nY ′

mY ′∗
n cos (mϕ) ·

cos (nϕ) J ′
m (kb sin θ) J ′

n (kb sin θ)

]
.

(28)

Next, an expression for the directivity at (θ ,ϕ) can be found
from

D (θ, ϕ) = 4πU (θ, ϕ)

Pr (kb)
(29)

by using expressions (21), (27), and (28). As will be discussed
in Section III, convenient expressions for the directivity can
be obtained from (29) for some special cases of interest as

D (0°, 0°) =
∣∣Y ′

1

∣∣2

2T (kb)
(30)

D (90°, 0°) = 2

T (kb)

∞∑

m=0

∞∑

n=0

[
(−1)n jm+nY ′

mY ′∗
n ·

J ′
m (kb) J ′

n (kb)

]
(31)

D (90°, 180°) = 2

T (kb)

∞∑

m=0

∞∑

n=0

[
(−1)m jm+nY ′

mY ′∗
n ·

J ′
m (kb) J ′

n (kb)

]
. (32)

Finally, the gain of the nanoloop antenna can be expressed
in terms of the radiation efficiency and the directivity such
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TABLE I

PARAMETERS FOR REFRACTIVE INDEX OF GOLD [26], [27]

TABLE II

COMPARISON OF REQUIRED COMPUTATIONAL RESOURCES

that

G (θ, ϕ) = eD (θ, ϕ)

= D (θ, ϕ)

×
[
1+ b

a

Re (Zs)

k2
bπη0T (kb)

(
2

∣∣Y ′
0

∣∣2 +
∞∑

m=1

∣∣Y ′
m

∣∣2

)]
.

−1

(33)

III. RESULTS

The validation of the analytical equations derived in the
previous section will be carried out by considering a gold
loop with two different values of circumference, 2πb, namely,
600 nm and 3 μm. The radius of the wire for both models
uses the same unit-less thickness measure defined as � =
2 ln (2πb/a) = 12 (see [20]), which leads to wire radii of 9.3
and 46.7 nm for the 600 nm and 3 μm loop, respectively. The
gold material is modeled according to the parameters listed in
Table I.

The equations derived in Section II can be implemented
by employing software with a powerful symbolic/analytical
mathematical engine (e.g., Mathematica), or by apply-
ing appropriate numerical methods (e.g., MATLAB). For
the second case, useful power series representations are
provided in the Appendices for the integrals involving
Bessel and Lommel–Weber functions, as well as the Q-
type integrals. For further verification, the analytical results
were compared to the results from three full-wave frequency-
domain tools: 1) the thin-wire IE solver described in [33];
2) the IE solver of Altair Engineering’s FEKO [34]; and
3) the finite-element method solver of CST Microwave
Studio [35]. In the computational model for these full-
wave solvers, a voltage gap of negligible capacitance was
applied as the excitation. Material properties were consid-
ered by inserting a table of refractive indices for FEKO

Fig. 3. Comparison of the total power radiated versus kb evaluated using
three different simulation techniques for (a) 600 nm circumference and (b)
3000 nm circumference gold nanoloops.

and CST, and when appropriate, proper symmetry planes
were assigned to speed up the full-wave simulations of
the commercial software packages. The expression for
input impedance was implemented in MATLAB R2014a
using (3)–(6), where the integrals involving Bessel and
Lommel–Weber functions were evaluated using exact series
representations as discussed in Appendices A and B.
A comparison of the computational resources needed for each
of the simulation methods considered is provided in Table II.
The tests were run on a Dual Intel Xeon Processor with ten
cores. FEKO was run in parallel utilizing all ten cores, while
the other simulation methods only used a single core. As can
be seen, the full-wave simulation methods take more than
2 h to complete, while the analytical solution in MATLAB
only takes 20 s. There is also a significant savings in peak
memory usage; the full-wave solvers require 2–16 GB and
the analytical solution only needs 16.7 MB. The computational
resources required to perform the full-wave simulations make
experimentation with different nanoantenna geometries and
material compositions over a wide frequency range intractable.
Furthermore, this problem is exacerbated when dealing with
nanoloop arrays, a popular configuration for solar cells [11],
and applications requiring extremely directive patterns [9].
An analytical solution for the mutual admittances of loop
antennas in the array environment is beyond the scope of
this paper but will be considered in a future work. While the
full-wave solvers enable simulation of arbitrary geometries,
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Fig. 4. Comparison of efficiency versus kb evaluated using four different
simulation techniques for (a) 600 nm circumference and (b) 3000 nm
circumference gold nanoloops.

Fig. 5. Electrical size in terms of effective wavelength versus kb for the two
thin-wire gold nanoloops.

the closed-form expressions derived here allow for extremely
rapid simulation of nanoloops and, furthermore, they provide
insight into the radiation mechanisms of these structures. For
example, by examining the complex coefficients for each term
in the summations of (28), the individual modal contributions
to the theta and phi components of the far-zone electric field
can be isolated and analyzed.

Figs. 3 and 4 show plots of the total radiated power
and efficiency, respectively, for the two example cases of
nanoloops under consideration. The analytical results were
obtained by using (21) and (26), with comparisons made to
full-wave simulations. As indicated in Fig. 2, approximately

Fig. 6. Input radiation and loss resistance in Ohms versus kb for (a) 600
nm circumference and (b) 3000 nm circumference gold nanoloops.

35 modes were enough to accurately determine the efficiency
out to kb= 5. Hence, 35 modes will be utilized for all analytical
results presented herein. The analytical and full-wave methods
are found to be in relatively good agreement, with some larger
discrepancy exhibited by the IE-based solution. This is mainly
due to the piecewise approximation employed to describe the
curved geometry of the nanoloop, which results in a slightly
higher calculated radiated power and efficiency than the actual
values [36].

To further analyze the results, we consider the effective
wavelength concept presented in [10] and reproduced in
Fig. 5. In essence, the effective wavelength accounts for the
propagation of the plasmonic mode (i.e., the TM0 mode).
Hence, the physical phenomena in the infrared/optical regimes
can be described by applying scale factors that correspond to
the effective wavelength. The maxima of the radiated power
and the efficiency are achieved at the resonances, which are
situated along the L/λeff curves depicted in Fig. 5, spaced
apart by approximately integer values of L/λeff . This result
explains why there are only six peaks for the 600 nm loop in
the range from 0 to 0.5kb, and seven peaks for the 3000 nm
loop in the range from 0 to 2.5kb. Similar to the behavior of
microwave loop antennas [5], the maximum values of the total
radiated power are reached at the first resonant mode, while
the successive maxima will decrease for higher frequencies.
In addition, an increase in size leads to higher values of the
radiated power and the efficiency. To gain more insight into the
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Fig. 7. (a) Directivity of the 600 nm loop evaluated at (θ, ϕ) = (90°, 0°).
(b) Directivity of the 3000 nm loop evaluated at (θ, ϕ) = (0°, 0°).

efficiency, the expressions for the input radiation resistance and
loss resistance given in (23b) and (25), respectively, are plotted
in Fig. 6. The magnitude of the input radiation resistance for
the 600 nm loop attains a maximum value of only 4 �. This,
coupled with the low input admittance and driving current,
result in the low total radiated power indicated in Fig. 3(a).
In addition to this, the loss resistance is extremely high,
leading to a low efficiency of only 0.07% as determined from
Fig. 4(a). For the 3000 nm case, the input radiation resistance
reaches about 80 � and the corresponding efficiency is above
6%. The radiation resistance relative to the maximum current
given in (24a) follows those of the input radiation resistance of
Fig. 6 very closely, except the maximum value for the 600 nm
loop is now about 2 � and the max for the 3000 nm loop is
about 40 �.

To validate the expressions given in (29)–(32) for directivity,
they were evaluated and their results compared with full-wave
solvers. Fig. 7 shows a comparison of the directivity for the
600 nm loop evaluated at (θ, ϕ) = (90°, 0°) and the 3000 nm
loop evaluated at (θ, ϕ) = (0°, 0°). The numerical imple-
mentations in MATLAB and Mathematica yield essentially
equivalent results, while providing reasonable agreement with
the full-wave solvers.

Next, FEKO was used to generate 3-D directivity plots for
the 3000 nm loop antenna with kb = 0.01, 0.5, 1.1, and 2.5
(similar radiation patterns were observed for the 600 nm loop).
These results are shown in Fig. 8 when the material is gold and
in Fig. 10 when PEC wire is assumed. For further validation
of the analytical derivation, the 3-D radiation patterns as com-

Fig. 8. Directivity corresponding to a 3000 nm gold loop as computed by
FEKO for kb values of (a) 0.01, (b) 0.5, (c) 1.1, and (d) 2.5.

Fig. 9. Directivity corresponding to a 3000 nm gold loop as computed by
MATLAB for kb values of (a) 0.01, (b) 0.5, (c) 1.1, and (d) 2.5.

puted by MATLAB are shown in Fig. 9 for gold. Comparing
Fig. 8 with Fig. 9 demonstrates that the patterns are nearly
identical. A PEC loop for kb = 0.01 exhibits a far-field pattern
which is similar to that of a magnetic dipole, omnidirectional
in the plane of the loop with nulls in the normal directions,
as shown in Fig. 10(a). However, the nanoloop for kb = 0.01
exhibits a directive pattern with a peak of 6 dBi, as shown
in Fig. 8(a). The losses in the gold cause the azimuthal
symmetry of the current distribution to be broken, resulting in
constructive interference for the case where (θ, ϕ) = (90°, 0°).
For the PEC case, as frequency increases, the peak directivity
shifts to the normal direction (θ, ϕ) = (0°, 180°) at around
kb = 1.1, as shown in Fig. 10(c) [5]. This behavior can
also be seen in the nanoloop, but it occurs instead around
kb = 0.5, as shown in Fig. 8(b). However, at around kb =
0.85 the peak then shifts to (θ, ϕ) = (90°, 180°) with the
maximum directivity of 7.5 dBi occurring at kb = 1.1, as
shown in Fig. 8(c). This is again due to the attenuation of the
currents, where at this frequency the moderate losses lead to
extremely strong constructive interference. Finally, at around
kb = 2.5, the pattern again becomes omnidirectional in the
xz plane as shown in Fig. 8(d). In this regime, only the part
of the nanoloop close to the source is radiating, and thus a
radiation pattern resembling a nanodipole appears. This is in
stark contrast to the behavior of PEC loops, where the far-
field pattern starts to exhibit multiple lobes at around kb =
2.0. As kb is increased above this for a PEC loop, the far-field
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Fig. 10. Directivity corresponding to a 3000 nm PEC loop as computed by
FEKO for kb values of (a) 0.01, (b) 0.5, (c) 1.1, and (d) 2.5.

Fig. 11. Directivity of (a) 600 nm loop and (b) 3000 nm loop corresponding
to angles of (θ, ϕ) = (0°, 0°), (θ, ϕ) = (90°, 0°), and (θ, ϕ) = (90°, 180°).

pattern becomes increasingly more complex, with the number
of lobes increasing, as shown in Fig. 10(d) for kb = 2.5. It is
important to note that these trends with respect to kb apply for
any circumference in the PEC case but not for the nanoloop.
The behavior of the nanoloop is heavily dependent on the
circumference and constituent material properties.

To study these trends more thoroughly, the directivity
expressions given in (30)–(32) were used to generate the
results shown in Fig. 11 for the three angles of interest. For
the 600 nm loop, the largest directivities occur at (θ, ϕ) =
(90°, 0°) around kb = 0.01, and at (θ, ϕ) = (90°, 180°) near
kb = 0.175. Above kb = 0.175, the pattern is omnidirectional

Fig. 12. Comparison between the 3000 nm PEC and gold nanoloop
for kb = 1.11. (a) Current magnitude. (b) Current phase.

in the xz plane and remains that way as the frequency
increases. The directivity in the yz plane remains low for all
frequencies, because of the symmetry and low magnitudes of
the currents in that plane (around ϕ = 90° and ϕ = 270°).
For the 3000 nm loop, the directivity versus frequency for all
three directions has a similar behavior to that of the 600 nm
loop; however, there are more ripples due to the existence of
higher order modes in the currents.

Interestingly, superdirectivity is achieved along (θ, ϕ) =
(90°, 180°) over a broadband for the 3000 nm loop. This
phenomenon does not occur for PEC loops and is a direct
consequence of the optical properties of gold, which causes
the currents around the nanoloop to undergo attenuation. It is
well-documented that superdirectivity along the endfire direc-
tion can be achieved when two closely spaced PEC dipoles
in a linear array are excited with normalized magnitudes
of 1 V and approximately 0.7 V along with a phase difference
of approximately 180° [37]. An examination of the current
distribution shows that this condition arises naturally on the
3000 nm nanoloop over a relatively broad frequency range.
Fig. 12 shows a comparison of the current magnitude and the
current phase for the 3000 nm PEC and gold nanoloops at
kb = 1.11. As can be seen, the conditions for superdirectivity
only occur for the lossy gold loop. This surprising behavior is
easily and efficiently predicted using (32) and only occurs for
nanoloops of a specific size and material composition. As far
as the authors know, this phenomenon has not been previously
discovered. This is most likely because full-wave solvers
require too much time, while the closed-form expressions
provided in this paper allow for rapid experimentation with
different geometries and material properties.
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Fig. 13. Gain of (a) 600 nm loop and (b) 3000 nm loop corresponding to
angles of (θ, ϕ) = (0°, 0°), (θ, ϕ) = (90°, 0°), and (θ, ϕ) = (90°, 180°).

Finally, Fig. 13 shows the gain as defined in (33) for the
three directions under consideration. As expected, the gain is
much lower for the 600 nm loop since it corresponds to an
electrically smaller antenna. The gain tends to decrease as the
frequency increases, which is a consequence of the decreasing
efficiency depicted in Fig. 4. Also, it is noteworthy that for the
3000 nm case, the maximum of the gain as well as directivity
appears for kb ≈ 1 at (θ, ϕ) = (90°, 180°). Fig. 5 shows
that for the 3000 nm loop, these frequencies correspond to
L/λeff ≈ 2.5 (i.e, approximately the third resonance of the
nanoloop). These analytical expressions allow for rapid design
cycles by enabling the designer to analyze trends quickly and
efficiently. In microwave applications, most designs operate at
the first resonance (L/λeff ≈ 0.5), but this result implies that
nanoloops could be used at higher order resonances where the
pattern is more directive and the gain is larger.

IV. CONCLUSION

Computationally efficient closed-form expressions for the
radiation properties of lossy nanoloops which are valid in the
terahertz, infrared and optical regimes have been presented
in this paper. In particular, analytic expressions are derived
for the far-zone radiated electric fields, total radiated power,
radiation resistance, directivity, and gain. These expressions
are derived by extending the formulation for thin-wire PEC
loops to include the effects of dispersion and loss. The
closed-form expressions for a gold nanoloop are validated
by comparison with full-wave simulations based on several
different computational electromagnetics techniques. The full-
wave solvers require more than 2 h and 2–16 GB of memory,

while the analytical solution as implemented in MATLAB
requires only 20 s and 16.7 MB of memory. Additionally,
some useful guidelines for computing the required integrals
associated with the Bessel and Lommel–Weber functions,
along with the Q-type integrals, have been provided in the
Appendices.

APPENDIX A
CALCULATION OF THE INTEGRAL OF THE

BESSEL FUNCTION

Integration of the Bessel functions of integer order is
required to calculate the coefficients of the modal impedances
as described by (4) and (5). This can be performed numerically
using the integral routine in MATLAB which employs global
adaptive quadrature techniques, a method of approximating
the integral by calculating areas over adaptively refined inter-
vals [38].

Alternatively, the integral can be accurately calculated using
a power series representation. The Bessel function is expressed
in the form [39], [40]

J2m (x) =
∞∑

n=0

(−1)n

n! (2m + n) !
( x

2

)2n+2m
(34)

which leads to the result
2kb∫

0

J2m (x) dx = 2
∞∑

n=0

(−1)n (kb)
2n+2m+1

n! (2m + n) ! (2n + 2m + 1)
. (35)

Another useful representation, especially for larger argu-
ments, can be employed for which the definite integral of a
Bessel function is expressed in terms of a series of Bessel
functions [39], [40]

∫ 2kb

0
J2m (x) dx= 2

∞∑

k=0

J2m+2k+1(2kb). (36)

A third formulation can be determined by using generalized
hypergeometric functions [41], which are the solutions to the
hypergeometric or Gauss’s equation, and defined as

pFq

(
a1, a2, . . . , ap

b1, b2, . . . , bq
;z

)
=

∞∑

k=0

(a1)k · · · (ap
)

k

(b1)k · · · (bq
)

k

zk

k! (37)

where ( )k denotes the Pochhammer symbol, which is defined
as

(q)n = �(q + n)

�(q)
=

{
1, n = 0
q (q + 1) · · · (q + n−1) , n > 0.

(38)

Bessel functions, along with many other special functions,
can be expressed in terms of generalized hypergeometric
functions. For example

J2m (z) = z2m

4m� (2m + 1)
0F1

(
; 2m + 1; −z2

4

)
. (39)

By applying the substitution u = −(1/4)z2, and the integration
identity [40]

∫
zα−1

0F1 (;b;z) dz = zα �(α)

�(α + 1)
1F2 (α;b, α + 1;z)

(40)
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Fig. 14. Logarithm (base 10) of the relative error versus number of terms
for the integral of the Bessel function with m = 1 using (a) power series
(35) and (b) Bessel series (36) representations. The error is computed relative
to (41), which involves the confluent hypergeometric function. The parameter
kb increases from 0.01 to 5.0 as the color of the curve varies from blue to
red.

the integral in (35) may be written as
∫ 2kb

0
J2m (z) dz = 2k2m+1

b

(2m+1) ! 1F2

(
m+ 1

2
; 2m +1,m+ 3

2
;−k2

b

)
.

(41)

Note that it can be shown that (35) and (41) are mathe-
matically equivalent based on the definition of the hypergeo-
metric functions. A robust numerical technique implemented
in Mathematica for evaluating the generalized hypergeometric
function of the form contained in (41) is discussed in [40]
and source code can be found in [43]. An efficient calculation
of the Bessel functions in (36) is implemented in MATLAB
R2014a [44]. These expressions, along with the power series
representation of (35) will be compared in terms of their
convergence properties and computation times.

When considering the integration of Bessel functions of
low order m, the series of (35) converges rapidly for small
arguments. However, for larger values of kb, the number of
terms required to achieve convergence dramatically increases
due to the fact that the summation is not monotonically
decreasing. Alternatively, the series representation involving
Bessel functions (36) converges much quicker for large kb.
This is illustrated in Fig. 14(a) and (b), which show the
logarithm (base 10) of the relative error versus the number of
terms in the series expansions for m= 1 using (35) and (36).

Fig. 15. Logarithm (base 10) of the relative error versus number of terms
for the integral of the Bessel function for m = 35, using (a) power series
(35) and (b) Bessel series (36) representations. The error is computed relative
to (41), which involves the confluent hypergeometric function. The parameter
kb increases from 0.01 to 5.0 as the color of the curve varies from blue to
red.

The relative error is defined as |v − vapprox/v| where v is the
exact value as computed by the hypergeometric generalized
functions or numerical quadrature as specified in the caption
and vapprox is the approximate series representation.

In practice, the range of kb is bounded for a goal of
an absolute accuracy A and a fixed number of terms n
in the power series representation (35), where the absolute
accuracy is the difference between the exact value and the
series approximation. Performing a ratio test on the series, the
maximum value of kb which can be computed accurately in
the calculation of the integral of the Bessel function of order
m is

kb <

√

A
(n + 1)(2m + 2n + 3)(2m + n + 1)

(2m + 2n + 1)
. (42)

This shows why more terms are required for a given
accuracy as kb increases. For large m, a comparison between
the two series representations is illustrated in Fig. 15, which
considers the case of m = 35. Both series representations
provide accurate results by just considering a small number
of terms, but the power series (35) does not seem to converge
better for small arguments kb, as would be expected of a typi-
cal power series, and (36) converges quicker for all arguments.
The reason for this is that the built-in numerical routines in
MATLAB, which were employed to calculate the Bessel func-
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TABLE III

TIMING ESTIMATES FOR BESSEL INTEGRAL EVALUATION

tions, include a combination of extremely efficient algorithms
that are selected based on the values of the argument and
order [44]. For values of m greater than 35 and kb greater
than 5, the Bessel function calculations can yield underflow
errors, a condition where the true value of an operation is
smaller in magnitude than the smallest representable floating
point number [44]. However, most nanoloops have extremely
low efficiencies for kb greater than 5, so this condition will
not be encountered in such cases.

Finally, Table III shows a comparison of the time taken to
calculate the integral of the Bessel function for the m = 1 case
using: 1) the power series representation (35); 2) the Bessel
series representation (36); 3) numerical quadrature; and 4) the
result (41) in terms of hypergeometric generalized functions
(computed in Mathematica 10). For the series representations,
20 terms are considered since this resulted in a relative error of
less than 10−10 for all kb. Similarly, the numerical quadrature
was computed to a relative error of 10−10. Each calculation
was performed 10 000 times and averaged to smooth out
any computational noise. For increasing kb, the time required
remains constant for the power series representation since a
constant number of terms was used for all cases and the
calculations performed remain invariant. It can be seen that
numerical quadrature is inefficient and the time taken increases
with kb since more subintervals are required to achieve the
desired accuracy. On the other hand, solutions based on built-
in functions (i.e., Bessel and generalized hypergeometric func-
tions) are more efficient than the power series and quadrature
methods, with the Bessel series being by far the most efficient.
The main reason for this is that efficient algorithms for these
functions have been studied extensively [43], especially for
Bessel functions [44]. However, the time taken increases with
increasing kb due to the underlying choices made between
the different algorithms, which is dependent on the order and
argument.

APPENDIX B
CALCULATION OF THE INTEGRAL OF THE

LOMMEL–WEBER FUNCTION

In addition to the integrals of the Bessel functions, the
expressions (4) and (5) also contain integrals of Lommel–
Weber functions. Similar to Appendix A, a power series rep-
resentation and an analytical form in terms of hypergeometric
functions will be presented and compared.

The starting point for this derivation is the following power
series representation of the Lommel–Weber function which is

valid for integer values of m and n:

�2m (x) =
∞∑

n=0

(−1)n+m

� (n + m + 3/2) � (n − m + 3/2)

( x

2

)2n+1
.

(43)

The required integral of the Lommel–Weber function may now
be evaluated using (43), which leads to the result
∫ 2kb

0
�2m (x) dx =

∞∑

n=0

(−1)n+m

� (n + m + 3/2) � (n − m + 3/2)

× k2n+2
b

(n + 1)
. (44)

Next, a useful analytical form of this integral in terms of
hypergeometric functions will be derived. For this develop-
ment, we note that the Lommel–Weber function for an even
integer order can be expressed as

�2m (z) = 2

π

z1F2[1; 1
2 (−2m + 3) , 1

2 (2m + 3) ; − 1
4 z2]

(1 − 2m)(1 + 2m)
.

(45)

By applying the substitution u = − 1
4 z2, and the integration

identity [39]
∫

zα−1
1F2

[
1; −m + 3

2
, m + 3

2
;z

]
dz

= zα

α
2F3

[
α, 1; α + 1,−m + 3

2
, m + 3

2
;z

]
(46)

it can be shown that
∫ 2kb

0
�2m(z)dz = −4k2

b2F3
[
1, 1; 2,−m + 3

2 , m + 3
2 ; −k2

b

]

π(2m−1)(2m + 1)
.

(47)

Note that (44) and (47) are mathematically identical. The
hypergeometric function that appears in (47) may be computed
efficiently and accurately by exploiting the available libraries
of built-in functions in Mathematica.

The relative error of the power series approximation follows
similar trends to the results shown in Fig. 15(a) and (b) for
small and large m, respectively. In particular, for low order
m and small values of kb just a few terms in the series
are required to achieve a given accuracy. Again, the more
accurate answer was considered to be the result produced
by (47), where the evaluation of the hypergeometric function
was computed by Mathematica. This approach is also more
efficient in terms of computational time than the power series
representation of (44).

APPENDIX C
CALCULATION OF THE Q-TYPE INTEGRAL

The numerical implementation of the Q-type integral of (19)
is considered next. In terms of a power series representation,
the Q(1)

nn integral can be calculated as [20]

Q(1)
nn (kb) =

∞∑

l=0

(−1)l Bnn,l W2n+2l+s

(
kb

2

)2n+2l

(48)
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with

Bnn,l = �(2n + 2l + 1)

� (l + 1) [� (n + l + 1)]2 �(2n + l + 1)
(49)

and where

W2n+2l+s =
∫ π

2

0
sin2n+2l+s θdθ

= π�(2n + 2l + s + 1)

22n+2l+s+1
[
�

(
n + l + s

2 + 1
)]2 (50)

are known as Wallis integrals [45].
An alternative series representation in terms of Bessel

functions can also be derived. Starting with the integral form
of Q(1)

nn , the following series solution can be obtained:

Q(1)
nn (kb) =

∫ π
2

0
J 2

n (kb sin θ) sin (θ) dθ

= 1

kb

∞∑

k=0

J2n+2k+1 (2kb) . (51)

The derivation of (51) involves the following definite integral
[38]:

∫ a

0
Jv (x) dx= 2

∞∑

k=0

Jv+2k+1 (a) . (52)

In this case, the error computed was relative to numerical
quadrature with an extremely small tolerance. When compar-
ing the convergence of the power series (48) and the Bessel
series (52), the results are very similar to Fig. 14 for the m = 1
case. The conclusions are very similar to those of Appendix A,
with the Bessel series being more computationally efficient,
especially for large values of kb. For larger values of m, the
required number of terms in the series for a fixed accuracy is
reduced, similar to the results shown in Fig. 15.
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