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Abstract—A novel conformal technique for the finite difference
time domain (FDTD) method is proposed to deal with curved and
arbitrarily oriented lossy thin panels. This is formulated as an
extension of the existing conformal relaxed Dey-Mittra method
(CRDM) combined with sub-cell algorithms to handle wave
propagation across the panel. Two alternatives are presented
for this: the classical impedance network boundary condition
(INBC), and a recent sub-gridding boundary condition (SGBC)
developed by the authors. Several test cases are employed to
demonstrate the capability of the proposed method to remove
errors associated with the usual staircased FDTD method.

Index Terms—Conformal modeling, shielding effectiveness
(SE), electromagnetic shielding, finite-difference time domain
(FDTD), lossy materials, sub-cell models, thin panels

I. INTRODUCTION

Since its original formulation in 1966 [1], the finite diffe-
rence time domain (FDTD) method remains the most widely
used numerical method to solve Maxwell’s curl equations in
time domain. We can attribute this success, at least in part,
to two strong points: first, its computational efficiency and,
second, the simplicity of its implementation.

Despite the many advantages of the structured distribution
of the FDTD fields, it also poses serious constraints when
we seek to resolve multi-scale problems. For instance, when
small thin structures are involved, the classical FDTD requires
the use of small space steps and this, in turn demands greater
computer memory and CPU time. Even if mesh-size reductions
enhance the accuracy in general, staircasing presents inherent
errors associated to the enlargement of the electrical size of
the simulated objects, shifting their resonance frequencies, and
adding extra ohmic losses for conductive objects, which, in
practice, degrades the FDTD second order of convergence to
quasi-first order [2].

A typical workaround to avoid brute-force meshing around
curved regions is the use of local subcell methods. Two
main approaches can be found in the literature: subgridding
techniques [3]–[5], and Conformal Dey-Mittra (DM) methods
[6]. Subgridding techniques employ a refined mesh in the
neighborhood of the curvature which is connected to usual
coarse mesh using interpolation techniques at their boundary.
In some schemes, the refined mesh can be evolved with a
local time-stepping algorithm, driving to a great increase in
computational efficiency [5]. They are very helpful to handle
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intricate intra-cell details and can be applied recursively. How-
ever, as will be shown in this paper, they do not remove some
of the fundamental errors which are inherent to staircasing.
On the contrary, DM conformal methods allow cells to be
traversed by curved surfaces which split the cell into two
regions. The technique involves modifying the coefficients
on the original FDTD, weighting the corresponding fields
with the areas of their respective regions. A drawback of the
original DM method is its more restrictive stability condition,
since the maximum time step for its stability is bounded by
the minimum size of the globally split conformal regions.
To address these issues, a variant of the DM method, the
conformal relaxed Dey-Mittra (CRDM) method was proposed
in [7] for perfect electrically conducting (PEC) surfaces. This
method describes how to build a conformal mesh by taking
control over the trade-off between the accurate representation
of the original geometry and a maximum time-step chosen
for computer affordability. Notably, this method retained a
quasi-second order of convergence for the analyzed cases.
In summary, DM methods excel when dealing with smooth
intra-cell curvatures by providing a better approximation to
the curved portion of the object inside a Yee cell, naturally
overcoming the staircasing errors.

Materials consisting of lossy thin panels are another case
requiring a subcell approach in FDTD. A typical method to
deal with these materials consists of a modification of the
classical surface impedance boundary conditions, to take into
account both scattering and penetration by means of two or
four-port impedance network boundary conditions (INBCs)
[8], [9]. An alternative based on the so-called subgriding
boundary conditions (SGBCs) was presented in [10], [11], as
a mean to overcome stability issues found in INBC.

In these previous works, the panels had to be aligned with
the Cartesian mesh, in this work, we present a novel technique
which extends the CRDM method to deal with curved lossy
thin panels, using either SGBC or INBC to model its internal
behavior. The proposed method is first validated with two sets
of test cases: a low-frequency (LF) conduction problem by
lossy strips slanted at different angles with the Cartesian mesh,
for which the Direct Current (DC) resistance is found; and
a broadband shielding problem by a spherical enclosure, for
which the shielding effectiveness is evaluated. A last complex
test case consisting on the calculation of the currents coupled
to a cable shield inside an aircraft, serves to confirm the
accuracy and to test the robustness of the method.

The rest of this paper is organized as follows: In Section II,
the proposed method is traced; In Section III, the fundamentals
of the INBC and SGBC methods are recalled. In Section
V, results for the two aforementioned test cases are shown.
Finally, Section VI presents the conclusions.
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II. CRDM FOR THIN PANELS

The approach combining subcell methods to treat curved
lossy thin panels with the conformal method [10] can be
described in a unified manner regardless of the treatment for
the thin pannel, either SGBC or INBC, which only differ in
the way they relate the tangential fields on each side of the
slab. The overall scheme is a generalization of the conformal
technique used in [7] for PEC. Now, we need to consider
two tangential E-field components on each side of the panel
instead of taking it to be null as for PEC. Therefore, two
new degrees of freedom, ES,1 and ES,2 are introduced, apart
from the usual DM H-field HS,1 and HS,2 components at the
centroid of each sub-cell split by the boundary. A local time
advance algorithm is employed in conformal cells (with the
same global time step), which can be summarized as follows:

1) The E-fields Enk,ν at a given time step n, along the edge
ν of the cell on side k with respect to the thin panel, are
updated as usual; according to the usual DM algorithm
[6] by finite differences involving the adjacent magnetic
fields.

2) The E-fields ES,1, ES,2 along both sides of the material
boundary are updated by the thin-panel relationships by
using either INBC and SGBC, as described in Sections
III-A and III-B.

3) The H-fields HS,1 and HS,2 located at the centroid of
each sub-cell split by the boundary are updated using
the closed-line integral of tangential electric fields along
their contour,

H
n+1/2
S,1 = H

n−1/2
S,1 − ∆t

µ0A1

(
Γn1 + lS E

n
S,1

)
H
n+1/2
S,2 = H

n−1/2
S,2 − ∆t

µ0A2

(
Γn2 − lS EnS,2

) (1)

where Γnk =
∑
ν lk,νE

n
k,ν is the usual discrete line

integral of the E-field components for conformal edges
where lS is the conformal edge length.

The rest of the advancing algorithm for cells not affected
by material traversing are found by the Yee-FDTD method, as
usual.

III. THIN PANEL MODELING

As stated, the two tangential E-field components along the
thin panel are introduced to be calculated either by SGBC
or INBC. The difference between these methods depend
on the wave propagator used. INBC finds the E-fields on
the surface by a two-port, four-port if anisotropic, network
relationship between the adjacent H-fields [9], [12], whereas
SGBC expressly propagate in time the EM fields inside the
slab. Both methods rely on the fact that waves propagate
along the direction perpendicular to the slab as a TEM mode,
regardless of the incidence angle of waves impinging on it.
This assumption holds as far as the refractive index inside the
slab is much higher than outside, which is the case for lossy
panels (see [10] for a further discussion). Let us briefly recall
the fundamentals of each technique, assuming for simplicity
isotropic media.

A. Impedance Network Boundary Conditions
INBC relates the tangential E and H-field components by

frequency-domain Z parameters. These can be found analy-
tically either from the S-parameters or from the constitutive
relationships of the panels [13], [14]. Fig. 1 shows the rela-
tionship for an isotropic thin-panel in the conformal case. The
adjacent H-field components are assumed to be found using
(1), and the electric fields are found as a function of them as[

ES,1
ES,2

]
=

[
Z11 Z12

Z21 Z22

] [
HS,1

−HS,2

]
(2)

where ES,1 and HS,1 are the fields on one side of the thin
panel and ES,2 and HS,2 are the fields on the other. To imple-
ment the frequency-domain relationship (2) into time domain,
a typical approach is first to expand each matrix element
Zij into a sum of poles/residues partial fractions, found by a
vector-fitting (VF) procedure [15], and next translate each term
of the expansion into the time domain by a piecewise linear
recursive convolution (PLRC) algorithm [16]. It bears noting

Fig. 1: Cross section of a FDTDcell with a INBC boundary.

that the INBC method presents some problems when coupled
with the usual scheme of Yee-FDTD fields as it requires us to
know simultaneously both the E and H-fields at the same time
and location on the interface. However, the Yee-FDTD method
does not present the electric and magnetic fields co-located but
staggered by semi-integer time and space increments. Thus,
some kind of interpolation is needed in order to find Hn+1

S,1

and Hn+1
S,2 , from H

n+1/2
1 and Hn+1/2

2 . A typical approach [8],
[9], [17] employs

Hn+1
S,1 ' H

n+1/2
1

Hn+1
S,2 ' H

n+1/2
2

(3)

This approximation is often considered [18], [19] to be the
source of late time instabilities that show up especially in
certain complex problems. This was also the reason why the
authors introduced in [11] the SGBC as a late-time stable
alternative, which is briefly described in the Section III-B.

B. Subgridding boundary condition
The SGBC method finds the tangential E-fields on either

side of the slab by propagating the EM fields inside it
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using a 1D subgridding FDTD algorithm along the direction
perpendicular to the slab. For this, a space-step fine enough
to accurately sample the wave inside at the maximum fre-
quency of interest is used inside the slab, while keeping
the usual (coarse) discretization outside of it. To prevent the
time constraints imposed by this reduced space-step, we used
the unconditionally stable CNTD implementation given in
[10] because it proved to have superior stability properties.
Note that the 3D Yee-FDTD used outside is connected with
the CNTD used inside the panel in a straightforward way,
respecting the non-co-located space-time nature of 3D Yee-
FDTD. In this way, the Yee FDTD 3D fields serve as boundary
conditions of 1D CNTD, and vice-versa.

Fig. 2: Cross section of a conformal Cell with SGBC layer.

IV. STABILITY OF SGBC

Taking profit of the results published in [20], we can give
a rough proof of the stability of the SGBC method. There,
it was stated that a hybrid explicit Yee-FDTD/implicit Crank-
Nicolson method is stable if it fulfills the Courant limit in the
explicit part, and the electric tangential fields at the boundary
between both regions are updated by the implicit part. The
SGBC scheme described in this paper inherently fulfills these
two requirements.

Actually, for a plane slab whose normal is aligned along
one direction of the grid, the SGBC method is a particular and
more simple case of [20]. The SGBC method is only applied
in 1D, along the direction perpendicular to the lossy slab
(thanks to the transverse electromagnetic (TEM) propagation
assumption [10]). Hence, the change of space steps between
the two regions is a particular case of a non-uniform transition
[20].

In any case, we have also verified numerically the stability
of the SGBC method for a practical test case: a conductive
spherical shell under plane wave incidence. The sphere has a
radius of 1 m and a thickness of 8 mm. It is illuminated with a
uniform plane-wave with a Gaussian amplitude decaying -3 dB

at 1 GHz. Fig. 3 shows the ratio between the maximum time
step for stability of the SGBC method ∆t, and the maximum
allowable one for the coarse part ∆t0. For conformal meshes,
∆t0 depends on the geometrical relaxation factor (the maxi-
mum edge-to-area ratio of the conformal cell defined in [7]).
In the present case, we used a relaxation factor of 0.42. Fig. 3
shows the stability limit of the CN implicit unconditionally
stable method. For the sake of reference, we also plot results
using the usual FDTD 1D explicit conditionally stable scheme,
instead of the CN scheme.

Fig. 3: Maximum time step ratio for stability: analytically
(dashed line) and numerically (markers points).

To obtain the results of Fig. 3, the coarse space step is set
to ∆coarse = 15 mm, and the fine space step ∆fine inside of the
SGBC is chosen according to the resolution of its wavelength

∆fine =
λfine

PPWfine

where PPW denotes the number of points per wavelength at
1 GHz, and the wavelength inside the material is expressed as
function of its quality factor Q,

λfine =
λ0√

1
2

√
1 +Q−2 + 1

From the results of Fig. 3, we conclude that:
1) SGBC with explicit FDTD 1D advancing scheme: The

time step is restricted by the SGBC region. Actually,
the numerical stability limit is in accordance with that
imposed by the SGBC isolated region, ∆t = ∆fine/c0.

2) SGBC with implicit CNTD 1D advancing scheme: The
time step is imposed by the coarse grid ∆t = ∆t0, since
the CNTD does not add any extra constraint.

V. NUMERICAL RESULTS

Three kinds of validations have been devised in this paper to
demonstrate the accuracy of the conformal method compared
to the staircased one. The first validation is based on the
calculation of the quasi-static resistance of a thin strip, tilted
with respect to the Cartesian axis. The error associated with
the overestimation of the ohmic losses for the structured
case is revealed. The second test case consists of a spherical
lossy enclosure shell under plane-wave incidence, to reveal
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the underestimation of the field coupled inside (as much as
4 − 6 dB), the shifting of their natural resonance frequencies
with respect to the physical ones, and the appearance of
numerical artifacts in the form of spikes due to the staircased
discretization. The third validation presents a more challenging
and complex test case used to assess high intensity radiated
field (HIRF) effects on a cable shield running inside an aircraft.

The three test cases presented herein have been simulated
using SGBC and INBC, with a similar accuracy (no instabil-
ities have been found for the INBC in these particular cases.

A. Resistance of thin strips

The prediction of the DC resistance of a slanted strip
serves well to illustrate the source of errors introduced by the
staircased mesh used by classical FDTD. The DC resistance
of a conductive strip is well known to be

RDC,teo =
1

σ

LS
w d

(4)

where LS , is its length, w is the width and d is the thickness
of the conductor strip. However, LS depends on how the strip
is meshed, which can be easily understood by realizing that
the staircased rectilinear grid imposes a Manhattan distance-
based metric, also defined as a 1th order Minkowski distance.
For instance, if ~p1 and ~p2 are two points unaligned with a
Cartesian axis, with coordinates in 2D (x1, y1) and (x2, y2),
the Manhattan distance is |x1 − x2|+ |y1 − y2|, always larger
than the Euclidean one. In general, the associated relative error
is

err =
|dmanhattan − deuclidean|

deuclidean
=

ND∑
k

|p1,k − p2,k|√
ND∑
k

(p1,k − p2,k)
2

− 1 (5)

with ND being the spatial dimension. It bears noting that this
error is independent of the grid step size, so that staircased
refinements, or even Cartesian subgridding, are not able to
mitigate it (Fig. 4). The relative error only depends on the
alignment of the points p1,2 with respect to the grid with a
maximum value for diagonal-wise structures given by

err =
ND√
ND
− 1 (6)

Fig. 4: The red line represents the diagonal Euclidean distance
between two points p1, p2. Green, brown, and yellow lines
have the same Manhattan distance even for different grid sizes.

To study this effect, we have used the numerical test setup
illustrated in Fig. 5 consisting of a conductive strip, connected

at each end to an external U-shaped set of PEC strips, in turn
excited by a hard voltage source uniformly distributed inside
a delta-gap.

Fig. 5: Test setup for estimating the DC resistance.

The used voltage source has a quasi-DC time profile: it
starts at t = 0 with a Gaussian profile e−(t−t0)

2/(2s2), with
s = 0.027µs, achieving a maximum value of 1V at t0 =
0.1µs, after which it is kept constant in time. The resistance
is computed by dividing the value of the voltage drop across
the gap, by the bulk current IBC computed by integrating
the H-fields along a loop fully enclosing the stripe (in red in
Fig. 5): IBC =

∮
H ·dl. The whole setup can be enclosed, with

no additional discretization error, inside a PEC cage in order
to speed up the calculations, since no error of reflections are
introduced by these at the DC limit.

RDC,sim =
Vgap

IBC
=
Egap dgap∮
H · dl

(7)

Fig. 6: Discrete test-setup for the computation of the DC
resistance of a conductive thin strip slanted at angle φS with
respect to the grid: staircased and conformal meshings.

The relative error of the resistance as a function of the tilting
angle with respect to the Cartesian axes is illustrated in Fig. 7
both for conformal and for structured meshes. We have taken
a thin strip with a conductivity of σ = 20 S/m, a length of
LS = (216 mm/ cosφS), a width of w = 120 mm, and a
thickness of d = 2 mm. We note that the error is negligible for
the conformal mesh, while for the structured mesh behaves, as
expected, with a theoretical value estimated by (4) employing
the Manhattan distance (5) to find LS

LS,str = LS(sinφs + cosφs)

to yield,

RDC,str =
1

σ

LS(sinφs + cosφs)

W d
(8)
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We conclude that the staircased mesh irremediably leads to
errors in the resistance of unaligned objects, while conformal
methods can properly account for them.

Fig. 7: Error for the estimation of the DC resistance as function
of the slanting angle with respect to the grid. The Manhattan
error is assumed to be the relative difference between Manhat-
tan and Euclidean distances, given by err = cosφs+sinφs−1.

B. Shielding effectiveness of a lossy spherical shell

Next, the broadband penetration of the field inside a conduc-
tive spherical shell is analyzed. For this, a sphere 1 m in radius,
with a thickness of 5 mm, and a conductivity of 200 S/m, has
been taken. The value of shielding effectiveness (SE) at the
center of the sphere is evaluated, under the incidence of a
uniform plane-wave with a Gaussian profile contained in a
domain truncated by perfectly matched layers (PML),

SEdB = 20 log

√
~Ecenter · ~E∗center√
~Einc · ~E∗inc

(9)

where (∗) denotes the complex conjugate, (·) the usual dot
product, Einc the E-field of the incident plane-wave, and ~Ecenter
the E-field coupled at the center of the sphere.

Fig. 8 compares the results for the standard staircase and
FDTD and for the conformal technique with no apparent dif-
ferences between INBC and SGBC, as found for the previous
test case. Two different space increments for the space step are
used for the usual FDTD method: ∆ = 5 mm, 25 mm. Analyt-
ical predictions from [21], [22] are used for reference. We also
include results found with the average method proposed in [23]
extended for conductive materials. This algorithm employs the
usual Yee scheme for cells partially filled with a material, but
with a conductivity weighted by their void-to-filled ratio. The
time-step is evaluated according to a CFLN = 0.7, using the
relaxed technique proposed in [7].

Fig. 8 shows excellent agreement between INBC and SGBC,
and a mismatch for the staircased FDTD. A constant offset
level in the staircased results of 5− 6 dB can be discerned,
while for the conformal approach, the offset level is lessened
by as much as 1 dB. Also the average method is accurate at
low frequencies, while it fails at high frequencies. The reason
for this is that it does not catch the space field variation inside
the conductor at high frequencies when the skin-depth effect

begins to dominate (smaller cell sizes would be necessary to
account for this).

It also bears noting that spurious spikes appear at some
frequencies for FDTD. These have been demonstrated [24] to
be inherent to the staircased approximation of the curvature
of the sphere, while they are greatly lessened by the proposed
conformal method. Finally, in Fig. 9 we also show in detail
the position of the first resonance using ∆ = 100 mm, which
is displaced for the staircase with respect to the analytical and
conformal ones, as expected, due to the error in the actual
electrical size inherent to the staircased mesh.
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Fig. 8: SE for a sphere 1 m in radius and 5 mm thick, with
200 S/m conductivity.
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Fig. 9: SE for a sphere 1 m in radius and 5 mm thick, with
200 S/m conductivity (detail of the first resonance).

C. Assessment of the HIRF effects on an aircraft

In this test case, the HIRF effects on a cable enclosure
inside an aircraft are studied in a modified version of an EV55
aircraft1. The aircraft is formed by two parts: the airframe and
a cable-enclosure. The airframe is assumed to be PEC, and
the shield of the cable-enclosure has been modeled with a

1 The EV55-aircraft geometry presented herein has been provided by
EVEKTOR and is publicly available, as a result of the FP7 HIRF-SE project,
after EVEKTOR’s clearance upon request to salva@ugr.es.
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Fig. 10: Test setup for estimating the transfer function on the
cable enclosure.

cylindrical shell with a mean radius of 30 mm, a thickness of
2 mm and a resistance per unit length (p.u.l.) of 1.263 mΩ/m.
The thin panel methods proposed in this manuscript have
been employed to deal with the coupling of EM environment
inside the lossy shell of the cable-enclosure. The aircraft is
illuminated in free space with a plane wave with a Gaussian
amplitude decaying -3 dB at 1 GHz, and an incidence of
1√
2

(x̂+ ẑ) and electric field polarization of 1√
2

(x̂− ẑ). The
aim of this test case is evaluate the transfer function between
the induced current in the cable enclosure and the plane wave
magnitude, the bulk current induced on the cable is assessed
with a closed-loop line-integral on the magnetic field around
the cable-enclosure.

Fig. 11 compares the results for the standard staircase and
FDTD and the conformal technique, both use a grid of cubic
cells with size of 12 mm and 24 mm respectively, and a time-
step 0.8 times the Courant limit. The computational domain is
truncated using PML of 10 layer. This test case was broadly
cross-validated under the FP7 EU HIRF-SE project using
several numerical techniques [25]. In this paper, we employ the
discontinuous Galerkin time domain (DGTD) results of [26] as
a reference, for its well known accuracy. As expected, we note
that, in spite that the resolution chosen for staircased model
is twice that taken for the conformal one, the latter shows a
better agreement with DGTD. At low frequency, the error in
the plateau region is dominated by the p.u.l. resistance of the
cable enclosure, whereas at high frequencies, the position of
the resonances are mandated by its electrical length.

VI. CONCLUSIONS

The CDRM strategy has been extended to deal with lossy
thin panels in FDTD in an accurate and computationally
feasible way. Both the classical INBC and the novel SGBC
can be used as sub-cell models of the thin panels, leading to
similar accuracies in the results, apart from concerns regarding
INBC stability, which have not appeared in the simple test
cases presented here.

Three different scenarios have been chosen to assess the
validity of the method: a low-frequency one to predict the
DC ohmic resistance of thin strips, a broadband scenario to
predict the penetration of electromagnetic fields through lossy
shells, and a complex one to confirm its accuracy and assess

Fig. 11: Transfer functions for the current coupled to the cable
enclosure of the EV55 under HIRF conditions.

its robustness. In both cases, we conclude that the conformal
method overcomes the main drawback of the structured FDTD
method: the overestimation of electrical sizes. This has impact
on the correct estimation of ohmic losses for conduction
problems, the penetration through lossy materials, and the
shifting of the physical frequencies of resonance, in addition
to the appearance of numerical spurious artifacts.
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