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Abstract 

 
Hydrogels are used in biomedical applications thanks to their high-water content, 

porosity, and their ability to easily modify their properties (mechanical, chemical, 

microstructure, etc.). Hydrogels are the materials that most resemble the extracellular 

matrix of mammals. In recent years, magnetic hydrogels have become especially 

important. These are the result of combining magnetic nanoparticles with different 

hydrogel matrices. Among its properties, they have the ability to be remotely controlled 

modifying their physical properties, such as stability, stiffness and temperature 

(magnetic hyperthermia). Such unique characteristics make magnetic hydrogels very 

promising in biomedical applications such as, tissue engineering, drug delivery, 

biosensors, and cancer therapy. At this respect, this chapter focuses on the main 

biomedical applications of magnetic hydrogels and the most important discoveries on 

the subject. 
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1. Introduction 

Hydrogels are three-dimensional (3D) hydrophilic networks of flexible chains swollen 

by water or biological fluids. From the fundamental viewpoint, hydrogels are unique 

systems, which surprisingly combine a soft solid-like macroscopic appearance, with a 

highly porous microscopic structure. Because of this, provided the required 

biocompatibility, hydrogels recreate the extracellular matrix (ECM) of living tissues, 

more so than any other class of synthetic biomaterials. Thus, hydrogels find widespread 

applications in the biomedical field.1,2 

In the search of hydrogels with improved controllability, actuation and response 

properties, the development of intelligent hydrogels that respond to external stimuli 

such as temperature, pH, electric field, specific analytes and enzymes has received 

considerable attention in the last two decades.3 An important category of stimuli-

responsive hydrogels are magnetic hydrogels or ferrogel4 (i.e., the combination of 

hydrogels with magnetic micro- and/or nanoparticles) that are able to respond to an 

external magnetic field, modifying their properties (microstructure, mechanical 

behaviour). This quality makes these materials unique since their mechanical properties 

can be controlled remotely. 



Ferrogels are of particular interest for many applications in biomedicine, such as drug 

delivery, artificial muscles and tissue engineering. In fact, ferrogels present some 

interesting characteristics as compared with nonmagnetic hydrogels:  

i. It is possible to act at a distance on ferromagnetic materials, including ferrogels, 

by means of applied magnetic fields. Furthermore, the human tissues are 

permeable to the usual magnetic fields, which are in addition innocuous for 

human body functions and tissues, at least for the stationary or extremely low 

frequency fields reported for applications of these materials.
5 

As a consequence, 

ferrogels can be manipulated and guided inside the human body by noncontact 

magnetic forces externally applied.  

ii. The ferromagnetic character of hydrogels allows visualization and in-vivo 

follow-up by magnetic resonance imaging.
6
 

iii. The mechanical properties of ferrogels can be modified in a controllable manner 

up to several orders of magnitude by means of magnetic fields.
7-9

 

 

The properties of magnetic hydrogels rely on several factors, including the type of 

gelator and magnetic particle (MP) used, the gelator and MP concentration, and the size 

and distribution of the MPs within the hydrogels. Moreover, MPs are solid substrates 

that allow coating and functionalization for different purposes. The nature of the coating 

shell can modulate the interactions between the nanoparticles and the polymer filaments 

that form the gels, having a direct impact on the properties of the hydrogels.
10 

Furthermore, MP with the appropriate surface chemistry can conjugate drugs, proteins, 

enzymes, antibodies, or nucleotides to be used for numerous applications. 

 Various methods have been developed to fabricate magnetic hydrogels: (Figure 17.1).  

i. The simplest one is the immersion of a nonmagnetic hydrogel in a magnetic 

suspension, waiting for the absorption of the magnetic particles on the polymer 

network (Figure 17.1a).
11

 The main drawback of this approach is that the 

magnetic particles can be desorbed rather easily, as the solvent is drained out or 

diluted.  

ii. Another approach is the in situ synthesis of the magnetic particles inside the 

hydrogel (Figure 17.1b).
12

 The main hindrance of this approach is to provide a 

biocompatible coating to the magnetic particles under the synthetic conditions, 

to render a ferrogel with the required biocompatibility for biomedical 

applications. In addition, it could be difficult to eliminate from the ferrogel the 

toxic chemicals originating during the synthesis. Therefore, this method does not 

seem appropriate for applications in which biocompatibility is required.  

iii. A third approach consists of mixing the particles with hydrogel monomers prior 

to polymerization (Figure 1c).
13-15

 This approach presents several advantages. 

For example, the particles can be properly functionalized before mixing with the 

hydrogel monomers, to provide them with biocompatibility, to charge them with 

a drug, cell or growth factors, and/or to serve as additional points of cross-



linking for the polymer chains. In particular, this could even give rise to 

hydrogels in which the cross-linking is provided only by the particles.
16,17

 Note 

that by bounding the particles to the polymer network, the problems of particle 

losses during manipulation, drying or swelling of the hydrogels are prevented. 

Alternatively, the particles can be simply encapsulated within the polymer 

network if they are not properly functionalized to interact with the monomers.
18

 

Another advantage of mixing the particles with the monomers prior to 

polymerization is to get a microstructural ordering by alignment the particles 

and the polymer fibers by application of an external magnetic field.
13,19

 

 

 
 

Figure 17.1. Different strategies for the preparation of magnetic hydrogels. (a) Blending 

method: a nonmagnetic hydrogel is immersed in a magnetic suspension, absorbing the 

magnetic particles during swelling.
18

 (b) In situ precipitation method: magnetic particles are 

synthesized inside a nonmagnetic hydrogel.
20

 (c) Grafting-onto method: cross-linking of 

polymers precursors is performed in the presence of magnetic particles, which may result just 

in the encapsulation of the particles or their cross-linking with the polymer fibers.
21

 
 

As a consequence of the above-mentioned advantages of magnetic hydrogels over 

nonmagnetic ones in biomedical applications, much effort has been devoted in the last 

few years to the design, construction, characterization and application of these soft 

magnetic materials. (Figure 17.2) 



 
 

Figure 17.2. Number of documents related with magnetic hydrogels and their biomedical 

applications published (a) per year; (b) per country in 2019. Database: SCOPUS. 
 

However, despite progress, understanding how to control cellular organization and 

vascularization precisely in complex tissue constructs is still in a preliminary state. 

Furthermore, all examples reported in the literature of magnetic hydrogels for 

biomedical applications are mainly based on polymers gelators where long-chain 

polymer molecules (such as collagen, alginate, chitosan, etc.) form the network required 

for gelation, through either covalent or non-covalent crosslinking. These molecules tend 

to form relatively robust networks (particularly those with covalent crosslinking), but as 

a consequence, they are usually unresponsive to stimuli. Therefore, novel magnetic 

hydrogels able to modify, in a major degree, or modulate reversibly their mechanical 

properties are needed. 

 

2. Drug Delivery Applications 

Dose amount and posology are key factors to know for the correct treatment and control 

of an illness. Equally important is controlling the rate of diffusion and the effective drug 

concentration at the site of action. Many drugs use delayed-release kinetics to control 

their administration within the therapeutic window, but controlling the effective dose 

over long periods is complicated. Other drugs are insoluble in water or have short half-

lifes. The inability to accurately control these factors can lead to toxic effects due to an 

inadequate drug administration, limiting the therapeutic uses of some drugs.
22 

The increasingly frequent use of hydrogels as drug delivery vehicles is explained by 

their biocompatibility and the ability to modify their physical and chemical properties 

easily.
23

 Hydrogels can be made from natural or synthetic polymers, such as, 

polysaccharides, proteins, peptides, surfactants, etc. Additionally, hydrogels can be 

made with different pore sizes and mesh sizes, and the connection between polymer 

chains can be made through covalent (chemical crosslinking) or noncovalent 

interactions (physical crosslinking). All these factors modify the way and the rate at 

which a drug can be released from inside them. Moreover, hydrogels can allow the 
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administration of several drugs simultaneously, create hydrophobic or hydrophilic 

environments (particularly attractive for biopharmaceuticals drugs), add nanoparticles, 

combine them with other materials and a wider variety of other options.
24,25

 

In recent years, the use of magnetic nanoparticles embedded in a polymeric network has 

been proposed as a possible drug delivery vehicle. Magnetic nanoparticles have high 

interest due to their clinical applications. Thanks to their unique physical characteristics 

and their ability to act at the cellular level, they are being used in hyperthermia, in 

magnetic resonance imaging, acting as contrast agents, as a vehicle for the distribution 

of drugs and the detection and diagnosis of diseases, specially cancer.
26

 

One of the advantages of these magnetic scaffolds is that they can control the 

distribution of drugs using an external magnetic field, and can simulate more 

realistically the physiological needs of bioactive agents. For example, Zhao et al., have 

developed a magnetic alginate scaffold capable of modifying its dimensions and shape 

by the application of an external magnetic field., allowing the release of biological 

agents on demand.
27

 

Combining the design and composition of the magnetic hydrogel with different 

magnetic stimuli allows the tuning of the drug release profile. An example of a 

magnetic hydrogel is the one reported by Chen et al., combining polyvinyl alcohol with 

Fe3O4 magnetic nanoparticles (MNP). When this hydrogel is subjected to an 

intermittent on and off magnetic field, a decrease in the porosity of the hydrogel is 

observed when the field is activated, reducing the release of the drug.
28

 In another 

example, Cezar et al., designed a biphasic alginate gel with superparamagnetic iron 

oxide nanoparticles inside, which by applying a static magnetic field, it was possible to 

release the drug more effectively in the site on the action.
29

 

 

Remotely controlling the frequency and intensity of the applied magnetic field improves 

the delivery capacity of the drug, especially important in cancer treatment, reducing the 

side effects that it causes. This is the basis for the work of Kennedy et al., where the 

same biphasic alginate gels were used to insert the drug mitoxantrone and study the 

melanoma cells survival in two different ways: by continuous drug delivery or by 

intermittent delivery, controlling both processes by magnetic stimulation.
30

 

 

2.1. Hyperthermia 

One of the advantages of the inclusion of magnetic particles whithin the hydrogels is the 

potential application in hyperthermia treatments. Due to superparamagnetism shown by 

magnetic nanoparticles (MNP), a heat generation appears in response to alternating 

magnetic fields. This charactheristic of MNPs, combined with the controlled release of 

antitumor drugs from hydrogels, makes magnetic hydrogels promising materials for 

hyperthermia cancer therapy.
31

 



An example of this approach can be found in a recent work by Wu et al., where they 

designed an injectable magnetic hydrogel using Fe3O4 nanoparticles with a 

polyethylenglycol (PEG) and α-cyclodextrin layer. These particles first generated 42 ºC 

of heat to the tumor and then produced hydroxyl radicals which enhanced the tumor 

oxidative stress levels.
32

 

Other example of the combined application of hyperthermia and drug delivery is 

provided in a recent work by Zhang et al., where they described the fabrication of 

injectable magnetic hydrogels composed of poly(organophosphazene) polymers, 

positively charged tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and 

hydrophobic superparamagnetic iron oxide nanoparticles.
33

 It was observed a significant 

in vivo tumor reduction when hyperthermia and TRAIL release was combined, without 

damage to other organs. Moreover, thanks to the presence of magnetic particles, the 

process was monitored by magnetic resonance imaging. 

Similarly, magnetic hydrogels formed by doxorubicin, ferumoxytol and medical 

chitosan were produced by Chen et al. with promising applications in hyperthermia and 

tumor synergistic treatment.
34

 This work shows the simultaneous transport and release 

of different drugs, as they combine different anticancer agents in a multidrug delivery 

complex formulation. 

 

2.2. Drug Delivery Patents  

Some patents relate to the use of magnetic hydrogels in drug delivery applications. 

 Invention EP2533759 A2 refers to the use of magnetic polyvinyl alcohol (PVA) 

hydrogels as magnetically sensitive drug carriers for treatment or targeted 

delivery.
35

 In this context, magnetically sensitive means that the compositions of 

the invention experience a change in motion or a change in velocity when 

exposed to a magnetic field. In this way, the therapeutic agents can target the 

specific organs and tissues intended for the release of the drug and exercise its 

function. 

 

 Invention CN105561320 A describes the use of magnetic chitosan hydrogels for 

cancer treatment.
36

 It is reported that the magnetic hydrogel permits a controlled 

release of anticancer drugs (e.g., doxorubicin) by application of external 

magnetic fields. This, in combination with the use of surface bound tumor 

necrosis factors, allows obtaining negligible side effects, according to in vivo 

experiments with mice that demonstrate inhibition of cancer cell growth.  

 

 Invention CN102727445 A relates to magnetic alginate and chitosan hydrogel 

beads loaded in this case with matrine as a drug to be administered orally for the 

treatment of gastrointestinal cancers.
37

 These beads present dual sensitivity to 

both pH and magnetic field. Firstly, by its sensitivity to the pH the rate of release 

of the matrine will depend mainly on the digestive tract site. Secondly, the 

magnetic character of the beads can be used to guide them and achieve targeted 



drug delivery characteristic, reducing adverse drug reactions and side effects. As 

a consequence, and according to the invention, these beads effectively enhance 

the clinical outcomes and reduce the adverse side effects of the matrine, 

improving the patient medication compliance.  

 

 A similar invention is reported in patent
 
US2012179031 A1, where magnetic 

pills based on magnetic alginate hydrogel spheres containing a therapeutic agent 

are proposed for localized drug delivery within the gastrointestinal tract.
38

 These 

magnetic pills can be guided by external fields to the desired localization where 

the water-soluble capsule is dissolved releasing the drug. Some oher patents also 

relate to the use of magnetic hydrogels for drug delivery applications.
39,40

 

 

3. Tissue Engineering Applications 

Tissue engineering is a multidisciplinar field of knowledge in which engineering and 

life sciences joint forces for the development of de novo tissues subtitutes to repair or 

reconstruct tissues and organs through the combination of suitable scaffolds, supporting 

cells and bioactive molecules.
41

 While tissue engineering has currently succeeded in 

fabricating thin or avascular tissues, it still remains a challenge the development of 

complex functional organs.
42

 Due to their adequate properties, such as biocompatibility, 

high water content, softness and flexibility, hydrogels are ideal materials in tissue 

engineering.
1
 Among them, magnetic hydrogels are considered smart materials which 

can be remotely controlled via external magnetic fields, providing a tunable 3D scaffold 

for the growth, migration and differentiation of cells. Moreover, the presence of 

magnetic particles in the hydrogel, provides more advantages as long as they can be 

assembled in order, to form complex constructs, and can be functionalized with growth 

factors or other biological agents, to promote cell adhesion and proliferation. 

 

3.1. Scaffolds 

Designing the substrate (scaffold) onto which new tissue may grow has become a 

critical part of the development process of tissue engineering. Some of the most 

important features of scaffolds are a suitable porosity, for the migration of cells and the 

removal of waste, and an active contrability of cell growth. These critical factors can be 

potentially achieved using magnetic hydrogels.  

For example, Bonhome-Espinosa et al., have shown that fibrin hydrogels greatly 

modify their internal structure even for a minimal amount of magnetic nanoparticles, as 

they become attaching nodes for fibrin fibers. The changes in the fibrin assembly give 

rise to a more porous and robust hydrogel in comparison with the non-magnetic one.
10

 

Furthermore, external magnetic fields can be applied to magnetic hydrogels in order to 

control the assembly and the microstructure, creating complex tissue contructs
43 

and to 



organize engineered cell tissues.
44

 Likewise, the application of cyclic magnetic fields 

results in mechanical stresses that mimic the biological behaviour of some tissues.
45

 

In this sense, Lopez-Lopez et al., have recently generated artificial magnetic tissues 

prepared by cell culture in magnetic hydrogels, with mechanical properties that can be 

reversibly tuned by noncontact magnetic forces.
13,19

 Within the same field, the same 

authors have succeeded in the generation of biocompatible core-shell magnetic 

nanocomposites to use as magnetic phase in the preparation of magnetic hydrogels. 

They have demonstrated that the core–shell architecture is doubly advantageous, 

allowing a reduction of gravitational settling in water media and an enhancement of the 

magnetic response, which are key factors to get control on the microstructure of the 

resulting magnetic hydrogels. Furthermore, they have demonstrated excellent 

biocompatibility of the core-shell nanocomposites ex vivo and in vivo.
14

 In addition, 

they have reached significant progress in the theoretical modelling of the mechanical 

properties of these complex systems.
46-48

  

Further, recent studies indicate that when magnetic scaffolds are used in tissue 

engineering, the presence of MNP (i.e., approx. diameter 50-100 nm) stimulates 

adhesion, proliferation, and differentiation of cells in vitro, and even bone formation in 

vivo.
49-52

 Recently, a method for promoting osteogenesis using MNP and eletromagnetic 

fields has been patented.
53

 It has also been demonstrated the combinatory effects of a 

static magnetic field with the use of scaffolds containing MNP on bone 

regeneration.
54,55

 

The functionalization of magnetic particles with biological agents has turned out to be 

an excellent vehicle for achieving better cell growth. The coating of magnetic particles 

with certain compounds such as PVA or PEG, enhances the hydrogel biocompatibility, 

biodegradability and mechanical properties.
14,56,57

 Concerning the cell adhesion, the 

attachment of Arg-Gly-Asp (RGD) to the particles surface is a widely used way of 

improvement, as the RGD integrins of cells plays an important role in their adhesion 

into the scaffolds.
58

 Similarly, the addition of well-known inorganic substances present 

in natural tissues leads to important enhancements. For example, hydroxyapatite in 

bones plays a key role in biomineralization, biocompatibility and osteo-

conductivity.
59,60 

For instance, it has been recently shown that magnetic nanoparticles 

conjugated with nerve growth factor significantly promote neurite outgrowth increasing 

the complexity of neuronal branching trees.
61 

Another reported advantage of magnetic scaffolds is that subjecting them to time-

varying magnetic fields generate stresses at the microscopic level to the tissue forming 

cells, which is of special interest for the growth of mechano-responsive tissues.
45,62

 

 

3.2. Anisotropic hydrogels 

Most hydrogels are synthesized by the polimerization or self-assembly of molecular 

components homogeneously distributed in aqueous media. Therefore, the resulting 



polymeric networks are conventionally isotropic. However, many of the biological 

systems comprise a well-defined hierarchical structure anisotropically oriented up to the 

macroscopic lenght scale. This is the case of muscle tissues,
63,64

 skin
65,66

 and articular 

cartilage.
67,68

 Anisotropy plays an essential role in processes such as the transport of 

matter, surface lubrication and the transmission of forces or the adaptive response to 

external stresses. A representative example is muscle contraction resulting from the 

anisotropic disposition of actin and myosin in the muscle sarcomere.
63,64

 Likewise, the 

existence of non-isotropic structures in the culture media performs a great influence on 

the proliferation, migration and differentiation of cells.
69-72

 

Taking these aspects into account, anisotropic hydrogels represent an excellent way to 

explore the biomimetic applications of anisotropic constructs, since they can be media 

that accurately reproduce the ECM. Therefore, they can promote tissue generation ex 

vivo and in vivo in a more efficient way.
69

 

However, despite their attractiveness for tissue engineering applications, they are not 

easy materials to obtain if there is a biocompatibility requirement. There are different 

procedures to obtain anisotropic hydrogels. Most of them involve the use of different 

directional stimuli such as: external forces (compression or mechanical shear, magnetic 

or electrical forces), gradients of temperature or ionic concentration.
73

 

In order to synthesize hydrogels with oriented polymer chains, a unidirectional stimulus 

is required. The most common method to achieve this involves mechanical gel 

deformation,
74

 although other methods that require nanoparticles have been 

described.
13,75

 

Magnetic fields can also be applied to produce anisotropic hydrogels by aligning the 

MNP embedded in the hydrogel. Magnetic fields can be remotely (without contact with 

the sample) and non-destructively applied. Furthermore, they can homogeneously 

penetrate the entire volume of the sample. Therefore, magnetic orientation is easily 

applicable to the synthesis of large-scale anisotropic hydrogels with considerable 

thickness or large dimensions. 

Recently, Contreras-Montoya et al., have prepared anisotropic magnetic hydrogels 

based on the supramolecular self-association of small peptides in the presence of 

MNP.
76

 Optical images revealed the formation of MNP aggregates arranged in columns 

parallel to the applied magnetic field. These hydrogels present an anisotropic stiffness 

that is modulated by the orientation of the MNP. The same group have also generated 

anisotropic magnetic hydrogels based on fibrin and alginate, with elastic moduli more 

than an order of magnitude greater than those of non-magnetic hydrogels.
77,78

 Results 

have shown that the presence of functionalized MNP does not compromise the ex vivo 

and in vivo biocompatibility.
10,14,19

 

However, given the technical difficulty in obtaining these types of materials, especially 

through procedures that provide biocompatibility and scalability, the number of studies 

to date is very limited.  



3.3.  Tissue Engineering Patents  

Some patents relate to the use of ferrogels in tissue engineering applications.  

 Invention US20040147015 A1
45

 describes a method of growing artificial tissues for 

animal or human replacement, particularly but not exclusively mechano-responsive 

tissues such as bone, cartilage, ligament and tendons, by using magnetic scaffolds or 

hydrogels. In this invention, the magnetic particles of the hydrogel are embedded in 

the scaffolds in order to subject the growing tissue forming cells to mechanical 

stresses during their culture. For this aim the growing tissues are subjected to time-

varying magnetic fields that provoke the movement of the magnetic particles and 

consequently generate stresses to the tissue forming cells.  
 

 Invention US2012214217 A1
44

 refers to a method for 3D manipulation of cells, and 

for the formation of an organized engineered cell tissue. For this aim, magnetically 

labeled cells were mixed with a cross-linkable hydrogel to form a cell-hydrogel 

mixture. Then, an external magnetic field was applied in order to arrange the 

magnetically labeled cells, and the hydrogel was eventually cross-linked to form the 

organized engineered cell tissue. According to inventors, this method allows the 

production of organized tissues in situ with specific cellular organization that mimic 

the native tissue, and it is indicated for many types of tissues, including bone, 

cartilage, tendons, ligaments and skin.  
 

 Invention KR20160031683 A
79

 relates to the preparation of scaffolds made of 

magnetic nanofibers produced by electrospinning of solutions of mixtures of 

polymer and magnetic nanoparticles. The field of application of scaffolds of this 

invention is bone regeneration by tissue engineering. Advantages of this magnetic 

nanofiber scaffold stand on the enhancement of mechanical properties as a 

consequence of the presence of the magnetic nanoparticles, at the same time that the 

biocompatibility is preserved.  
 

 Invention CN104841020 A
80

 discloses the preparation of supramolecular 3D 

ordered structures with embedded magnetic particles, to be used as 3D scaffolds for 

tissue engineering. The 3D ordered structure is controllable as the application of a 

magnetic field allows an accurate positioning and fixation of the magnetic particles. 

Furthermore, it is possible the introduction of specific growth factors at specific 

sites within the ordered structure.  
 

 In relation to regenerative medicine, invention JP2007185107 A
81

 reports the use of 

magnetic hydrogel thin films as repair material of lesions. Magnetic hydrogel thin 

films can be moved and fixed by magnetic forces. 

 

4. Injectable Hydrogels  

Injectable hydrogels are becoming increasingly important in biomedicine. The interest 

stands on the fact that injectability is one of the main requirements for minimally 

invasive procedures, particularly in tissue engineering and drug delivery applications. A 

principal advantage of such systems is ease of application using a syringe. Two main 



alternatives coexist for the delivery of the product by a syringe: (i) in situ gelling 

hydrogels, (ii) shear-thinning (thixotropic) hydrogels.  

The first approach relies on the gelation post-injection of a liquid-like mixture that 

includes the gel precursors. This can take place in response to a stimulus, such as 

temperature, pH, ionic strength, a specific molecular recognition event, or a change in 

solvent composition.
82-86

 

In the case of shear-thinning hydrogels the strategy involves the formation of a solid 

hydrogel with the desired mechanical, morphological, and biological properties in vitro 

that can flow like a low viscous material under stress due to its shear-thinning property. 

After injection, the hydrogel should experience a fast recovery of the elastic modulus 

(self-healing). Protein- and peptide-based hydrogels, hydrogels from blends, colloidal 

systems, hydrogels based on cyclodextrins and block copolymers, and decellularized 

extracellular matrix-based hydrogels generally show shear-thinning behavior.
87

 Those 

derived from amino acids or peptides are of special importance due to their inherent 

biocompatibility and biodegradability. Unfortunately, in spite of the clear advantages of 

shear-thinning hydrogels, they are typically less robust under physiological conditions 

than chemically cross-linked systems. 

For example, Shi et al. recently created a magnetic hydrogel formed by bisphosphonate 

(BP)-modified hyaluronic acid (i.e., HA–BP) cross-linked by BP groups and the surface 

of iron oxide nanoparticles. The iron-BP link leads to self-healing injectable magnetic 

hydrogels which heats under cyclic magnetic fields, finding thus promising anticancer 

treatment applications.
88

 

Nevertheless, despite the efforts devoted to the improvement of injectable hydrogels, 

the development of robust, injectable magnetic hydrogels is an on-going challenge. 

Furthermore, the generation of novel magnetic hydrogels with injectable behaviour for 

biomedical applications still remains an almost virgin field of research. The generation 

of this kind of hydrogels would allow the combination of all the characteristics 

mentioned above for magnetic hydrogels with those of injectable hydrogels. 

4.1.  Injectable Magnetic Hydrogels Patents 

Some patents relate to the use of injectable magnetic hydrogels applications. 

 Invention WO 2019/040224 Al
89

 relates the preparation of injectable hydrogels to 

create 3D printed structures with high cell viability to their use in tissue engineering 

as tissue constructs with complex shapes (femur, ear, skull…). They fabricate 

hydrogels by creating microgels crosslinked with a first agent, which optionally 

contains cells dispersed. Then, these microgels are 3D printed and droplets are 

capable of being crosslinked with a second different agent into a bulk hydrogel, 

forming a complex 3D printed biological structure. They also explore a magnetic 

assembly approach as a robust and facile method to assemble magnetic beads into 

tube shapes. 



 

 Invention WO 2017/087754 A2
90

 presents an injectable magnetic hydrogel that, in 

contact with the tissue and under an electromechanical signal, applies cyclic 

mechanical compressions to the damaged tissue promoting its regeneration. This 

method reduces inflammation and fibrosis of the tissue, while increasing the level of 

oxygen available, the metabolic waste removal and the blood perfusion to a tissue 

(for example, muscle). 

 

 Similarly, invention CN110591126 A
91

 presents a preparation method of injectable 

magnetic hydrogels formed by a gelatin-ferric oxide particles solution in water 

crosslinked by glutamine transaminase. These magnetic hydrogels can be implanted 

through an injection needle and relieve muscle atrophy and muscle fibrosis by the 

application of regular magnetic fields to the injection position. 

 

 In relation to drug delivery, invention US 2019/0298852 A1
92

 reports a magnetic 

glycol chitosan–based hydrogel which exhibits self-healing behaviour under 

physiological conditions. The delivery rate of the carried substance can be regulated 

by the application of magnetic fields. Thus, these hydrogels can be used as delivery 

vehicles for a physiologically active substance such as a therapeutic agent. 

 

 

 The invention described in US 9,675,561 B2, AU 2019201669 A1 and EP 3 417 876 

A1
93-95

 provides macroporous ferrogels based on dramatically deformable and 

compressed elastic alginate hydrogels which results in injectable sensitive scaffolds. 

The loaded ferrogels with biological agents lead to triggering release of drugs and 

cells in a controlled way under the application of magnetic fields. It is easily 

administered with subcutaneous injection and greatly increases the efficacy of 

vaccine therapy for many cancer types, such as melanoma and breast cancer. In 

other provided examples, the hydrogel comprises a cell adhesion composition 

chemically linked (covalently attached) to the polymer, such as an RGD amino acid 

sequence. Therefore, the invention features an injectable macroscopic scaffold 

comprising a high density of open interconnected pores, wherein the hydrogel is 

characterized by shape memory following deformation by compression or 

dehydration for minimally invasive administration. 

 

 Another biomedical application is provided by invention CN109364018 A.
96

 This 

injectable magnetic hydrogel is liquid at room temperature, it is crosslinked after 

injection at body temperature and can be stable at hyperthermia temperatures (42 ºC 

– 45 ºC). The obtained magnetic hydrogel can heat up under the application of an 

alternating magnetic field to reach the hyperthermia temperature. 

 

5. Biosensors and Biomarkers 

Another reported application of magnetic hydrogels is their use as biosensors and 



biomarkers. Biosensors are an accurate, fast, highly sensitive diagnostic method and 

allow real-time monitoring, which specifically improves the detection and diagnosis of 

diseases, especially used in the detection of cancer biomarkers.
97

 

The magnetic hydrogel as a diagnostic element constitutes a versatile and profitable 

platform and can be used for different applications in the field of diagnosis.
98

 

The use of magnetic hydrogels to create biosensors that respond to external stimuli is 

increasingly used. This hydrogel must have great stability and hardness and be able to 

adequately detect the component of interest and translate this interaction into a 

quantifiable signal.
99

 

In addition to the hydrogel microstructure, the MNP used plays a crucial role in a 

biosensor, since the changes in the response of the interaction will depend on them.
100

 

In this sense, Wang et al., combined the enzyme-like activity of Fe3O4 and the 

temperature-sensitive properties of poly(N-isopropylacrylamide) to create magnetic 

microgels in order to develop a nonenzymatic switchable bioelectrocatalysis sensor.
101 

Moreover, Kurlyandskaya et al., have developed a magnetoimpedance biosensor 

prototype to detect acrylamide, based on ferrogels including γ-Fe2O3 magnetic 

nanoparticles.
102

 Similarly, the same research group has recently developed a series of 

magnetic hydrogels for their use in biosensor applications; such as polyacrylamide 

hydrogels with maghemite Fe2O3 as magnetic phase,
103

 and polyacrylamide ferrogels 

with micron sized magnetic particles of magnetite and strontium hexaferrite.
104

 

5.1.  Biosensors and Biomarkers Patents 

Some patents relate to the use of magnetic hydrogels as biosensors and biomarkers. 

 Within this field of application, invention KR20100070095 A
105

 relates the 

preparation of a hydrogel with encapsulated magnetic nanoparticles with a 

biomarker fixed in their surface. Application as a biosensor, drug delivery system 

and contrast agent are also mentioned in this invention. According to this invention, 

by encapsulating the biocompatible biomarkers fixed on the surface of magnetic 

nanoparticles, degeneration and leakage of the biomarkers are prevented, as well as 

it is possible to vary the rate of reaction of the biomarker.  

 

 In the invention US2013245402 A1,
106

 the magnetic particles within the pH-

sensitive poly (methacrylic acid-co-acrylamide) hydrogel were arranged in such a 

way so that magnetic properties of the hydrogel were altered by changes of 

thickness or volume of the hydrogel. These changes resulted in response to a 

variation in a condition, such as moisture, pH or presence of glucose, so that these 

changes can be detected.  

 

 

 In an invention of Kimberly-Clark Corporation (CA 2121514 A1) the use of 

magnetic hydrogels as disposable absorbent products of body liquids is presented.
107

 

The method uses a magnetic field to collect the magnetic hydrogels after absorption. 



The absorbent compositions of the invention are suited to absorb many biological 

liquids, such as water, saline, urine, menses, and blood. Applications in products 

such as diapers, adult incontinent products, bed pads, napkins and tampons are 

mentioned. 

 

 Magnetic hydrogels have also been proposed for biodegradable stents. For example, 

invention CN102371006A
108 

refers to a magnetic biodegradable stent consisting of a 

dispersion of magnetic nanoparticles within a polymeric network. According to 

inventors, this magnetic stent can be expanded by the warning heat produced by the 

magnetic nanoparticles under an external alternating magnetic field. Then, once the 

stent has experienced thermoplastic deformation it can be fixed by a rack until it 

cools down. It is reported that this approach can effectively reduce retraction and 

collapse of the stent, which led to a restenosis problem.  

 

 In invention RU2232002 C1
109

 magnetic hydrogels formed by polyacrylates, vinyl 

polymers, polyorganosiloxanes, collagen copolymer or silicon rubber, are proposed 

as ophthalmic implants for the use in the treatment of various types of eye diseases. 

A distinctive characteristic of this invention is that dispersed magnetic powder is a 

permanent rare earth magnet material (samarium-cobalt or neodymium-iron-boron), 

and, as such, the proposed implants should also be permanent magnets. 

 

 

6. Closing Remarks 

 

As we have discussed in this chapter, magnetic hydrogels have great potential in 

biomedical applications such as drug delivery, tissue engineering, injectability, and 

as biosensors. Thanks to the ability of ferrogels to modify their internal 

microstructure by the application of an external magnetic stimulus, specific 

functions and properties can be obtained, such as achieving anisotropy in a tissue, 

pulsatile release of drugs, hyperthermia and even detecting a specific substance. 

 

Concerning the applications of ferrogels, we have commented the most relevant 

bibliography, including articles and patents, classified into biomedical and 

pharmaceutical applications. This bibliography includes applications as scaffolds for 

tissue engineering purposes, ordered structures and thin films as repair materials in 

surgeries, medical stents, ophthalmological implants, artificial muscles, magnetic 

catheter, systems (particularly pills) for targeted drug delivery, biomarkers and 

biosensors and disposable absorbent products of body liquids. For most of these 

applications biocompatibility of the particles is a requirement. All these applications 

benefit from the magnetic character of ferrogels, which allows actuation and control 

at a distance by noncontact magnetic forces. In addition, the large surface-to-volume 

relation of nanoparticles makes possible effective functionalization of the particles 

for an enhanced application. 

 



For the near future, advances concerning core properties and functionalization of the 

particles are expected. In particular, new particle shapes, such as fiber-like or plate-

like, should confer enhanced properties to the ferrogels. Furthermore, combination 

of magnetic and nonmagnetic synthetic materials within the hydrogels would also 

make possible the preparation of new ferrogels with novel properties. In addition, 

the applications of ferrogels should expand in a parallel way to the expansion of the 

applications of hydrogels and magnetic nanoparticles. In fact, the inclusion of 

magnetic particles within hydrogels not only can enhance the properties of the 

hydrogels, but also of the particles, by combination of the characteristics of both  

materials. 
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