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Abstract This paper introduces small area estimators of some poverty in-
dexes, with special attention to the poverty rate or Head Count Index. The
estimators are assisted by nested error regression models and they are model-
assisted counterparts of model-based empirical best predictors. The paper
studies the sampling-design consistency and the asymptotic normality of the
introduced estimators. The results of simulation studies show that the new
estimators present a good balance between sampling bias and mean squared
error. We use data of the 2013 Spanish living conditions survey from the region
of Valencia to explore the performance of the new estimation methods of the
poverty rate.
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1 Introduction

The analysis of poverty and social exclusion measures is a topic of increased in-
terest to society. For governments is of high interest the estimation of poverty,
inequality and life condition indicators. The official poverty rate and the num-
ber of people in poverty are important measures of the country’s economic
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wellbeing. The media and the policy-making circles pay a lot of attention to
these sorts of statistics and important policy decisions may be influenced by
them.

The Laeken European Council in December 2001 endorsed a first set of 18
common statistical indicators for poverty and social inclusion, which will allow
monitoring in a comparable way the progress of Member States towards the
agreed European Union objectives. These indicators need to be considered as a
consistent whole reflecting a balanced representation of European Union social
concerns. They cover four important dimensions of social inclusion (financial
poverty, employment, health and education), which highlight the multidimen-
sionality of the phenomenon of social exclusion. The common characteristic
of these poverty measures is their complexity. They are nonlinear functions
of the observations that cannot be expressed as regular functions of totals
(that is, continuously differentiable up to the second order). Some relevant
poverty measures are based on a threshold defined in relation to the income
distribution. Among these, the at-risk-of-poverty rate, also known as the Head
Count Index, the relative mean at-risk-of-poverty gap, also known as Poverty
Gap and the persistent at risk-of-poverty rate are included among the primary
indicators.

The Head Count Index (HCI) gives a picture of the incidence of poverty
and can be calculated as the proportion of persons (or households) with an
equivalised disposable income below the 60% of the national median equiv-
alised income. The popularity of this indicator is mostly due to its ease of
construction and interpretation. Indeed, the HCI is widely used by institu-
tions to elaborate their reports on poverty. In the literature, numerous ref-
erences discuss about the HCI and related poverty indicators. For instance,
some references are Medeiros (2006), Crettaz and Suter (2013) and Navicke et
al. (2014).

The HCI and other poverty indicators at national and regional level are
estimated from complex surveys with many thousands of observations, con-
ducted in a harmonized manner over many countries. Usually the method
for estimating this index is by using direct estimators. Such estimators de-
pend only on the sample data and are usually obtained by applying standard
weighted design-based procedures without using auxiliary information.

Official surveys on income and living conditions generally contain addi-
tional variables related to the variable of interest. Such additional variables
can be used as auxiliary variables to improve the estimation of poverty indica-
tors by means of regression and calibration procedures (Lehtonen and Veija-
nen, 2016) and of pseudo empirical likelihood approaches (Rueda and Muñoz,
2011). Muñoz et al. (2015) propose alternative estimation methods for the
HCI by using the known ratio and regression techniques after transforming an
auxiliary variable related to the variable of interest into a dummy variable.

In the last years there was a worldwide increase in the demand for poverty
and living conditions estimates at the local level, since these quantities can
help in planning local policies aimed at decreasing poverty and social exclu-
sion. Surveys on income and living conditions are currently conducted in many
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countries, but their sample sizes are not large enough to obtain reliable esti-
mates at local level. The direct estimators are appropriate when the sample
size in the municipalities or counties is reasonably large but they could be
inaccurate when the sample size is small. The small area estimation (SAE)
theory deals with this kind of estimation settings. See the monographs of Rao
(2003) and Rao and Molina (2015) for an introduction to SAE.

The unit-level model-based approach is commonly used in SAE. The basic
SAE unit-level model is the nested error regression (NER) model. Battese et
al. (1988) applied this model to the prediction of United States county crop
areas using survey and satellite data. Since then, the empirical best linear
unbiased predictors (EBLUP) of domains means based on the NER model are
being widely applied.

The use of small area estimation methods for the analysis of poverty at the
local level has a great potentiality. Without beng exhaustive, we cite some re-
lated papers. Molina and Rao (2010) derive empirical best predictors (EBP) of
poverty incidences and gaps based on a NER model. Hobza and Morales (2016)
proposes EBPs of poverty incidences based on unit-level logit mixed models.
Tzavidis et al. (2008) and Marchetti et al. (2012) give M-quantile estimators
for poverty mapping. Marchetti and Secondi (2016) use small area methods for
obtaining reliable provincial estimates of household consumption expenditure
in Italy. Giusti et al. (2016) compute the mean household equivalised income
and the head count ratio for the Tuscany region in Italy. Tzavidis et al. (2015)
propose a semiparametric approach to model-based small area prediction for
estimating the average number of visits to physicians for Health Districts in
Central Italy.

Concerning area-level models, Esteban et al. (2012a, 2012b), Marhuenda et
al. (2013) and Morales et al. (2015) give EBLUPs of Spanish poverty propor-
tions based on temporal and spatio-temporal linear mixed models. Boubeta
et al. (2016, 2017) and López-Vizcáıno et al. (2013, 2015) introduce EBPs of
counts and proportions based on logit and Poisson area-level mixed models
with applications to Spanish data.

The model-based estimators, when the assumed model is correct, tend to
be better than other estimators. However, when the assumed model is incor-
rect, the model-based estimators are biased and they can do worse than even
the näıve estimators. Särndal et al. (1992) presented the model-assisted ap-
proach to inference in finite populations, where the superpopulation model
is not the basis of the inferences. The model-assisted methodology considers
the properties under the design-based distribution, but employs the model
to motivate the choice of estimators. Important examples of model-assisted
estimators are the generalized regression (GREG) estimator and the calibra-
tion estimator introduced by Deville and Särndal (1992). GREG estimation
was introduced for domain estimation in Särndal (1981, 1984), Hidiroglou and
Särndal (1985) and Särndal and Hidiroglou (1989) and were developed further
(including computational tools) in Estevao et al. (1995).

More recently, Lehtonen and Veijanen (2009, 2016) discussed GREG es-
timators of domain means and proportions and presented empirical studies
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based on simulation experiments. Calibration techniques are used in the con-
text of small area for Estevao and Särndal (2004), Chambers (2005) and Chan-
dra and Chambers (2005, 2009). The calibration and regression approaches
are built on different arguments. Both are sound in that they yield design-
consistent and very nearly design unbiased estimators of the parameter, but
they can differ considerably with respect to variance.

It is well-known that calibration, although apparently completely model
free, implicitly assumes that a linear regression model well describes the re-
lationship between the variable of interest and the auxiliary variables (see
e.g. discussion on this in Wu and Sitter, 2001, and in Montanari and Ranalli,
2005). In the case of poverty measures the variable of interest involves indica-
tor variables and this assumption doesn’t seem to be adequate. Lethonen and
Veijanen (2012) introduce model calibration methods for estimation of poverty
rate for small area. In this approach a logistic regression model is first fitted
to the sample and calibration weights are determined using this fitted values
instead of the original auxiliary variables. A comparison between generalized
regression and model-calibration estimation for domains is given in Lehto-
nen, Särndal and Veijanen (2008). A model-assisted approach is also used in
Fabrizi et al. (2014) which assume a linear M-quantile model at developing
design-consistent small area estimators.

This paper introduces a new GREG type estimator of small area HCIs
inspired by the Monte Carlo estimation procedure proposed by Molina and
Rao (2010). The new estimators are obtained by summing up model-based
predicted values and adjusting by design-based weighted sum of residuals.
Thus, the model and the sampling design are used in the definition of the
estimators.

The article is arranged as follows. Section 2 gives the notation and a brief
description of the direct estimation of poverty measures. Section 3 discusses
some aspects of the model-based small area estimation approach and presents
the EBP of a class of poverty measures under a NER superpopulation model.
Section 4 introduces the new model-assisted counterpart of the EBP, studies
the design-based properties of the proposed estimator and gives design-based
variance estimators. Sections 5 and 6 reports design-based and model-based
Monte Carlo simulation experiments to empirically investigate the behavior of
the new poverty estimator and of a jackknife variance estimator. The simula-
tion results are in agreement with theoretical findings of Section 4. Section 7
applies the model-assisted estimator of the HCI to a survey data set from the
Spanish living conditions survey. Section 8 gives some concluding remarks.

2 Direct estimators of poverty indicators

Let U be a population of size N partitioned into D domains or small areas
U1, . . . , UD of sizes N1, . . . , ND. Let zdj be a quantitative measure of welfare,
such as income or expenditure, for individual j in small area d. The poverty
line, κ, is commonly used by many statistical agencies to classify the population
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into poor and not poor. This is to say, an individual is considered as poor if
its income or expenditure is less than the poverty line. We assume that the
poverty line is established by the corresponding authority, i.e. κ is fixed at
some official quantity. In some national statistical agencies (as the Spanish
Statistical Office) the poverty threshold is set at 60% of the national median
equivalised disposable income.

Foster, Greer and Thorbecke (1984) introduced the class of FGT poverty
measures

δαd =
1

Nd

Nd∑

j=1

hα(zdj), hα(zdj) = (
κ− zdj

κ
)αI(zdj < κ), d = 1, . . . , D, (1)

where I(zdj < κ) = 1 if zdj < κ and I(zdj < κ) = 0 otherwise. For α = 0 we get
the proportion of individuals in small area d, pd = δ0d, with an equivalised dis-
posable income below the at-risk-at-poverty threshold. This measure is called
poverty incidence, poverty proportion, poverty risk or HCI. For α = 1 we have
the poverty gap measuring the relative average distance to the poverty line for
individuals of a given domain d. For α = 2 the FGT measure is called poverty
severity.

The poverty measures (1) belongs to the more general class of additive
parameters

δd =
1

Nd

Nd∑

j=1

h(ydj), ydj = T (zdj), d = 1, . . . , D, (2)

where T is a one-to-one increasing transformation of the income variable and
h is a known measurable function. The HCI can be written in the form

pd =
1

Nd

Nd∑

j=1

I(zdj < κ) =
1

Nd

Nd∑

j=1

I(ydj < T (κ)), d = 1, . . . , D. (3)

In practice, the poverty measure δαd is unknown and statistical agencies use
survey data for estimating it. In the inference process, a random sample s of
size n < N is drawn from the population according to a specified sampling
design π(s). Let s1, . . . , sD be the corresponding domain subsamples of sizes
n1, . . . , nD, where n = n1 + . . . + nD (note that nd = 0 if an area d is not
sampled.) The first and second-order inclusion probabilities are the probabil-
ities of obtaining the unit j and the units j and k of domain d, respectively,
while sampling from the population according to the sampling design. They
are πdj =

∑
j∈sd

π(s) and πdjk =
∑

j,k∈sd
π(s) respectively. A direct estimator

of δαd for a sampled domain is the unweighted sample mean

δαd =
1

nd

sd∑

j=1

hα(zdj),
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which uses only the sample data from the target small area. The estimator δαd
is biased. A design-unbiased estimator of δαd is the weighted sample mean

δ̂dirαd =
1

Nd

sd∑

j=1

π−1
dj hα(zdj).

3 Model-based estimators of poverty indicators

Consider a random vector y = (y1, ..., yN ) containing the values of a random
variable associated with the N units of a finite population. The model-based
approach assumes that y follows a superpopulation model that incorporates
the auxiliary information xdj = (xdj1, . . . , xdjp), j ∈ Ud, d = 1, . . . , D. By
using the column and mean operator, we define

y = col
1≤d≤D

(yd), yd = col
1≤j≤ND

(ydj), X = col
1≤d≤D

(Xd),

Xd = col
1≤j≤Nd

(xdj), β = col
1≤k≤p

(βk).

The NER superpopulation model is

ydj = xdjβ + ud + edj, d = 1, . . . , D, j = 1, . . . , Nd, (4)

where the random effects {ud} and the errors {edj} are mutually independent
with ud ∼ N(0, σ2

u) and edj ∼ N(0, σ2
e). Let us define ed = col

1≤j≤ND

(edj). Then,

the model (4) can be written as

yd = Xdβ + ud + ed, d = 1, . . . , D.

The vectors yd are independent with yd ∼ N(µd,V d), µd = Xdβ and V d =
σ2
u1Nd

1′
Nd

+ σ2
eINd

, where 1K = col
1≤j≤K

(1) and IK = diag
1≤j≤K

(1) are the 1-

column vector and the identity matrix of sizes K and K ×K respectively.
Let yds be the sub-vector of yd corresponding to sample elements and ydr

the sub-vector of yd corresponding to the out-of-sample elements. Without lack
of generality, we can write yd = col(yds,ydr) = (y′

ds,y
′
dr)

′, where r = U − s is
the set of indexes of the units that are not sampled (with size N − n). Define
also col(Xds,Xdr) and diag(V ds,V dr) as the corresponding decompositions
of Xd and V d. The sample vector yds follows the corresponding submodel of
(4), i.e.

ydj = xdjβ + ud + edj, d = 1, . . . , D, j = 1, . . . , nd, (5)

where we change N and Nd by the sample counterparts n and nd respec-
tively. When σ2

e > 0 and σ2
u > 0 are known, the best linear unbiased esti-

mator (BLUE) of β and the best linear unbiased predictor (BLUP) of ud,
d = 1, . . . , D, are

β̃ =
( D∑

d=1

X ′
dsV

−1
ds Xds

)−1 D∑

d=1

X ′
dsV

−1
ds yds, ũd = σ2

u1
′
nd
V −1

ds

(
yds −Xdsβ̃

)
.

(6)
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Replacing σ2
e and σ2

u by estimators σ̂2
e and σ̂2

u in (6), the empirical BLUE
(EBLUE) of β and the EBLUP of ud, d = 1, . . . , D, are

β̂ =
( D∑

d=1

X ′
dsV̂

−1

ds Xds

)−1 D∑

d=1

X ′
dsV̂

−1

ds yds, ûd = σ̂2
u1

′
nd
V̂

−1

ds

(
yds −Xdsβ̂

)
,

(7)

where V̂ d = σ̂2
u1nd

1′
nd

+ σ̂2
eInd

. The distribution of ydr, given the sample data
ys, is

ydr|ys ∼ ydr|yds ∼ N(µdr|s,V dr|s), (8)

where

µdr|s = Xdrβ + σ2
u1Nd−nd

1′
nd
V −1

ds (yds −Xdsβ),

V dr|s = σ2
u(1 − γd)1Nd−nd

1′
Nd−nd

+ σ2
eINd−nd

, γd =
ndσ

2
u

ndσ2
u + σ2

e

.

For any j ∈ rd = Ud − sd, the components of µdr|s and the diagonal elements
of V dr|s are

µdj|s =

{
xdjβ + γd(ȳds − x̄dsβ) if nd 6= 0,
xdjβ if nd = 0,

vd|s =

{
σ2
u(1− γd) + σ2

e if nd 6= 0,
σ2
u + σ2

e if nd = 0,

where ȳds = n−1
d

∑nd

j=1 ydj and x̄ds = n−1
d

∑nd

j=1 xdj.

If we assume that a one-to-one increasing transformation of the income
variable, ydj = T (zdj), follows the NER model (4), then the best predictor
(BP) of an additive parameter δd, defined in (2), is its expectation with respect
to the distribution (8) of the non sample data ydr, given the sample data ys,
i.e.

δ̂Bd = Ey
dr

[ 1

Nd

Nd∑

j=1

h(ydj)
∣∣ys

]
=

1

Nd

{ ∑

j∈sd

h(ydj) +
∑

j∈rd

Ey
dr

[
h(ydj)|ys

]}
.

The conditional distribution (8) depends on the vector θ = (β′, σ2
u, σ

2
e)

′ of
unknown model parameters, which must be estimated, that is,

Ey
dr
[h(ydj)|ys] = Ey

dr
[h(ydj)|ys; θ] .

Let θ̂ = (β̂
′
, σ̂2

u, σ̂
2
e)

′ be an estimator based on the sample data ys. The EBP
of δd, introduced by Molina and Rao (2010), is

δ̂ebd =
1

Nd

{ ∑

j∈sd

h(ydj) +
∑

j∈rd

Ey
dr

[
h(ydj)|ys; θ̂

]}
. (9)

Let µ̂dj|s = xdjβ̂ + γ̂d(ȳds − x̄dsβ̂), v̂d|s = σ̂2
u(1 − γ̂d) + σ̂2

e and γ̂d =
ndσ̂

2
u

ndσ̂2
u
+σ̂2

e

be the plug-in estimators of µ̂dj|s, v̂d|s and γ̂d respectively. The EBP of pd is

p̂ebd =
1

Nd

{ ∑

j∈sd

h(ydj) +
∑

j∈rd

p̂ebdj

}
=

1

Nd

{ ∑

j∈sd

I(ydj < T (κ)) +
∑

j∈rd

Φ(tdj)
}
,

(10)
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where tdj = v
−1/2
d|s (T (κ)−µdj|s), Φ(·) is the c.d.f. of a standard normal random

variable and

p̂ebdj = Ey
dr

[
I(ydj < T (κ))|ys; θ̂

]
=

Py
dr

(
ydj < T (κ)|ys; θ̂

)
= P

(
N(0, 1) < tdj

)
= Φ(tdj).

For a general function h, the expectation in (9) might be not tractable
analytically. When this occurs, Molina and Rao (2015) applies the following
Monte Carlo procedure.

(a) Estimate the unknown parameter θ = (β′, σ2
u, σ

2
e)

′ using sample data ys.

(b) Replacing θ = (β′, σ2
u, σ

2
e)

′ by the estimate θ̂ = (β̂
′
, σ̂2

u, σ̂
2
e)

′ obtained in
(a), draw L copies of each non-sample variable ydj as

y
(ℓ)
dj ∼ N(µ̂dj|s, v̂d|s), j ∈ rd, d = 1, . . . , D, ℓ = 1, . . . , L.

(c) The Monte Carlo approximation of the expected value is

Ey
dr

[
h(ydj)|ys; θ̂

]
≈

1

L

L∑

ℓ=1

h(y
(ℓ)
dj ), j ∈ rd, d = 1, . . . , D.

The Monte Carlo approximation of the EBP of δd is

δ̂ebd ≈
1

L

L∑

ℓ=1

δ
(ℓ)
d , δ

(ℓ)
d =

1

Nd


∑

j∈sd

h(ydj) +
∑

j∈rd

h(y
(ℓ)
dj )


 . (11)

Based on the logistic mixed model

I(ydj < T (κ)) ∼ Bin(1, pdj), logit(pdj) = xdjβ+ud, d = 1, . . . , D, j = 1, . . . , Nd,

where u1, . . . , ud are i.i.d. N(0, σ2
u), we may also consider the model-based

domain proportion estimator

p̂Ld =
1

Nd

{ ∑

j∈sd

I(ydj < T (κ)) +
∑

j∈rd

p̂Ldj

}
, p̂Ldj =

exp{xdjβ̂ + ûd}

1 + exp{xdjβ̂ + ûd}
, (12)

where β̂ and ûd are the ML estimator and predictor of β and ud respectively
obtained by applying the Laplace approximation algorithm. The estimator (12)
was applied by Hobza and Morales (2016) to estimate poverty proportions of
counties in the Spanish region of Valencia.
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4 Model-assisted estimation of poverty measures

The model-assisted Monte Carlo estimator of δd can be calculated by the steps
(a)-(c) given in Section 3. The model-assisted counterpart of δ̂ebd , defined in
(11), is the Monte Carlo estimator

δ̂ma
d ≈

1

L

L∑

ℓ=1

δ
ma(ℓ)
d , δ

ma(ℓ)
d =

1

Nd



∑

j∈Ud

h(y
(ℓ)
dj ) +

∑

j∈sd

π−1
dj

{
h(ydj)− h(y

(ℓ)
dj )

}

 .

(13)
As a counterpart of p̂ebd , defined in (10), the model assisted estimators of pd is

p̂ma
d =

1

Nd

( ∑

j∈Ud

Φ(tdj) +
∑

j∈sd

π−1
dj

{
I
(
ydj < T (κ)

)
− Φ(tdj)

})
. (14)

Following Lehtonen and Veijanen (1998), a model-assisted counterpart of p̂Ld ,
defined in (12), is

p̂LM
d =

1

Nd

( ∑

j∈Ud

p̂Ldj +
∑

j∈sd

π−1
dj

{
I
(
ydj < T (κ)

)
− p̂Ldj

})
. (15)

For studying the design-based properties of properties of the model-assisted es-
timator (13), we rely on the properties of the Horvitz-Thompson (HT) design-
unbiased estimator of a population mean Yd = N−1

d

∑
j∈Ud

ydj. Horvitz and
Thompson (1952) introduced the estimator

Ŷ
HT

d = N−1
d

∑

j∈sd

π−1
dj ydj.

The HT estimator is admissible within the class of all unbiased estimators,
but makes no use of auxiliary information. From this property, it follows that
the model assisted estimators (13)-(15) are also design-based unbiased.

Hájek, J. (1971) proposed the ratio estimator

Ŷ
dir

d =
1

N̂dir
d

∑

j∈sd

π−1
dj ydj, N̂dir

d =
∑

j∈sd

π−1
dj ,

and Särndal et al. (1992, p. 182) gave several reasons for regarding the Hájek
as usually better than the HT estimator. However, it is common to assume
that there exists some auxiliary variables (to be obtained from census re-
sults, administrative files, etc.) that can be essential for efficient estimation of
domain means. The model-assisted estimators (13) incorporate the auxiliary
information by using models and preserving good design-based properties.

For analyzing the design-based asymptotic behavior of estimator (13), we
introduce some notation and we consider some new hypothesis. Apart from
the mathematical interest, the asymptotic results of Theorem 4.1 might be
applicable to domains where the sample sizes are large. Although domain
sample sizes are generally small in the SAE framework, in many real data
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cases we can find some domains with large enough sample sizes. This is why,
the asymptotic theory still has some practical interest in SAE.

The study of the asymptotic design-based properties of small area esti-
mator has been previously considered in other works as Estevao and Särndal
(2004) or Fabrizi et al. (2014). These authors follow Isaki and Fuller (1982)
where the properties of estimators are established under a fixed sequence of
populations and a corresponding sequence of random sampling designs. We
also used this asymptotic framework. In particular, the finite population U
and the sampling design π(·) are embedded into a sequence of such popula-
tions and designs indexed by N , {UN , πN (·)}, with N → ∞. We will assume,
thus, that NN tend to infinity and that nN also tend to infinity when N → ∞.

Let θ̂ = (β̂, σ̂2
u, σ̂

2
e) be an estimator of the superpopulation parameters

θ = (β, σ2
u, σ

2
e), β ∈ Rp, σ2

u > 0, σ2
e > 0. Let θN = (βN , σ2

Nu, σ
2
Ne) be the

corresponding estimator of θ based on the data from the entire population.
For η = (γ, τu, τe), γ ∈ Rp, τu > 0, τe > 0, we define

mdj(η) = xdjγ+udN(η), σ2
dj(η) = τu

(
1−γd(η)

)
+τe, γd(η) = τu

(
τu+τe/nd

)−1
,

where

udN(η) = τu1
′
Nd

V −1
d (τu, τe) (yd −Xdγ) , V d(τu, τe) = τu1Nd

1′
Nd

+ τeINd
.

We also define

gdj(η) =

∫ +∞

−∞

h(y)fN(0,1)

(
(y −mdj(η))/σdj(η)

)
dy,

δma
d (η) =

1

Nd



∑

j∈Ud

gdj(η) +
∑

j∈sd

π−1
dj

(
h(ydj)− gdj(η)

)

 .

In order to prove our results, we make a set of technical assumptions re-
ported in the Appendix.
Theorem 4.1. Under Assumptions A1 to A8, the model-assisted estimator
δ̂ma
d is design-consistent for δd and has an asymptotic normal distribution with
asymptotic mean and variance

AEπ = δd =
1

Nd

Nd∑

j=1

h(ydj), AVπ(Ŷ
ma

d ) =
1

N2
d

∑

j∈Ud

∑

k∈Ud

∆djkπ
−1
dj π−1

dk ǫdjǫdk,

where ∆djk = πdjk − πdjπdk, ǫdj = h(ydj)− gdj(θ).

Proof.

We may write the the model-assisted estimator δ̂ma
d as

δ̂ma
d = δ̂ma

d (θ̂) =
1

Nd

( ∑

j∈sd

π−1
dj h(ydj)−

∑

j∈sd

π−1
dj gdj(θ̂)

)
+

1

Nd

∑

j∈Ud

gdj(θ̂).
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Under Assumptions A1-A8 and according to Theorem 1 in Wang and Op-
somer (2011), the sample estimator

∑
j∈sd

π−1
dj gdj(θ̂) is design consistent for∑

j∈Ud
gdj(θ) and asymptotically normally distributed. In the same way, the

sample estimator
∑

j∈sd
π−1
dj h(ydj) is design consistent for

∑
j∈Ud

h(ydj) and
asymptotically normally distributed under regularity conditions A3-A6 (see
Mukhopadhyay (2001), chapter 6). Therefore the asymptotic distribution of

δ̂ma
d follows. The asymptotic mean and variances of the estimator is thus ob-
tained from A6.

We can obtain estimators of the asymptotic variance of AVπ(δ̂
ma
d ) by using

the properties of HT estimators. Letting ǫ̂dj = h(ydj) − gdj(θ̂), we can define
the simple estimator of the variance based on the weighted residual variance
estimator

V̂
(
δ̂ma
d

)
=

1

N2
d

∑

j∈sd

∑

k∈sd

∆djk

πdjk
π−1
dj π−1

dk ǫ̂dj ǫ̂dk (16)

for AVπ(δ̂
ma
d ). The estimator is a first-order approximation because 16 does

not take into account both of the variability due to the estimation of θ and
underestimates the design variance. Wang and Opsomer (2011) derive a bet-
ter variance expression for nondifferentiable survey estimators with estimated
parameters by using the differentiable limit for TN , however, this expression
is difficult to obtain in practice.

On the other hand, these variance estimators are based on asymptotic
properties and require knowledge of the second order inclusion probabilities
which often are impossible to compute or unavailable to data analysts for
complex sampling designs. Therefore, they have limited use in the small area
estimation setup. A simple alternative is the use of with replacement variance
estimators (see Särndal et al. (1992), p. 99) or replicated sampling methods (see
Wolter (2007) for a detailed description of these techniques in finite population
sampling). The replicated methods, also referred to as resampling methods,
include the balanced repeated replication, the jackknife repeated replication
and the bootstrap method (see Tukey (1958) and Efron (1979)).

Quenouille (1949) introduced the jackknife method to estimate the bias of
an estimator by deleting one datum each time from the original data set and
recalculating the estimator based on the rest of the data. Tukey (1958) found
that the jackknife can also be used to construct variance estimators. Miller
(1964) gave the first theorem concerning the jackknife variance estimator. Rao
and Tasui (2004) described jackknife variance estimators under stratified mul-
tistage sampling. Herrador et al. (2008) investigated resampling methods for
estimating design-based variances of model-based and model-assisted small
area estimators in a complex survey sampling setup. In survey sampling it is
usual to use jackknife techniques due to their simplicity and because they are
implemented in general purpose software packages, such as R. See for exam-
ple the packages “sampling” by Tillé and Matei (2015), “samplingVarEst” by
Escobar and Barrios (2016) or “samplingEstimates” by Escobar (2014).

In order to apply the jackknife for design-based variance estimation, we
use the delete-one-cluster jackknife method (see e.g. Rao and Tausi, 2004). To
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obtain the delete-one-cluster jackknife variance estimator of θ̂d, we generate
jackknife samples by deleting a cluster each time. There are as many jackknife
samples as clusters are in the sample. Consider the jackknife sample, s∗(d∗c∗)

,
obtained by excluding the cluster c∗ of the domain d∗ from the sample s and
denote the corresponding domain subsample by s∗d(d∗c∗)

. Let Ds be the number

of domains in s, md be the number of clusters in sd and C =
∑D

d=1 md. The
jackknife weight of individual j, cluster c and domain d in s∗(d∗c∗)

is

wdcj(d∗,c∗) = wdcjbdc(d∗,c∗), bdc(d∗,c∗) =

{
wd./w

∗
d. if d = d∗, c 6= c∗,

1 if d 6= d∗,

where wd. =
∑md

c=1

∑
j∈sd

wdcj and w∗
d. =

∑md

c=1,c 6=c∗

∑
j∈s∗

d(d∗c∗)
wdcj. Note

that the case d = d∗ and c = c∗ does not appear in the jackknife sample
s∗(d∗c∗)

. The jackknife resampling method is done as follows:

1. By using the procedure described above, use sample s to draw jackknife
samples s∗(d∗c∗)

, d∗ = 1, . . . , Ds, c∗ = 1, . . . ,md∗
. For every jackknife sample

calculate θ̂∗d(d∗,c∗)
in the same way as θ̂d was calculated, but using the

jackknife weights wdcj(d∗,c∗).

2. The observed distribution of {θ̂∗d(d∗c∗)
: d∗ = 1, . . . , Ds, c∗ = 1, . . . ,md} is

expected to imitate the distribution of estimator θ̂d.
3. The jackknife estimator of θd and of bias(θ̂d) are

θ̂Jd =
1

C

Ds∑

d∗=1

md∗∑

c∗=1

θ̂∗d(d∗c∗)
, biasJ(θ̂d) =

Ds∑

d∗=1

(md∗
− 1)

(
θ̂∗d(d∗c∗)

− θ̂Jd
)
.

(17)

4. The design-based variance of θ̂d can be approximated by

varJ (θ̂d) =

Ds∑

d∗=1

md∗
− 1

md∗

md∗∑

c∗=1

(θ̂∗d(d∗c∗)
− θ̂Jd

)2
. (18)

5 Design-based Simulations

This section presents an artificial population and two desig-based simulation
experiments. The target parameter is the domain HCI. Simulation 1 is designed
to compare the model-assisted estimators p̂ma

d and p̂ML
d with their model-based

counterparts p̂ebd and p̂Ld . Simulation 2 studies the behavior of the jackknife
variance estimator 18. Our simulations are programmed in R and uses the sae
package (Molina and Marhuenda, 2015).

Similarly to Santamaŕıa et al. (2004), we construct a nested artificial pop-
ulation of size N = 40000 divided in D = 50 domains. Each domain is parti-
tioned into 20 clusters and each cluster contains 40 units. Auxiliary variables
are drawn from normal distributions x0 ∼ N(10, 1) and x1 ∼ N(µd, 1), with
means µd = 8 + 4(d− 1)/D, d = 1, . . . , D.
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The y-variables, y0, y1 and y01, are drawn from the linear mixed models

Mk : yk,dj = β1xk,dj + ud + edj, k = 0, 1, d = 1, . . . , D, j = 1, . . . , Nd,

M01 : y01,dj = β1x0,dj + β2x1,dj + ud + edj, d = 1, . . . , D, j = 1, . . . , Nd,

where β1 = 2, β2 = 2, the random effects are i.i.d. ud ∼ N(0, σ2
u) with σ2

u = 1,
the random errors are i.i.d. edj ∼ N(0, σ2

e) with σ2
e = 1, and they are all

independent.
The income variables, z0, z1 and z01, are derived from the transformations

Ik : zk,dj = (yk,dj)
4, I01 : z01,dj = (y01,dj)

4, k = 0, 1, d = 1, . . . , D, j = 1, . . . , Nd.

For each variable z ∈ {z0, z1, z01}, the associated target variable is ξ ∈ {ξ0, ξ1, ξ01},
with ξdj = I(zdj < κ), and their poverty lines and global poverty proportions,

κ = 0.6×median{zdj : d = 1, . . . , D, j = 1, . . . , Nd} and p =
1

N

D∑

d=1

Nd∑

j=1

ξdj ,

are κ = 127253, κ = 129595, κ = 1795079 and p = 0.1540, p = 0.2415, p =
0.1132 respectively. For each variable z ∈ {z0, z1, z01}, the target parameters

are the domain proportions pd = 1
Nd

∑Nd

j=1 ξdj.
Simulation 1 calculates empirical biases and MSEs of small area estima-

tors of poverty proportions. The simulation is carried out under the Bernoulli
sampling design with logistic inclusion probabilities

πdj =
exp{b0 + b1x0,dj}

1 + exp{b0 + b1x0,dj}
, d = 1, . . . , D, j = 1, . . . , Nd, (19)

where b1 = 1 and b0 = 14 (Scenario 1) or b0 = 13 (Scenario 2) for “very small”
or “small” domain sample sizes. Under the Bernoulli sampling design, each
population unit j from any domain d enters in the sample, independently of
any other, with probability πdj . As the inclusion probabilities depends on the
variable x0, the Bernoulli sampling design is informative for the variables x0,
y0, y01, ξ0 and ξ01. Models containing the auxiliary variable x0 transfer sam-
pling design information to the model-based and model-assisted estimators.
This is done through the regression equation. In this case, the survey-weight
summands

∑

j∈sd

π−1
dj

{
I
(
ydj < T (κ)

)
− Φ(tdj)

}
,

∑

j∈sd

π−1
dj

{
I
(
ydj < T (κ)

)
− p̂Ldj

}

appearing in the formulas of the model-assisted estimators, play in models
with x0 a less relevant role for decreasing the design-based bias than in models
without x0.

The expected sample size nE =
∑D

d=1

∑Nd

j=1 πdj for Scenarios 1 and 2 are
1126.95 and 2776.43 respectively. Table 5.1 presents the quartiles and the mean
of the expected domain sample sizes nEd =

∑Nd

j=1 πdj and of the sampling
weights wdj = 1/πdj, d = 1, . . . , D, j = 1, . . . , Nd.
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Scenario Min. 1st Qu. Median Mean 3rd Qu. Max.
1 1.67 28.90 55.56 91.30 108.70 2500.00
2 1.24 11.27 21.10 34.21 40.65 1000.00
1 20.50 22.07 22.45 22.54 22.95 25.48
2 51.11 54.35 55.24 55.53 56.54 61.86
Table 5.1. Quartiles of {wdj} (top) and {nEd} (bottom).

For better understanding the results of the simulation, we recall that the
direct estimator p̂dird of pd is a ratio estimator such that

p̂dird =
ξ̂dird

N̂dir
d

, ξ̂dird =
∑

j∈sd

wdjξdj, N̂dir
d =

∑

j∈sd

wdj ,

covπ(p̂
dir
d , N̂dir

d ) = −Nd

(
Eπ [p̂

dir
d ]− pd

)

Bπ

(
p̂dird

)
= Eπ

[
p̂dird ]− pd = −

covπ
(
p̂dird , N̂dir

d

)

Nd
.

Table 5.2 presents the empirical covariances covπ
(
p̂dira,d, N̂

dir
d

)
for a = 0, 1, 01,

d = 1, 20, 35, 50, calculated by running the Simulation 1 under the Scenario 2.
The column “bias” shows the sign of the direct estimator bias that we expect
to obtain in the output of Simulation 1. The symbols “−” and “0” say that
the direct estimator has negative and almost null bias respectively.

a d = 1 d = 20 d = 35 d = 50 bias

p̂dir0,d 8.813 8.769 6.413 7.612 −

p̂dir1,d -0.34 1.472 -0.012 -0.049 0

p̂dir01,d 7.722 6.162 1.643 -0.021 −

Table 5.2. Covariances between p̂dira,d and N̂dir
d .

Simulation 1 calculates the EB and MA estimators of domain poverty propor-
tions based or assisted by the income variable models

I(z |x) : zdj = (ydj)
4, ydj ∈ M(y |x), d = 1, . . . , D, j = 1, . . . , Nd.

If the target and the auxiliary variable are z = zk and x = xk, k ∈ {0, 1}, then
the EB and MA estimators are constructed by using the model that generates
the population. This is to say, the true model Ik = I(zk|xk) is employed. If
z = zk1 or z = z01 and x = xk2 , with k1 6= k2, then the estimators are based
or assisted by incorrect or incomplete models. By using the same auxiliary
information, Simulation 1 also calculates the L and LM estimators (12) and
(15) based or assisted by the corresponding logistic mixed models fitted to the
dichotomic variables ξdj ’s. The steps of Simulation 1 are

1. For i = 1, . . . , I (I = 103), draw a Bernoulli sample from the population

and calculate p̂id ∈
{
p̂dir,id , p̂eb,id , p̂ma,i

d , p̂L,i
d , p̂ML,i

d

}
.

2. Calculate the empirical bias and MSE, i.e.

BIASd =
1

I

I∑

i=1

{
p̂id − pd

}
, MSEd =

1

I

I∑

i=1

(
p̂id − pd

)2
, d = 1, . . . , D.
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3. Calculate also ABIAS =
1

D

D∑

d=1

∣∣BIASd

∣∣ and MSE =
1

D

D∑

d=1

MSEd.

Tables 5.3-5.6 present the empirical average absolute biases, ABIAS, and
the empirical average mean squared errorsMSE. the lowest values are printed
in bold characters. The tables are divided in three parts. The first part concerns
the results for the correct models I(z0 |x0) and I(z1 |x1). The second part gives
the simulation results of the incorrect model I(z1 |x0) and the incomplete
model I(z01|x0). In these four cases, the EB estimator has the greatest bias
and the L and EB estimators have the lowest MSE. The MA and LM estimators
have the lowest bias and they have lower MSE than the direct estimator. See
also Figures 5.1 and 5.2 (for the sake of brevity we only present boxplots for
Scenario 2).

The third part gives the simulation results of the incorrect model I(z0 |x1)
and the incomplete model I(z01|x1). In this part, the model-based and model-
assisted estimators have greater MSEs than in parts 1 and 2. Their MSEs are
similar to the ones of the direct estimator. Concerning bias, the MA and LM
estimators present the best results. See also Figure 5.3.

All the considered estimators reduces their bias and MSEs when moving
from Scenario 1 to Scenario 2. This is to say, by increasing the sample sizes
the performance of the estimators improves. However their relative behavior
remains basically the same. This is why, we only consider Scenario 2 in the
the remaining simulations.

I(z |x) DIR EB MA L LM
I(z0 |x0) 0.0238 0.0273 0.0034 0.0077 0.0032

I(z1 |x1) 0.0033 0.0262 0.0025 0.0075 0.0023

I(z1 |x0) 0.0033 0.0408 0.0034 0.0193 0.0035
I(z01|x0) 0.0117 0.0188 0.0033 0.0298 0.0049
I(z0 |x1) 0.0238 0.0916 0.0054 0.1223 0.0055
I(z01|x1) 0.0117 0.0594 0.0040 0.0696 0.0040

Table 5.3. Design-based ABIAS for Scenario 1.

I(z |x) DIR EB MA L LM
I(z0 |x0) 0.0095 0.0252 0.0020 0.0079 0.0021
I(z1 |x1) 0.0018 0.0251 0.0015 0.0072 0.0014

I(z1 |x0) 0.0018 0.0315 0.0018 0.0106 0.0019
I(z01|x0) 0.0047 0.0150 0.0016 0.0124 0.0020
I(z0 |x1) 0.0095 0.0889 0.0026 0.1189 0.0027
I(z01|x1) 0.0047 0.0566 0.0019 0.0666 0.0020

Table 5.5. Design-based ABIAS for Scenario 2.
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I(z |x) DIR EB MA L LM
I(z0 |x0) 0.0248 0.0010 0.0166 0.0007 0.0153
I(z1 |x1) 0.0129 0.0011 0.0096 0.0003 0.0091
I(z1 |x0) 0.0129 0.0052 0.0149 0.0057 0.0146
I(z01|x0) 0.0135 0.0016 0.0132 0.0052 0.0118
I(z0 |x1) 0.0248 0.0087 0.0404 0.0152 0.0426
I(z01|x1) 0.0135 0.0072 0.0201 0.0091 0.0207

Table 5.4. Design-based MSE for Scenario 1.

I(z |x) DIR EB MA L LM
I(z0 |x0) 0.0112 0.0008 0.0061 0.0003 0.0060
I(z1 |x1) 0.0051 0.0009 0.0035 0.0002 0.0034
I(z1 |x0) 0.0051 0.0025 0.0055 0.0022 0.0054
I(z01|x0) 0.0060 0.0008 0.0048 0.0022 0.0046
I(z0 |x1) 0.0112 0.0081 0.0150 0.0143 0.0160
I(z01|x1) 0.0060 0.0065 0.0074 0.0082 0.0077

Table 5.6. Design-based MSE for Scenario 2.

Figures 5.1-5.3 present the boxplots of BIASd andMSEd, d = 1, . . . , D, under
Scenario 2, for the target parameters p0,d and p01,d, when the EB and MA
estimators rely on the correct model I(z0 |x0), the incomplete model I(z01 |x0)
and the incorrect model I(z0 |x1) respectively.

Tables 5.3-5.6 and Figures 5.1-5.3, give similar conclusions. Choosing a
model with a bad fit to data, might produce bad model-based estimates.
Model-assisted estimator are more robust with respect to model selection as
they have a good behavior under the sampling distribution.
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Figure 5.1: Boxplots of BIASd (left) and MSEd (right), d = 1, . . . , D, for
I(z0 |x0) under Scenario 2.
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Figure 5.2: Boxplots of BIASd (left) and MSEd (right), d = 1, . . . , D, for
I(z01 |x0) under Scenario 2.
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Figure 5.3: Boxplots of BIASd (left) and MSEd (right), d = 1, . . . , D, for
I(z0 |x1) under Scenario 2.

Simulation 2 investigates the behavior of the jackknife variance estimator
varJ given in (18) when it is employed for estimating the MSE of the five
considered poverty proportion estimators. The steps of Simulation 2 are

1. TakeMSEd ∈ {MSE(p̂dird ),MSE(p̂ebd ),MSE(p̂ma
d ),MSE(p̂Ld ),MSE(p̂ML

d )}
from the output of Simulation 1.

2. For i = 1, . . . , I (I = 102), draw a Bernoulli sample from the population
and apply (18) for calculating the jackknife variance estimators

mseid ∈
{
varJ(p̂

dir,i
d ), varJ(p̂

eb,i
d ), varJ(p̂

ma,i
d ), varJ (p̂

L,i
d ), varJ(p̂

ML,i
d )

}
.

3. Calculate the empirical bias and MSE of the jackknife variances, i.e.

Bd =
1

I

I∑

i=1

{
mseid−MSEd

}
, Ed =

1

I

I∑

i=1

(
mseid−MSEd

)2
, d = 1, . . . , D.

4. Calculate also AB =
1

D

D∑

d=1

∣∣Bd

∣∣ and E =
1

D

D∑

d=1

Ed.
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Tables 5.7-5.8 and Figures 5.4-5.6 summarize the results of Simulation 2.
The general conclusion is that the delete-one-cluster jackknife variance estima-
tor (18) underestimate the MSE of the model-based EB and L estimators, but
it has a low bias for the direct and the model-assisted MA and LM estimators.
Concerning the MSE of the jackknife estimator (18), it has lower values for
the EB and L estimators and than for the remaining ones, but in all cases
these values are very small (note that values of E are multiplicated by 104

in Table 5.8 and Figures 5.4-5.6). As in Simulation 1, under correct models
the jackknife estimator of model-based and model assisted estimators presents
better results than under incomplete or incorrect models.

I(z |x) DIR EB MA L LM
I(z0 |x0) 0.0400 0.0725 0.0283 0.0114 0.0340
I(z1 |x1) 0.0529 0.0864 0.0641 0.0094 0.0687
I(z1 |x0) 0.0529 0.1405 0.0702 0.0310 0.0716
I(z01|x0) 0.0874 0.0307 0.0758 0.0322 0.0552
I(z0 |x1) 0.0400 0.8064 0.2708 1.4286 0.2864
I(z01|x1) 0.0874 0.6482 0.1725 0.8167 0.1805
Table 5.7. Design-based 102AB of varJ for Scenario 2.

I(z |x) DIR EB MA L LM
I(z0 |x0) 2.4950 0.0084 1.0880 0.0025 1.379
I(z1 |x1) 0.8065 0.0151 0.7560 0.0009 0.9402
I(z1 |x0) 0.8065 0.0892 1.4066 0.1348 1.2389
I(z01|x0) 1.5338 0.0105 0.9212 0.1430 0.6249
I(z0 |x1) 2.4950 0.6995 10.2401 2.1265 11.3638
I(z01|x1) 1.5338 1.2915 5.3282 1.7914 5.8642
Table 5.8. Design-based 104E, of varJ for Scenario 2.
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Figure 5.4: Boxplots of 102Bd (left) and 104Ed (right), d = 1, . . . , D, for
I(z0 |x0) under Scenario 2.
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Figure 5.5: Boxplots of 102Bd (left) and 104Ed (right), d = 1, . . . , D, for
I(z01 |x0) under Scenario 2.
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Figure 5.6: Boxplots of 102Bd (left) and 104Ed (right), d = 1, . . . , D, for
I(z0 |x1) under Scenario 2.

6 Model-based simulation

This section presents a model-based simulation for comparing the performance
of the domain HCI estimators p̂dird , p̂ebd , p̂ma

d , p̂Ld and p̂ML
d . Simulation 3 takes

the same population data file as Simulation 1, but excluding the y-variables.
The sample indexes (1 if unit j from domain d is sampled and 0 otherwise) are
also included in the file. They are generated from Bernoulli distributions with
the parameters πdj defined in (19) and they remain fixed in the simulation.

In each iteration of Simulation 3 the variables y0, y1 and y01 are generated
from models M0, M1 and M01 respectively. Simulation 3 is thus the model-
based version of Simulation 1. In Simulation 1, the y-values are fixed and the
sample indexes are drawn with logistic inclusion probabilities. In Simulation 3,
the sample indexes are fixed and the y-values are generated from the models
M0, M1 and M01. The steps 2 and 3 of Simulation 3 are the same as the
corresponding ones of Simulation 1. The step 1 of Simulation 3 is
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1. For i = 1, . . . , I (I = 103), generate a population target vector y under
the model M0, M1 or M01, select the fixed population subset (sample) and

calculate p̂id ∈
{
p̂dir,id , p̂eb,id , p̂ma,i

d , p̂L,i
d , p̂ML,i

d

}
.

Tables 6.1-6.2 present the empirical average absolute biases, ABIAS, and the
empirical average mean squared errors MSE. The tables are divided in three
parts with the same structure as Tables 5.3-5.6. In the first rows, the EB
estimator has greater biases then the MA, L and LM estimators and the L
and EB estimators have the lowest MSE. The MA and LM estimators have
lowest bias and lower MSE than the direct estimator. See also Figures 6.1 and
6.2. In the third part, the model-based and model-assisted estimators have
greater MSEs than in parts 1 and 2. Their MSEs are similar to the ones of
the direct estimator. See also Figures 6.1-6.3. It is interesting to note that in
the incomplete model I(z01 |x1) the model-assisted estimator MA present the
best results.

Although Simulation 3 is model-based, the selection of the fixed sample
indexes is highly related with the generating model and they influence the
model simulation results. Simulation 3 extracts more population units with
high values of x0 and therefore with high values of y0 and y01. As expected,
the model-based estimators have, in general, the lowest MSEs. However, the
Bernoulli selection of the fixed sample indexes have a greater effect on the bias
of the EB estimator than on the bias of the L estimator. This phenomenon
might not happens in the case of selecting the indexes with a simple random
sampling.

I(z |x) DIR EB MA L LM
I(z0 |x0) 0.0571 0.0274 0.0133 0.0064 0.0103
I(z1 |x1) 0.0344 0.0256 0.0095 0.0034 0.0043
I(z1 |x0) 0.0344 0.0412 0.0349 0.0236 0.0349
I(z01|x0) 0.0429 0.0187 0.0310 0.0267 0.0320
I(z0 |x1) 0.0571 0.0890 0.0623 0.1197 0.0652
I(z01|x1) 0.0429 0.0580 0.0388 0.0685 0.0394

Table 6.1. ABIAS for Simulation 3 and Scenario 2.

I(z |x) DIR EB MA L LM
I(z0 |x0) 0.0099 0.0010 0.0052 0.0003 0.0050
I(z1 |x1) 0.0051 0.0010 0.0028 0.0004 0.0027
I(z1 |x0) 0.0051 0.0033 0.0052 0.0022 0.0053
I(z01|x0) 0.0056 0.0009 0.0039 0.0025 0.0042
I(z0 |x1) 0.0099 0.0081 0.0114 0.0145 0.0121
I(z01|x1) 0.0056 0.0068 0.0048 0.0087 0.0050

Table 6.2. MSE for Simulation 3 and Scenario 2.
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Figure 6.1: Boxplots of BIASd (left) and MSEd (right), d = 1, . . . , D, for
I(z0 |x0), Simulation 3 and Scenario 2.
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Figure 6.2: Boxplots of BIASd (left) and MSEd (right), d = 1, . . . , D, for
I(z01 |x0) Simulation 3 and Scenario 2.
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Figure 6.3: Boxplots of BIASd (left) and MSEd (right), d = 1, . . . , D, for
I(z0 |x1) Simulation 3 and Scenario 2.
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7 Application to the Spanish Living Conditions Survey

In addition to the simulation studies, we have used a set of real data to check
the performance of the proposed estimators. We deal with data of the 2013
Spanish Living Conditions Survey (SLCS2013) from the region of Valencia
(East of Spain).

7.1 Data, variables and sampling design

The Spanish Living Conditions Survey (SLCS) is carried out by the Insti-
tuto Nacional de Estad́ıstica (INE) of Spain. It provides information regard-
ing the household income received during the year prior to that of the inter-
view. This income includes income from work for others, benefits/losses from
self-employed work, social benefits, income from private pension schemes not
related to work, capital and property income, transfers between other house-
holds, income received by minors and the result of the income tax statement.

In order to select a sample inside each Spanish autonomous community
(region), INE uses a two-stage design with first stage unit stratification. The
first stage is formed by census sections and the second stage by main fam-
ily dwellings (households). Within these no sub-sampling is carried out, in-
vestigating all dwellings that are their usual residence. The sections are se-
lected within each stratum with a probability proportional to their size. The
dwellings, in each section, are extracted with the same probability via random
start systematic sampling. The inclusion probabilities are corrected because of
non response and later calibrated to sex-age groups at the region level. This
procedure leads to sampling weights that are constant inside each sampled
household.

The income per household consumption unit (or equivalent personal in-
come) is calculated in order to take into account scale economies in house-
holds. It is obtained by dividing the total household income by the number
of consumption units. These are calculated using the modified OECD scale,
which assigns a weight of 1 to the first adult, a weight of 0.5 to remaining
adults, and a weight of 0.3 to children under 14 years of age. Once the house-
hold equivalent income is calculated, it is assigned to each of its members.
The poverty threshold is calculated each year, using the distribution of the
equivalent personal income for the previous year. Following the criteria rec-
ommended by Eurostat, this threshold is set at 60% of the median income per
household consumption units.

The region of Valencia has three provinces, Alicante, Castellón and Valen-
cia. The provinces are partitioned in comarcas. The target domains are the
D = 26 comarcas appearing in SLCS2013. From the statistical office of the
Valencian government, we have got a SLCS2013 subfile containing the fol-
lowing four variables: domain, calibrated sampling weight, equivalent personal
income and labour status (employed, unemployed, inactive and below 15 years
old). As the SLCS2013 calibrated sampling weights and the income are con-
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stant within households, we construct a household 0-1 variable. Further, we
generate a unit-level poverty indicator by comparing the equivalent personal
income with the 2013 Valencian poverty threshold κ = 7280 (in euros).

Table 7.1 presents the quartiles and the mean of the domain sample sizes
nd and of the calibrated sampling weights wdj , d = 1, . . . , D, j = 1, . . . , nd.
Half of the domain sample sizes are lower than 74, so we are dealing with a
small area estimation problem.

Min. 1st Qu. Median Mean 3rd Qu. Max.
354.5 1213.0 1637.0 1963.0 2280.0 15490.0
10.00 51.00 74.00 96.62 123.20 406.00
Table 7.1. Quartiles of {wdj} (top) and {nd} (bottom).

In addition to the SLCS2013 data, we take auxiliary aggregated data from
the following statistical sources.

– The 2013 Spanish post-census data file that contains reliable demographic
data. Domain sizes are taken from this file.

– The 2013 Labour Force Survey (SLFS2013) file that contains survey data
about the labour market. The sizes of domains crossed by the labour status
categories employed, unemployed and inactive are taken from this file. The
sizes of the last category (age≤ 15) are calculated by difference with the
domain sizes.

The SLFS is designed for sampling within provinces with much greater sample
sizes than the SLCS2013. This is why, the sizes of domains crossed by labour
status (employed, unemployed, inactive and below 15 years old) are calculated
by summing the corresponding SLFS calibrated sample weights. We treat these
estimates as true sizes. The labour status variable is the available variable
that we have got at the unit level (SLC2013) and at the aggregated level
(SLFS2013).

In this paper, we focuss on the estimation of the HCI at the domain level.
Let zdj denote the equivalent personal income of individual j of domain d,
d = 1, . . . , D, j = 1, . . . , Nd. For estimating these parameters we use the
direct estimators (DIR), the EBPs (EB) and the corresponding model-assisted
estimators (MA) based on a nested error regression model (NER).

If a continuous auxiliary variable x is included in the NER model, then a
census file containing the values of x is needed. This is a serious drawback for
applying the EBP methodology.

If the set of selected auxiliary variables includes only the intercept and one
factor with A categories, as it is the case in this application to real data, then
the EBP estimator of a proportion takes the form

p̂ebd =
1

Nd

( ∑

j∈sd

I(zdj < κ) +

A∑

a=1

(Nda − nda)Φ(tda)
)
, d = 1, . . . , D, (20)

where Nda and nda are the population and sample sizes of category a crossed
by domain d and tda is the common value of tdj for all sampled units of
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domain d and category a. A similar formula to (20) was derived by Hobza and
Morales (2016) for EBP based on logistic regression mixed models. For the
MA estimator, we have

p̂ma
d =

1

Nd

( ∑

j∈sd

wdjI(zdj < κ) +

A∑

a=1

(Nda − N̂da)Φ(tda)
)
,

N̂da =
∑

j∈sda

wdj , d = 1, . . . , D,

where wdj is the calibrated sampling weight and sda is the sample of domain
d and category a.

7.2 The NER model

Let x1,dj and x2,dj the dichotomic variables indicating the labor status cate-
gories employed and unemployed respectively (1 if yes and 0 if no). As min{zdj} =
8696.8, we take ydj = log(zdj + k0), k0 = 9000, and we select the NER model

ydj = β0 + β1x1,dj + β2x2,dj + ud + edj, j = 1, . . . , Nd, d = 1, . . . , D. (21)

Table 7.2.1 presents the estimates of the NER model parameters and
the corresponding p-values. We observe that the more people are employed
(β1 > 0) the greater is the equivalent personal income and the more people
are unemployed (β2 < 0) the smaller is the target variable. The estimated
variances are σ̂2

u = 0.007216602 and σ̂2
e = 0.1200654.

estimate std.error t-value p-value
constant β0 9.94710 0.02013 494.0619 0.000
employed β1 0.14716 0.01534 9.5904 0.000
unemployed β2 -0.11338 0.02046 -5.5414 0.000

Table 7.2.1: Estimates of NER model parameters.

Figure 7.2.1 presents the dispersion graphs of model residuals versus labour
status (left) and log(income+k0) (right). The left plot shows some heterogene-
ity between the labour status categories. The right plot shows that residuals
increases with the target variable, instead of being random distributed around
zero. The model is overestimating y when y is small and underestimating y
when y is large. Although the two 0-1 selected auxiliary variables are signi-
ficative, Figure 7.2.1 shows that the NER model does not fit well to data.
Unfortunately, we do not have any other auxiliary data available at the unit
and at the domain level simultaneously. This situation happens in practice.
The question is how the model-based and model-assisted estimators will be-
have when the selected model is not good but contains useful explanatory
variables.
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Figure 7.2.1: Residuals versus labour status (left) and income (right).

As the global sample size is n = 2512, the p-value of Shapiro-Wilk normal-
ity test on the residuals is 0.00. Therefore we do a graphical analysis about how
close is the distribution of the residuals to normality. Figure 7.2.2 presents the
density histogram of model residuals (left) and the empirical and estimated
normal cumulative distribution functions (CDF) of residuals (right). The left
plot shows that residual probability density function (PDF) has a right asym-
metry with low probability in the interval (30000, 40000). Although the as-
sumption of normality does not hold in strict sense, the right plot shows that
the deviation is not highly severe.
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Figure 7.2.2: Histogram (left) and CDFs (right) of residuals.

This application to real data has also an illustrative purpose. We want
to show how the EBP and the corresponding MA estimator behaves under a
model that does not fulfils all theoretical requirements. This is why we present
and discuss the results based on model (21).

7.3 Jackknife variance estimation

Based on the selected NER model, we calculate the direct, EB and MA estima-
tors of the domain parameters θd, d = 1, . . . , D. Their design-based jackknife
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estimators θ̂Jd, biases biasJ (θ̂d) and variances varJ (θ̂d), d = 1, . . . , D, are cal-

culated by applying (17) and (18) Let θ̂dird , θ̂ma
d and θ̂ebd be three estimators

of θd. The comparable jackknife coefficient of variation of θ̂d ∈ {θ̂dird , θ̂ma
d , θ̂ebd }

is defined as

CCVd(θ̂d) = 100

(
varJ(θ̂d)

)1/2
1
3

(
θ̂dirJd + θ̂ma

Jd + θ̂ebJd
) .

7.4 Head Count Index

Figure 7.4.1 plots the HCI (left) and the jackknife CCVs (right) estimates
sorted by sample size. Figure 7.4.2 presents the boxplots of the domain jack-
knife biases by estimators.
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Figure 7.4.1: HCI (left) and CCV (right) estimates sorted by nd.
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Figure 7.4.2: Boxplots of domain jackknife biases by estimators.

Figure 7.4.1 shows that the EBP estimator has in general lower design-
based variance than the direct and MA estimators. The three estimators tend
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to give more equal estimates as the sample size increases. Figure 7.4.2 shows
that the EB estimator has in general larger biases than the MA or direct
estimators.

8 Concluding remarks

In recent years there has been growing consensus among policy makers and
public administrators at both national and local level concerning the need of
accurate and reliable poverty, inequality and life condition indicators. This
paper introduces small area estimators of the poverty measures. We introduce
new estimators assisted by the NER models and they are the model-assisted
counterparts of the model-based EBPs. The proposed estimators are design-
consistent and asymptotically normally distributed under certain conditions.
Simulation experiments are performed to investigate the behavior of the pro-
posed estimators under the true model and their robustness against deviations
from model specifications. We also compare our estimators to the competitors
based or assisted by logistic regression mixed models. In addition to simula-
tion studies, we have used real data to check the performance of the proposed
estimators. Concerning the estimators DIR, EBP and MA, we summarize the
results of these studies.

The direct (DIR) estimator uses only the considered domain information.
It is basically an unbiased estimator with respect to the sampling design distri-
bution but with a big variance in small area problems. Its estimated variance
and coefficient of variation are generally greater than those of other estimators.
Its estimated bias is generally close to zero according to the asymptotic the-
ory. Although ideally the direct estimator is basically an unbiased estimator,
there are cases in which it may has a considerable bias. Recall that the DIR
estimator for a comarca is calculated as the sum of the values of the target
variable multiplied by the calibrated weights. However, the calibrated weights
depend on the stratum and are calculated at the region level in the SLCS.
That can lead to a bias because the weights of sample units of a given domain
does not ”represent” well the strata structure. For example, a comarca with
municipalities in h different strata could contains sampled municipalities in
only one stratum.

The EBPs are based on the NER model. This model has one random effect
that takes into account for the variability between domains not explained by
the auxiliary variables. These estimators have good statistical properties under
the distribution of the fitted model. If the model fit well to data, then they
will be good estimators

The Spanish Statistical Office has not a permanently updated census file
containing auxiliary variables for applying the EBP methodology to SLCS
data files. The only possibility of using EBPs is by restricting to one-factor-
ANOVA NER (ANOVA-NER) models. This is to say, NER models with only
one auxiliary variables that is categorical. Further the sizes of the domains
crossed by the variable categories should be known.
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The ANOVA-NER models are useful tools for detecting differences between
the target variable means by the categories. However, they are not good models
for predicting the values of the target variable. As the number of values taken
by the fixed effect part of ANOVA-NER models is upper bounded by the
number of categories, the variability of the EBPs come basically from the
variability of the predicted random effects. In this situation, these estimators
are over-smoothing the pattern of the target parameter across domains.

The EBP does not employ the calibrated sampling weights at all. Therefore,
they are not protected against the bias effect produced by non response. This
is a serious drawback in real data applications.

The MA estimators try to collect the good properties of DIR and EBP
estimators. On the one hand, they are constructed from the NER model and
therefore they introduce the auxiliary information in the estimation process.
On the other hand, they employ the calibrated weights in a design-based bias
correction term. This term gives protection against the non response bias. In
summary, the new estimators present a good balance between sampling bias
and MSE.

Although theory and application have been centered on the HCI, the results
are also valid to a broader class of poverty indices proposed by Foster, Greer
and Thorbecke (1984).
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31. López-Vizcáıno, E., Lombard́ıa, M. J. and Morales, D. (2015). Small area estimation of
labour force indicators under a multinomial model with correlated time and area effects.
Journal of the Royal Statistical Association, series A, 178 , 535-565.



30 Domingo Morales et al.

32. Marchetti, S., Tzavidis, N. and Pratesi, M. (2012). Non-parametric bootstrap mean
squared error estimation for M-quantile estimators of small area averages, quantiles and
poverty indicators. Computational Statistics and Data Analysis, 56, 2889–2902.

33. Marchetti, S. and Secondi, L. (2016). Estimates of Household Consumption Expendi-
ture at Provincial Level in Italy by Using Small Area Estimation Methods: Real Com-
parisons Using Purchasing Power Parities. Social Indicators Research. In press. DOI
10.1007/s11205-016-1230-8.

34. Marhuenda, Y., Molina, I. and Morales, D. (2013). Small area estimation with spatio-
temporal Fay-Herriot models. Computational Statistics and Data Analysis, 58, 308-325.

35. Miller, R. G. (1964). A trust worthy jackknife. Annals of Mathematical Statistics, 35,
1594-1605.

36. Medeiros, M. (2006). The rich and the poor: The construction of an affluence line from
the poverty line. Social Indicators Research, 78, 1-18.

37. Molina I. and Rao J.N.K. (2010). Small area estimation of poverty indicators. The
Canadian Journal of Statistics, 38, 369-385.

38. Molina I. and Marhuenda, Y. (2015). sae: An R Package for Small Area Estimation.
The R Journal, 7, 81-98.

39. Montanari, G. E. and Ranalli, M. G. (2005). Nonparametric model calibration estima-
tion in survey sampling. J. Amer. Statist. Assoc., 472(100), 1429–1442.

40. Morales, D., Pagliarella, M.C. and Salvatore, R. (2015). Small area estimation of poverty
indicators under partitioned area-level time models. SORT-Statistics and Operations Re-
search Transactions, 39, 1, 19-34.

41. Mukhopadhyay, P. (2001). Topics in Survey Sampling. Lecture Notes in Statistics.
Springer.
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9 Appendix - Assumptions of Theorem 4.1.

A 1 limN→∞ θN = θ +O(N−1/2) and limN→∞

(
udN(θN )− udN(θ)

)
= o(1).

A 2 limN→∞(θ̂ − θN ) = Oπ(n
−1/2
N ),

A 3 The expected sample size n∗ = Eπ(n) = O(N δ), with 1/2 < δ < 1

A 4 KL ≤ Nπj/n
∗ ≤ KU for all j, where KL and KU are positive constants.

A 5 For any vector z with finite 2 + λ population moments with arbitrarily

small λ > 0, let z̄HT = 1
N

∑
j∈s zj/πj we assume that Vπ(z̄HT ) ≤ g1n

∗(N −

1)−1
∑

j∈U (zj − z̄N )(zj − z̄N )′ for some constant g1

A 6 For any z with finite fourth population moment the Horvitz-Thompson

estimators satisfy a central limit theorem:

(Vπ(z̄HT ))
−1/2(z̄HT − z̄N ) →L N(0, Ip×p)

and the estimated covariance matrix for the Horvitz-Thompson estimators is

design consistent in the following sense:

(Vπ(z̄HT ))
−1V̂HT (z̄HT )− Ip×p = Oπ(n

∗−1/2)

where the design variance-covariance matrix of z̄HT denoted by Vπ(z̄HT )
−1/2,

is positive definite, and V̂HT (z̄HT ) is the Horvitz-Thompson estimator of Vπ(z̄HT ))
−1/2.

A 7 The population level function TN(η) = 1
Nd

∑
j∈Ud

gdj(η) converges to a

limiting smooth function T (η), uniformly in a neighborhood of θ. This limiting

function is uniformly continuous for η in a neighborhood of θ and has finite

first and second derivatives with respect to η .

A 8 The population quantity

supη∈CN
α|TN (θN +N−αη)− TN(θN )− T (θN +N−αη) + T (θN )| → 0

where C is a large enough compact set in Rp+2 and α ∈ (14 ,
1
2 ].

These assumptions are similar to those used in Wang and Opsomer (2011)
and Fabrizi et al. (2014). Assumptions A1 and A2 ensure that the sample

fit θ̂ and the population fit θN share a common limit. Assumptions A3, A4,
A5 and A6 are satisfied for commonly used sample size designs in reason-
ably finite populations. However, it would not hold for systematic sampling
or one-per-stratum designs. A7 assumption about the estimator allows us to
use the limiting smooth function instead of nonsmooth population quantity in
asymptotic expansion.


