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Abstract

The convenience of online surveys has quickly increased their popularity for

data collection. However, this method is often non-probabilistic as they usually

rely on selfselection procedures and internet coverage. These problems produce

biased samples. In order to mitigate this bias, some methods like Statistical

Matching and Propensity Score Adjustment (PSA) have been proposed. Both

of them use a probabilistic reference sample with some covariates in common

with the convenience sample. Statistical Matching trains a machine learning

model with the convenience sample which is then used to predict the target

variable for the reference sample. These predicted values can be used to esti-

mate population values. In PSA, both samples are used to train a model which

estimates the propensity to participate in the convenience sample. Weights for

the convenience sample are then calculated with those propensities. In this

study, we propose methods to combine both techniques. The performance of

each proposed method is tested by drawing nonprobability and probability sam-

ples from real datasets and using them to estimate population parameters.
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del Mar Rueda), rferri@ugr.es (Ramón Ferri-Garćıa)
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1. Introduction

Survey samplers have long been using probability samples from one or more

sources to make valid and efficient inferences on finite population parameters.

Methods for combining two or more probability samples were also developed to

increase the efficiency of estimators for a given cost. Dual frame and multiple5

frame methods for survey estimation, developed in [? ] and [? ] respectively,

are an example of such techniques.

Due to technological innovations, large amounts of inexpensive data (com-

monly known as Big Data) and data from non-probability samples are now

accessible. Big data include administrative data, social media data, internet of10

things and scraped data from websites, and satellite images. Big Data and data

from web panels have the potential of providing estimates in near real time, un-

like traditional data derived from probability samples. Statistical agencies are

now taking modernization initiatives into account to find new ways to integrate

data from a variety of sources and to produce ”real-time” official statistics. On15

the other hand, a review by [? ] concludes that the potential of probability sam-

pling cannot be reached by nonprobability samples, even if correction methods

are applied.

Inferences from Big Data and nonprobability surveys have important sources

of error. Given the characteristics of these data collection procedures, selection20

bias is particularly relevant. Following notation from [? ], in a situation where U

is the target population to which survey results are supposed to be generalized,

a nonprobability selection ensures that sample individuals will be drawn from

a population of potentially covered individuals, Upc ⊂ U . This is the case

of internet and smartphone surveys, where the population with the necessary25

devices for taking part in the survey are a subset of the total population. The

bias produced by this issue is commonly known as coverage error. In addition,

if the participation in the survey is conditioned to a selection mechnism, the

sample will be eventually drawn from an actually covered population, Uac ⊂ Upc.

Following the previous example, internet surveys with an opt-in scheme (such as30
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snowball samples in social media websites) would recruit volunteer respondents

willing to participate, hence not all of the potentially covered population would

have a non-zero probability of being drawn. This is commonly known as self-

selection bias.

Some techniques to mitigate selection bias can be applied if a probability35

sample, drawn from U with a sampling design (ds, ps) and negligible sources of

bias, is available. From all of them, Propensity Score Adjustment (PSA) and

Statistical Matching have gained interest from the research community. PSA,

originally developed for reducing selection bias in non-randomized clinical trials

[? ], was adapted to nonprobability surveys in the works of [? ] and [? ]. This40

method aims to estimate the propensity to participate in the survey of each

individual by taking into account how would have the sample been if it was

drawn with a probability sampling design. Its efficacy at reducing selection bias

has been repeatedly proven [? ? ? ? ], although requires a proper specification

of the model and the variables to be included on it, and further adjustments45

such as calibration. Statistical Matching [? ? ] is a rather predictive approach;

the nonprobability sample is used to develop a prediction model on the target

variable, which is subsequently used for prediction in the probability sample.

It remains unclear which of the methods is more efficient, although a recent

experiment by [? ] showed better results for Statistical Matching in terms of50

efficiency.

In this study, we treat the problem of integrating the information provided

by probability and nonprobability surveys (or Big Data). We develop a set of

procedures which combine the results provided by PSA and Statistical Matching

to obtain survey estimates, and compare their efficiency to that of the mentioned55

methods on their own. The combination of results from multiple sources have

been studied in survey research, and the promising results provide some evidence

that the application of these methods could be fruitful in the nonprobability sur-

vey context. Furthermore, predictive modelling allows to incorporate auxiliar

information as training weights or parameter configuration, hence a two-step60

approach can be applied. Our initial hypothesis is that the combination of mul-
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tiple sources for estimation in nonprobability survey sampling has the potential

to overcome current methods in terms of bias reduction and efficiency of the

estimators.

The remainder of the article is organized in four sections. After introducing65

the problem of estimation in Section 2, in Section 3, new estimators are proposed

based on different approach to integrate data. In Section 4, we propose the use

of resampling techniques for the variance estimation of the quantile estimators

proposed in the previous section. Some simulation experiments are carried out

to check the finite size sample properties of the proposed estimators in Section70

6. Finally, Section 7 presents the concluding remarks.

2. The problem of estimation with non-probability samples

Let U denote a finite population withN units, U = {1, . . . , k, . . . , N}. Let sV

be a volunteer non-probability sample of size nV , self-selected from an online

population UV which is a subset of the total target population U and sR a75

reference probabilistic sample of size nrs selected from U under a sampling

design (sd, pd) with πi =
∑
sr3i pd(sr) the first order inclusion probability for

the i-th individual. Let y be the variable of interest in the survey estimation.

Let xk be the value taken on unit k by a vector of auxiliary variables. Covariates

x have been measured on both samples, while the variable of interest y has been80

measured only in the volunteer sample. We denote by wRk = 1/πk the original

design weight of the k individual in the reference sample.

A matching estimator is defined by:

ŶSM =
∑
sR

ŷkwRk

being ŷk the predicted value of yk.

The key is how to predict the values yk. Formal working linear regression85

models, relating the study variable y to the vector of auxiliary variables are

usually considered to develop efficient estimators of the total Y . Suppose a

working population model, Em(yi) = m(xi, β) = mi for i ∈ U is assumed to
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hold for the sample sV where Em denotes model expectation and the mean

function mi is specified. Using the data from the sample sV we obtain an90

estimator β̂ which is consistent for β if the model is correctly specified and thus

the estimator ŶSM is consistent if the model for the study variable is correctly

specified but the estimator will be biased if the model for the study variable is

incorrectly specified. Parametric models require assumptions regarding variable

selection, the functional form and distributions of variables, and specification95

of interactions. Contrary to statistical modelling approaches that assume a

data model with parameters estimated from the data, more advanced machine

learning algorithms aim to extract the relationship between an outcome and

predictor without an a priori data model. These methods have been recently

applied in the statistical matching context in [? ].100

In recent years, propensity score adjustment (PSA) has increasingly been

used as a means of correcting selection bias in online surveys. The efficacy

of PSA at removing selection bias from online surveys has been discussed in

numerous studies (see e.g. [? ]; [? ]; [? ];[? ]).

It is expected that a sample collected by online recruitment would not follow105

the principles of a probability sampling, especially in those cases that the survey

is filled by volunteer respondents. We can define an indicator variable I as

follows:

Ii =
1 i ∈ sV
0 i /∈ sV

, i = 1, 2, ..., N (1)

Propensity scores, πi, can be defined as the propensity of the i-th individual of

participating in the survey, this is, the probability that Ii = 1. The propensity110

score of the individual can be formulated, following notation in [? ], as the

expected value of I conditional on her/his target variable and covariates’ value:

πi = E[Ii|xi, yi] = P (Ii = 1|xi, yi) (2)

The probability reflects the selection mechanism of the non-probability sample.

Depending on the mechanism, the conditional probability might vary. If the

selection is Missing Completely At Random (MCAR), then P (Ii = 1|xi, yi) =115
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P (Ii = 1) and estimates obtained from sV would be unbiased. If the selection

is Missing At Random (MAR), then P (Ii = 1|xi, yi) = P (Ii = 1|xi). When the

selection mechanism is Missing Not At Random (MNAR) or MAR, Propensity

Score Adjustment (PSA) can be applied to remove the bias induced by such

mechanisms. Although the real propensity cannot be obtained, it can be esti-120

mated if a reference survey is available. The reference survey must have been

conducted on the same target population than the online survey but collected

in a more adequate manner regarding coverage and response issues.

The propensity for an individual to take part on the non-probability sur-

vey is obtained by training a predictive model (often a logistic regression) on125

the dichotomous variable, IsV , which measures whether a respondent from the

combination of both samples took part in the volunteer survey or in the refer-

ence survey. Covariates used in the model, x, are measured in both samples (in

contrast to the target variable which is only measured in the non-probability

sample), thus the formula to compute the propensity of taking part in the vol-130

unteer survey with a logistic model, π, can be displayed as

π(x) =
1

e−(γTx) + 1
(3)

for some vector γ, as a function of the model covariates.

We can use the inverse of the estimated response propensity as a weight for

constructing the estimator [? ]:

ŶPSA =
∑
k∈sV

wV kyk/π̂(xk) =
∑
k∈sV

ykw
PSA
k (4)

where π̂(xk) is the estimated response propensity for the individual k of the135

volunteer sample as predicted using covariates x.

3. Proposed estimators by combining probability and non-probability

samples

In this section, we will explore new ways of doing the integration of data of

probability and non-probability samples.140
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3.1. Shrinkage

Shrinkage is a natural way to improve the available estimates, in terms of

the mean squared error. For example, composite estimators are used in small

area estimation (see [? ], [? ]). [? ] applies shrinkage in regression analysis

and [? ] uses this technique to predict a binary response on the basis of binary145

explanatory variables. Similarly, [? ] propose a shrinkage calibration estimator

in cluster sampling.

We propose an estimator based on composite information, as follows:

Ŷsrk = KŶSM + (1−K)ŶPSA, where K is a constant satisfying 0 < K < 1.

Theorem 1. The optimum value for k in the sense of minimum variance into150

the class of estimators Ŷsrk is

kopt =
AV (ŶPSA)− cov(ŶSM , ŶPSA)

AV (ŶSM ) +AV (ŶPSA)− 2cov(ŶSM , ŶPSA)
. (5)

The variance of Ŷsrk is given by

V (Ŷsrk) = V (KŶSM + (1−K)ŶPSA) =

= K2V (ŶSM ) + (1−K)2V (ŶPSA) + 2K(1−K)cov(ŶSM , p̂rq).

By denoting V1 = V (ŶSM ), V2 = V (ŶPSA) and C = cov(ŶSM , ŶPSA), the

variance of Ŷsrk can be expressed as

V (Ŷsrk) = K2V1 + (1−K)2V2 + 2K(1−K)C.

The first derivative of V (Ŷsrk) kith respect to K is

∂V (Ŷsrk)

∂k
= 2KV1 − 2(1−K)V2 + 2(1− 2K)C = 0;

Kopt =
V2 − C

V1 + V2 − 2C
.
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The second derivative is

∂V (Ŷsrk)

∂2K
= 2V (ŶSM − ŶPSA) > 0,

and we conclude that Kopt really minimizes AV (Ŷsrk).

Note. Usually samples sV and sp are independents, thus Kopt = V2

V1+V2
.

The optimal coefficient Kopt depends on population variances, which are usu-

ally unknown in practice, and so Ŷsrkopt cannot be calculated. By substituting155

V1 and V2 by its sample-based analogues

The following estimator can be defined

Ŷop = K̂optŶSM + (1− K̂opt)ŶPSA

where K̂opt denotes that estimates are substituted for the variances and covari-

ances in (5).

3.2. Double robust estimator

We assume a working population model, Em(yi) = µ(xi) = mi, i = 1, ..., N .160

A new estimator which combine probability and non-probability samples can be

defined by using the idea if the difference estimator ([? ], pag. 222).

The total Y can be written as:

Y =
∑
U

ŷk +
∑
U

(yk − ŷk)

being ŷk = m̂k the predicted value of the yk under the population model. We

estimate each term by using the weighted estimator obtained from the reference165

probabilistic sample and the volunteer sample respectively:

ŶDR =
∑
sR

ŷkwRk +
∑
sV

wPSAk (yk − ŷk).

The estimator ŶDR is double robust: it is consistent if either the model for

the propensities or the model for the study variable is correctly specified.

If the working outcome regression model for y is linear, Em(yi) = βx , this

estimator coincides with the estimator proposed by of [? ].170
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3.3. Training data with PSA weights

Most machine learning models allow considering weights for the training

data. We also propose an estimator which uses wPSAk for k ∈ sV when train-

ing the model which predicts ŷk for k ∈ sR. The estimation would then be:∑
sR
ŷkwRk175

For example, if the chosen model is linear regression, a predictor for Statis-

tical Matching would be obtained as

Em(yi|xi) = xTi β

where β coefficients are optimized in order to minimize the following Mean

Square Error:

MSE(sV ) =

∑
sV

(ŷk − yk)2

nV

The proposed estimator would simply minimize the following weighted Mean

Square Error instead:

MSE(sV ) =

∑
sV
wPSAk (ŷk − yk)2∑
sV
wPSAk

.

Thus the proposed estimator will be obtained with the algorithm 1:180

• Calculate wPSAk for k ∈ sV by using some machine learning classification

algorithm described in Ferri and Rueda (2020).

• Train a model Em(yi|xi) using xk for k ∈ sV weighted with wPSAk for

k ∈ sV . Often, this means minimizing the weighted Mean Square Error

defined above. However, each machine learning model may have its own185

weighting mechanism.

• Obtain ŷk for k ∈ sR using the model trained in the previous step.

• Estimate the total as Ŷtr =
∑
sR
ŷkwRk
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4. Simulation study

4.1. Data190

We have chosen 3 datasets for the simulation study. Also, for each one of

them, 2 different non-probabilistic sampling strategies are used for the volunteer

sample. The probabilistic sampling strategy for the reference sample is always

a simple random sampling among the whole population. The volunteer samples

include the target variable while the reference samples do not contain that195

information.

The first population is the Hotel Booking Demand Dataset [? ], denoted as

P1. It contains booking information for a city hotel and a resort hotel. In total,

it consists of 119,390 bookings due to arrive between the 1st of July of 2015 and

the 31st of August 2017. The target is estimating the mean number of week200

nights (Monday to Friday) the guests book to stay at the hotel. The first non-

probabilistic sampling strategy, denoted as S1, is a random sampling where the

bookings from the resort hotel have 10 times more probability of beeing chosen

than the bookings from the city hotel. The second sampling strategy, denoted

as S2, is a random sampling where the bookings from the city hotel have 5 times205

more probability of beeing chosen than the bookings from the resort hotel. In

both cases, 28 covariates were used. The only variables excluded as covariates

were the target, the hotel type, the reservation status and the reservation status

date.

The second population is BigLucy [? ], denoted as P2. It contains financial210

information about 85,396 industrial companies. In this case, the target is esti-

mating the mean annual income in the previous year. The first non-probabilistic

sampling strategy, denoted as S1, is a simple random sampling among the com-

panies with SPAM options, excluding those labeled as ”small companies”. The

second sampling strategy, denoted as S2, considers a propensity to participate215

in the volunteer sample calculated as Pr(taxes) = min(taxes2/30, 1), where

taxes is the company’s income tax in the previous year, among the companies

with SPAM options. The covariates used are: the number of employees, the
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companys income tax, the size (small, medium or big) and whether it is ISO

certified.220

The third population, denoted as P3, consists of a study conducted in 2012

by the Spanish National Institute of Statistics about the economic and life

conditions of 28,610 adult individuals [? ]. The target is estimating the mean

self-reported health on a scale from 1 to 5. For the first sampling strategy,

denoted as S1, a simple random sample is taken among the individuals with225

internet access. For the second one, denoted as S2, a propensity to participate

defined as Pr(yr) = yr2−19002
19962−19002 , where yr is the year the individual was born, is

added to the internet restriction. 56 health-related covariates are used, avoiding

those too correlated with the target variable like health issues in the last 6

months or chronic conditions.230

4.2. Simulation

We have performed simulations for the 4 proposed estimators, including both

variants of shrinkage. For each one, every dataset with their corresponding

sampling strategies have been simulated 500 times for each sample size. 1000,

2000 and 5000 have been used as sample size, taking the same size for both235

samples (the volunteer and the reference ones). The machine learning model

chosen for every method is logistic regression, given its proven reliability [? ].

In order to evaluate the results for the simulations, 3 metrics are calculated:

the relative mean bias, the relative standard deviation and the relative Root

Mean Square Error. These metrics are defined as follows:240

RBias (%) =

∣∣∣∣∣
∑500
i=1 Ŷ

(i)

500
− Y

∣∣∣∣∣ · 100

Y
(6)

RStandard deviation (%) =

√∑500
i=1(Ŷ (i) − ˆ̄Y )2

499
· 100

Y
(7)

RMSE (%) =
√
RBias2 +RSD2 (8)
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with Ŷ (i) the estimation of Y in the i -th simulation and ˆ̄Y the mean of the 500

estimations.

Finally, in order to compare each method, the mean and median efficiency

is obtained as well as the number of times it has been among the best. The

efficiency of a method is defined as follows:245

Efficiency (%) =
Baseline−RMSE

Baseline
· 100 (9)

where the baseline is the RMSE of using the unweighted sample mean for the

estimation. Also, a method is considered to be among the best when its RMSE

differs from the best RMSE by less than 1%.

4.3. Results

The results obtained for the bias and RMSE can be consulted in Tables250

1 and 2 respectively. Table 3 contains the summary comparing each method.

Both shrinkage estimators are referred to as K1, for K1 = sr/(sr + sv), and

K2, for K2 = V (θ̂PSA)/(V (θ̂PSA) + V (θ̂SM )). The estimator based on the idea

of Chen et al. (2019) is referred to as Chen. The estimator which uses PSA

weights when training the Statistical Matching model is referred to as Training.255

As it can be observed, Training always obtains the best estimations. Even

though its difference from Matching is small, the most interesting point is that

even in the case where PSA outperforms Matching, Training is still better. Chen

offers very similar results, although slightly worse.

Shrinkage simply produces values between Matching and PSA. Also, there260

is not much difference between both variants because the variance of Matching

and PSA is usually similar.
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Table 1: Relative mean bias (%) of each population and sample size for each method

Baseline Matching PSA Training Chen K1 K2

P1S1 1000 18.9 4.5 5.5 4.5 4.6 5.2 5

P1S1 2000 18.9 4.9 5.5 4.8 4.9 5.1 5.2

P1S1 5000 18.6 4.8 4.6 4.7 4.8 4.9 4.7

P1S2 1000 9.2 5 4.1 4.1 4.1 4.5 5

P1S2 2000 9.2 4.9 4.2 3.9 4.1 4.4 4.4

P1S2 5000 9.1 4.7 3.9 3.6 3.8 4.3 4.3

P2S1 1000 70.6 24.4 67.7 23.6 24.4 46 35.2

P2S1 2000 70.4 24.6 68 23.7 24.5 46.2 35.4

P2S1 5000 70.4 24.7 68.1 23.7 24.5 46.3 35.3

P2S2 1000 32.7 12.6 15.1 10.9 11.9 13.7 13.7

P2S2 2000 32.6 12.7 15.1 10.9 11.9 13.6 13.7

P2S2 5000 32.9 12.7 15.1 11 12 13.7 13.8

P3S1 1000 8.4 2.6 3.4 2.3 2.3 2.9 2.9

P3S1 2000 8.5 2.4 3.5 2.2 2.3 3 3

P3S1 5000 8.5 2.5 3.5 2.1 2.3 3 3

P3S2 1000 12.9 4.7 5.6 4.1 4.5 5.2 5.2

P3S2 2000 12.8 4.7 5.8 4.1 4.3 5.2 5.2

P3S2 5000 12.8 4.6 5.8 4 4.2 5.1 5.1
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Table 2: Relative RMSE (%) of each population and sample size for each method

Baseline Matching PSA Training Chen K1 K2

P1S1 1000 19.1 5.6 6.3 5.4 5.5 6 5.8

P1S1 2000 18.9 5.4 5.9 5.3 5.3 5.5 5.6

P1S1 5000 18.7 5 8.6 4.9 5.6 5.9 6.3

P1S2 1000 9.5 5.9 5.7 5 5.3 5.5 5.9

P1S2 2000 9.3 5.3 4.8 4.4 4.7 4.9 4.9

P1S2 5000 9.2 4.8 4.2 3.8 4 4.5 4.4

P2S1 1000 70.6 24.4 67.8 23.7 24.4 46 35.3

P2S1 2000 70.4 24.6 68.1 23.7 24.5 46.2 35.4

P2S1 5000 70.5 24.7 68.1 23.7 24.5 46.3 35.4

P2S2 1000 32.8 12.7 15.2 11.1 12 13.8 13.8

P2S2 2000 32.7 12.7 15.1 11 12 13.7 13.8

P2S2 5000 32.9 12.7 15.2 11 12 13.7 13.8

P3S1 1000 8.5 3 3.7 2.8 2.7 3.3 3.3

P3S1 2000 8.5 2.6 3.6 2.4 2.5 3.1 3.1

P3S1 5000 8.5 2.5 3.5 2.2 2.3 3.1 3.1

P3S2 1000 12.9 5.1 6 4.6 4.9 5.6 5.6

P3S2 2000 12.9 4.9 6 4.4 4.6 5.3 5.3

P3S2 5000 12.8 4.7 5.9 4.1 4.3 5.2 5.2
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Table 3: Mean and median efficiency (%) of each method and times it has been among the

best

Mean Median Best

Training 65.8 66.4 18

Chen 64 65.2 18

Matching 61.8 64.2 14

K2 57.3 58 10

K1 55 58.2 10

PSA 46.6 53.9 6

5. Conclusions

Selection bias, a growing issue in survey sampling and empirical sciences due

to new questionnaire administration methods, appears when a sample is drawn265

from a potentially covered population which is different on its composition to

the target population. If a sample drawn from the target population is available,

some methods can be applied to adjust for selection bias in the nonprobabil-

ity sample. Propensity Score Adjustment (PSA) and Statistical Matching are

the most important methods up to date, both of them showing an increase in270

efficiency when applied to the estimation of a population parameter. In this

context, it is feasible that a combination of both methods could result in an ad-

vantage in terms of bias and error reduction, especially given that they can be

complemented as they have different outcomes (weights in PSA and predictions

in Matching). Previous work by [? ] proved that a doubly-robust estimator275

could provide acceptable results, with good properties.

In this study, shrinkage methods to combine two estimates, doubly-robust

estimation and the use of PSA weights in the training of models to be used

for Statistical Matching are compared in terms of bias and RMSE. The results

are obtained from simulations with three different datasets to enable the study280

of the behavior of such methods under different conditions. Results show a
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certain advantage of the training method developed in this paper over the model-

assisted estimator, and an advantage of both of them over Statistical Matching.

Shrinkage and PSA stand far below, although they offer competitive results

under certain circumstances.285

The advantage of the training method is that it gives more importance in

the prediction to those individuals who are more likely to appear in the popula-

tion. By default, a model trained in a biased dataset might also produce biased

predictions; however, if this bias is corrected by methods such as PSA, it is ex-

pected that the relationships established by the prediction model and its results290

are more similar to those present in the target population. This also applies to

the model-assisted estimator, where the prediction errors in the nonprobability

sample with the largest importance are those with a higher probability of being

present in a random sample from the target population.

Our study has some limitations to be noted: first, although a variety of295

datasets have been used, the suitability of each method might be influenced by

the data itself. The results presented here need further replicability in a wider

range of datasets and scenarios in order to have the full picture. Secondly, only

one prediction algorithm (linear regression models) was used in the study. Pre-

vious research showed that modern Machine Learning prediction techniques can300

be advantageous in removing selection bias with PSA [? ], although it remains

unclear for Statistical Matching [? ]. Further research could introduce these

algorithms in the adjustment methods presented here and compare them to the

linear regression case. Finally, the theoretical properties of some of the meth-

ods proposed here (shrinkage and training) have to be developed, although these305

properties should not be very different from those of the dual frame estimation

(in the case of shrinakge) or those from the Statistical Matching estimator (in

the case of training).
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