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Abstract - Next-generation systems are anticipated to be digital platforms supporting 

innovative services with rapidly changing traffic patterns. To cope with this dynamicity in a 

cost-efficient manner, operators need advanced service management capabilities such as 

those provided by NFV. NFV enables operators to scale network services with higher 

granularity and agility than today. For this end, automation is key. In search of this 

automation, the European Telecommunications Standards Institute (ETSI) has defined a 

reference NFV framework that make use of model-driven templates called Network Service 

Descriptors (NSDs) to operate network services through their lifecycle. For the scaling 

operation, an NSD defines a discrete set of instantiation levels among which a network 

service instance can be resized throughout its lifecycle. Thus, the design of these levels is 

key for ensuring an effective scaling. In this article, we provide an overview of the 

automation of the network service scaling operation in NFV, addressing the options and 

boundaries introduced by ETSI normative specifications. We start by providing a description 

of the NSD structure, focusing on how instantiation levels are constructed. For illustrative 

purposes, we propose an NSD for a representative NS. This NSD includes different 

instantiation levels that enable different ways to automatically scale this NS. Then, we show 

the different scaling procedures the NFV framework has available, and how it may automate 

their triggering. Finally, we propose an ETSI-compliant workflow to describe in detail a 

representative scaling procedure. This workflow clarifies the interactions and information 

exchanges between the functional blocks in the NFV framework when performing the scaling 

operation.  

 

Keywords -  NFV, ETSI, network service, scaling, automation.  

 

1. Introduction 

Network softwarization is an unprecedented techno-economic transformation trend that 

takes advantage of commodity hardware, programmability and reusability of software to 

provide cost optimizations and service innovation in next-generation networks. Network 

Functions Virtualization (NFV) is a key enabler in this trend. It brings novel practices for 

flexible and agile Network Service (NS) provisioning and management.  

 

The European Telecommunications Standards Institute (ETSI) has defined a reference NFV 

architectural framework [1] for the purpose of management and orchestration of NSs in 

multi-vendor, multi-network environments. This framework consists of three Management 

and Orchestration (MANO) functional blocks that make use of model-driven templates to 



 

 

deploy and operate multiple instances of different NSs (and their constituents) over a  

common infrastructure. The NS Descriptor (NSD) is the name of the template used for NSs. 

With the information gathered in a NSD, the MANO blocks are able to manage NS instances  

throughout their lifecycle with great agility and full automation.   

 

Scaling is a key lifecycle management operation in NFV. Scaling with NFV allows operators 

to automatically resize NSs at runtime to handle load surges with performance guarantees. 

This brings dynamicity and cost reduction compared to today’s scaling practices, where NS 

capacity is statically over-dimensioned for the highest predictable traffic peak. To achieve 

the required automation when scaling, an appropriate model for the NSD is needed.  

 

On one hand, most of works dealing with scaling focus on mechanisms/strategies for virtual 

resource estimation (e.g., [2]) and allocation (e.g., [3]). The policy-based rules and input data 

that these proposals use for the scaling operation are not retrieved from an NSD; instead, 

they are specified manually for every NS. This may led to less agile and more error-prone 

scaling solutions, where the automation in NFV is not fully exploited.  

 

On the other hand, there are no existing works that analyze the effect  the NSD modeling 

has in the NS scaling operation. The existing MANO platforms based on the NFV framework 

(e.g., Open Baton, OSM, ONAP or Tacker) use their own data modeling languages (e.g., 

TOSCA, YANG) for their NSDs. This leads to non-compatible workflows for the NS scaling 

operation, avoiding reusability and portability of scaling solutions across different NFV 

platforms [4]. To enable their interoperability, ETSI works on the development of normative 

specifications for the NFV information model, including interface description, and a platform- 

and technology-agnostic model for the NSD. Understanding this standardized model, and 

adapting the existing data models to it, is key for successful scaling operations with the 

existing MANO platforms. In this line, ETSI NFV has recently started in [5] a work targeted at 

mapping the TOSCA data model with the NSD information model.   

 

The contribution of this paper is twofold. First, we provide an overview of the structure of the 

ETSI NSD. We address those NSD fields most relevant for scaling, placing emphasis on the 

instantiation levels. These levels specify the different sizes an NS instance can adopt 

throughout its lifecycle. This limits the scaling of an NS instance to one of the discrete set of 

levels defined in the NSD. Thus, their correct design is key to ensure appropriate scaling 

operations with NFV. To facilitate their understanding, and show how they are constructed in 

a NSD, we propose a simple example of an NSD. Secondly, we provide an overview of the 

automated NS scaling operation, analyzing in depth the options and boundaries introduced 

by the ETSI NSD information model. We show the different scaling procedures that the NFV 

framework has available, and how they can be triggered in an automated manner. This 

includes the proposal of an  ETSI-compliant workflow for a representative scaling procedure. 

This workflow clarifies how the different MANO blocks interact, specifying the information 

they exchange in each step.  

 

This article is organized as follows. First, we present a background of those NFV concepts 

relevant for scaling. Then, we provide an insight into the NSD.  Next, we detail the most 

relevant NS scaling procedures, and propose a workflow for one of them. Finally, we remark 

some conclusions. Table 1 lists the acronyms used throughout the paper. 

 



 

 

 

Acronym Meaning 

BSS Business Support System  

DRPA Dynamic Resource Provisioning Algorithm 

EM Element Manager 

ETSI European Telecommunications Standards 
Institute 

MANO Management and Orchestration 

NFV Network Functions Virtualization 

NFVI Network Functions Virtualization 
Infrastructure 

NFVI-PoP Network Functions Virtualization 
Infrastructure Point of Presence 

NFVO Network Functions Virtualization 
Orchestrator 

NMS Network Management System 

NS Network Service 

NS-IL Network Service Instantiation Level 

NSD Network Service Descriptor 

OSS Operations Support Systems 

VCD Virtual Compute Descriptor 

VDU Virtual Deployment Unit 

VIM Virtual Infrastructure Manager 

VL Virtual Link 

VLD Virtual Link Descriptor 

VNF Virtualized Network Function  

VNF-IL Virtualized Network Function Instantiation 
Level 

VNFC Virtualized Network Function Component 

VNFD Virtualized Network Function Descriptor 

VNFFG Virtual Network Function Forwarding Graph 

VNFFGD Virtual Network Function Forwarding Graph 



 

 

Descriptor 

VNFM Virtual Network Function Manager 

VSD Virtual Storage Descriptor 

 

Table 1. List of Acronyms 

 

2. Background on key NFV concepts 
In this section, we describe the concept of NS and the NFV architectural framework.  

 

2.1 The Concept of NS 

An NS is a composition of network functions. According to ETSI NFV, network functions may  

be implemented as Virtualized Network Functions (VNFs) and physical network functions.  

For simplicity, we only consider the former in this paper. 

 

 
Figure 1. NS internal composition. In this example, we have defined two VNFFGs, and we have associated each 

with a different network plane: VNFFG1 for user plane traffic, and VNFFG2 for management plane traffic. Note 

that VNFFG1 includes two set of forwarding rules for traffic steering, enabling the definition of two user plane 

traffic flows, e.g. for distinct processing.   

 

An NS consists of a set of VNFs, Virtual Links (VLs), and VNF Forwarding Graphs 

(VNFFGs). VLs are abstractions of physical links that logically connect together VNFs. To 

specify how these connections are made along the entire NS, one or more VNFFGs are 



 

 

used. A VNFFG describes the topology of (the entire or part of) the NS, and optionally 

includes forwarding rules to describe how traffic shall flow between the VNFs defined in this 

topology.  

 

For a fine-grained control of its scalability, performance and reliability, a VNF might be 

decomposed into one or more VNF Components (VNFCs) [6], each performing a well-

defined subset of the entire VNF functionality. Each VNFC is hosted in a single virtualization 

container, and connected with other VNFCs through internal VLs.  

 

Figure 1 shows an example of an NS with its constituents. 

 

 

2.2 NFV Architectural Framework 
ETSI has defined a reference NFV architectural framework [1] for the deployment and 

operation of NSs. As seen in Fig. 2, this framework consists of three main working domains: 

the NFV Infrastructure (NFVI) and VNFs, MANO, and Network Management Systems 

(NMS).  

 

 
Figure 2. ETSI NFV Architectural Framework. The three working domains, and their constituent functional blocks 

communicate together using a set of reference points. A detailed description of those reference points targeted 

for standardization in ETSI NFV can be found in the citations depicted in the figure.  

 



 

 

 

The NFVI is the collection of resources that make up the cloud on top of which VNFs run. 

With the help of a virtualization layer, the underlying physical resources are abstracted and 

logically partitioned into virtual resources, used for hosting and connecting VNFs. NFVI 

might span across several geographically remote NFVI Point of Presences (NFVI-PoPs), 

enabling multi-site VNF deployments.   

 

MANO focuses on the virtualization-specific deployment and operation tasks in the NFV 

framework [12]. MANO consists of three functional blocks, including:  

● Virtualized Infrastructure Manager(s) (VIM), each managing the resources of one or 

more NFVI-PoPs. 

● VNF Manager(s) (VNFM), focused on the lifecycle management of the VNFs, and 

responsible for their performance and fault management at virtualized resource level.  

● NFV Orchestrator (NFVO), that orchestrates NFVI resources across VIMs, and 

performs NS lifecycle management.  

 

The MANO also includes data repositories to assist these blocks with their tasks. These 

repositories include: (a) NS and VNF Descriptors, (b) information about all the NS/VNF 

instances during their lifecycle (NS/VNF Info), and (c) updated information about the state 

(allocated/reserved/available) of NFVI resources. 

 

Finally, the NMS focuses on traditional (non virtualized-related) management tasks, 

orthogonal to those defined in MANO. NMS comprise: 

● Element Manager(s) (EM), responsible for the fault, performance, configuration, 

accounting, and security management of the VNFs at application level.  

● Operations/Business Support Systems (OSS/BSS), comprising traditional systems 

and management applications that help operators to provision and operate their NSs. 

 

 

 

3. NS Description 
In this section, we first study the NSD structure. Then, we show an example of an NSD. For 

illustrative purposes, we propose an NSD for the NS shown in Fig. 1.  

 

3.1 NSD Overview 

An NSD is a deployment template that contains machine-processable information used by 

MANO blocks to create instances of an NS, and operate them throughout their lifetime. An 

NSD is constructed from a set of attributes and other descriptors (see Fig. 3).  

 

The attributes that an NSD includes enable specifying how to deploy and operate instances 

of an NS. In this work, we consider those that are most relevant for NS scaling (see Fig. 3):  

● Monitored Info: specifies the information to be tracked for NS performance and fault 

management. This information includes resource-related performance metrics (at 

NS/VNF level), and VNF indicators from NS’s constituent VNFs. 



 

 

● Auto Scaling Rules: contain rules that enables triggering scaling actions on an NS 

instance when a condition involving Monitored Info is not satisfied. The NFV 

information model allows expressing these rules as customized scripts provided at 

instantiation time. The language used for these scripts shall support conditions 

involving not only logical/comparison operators with scalar values, but also complex 

analytical functions able to process statistical data correlated from different sources. 

● Deployment Flavors: describe specific deployment configurations for the NS. For a 

more detailed description, see next subsection.  

 

 
Figure 3. NSD structure. Only the descriptors and attributes that are most relevant for NS scaling are shown.  

 

 

To describe the deployment and operational behavior of NS constituents, NSD contains and 

references a set of descriptors, including VNF Descriptors (VNFDs), VL Descriptors (VLDs), 

and VNFFG Descriptors (VNFFGDs) [13]. A VNFD contains information required to deploy 

and operate instances of a VNF. A VLD provides information of a VL, including the 

deployment configurations available for VL instantiation. These configurations are specified 

through Deployment Flavors. Different configurations results in different performance and 

reliability levels for VNF connectivity. Finally, a VNFFGD references the VNFDs and VLDs 

for topology description.  

 



 

 

From the above descriptors, we concentrate on the VNFDs. The NSD references information 

of VNFDs that is essential for NS scaling. Similar to an NSD, a VNFD also includes 

descriptors and attributes.  

 

The descriptors that VNFD contains provide a detailed view on the VNF internal 

composition. Particularly, a VNFD includes Virtual Compute Descriptors (VCDs), Virtual 

Storage Descriptors (VSDs), and internal VLDs. The first two specify the virtual compute and 

storage resources that are needed for VNFC hosting, while the latter specifies the 

performance requirements for VNFC connectivity.  

 

In terms of attributes, a VNFD includes one or more:  

● VNF Indicators: represent performance/fault-related events that provide information 

of the VNF at application level. 

● Virtualization Deployment Units (VDUs): describe how to create and operate 

instances of VNFCs; hence, an VDU can be seen as a VNFC descriptor. A VDU 

specifies the compute resources (and optionally storage resources) that a 

virtualization container needs to host a VNFC. To that end, it references one VCD 

(and optionally one or more VSDs). 

● Deployment Flavors: similar to those defined in the NSD, but applied to VNFs.  

 

As seen, the models for the NSD and VNFD are very similar: VNFs/VDUs connected by 

VLDs, and defining various Deployment Flavors. Thus, some initiatives like the Superfluidity 

project [4] have suggested the idea of having a common, reusable  information model for 

both of them, so that they can share the same interfaces and lifecycle management 

operations. This model shall be recursive and scalable. ETSI NFV already enables this 

recursivity and scalability at NS level, with the concept of composite NSs (i.e., an NS 

composed of smaller, nested NSs) [13]. However, ETSI NFV considers the necessity to 

maintain different models for NSDs and VNFDs, due to some  technical issues that can be 

found in [13-14].  

 

From the perspective of NS scaling, the Deployment Flavors within an NSD are key 

attributes, as they contain the instantiation levels permitted for an NS instance. These levels 

are constructed with information included in the flavors of the VNFDs and VLDs. In the next 

subsection, we describe the different flavors, studying how they enable the definition of 

different instantiation levels in the NSD.  

 

3.2 Deployment Flavors and Instantiation Levels 

 

As seen earlier, there are three types of deployment flavors: VL flavors, VNF flavors, and NS 

flavors.  

 

Selecting a VL flavor enables selecting specific QoS parameters (latency, jitter, etc.) and 

transport reliability for a VL.  

 

 

 



 

 

 
Figure 4. A NSD proposal for the NS given in Fig. 1. Please note that only the most relevant attributes for scaling 

are shown. For better understandability, the VNF-ILs selected for the NS flavor are referred to as VNF-Profiles. 

Similarly, the VL flavors selected for the NS flavor are referred to as VL-Profiles. The profile term is also used in 

ETSI NFV. See [13] for more information.  

 

Each VNF flavor within a VNFD can be used to define a different deployment configuration 

for a VNF. A given deployment configuration specifies the functionality and the performance 

level(s) allowed for instantiating the VNF. To specify the VNF functionality (i.e. which 

features need to be activated for the VNF), the VNF flavor indicates which (subset of) 



 

 

VNFCs need to be deployed. Particularly, the flavor references the VDUs to be used for their 

instantiation. To specify the performance level(s) permitted for VNF instantiation (i.e. which 

amount of resources are needed for each selected VNFC), the flavor defines one or more 

instantiation levels (VNF-ILs). Each VNF-IL indicates, for each VDU referenced in the flavor, 

the number of VNFC instances that need to be deployed from this VDU.  

 

Finally, NS flavoring enables adjusting the functionality and the level of performance of an 

NS. A NS flavor selects the VNFs and VLs to be deployed as part of the NS, and their actual 

flavors. For each selected VNF flavor, the subset of VNF-ILs to be used is also specified. 

With this information, an NS flavor defines one or more instantiation levels (NS-ILs). NS-ILs 

are similar to VNF-ILs, but at NS level. Each NS-IL specifies: 

● The number of VNF instances to be deployed from each VNF-IL specified in the NS 

flavor.  

● The VLs required for VNF connectivity, their bitrate, and the VL flavors used for their 

instantiation.  

 

As seen above, NS-ILs are key for NS scaling. The fact that an NS instance needs to be 

scaled means that the current NS-IL is no longer valid for that instance, and hence a new 

NS-IL must be used. In this case, the NFVO must select, among the finite set of NS-ILs 

predefined in the NS flavor, the optimum one for scaling the instance (see next section).  

Note that the operator’s policy adopted for NS flavor design (the number of NS-ILs, and the 

differences among them in terms of resource requirements) has a great impact on the NS 

scaling operation at operation time.  

 

To clarify these concepts, in Fig. 4 we provide an example of an NSD for the NS shown in 

Fig. 1. For simplicity, we only address the VNFD corresponding to VNF-B: VNFD#2. The rest 

of VNFDs could be constructed similarly. 

 

VNFD#2 includes four VDUs. From these VDUs, instances of VNFC-B1 and VNFC-B2 with 

different capacity can be created. For example, VDU#1 and VDU#2 are used to create 

instances of VNFC-B1 with low/high capacity, respectively. VNFD#2 also includes two 

flavors: VNF Flavor#1, enabling only VNFC-B1 scaling; and VNF Flavor#2, support the 

scaling of both VNFC-B1 and VNFC-B2. Each flavor includes three VNF-ILs, differing in their 

resource requirements.  

 

The NSD references the descriptors of the NS’s constituent VNFs: VNFD#1, VNFD#2 and 

VNFD#3. For simplicity, we assume VNFD#1 and VNFD#3 have each a single flavor with a 

single VNF-IL. VNF-A, VNF-B, and VNF-C are interconnected through VLs that can be 

instantiated from the two defined VL flavors. In this example, we consider a single NS flavor 

that only allows the scaling of VNF-B, restricting VNF-A and VNF-C to a single instance 

each. This flavor presents four predefined NS-ILs. These NS-ILs enable two scaling cases: 

(a) increasing/decreasing the capacity of a VNF-B instance, and (b) adding/removing a VNF-

B instance. The first three NS-ILs are used for (a), where there is one instance of VNF-B. 

When NS-IL#3 is reached, the VNF-B instance can no longer increment its capacity. At this 

point, the only way to scale this NS is by adding a new VNF-B instance, as stated in NS-

IL#4. With this NS-IL, the NS instance has two instances of VNF-B.  

 

 



 

 

4. NS Scaling Automation 
In this section, we describe how the NS scaling operation may be automated with MANO, 

considering the boundaries that ETSI NFV specifications impose. We detail the input 

information that the NFVO takes to determine if an NS instance needs to be scaled. 

Assuming the scaling is required, we show the different scaling procedures that NFVO may 

trigger. Finally, we propose a detailed workflow to describe one of them, illustrating the 

messages the MANO blocks exchange in that procedure.  

 

4.1 Boundaries and Procedures 

Although NS scaling can be manually triggered, automation enables operators to fully exploit 

NFV benefits. To automate the scaling triggering, NFVO has a customizable software 

module (e.g. supporting NS-specific code) that runs a Dynamic Resource Provisioning 

Algorithm (DRPA). The DRPA determines when an operative NS instance needs to be 

scaled, and the NS-IL which optimizes the scaling of that instance according to a set of 

criteria. This optimum NS-IL will then be used by the NFVO to trigger an appropriate scaling 

procedure.  

 

The DRPA takes the following input parameters: 

● Performance and fault data, as specified in the Monitored Info attribute (see Fig. 3). 

This includes periodical resource-related performance metrics [6-9], and/or 

asynchronous alarms (performance metric-based threshold crossing, and VNF 

indicator value changes) [8-9]. 

● Runtime information of the NS instance and each constituent VNF instance, 

accessible from the NS Info and each VNF Info.  

● The entire set of NS-ILs and VNF-ILs available for use in the NSD and VNFD(s). 

These levels, built by NSD/VNFD developers at design time, cannot be changed at 

operation time. In case they need to be updated, DevOps strategies like those 

proposed in [15] could be used.  

● Resource capacity information from each accessible VIM. This information can be 

found in the data repositories (see Fig. 2). 

 
The DRPA applies the Auto Scaling Rules to the incoming performance/fault data. If they are 

not satisfied, NS scaling is required. In that case, the DRPA determines the NS-ILs that are 

candidate to satisfy the performance/fault criteria specified in the Auto Scaling Rules. Over 

these candidates, the DRPA applies the pertinent optimization criteria (e.g., minimize 

resource costs, energy consumption) and a set of constraints (e.g., available resource 

capacity, placement constraints) to output: 

● The optimum NS-IL. 

● The NFVI-PoPs that will accommodate the virtual resources associated to this 

optimum NS-IL. Moving from the current NS-IL towards the optimum NS-IL may 

entail the allocation and release of resources. For each new resource to be allocated, 

the DRPA selects the NFVI-PoP where this resource will be accommodated. Next, 

NFVO determines which VIM(s) provide access to the selected NFVI-PoPs.  

 

Using these outputs, the NFVO triggers one of the following NS scaling procedures [11]:  



 

 

● VNF scaling: One or more VNF instances in the NS instance modify their capacity by 

changing their VNF-ILs, and hence by adding and/or removing VNFC instances. This 

procedure assumes the new VNF-ILs are selected from the VNF flavor currently 

used.  

● Adding/Removing VNF instances: Instances of existing VNFs are added/removed in 

the NS instance. For each VNF instance to be added, it is required to select its VNF-

IL from a given VNF flavor.   

 

As seen above, the specific procedure to be triggered is subjected to the differences that 

exist, in terms of VNF-ILs, between the two NS-ILs: the NS-IL of the NS instance, and the 

optimum NS-IL that DRPA has chosen. The possibility of choosing between different 

candidate NS-ILs (and hence triggering one of the above procedures) in the scaling 

operation adds flexibility compared to the autoscaling strategies present in the existing 

MANO solutions. The data models (TOSCA, YANG, or Heat Orchestration Templates [HOT]) 

used for their descriptors of NSs (and their constituents) have predefined, rigid autoscaling 

policies that do not allow choosing between different level of resources; instead, they set the 

level towards the NS (or one of its constituents) shall be scaled to. 

 

4.2 Scaling operation workflow 

As seen earlier, the goals of the VNF Scaling and Adding/Removing VNF instances 

procedures are different. However, the ways of performing them with MANO are very similar. 

Indeed, the addition/removal of VNF instances is no more than an extension of a VNF 

Scaling, with the peculiarity that the former implies (a) adding/removing all the VNFC 

instances of each VNF instance, and (b) instantiate/modify/remove VLs for VNF connectivity. 

Due to limited space, we concentrate on VNF Scaling in this paper.  

 

In Fig. 5, we show the workflow messages for scaling a single VNF instance of an NS. 

These messages have been grouped into distinct phases: information collection, scaling 

triggering, resource allocation and resource release. Although the last two phases may be 

performed independently, it could happen both are required in the same scaling scenario 

(e.g., replacing a running VNFC instance by other instance of greater capacity). In that case, 

allocation goes before release to guarantee service continuity (e.g., when starting the new 

VNFC instance, the old instance can be deleted). 

 

In the information collection phase, the NFVO gathers performance/fault data from VNFMs 

and VIMs. Performance metrics at NS/VNF level are reported with Performance Information 

Available Notifications, and performance metric-based threshold crossed values with 

Threshold Crossed Notification (steps 1-2). VNF Indicator values are changed by EMs, and 

notified to NFVO by VNFMs (step 3).  

 

In the scaling triggering phase (step 4) the DRPA uses the above information, along with the 

information the NFVO has accessible from data repositories (NSD/VNFDs, NS/VNF Info, 

and NFVI resources state) to decide the optimum NS-IL. If we assume the optimum NS-IL 

differs from the existing one in the VNF-IL of a single VNF instance, a VNF scaling 

procedure will be triggered. This would happen, for example, if the DRPA decides to scale 

an instance of the NS shown in Fig. 1, moving it from NS-IL#1 to NS-IL#3 (see Fig. 4). This 

means scaling the VNF-B instance from VNF-IL#1 to VNF-IL#3. In other words, incrementing 



 

 

the capacity of the VNFC-B1 instance, while leaving the VNFC-B2 instance unmodified. Note 

that this change involves both resource allocation and resource release phases. 

 

 
Figure 5. Workflow for the VNF Scaling Procedure.  

 

 



 

 

  

The NFVO requires the VNFM to scale the VNF instance, sending it the new VNF-IL in the 

Scale VNF to Level Request1. Now, VNFM can initiate the scaling operation. To that end, the 

VNFM provides this lifecycle management operation with an unique ID using the Scale VNF 

to Level Response (step 5). The VNFM will use this ID to notify the NFVO the start and later 

the result of this operation2. Finally, the VNFM consults the VNF Info and the VNFD to 

compare the current VNF-IL against the new one. From this comparison, the resources to be 

allocated and/or released for this scaling operation can be derived.    

 

In the resource allocation phase, we distinguish the following sub-phases: 

● Resource Reservation (optional [12]): Prior to this sub-phase, VNFM asks NFVO for 

permission to allocate resources. To that end, VNFM sends NFVO the IDs of VDUs 

and internal VLs that map to the resources to be allocated (step 6). Although the 

NFVO already had this information after step 5, ETSI specifications impose this 

information exchange [9]. Then, the resource reservation sub-phase begins. From 

the output of the DRPA, the NFVO knows which NFVI-PoPs shall accommodate the 

resources to be allocated, and the VIM(s) providing  access to those NFVI-PoPs. 

Now, these resources can be reserved for later allocation. Each selected VIM 

receives three reservation requests (step 7), one for each resource type (compute, 

storage, and network) it has to reserve in the NFVI-PoPs under its management. 

These requests include the placement constraints applicable to the specified 

resources. The VIM uses these constraints to perform a placement algorithm (step 

8), deciding the appropriate NFVI-PoPs’ resource zones [7] where resources are 

reserved. Then, the VIM sends the NFVO (step 9) the IDs of reserved resources. 

Finally, the NFVO sends the VNFM those IDs, and connectivity information [9] for 

each selected VIM. Now, VNFM knows how to access those VIMs, and which one 

may allocate each resource. If this sub-phase is not performed, two issues need to 

be considered. First, only steps 6 and 10 are executed. Secondly, the placement 

algorithm is now performed after resource allocation request (see next sub-phase).  

● VNFC Instances Creation: The VNFM sends the reservations IDs to the 

corresponding VIMs (step 11) for resource allocation (step 12). At this point, VNFC 

instances have been created and their connectivity enabled. The IDs of the allocated 

resources are then sent to the VNFM (step 13). In step 14, the VNFM triggers the 

configuration of VNFC instances. Finally, VNFM updates the VNF Info in the data 

repository (step 15) to reflect the creation of new VNFC instances, and set their state 

to STOPPED.  

● Starting VNFC Instances: To start the functionality of the new instances, the VNFM 

triggers an Operate VNF lifecycle operation (step 16). This operation will force (at the 

end of this sub-phase) the change of the instances’ state from STOPPED to 

STARTED. Once the NFVO grants this operation (step 17), the new VNFC instances 

are configured at application level (step 18). To that end, VNFM communicates with 

the EM. Lastly, VNFM updates the VNF Info (step 19), changing the state of the new 

instances from STOPPED to STARTED. Note that some of the running VNFC 

instances could be affected by the creation of the new ones, and hence need to be 

                                                 
1 Scale VNF operation message might also be used, but it has some limitations. See [9] for more information. 
2 Some lifecycle management operations require sending NFVO start and result notifications. For simplicity, all these 

notifications are omitted in the workflow.   



 

 

(re)configured in terms of connectivity (e.g. new interfaces, updated link 

requirements) and/or application (e.g. sending/receiving packets to/from the new 

instances). In that  case, the VNFM would order the corresponding VIM(s) and/or 

EM, respectively to make the necessary changes.    

 

For the Resource Release Phase, we have two sub-phases: 

● Stopping VNFC Instances: In step 20, VNFM asks NFVO for permission to release 

resources. Then, VNFM triggers an Operate VNF lifecycle operation (step 21) to 

gracefully terminate some VNFC instances (forcing the stopping of VNFC instance at 

the end of this sub-phase). In step 23, affected instances are (re)configured 

(following counterpart strategies to those  specified in the Starting VNFC instances 

sub-phase), and instances to be terminated are shut down. Finally, the state of 

stopped instances is changed from STARTED to STOPPED (step 24). 

● VNFC Instances Deletion: The VNFM sends to the corresponding VIMs the IDs of the 

resources that host and connect the stopped VNFC instances (step 25). At this point, 

these instances are deleted (step 26). Then, the VIMs send back to the VNFM the 

resource IDs of released resources (step 27). After receiving those IDs, the VNFM 

updates the VNF Info (step 28) to reflect the instance deletion. 

 

5. Conclusions 

In this article, we shed light on the NS scaling operation with NFV. The options for 

automatically scaling a NS with the NFV framework are limited by the way the NSD is 

constructed. During its lifecyle, an NS instance only can move among the instantiation levels 

defined in the NSD, so their design is critical to ensure an effective automated scaling. In this 

work, we have analyzed how these levels are built in a NSD. To facilitate their 

understanding, we have proposed an NSD example, where different instantiation levels are 

included for scaling a NS.   

 

We also have shown the different procedures the NFVO may trigger to scale an NS instance 

according to ETSI specifications, and how NFVO may automate them. To that end, the 

NFVO runs a DRPA that, taking NSD content and information of the operative NS instance, 

determines the optimum instantiation level towards the NS instance must be scaled to. This 

output forces the way the scaling procedures are performed in NFV. For one representative 

procedure, we have proposed an ETSI-compliant workflow that clarifies the interactions and 

information exchanges between the functional blocks in the NFV framework. 
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