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Abstract

This paper proposes a model for detecting probabilities in the presence
of abrupt concept drift. This proposal is based on a dynamic Bayesian net-
work. As the exact estimation of the parameters is unfeasible we propose
an approximate procedure based on discretazing both the possible probabil-
ity values and the parameter representing the probability of change. The
result is a procedure which is quite efficient in time and space (with a com-
plexity directly related to the number of points used in the discretization)
and providing very accurate prediction as well. These benefits are checked
with a detailed comparison with other standard procedures based on variable
size windows or forgetting rates. The procedure is presented for a binomial
variable but it will be explained how it can be extended to more general
settings.

Key Words.- concept drift, dynamic Bayesian networks, change detec-
tion, propagation algorithms.

1. Introduction

In many situations we have a stream of observations for a certain set of
variables which comes continuously over time. In many cases, the stationarity
of the model generating the data is assumed, i.e. it does not change as long as
time goes by. However this hypothesis is unrealistic in certain environments
that evolve with time. An example can be the probability of appearance of
a specific word in a junk e-mail. When a change in probabilities occurs we
say that we have a concept drift [5]. When considering a model for a super-
vised classification problem it is usual to distinguish between changes in the
prior probabilities of the class, its posterior probabilities, or the conditional
probabilities relating the class to the attributes [5, 14, 13]. In this paper
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this discrimination is not considered: it will focus on detecting probability
changes without taking into account if this parameter is a conditional, prior,
or posterior probability. We can also distinguish between abrupt and gradual
changes [5, 13]. In the first case a period of no-change is followed by a sudden
change (for example a machine that stops working). In the second case there
are small and gradual changes (a machine producing more defective items
as long as it gets older). In this paper we will only consider abrupt change.
The approaches for dealing with this problem can be categorized as follows:

• Methods based on a sliding window of fixed size: the probabilities are
estimated taking into account the last N observations where N is a
fixed parameter. This is perhaps the simplest approach. An example
of this strategy is the procedure for updating decision trees proposed
in [8]. The main problem is the determination of N : a low value will
imply that probabilities are always estimated with small samples and
will be subject to non negligible errors; a large value of N will increase
the complexity of the model and will limit its capability to adapt to
changes.

• Methods based on a sliding window of variable size: in this case the
probabilities are estimated with a window containing the last N obser-
vations, but now N is not a fixed parameter. Each new observation is
added to the window and then some statistical tests (or more ’ad hoc’
decision procedures) are computed in order to determine whether there
are differences between the distribution of the first N1 observations and
the last N2 (N = N1 + N2). If a difference is detected the samples in
N1 are removed (forgotten) from the sliding window. Usually the sta-
bility of the accuracy is considered as the basis to detect changes when
the sample is employed to estimate a supervised classification model
[4]. However, ADWIN ([2]) is perhaps the best known procedure for
another kind of problems. It is based on a generic statistical proce-
dure for deciding about changes in different sub-windows of the last N
observations (its performance is guaranteed).

• Methods based on gradual forgetting: these methods consider that old
observations are less important than new ones, being the loss of rele-
vance gradual with respect to their age [9]. In general, these procedures
keep a set Si of sufficient statistics for estimating parameters; for each
observation Xi+1 a new set of sufficient statistics is computed as a
function G(αiSi, Xi+1) where αi ∈ (0, 1) is the forgetting factor which
usually is constant [5]. This idea seems to be more appropriate for
gradual changes than for abrupt ones.
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• Methods based on Bayesian updating: in this case a full probabilistic
model is specified and updated each time an observation or a bunch
of them arrives. In general, this will produce an estimation of the
probabilities of both change and next observation. Honkela, Vanpola
[7] proposes a probabilistic model in which the probabilities evolve ac-
cording to a forgetting factor using variational inference. A similar
approach is followed by Masegosa et al. [10] but in this case the forget-
ting factor can be estimated with the model as well. This work and the
one presented in Cabañas et al. [3] employ hidden variables to monitor
the presence of changes.

In this paper we propose a Bayesian approach based on probabilistic
graphical models [12] of a dynamic nature [11] and specific for abrupt changes
in the probabilities. We will give an exact expression for computing the esti-
mation of the probabilities, but it will be difficult to use in practice. So, our
approach will employ an approximate computation based on discretization.

The paper is organized as follows: Section 2 presents the basic model
for the binomial case and the approximate computation procedure; it also
explains how the basic model can be extended to monitor the evolution of
conditional probabilities; Section 3 is devoted to the experiments; and finally
Section 4 considers the conclusions and future work.

2. The Basic Model: Binomial Case

Consider a sequence of variables {Xi}ni=1 where each variable Xi takes val-
ues on the set {0, 1} with probabilities µi = P (Xi = 1) that may change with
i. The problem under consideration can be formulated as follows: given a cer-
tain set of observations Xi = xi, i = 1, . . . , n, how to compute an estimation
of µi (µ̂i) for each i assuming that we have observed X1 = x1, . . . , Xi = xi.

The frequencies of 0s and 1s in a certain set of observations xj, . . . , xi, will

be denoted as Nji =
∑k=i

k=j xk and N ji = (i− j+ 1)−Nji respectively. In the
case of abrupt change µi may present a change at each moment i (the value of
µi will be randomly selected in [0, 1] with an uniform distribution) or remain
stable (and then µi = µi−1). The variable Ci will be used to represent the
occurrence of change: its value will be 1 in the case of change and 0 otherwise.
It is assumed that the probability of change, P (Ci = 1), is constant and
denoted by ρ. In order to get an estimation of µi it is needed to model the
relation between µi and µi+1. This is the purpose of the dynamic Bayesian
network presented in Figure 1. As we employ a Bayesian approach all the
elements involved in this problem will be considered as random variables.
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Figure 1: Dynamic Bayesian network modeling the problem

2.1. Exact Estimation

To simplify the notation, let us call Ai to the event X1 = x1, . . . , Xi = xi.
fi(µi, ρ|Ai) denotes the posterior density of (µi, ρ) given the observations
Ai. Analogously fi(µi|Ai) and fi(ρ|Ai) will denote the marginal densities
conditioned to Ai. fi(µi, ρ, Ai) and fi(µi, Ai) represent the joint densities of
the parameters and Ai, i.e. the densities conditioned to the observations, but
without normalization (the prior density of the parameters multiplied by the
probability of Ai):

fi(µi, ρ, Ai) = P (Ai|µi, ρ)fi(µi, ρ)

fi(µi, Ai) = P (Ai|µi)fi(µi)
(1)

The computation of fi(µi, ρ|Ai) can be done from fi(µi, ρ, Ai) by normal-
ization (dividing the density by the integral of fi(µi, ρ, Ai) on parameters µi
and ρ). The density for µ1 and A1, i.e. f1(µ1, A1) is equal to µN11

1 (1−µ1)
N11 .

This is immediate, as the prior information for µ1 is uniform (f1(µ1) = 1) and
this is exactly the likelihood on the space [0, 1], associated to the observation
X1 = x1. The joint density f1(µ1, ρ, A1) can be computed as:

f1(µ1, ρ, A1) = µN11
1 (1− µ1)

N11f(ρ) (2)

where f(ρ) is the prior density of ρ. This is immediate just because µ1 and
ρ are independent according to the model of Figure 1.
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Theorem 1. The density fi(µi, ρ, Ai) can be computed as

f(ρ)
i∑

j=1

P (Aj−1)(1− ρ)i−jρr(i)µ
Nji

i (1− µi)Nji

r(i) =

{
0 if i = 1

1 otherwise

P (A0) = 1

(3)

Proof. Let us prove that

fi(µi, Ai|ρ) =
i∑

j=1

P (Aj−1)(1− ρ)i−jρr(i)µ
Nji

i (1− µi)Nji (4)

Then the proof of the theorem will be obtained multiplying by the prior
density of ρ, f(ρ), in order to get fi(µi, ρ, Ai).

Eq. 4 will be proved by induction on i. For i = 1, the result was estab-
lished before this theorem (Eq. 2), considering that A0 is the empty set of
observations and P (A0) = 1. Assuming that it is true for i then it must be
proved for i+ 1.

As the density of ρ is not considered, it is needed the computation of the
distribution fi+1(µi+1, Ai+1). This can be expressed as:

fi+1(µi+1, Ai+1) = fi+1(µi+1, Ai)P (Xi+1 = xi+1|µi+1, Ai) (5)

Taking into account the fact that Xi+1 is conditionally independent of Ai
given µi+1, then Eq. 5 can be expressed as:

fi+1(µi+1, Ai+1) = fi+1(µi+1, Ai)︸ ︷︷ ︸
(a)

P (Xi+1 = xi+1|µi+1)︸ ︷︷ ︸
(b)

(6)

As N(i+1)(i+1) refers to a single observation its value will be 1 if xi+1 = 1
and 0 otherwise, being N (i+1)(i+1) = 1−N(i+1)(i+1). Therefore the right part
of Eq. 6 (labeled as (b)) can be written as:

P (Xi+1 = xi+1|µi+1) = µ
N(i+1)(i+1)

i+1 (1− µi+1)
N(i+1)(i+1) (7)

On the other hand, the left part of Eq. 6 (labeled as (a)) can be expressed
as:

fi+1(µi+1, Ai) = fi+1(µi+1, Ai|Ci+1 = 1)P (Ci+1 = 1)

+fi+1(µi+1, Ai|Ci+1 = 0)P (Ci+1 = 0) =

fi+1(µi+1, Ai|Ci+1 = 1)ρ+ fi+1(µi+1, Ai|Ci+1 = 0)(1− ρ)

(8)
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just because P (Ci+1 = 1) = ρ and P (Ci+1 = 0) = 1− ρ. As Ci+1 = 1 refers
to the situation when a change occurs, then µi+1 is independent of Ai given
ρ and having an uniform density in [0, 1]. Therefore

fi+1(µi+1, Ai|Ci+1 = 1)P (Ci+1 = 1) = P (Ai) ρ (9)

When Ci+1 = 0 there is no change and µi+1 = µi and fi+1(µi+1, Ai|Ci+1 =
0) = fi(µi, Ai). Then

fi+1(µi+1, Ai|Ci+1 = 0)P (Ci+1 = 0) = (1− ρ)fi(µi, Ai) (10)

Assuming the induction hypothesis expressed by Eq. 11, fi(µi, Ai) can
be written as:

fi(µi, Ai) =
i∑

j=1

P (Aj−1)(1− ρ)i−jρr(i)µ
Nji

i (1− µi)Nji (11)

With these Eq. 8 is now:

fi+1(µi+1, Ai) = ρP (Ai) + (1−ρ)

[
i∑

j=1

P (Aj−1)(1− ρ)i−jρr(i)µ
Nji

i (1− µi)Nji

]
(12)

This expression must be multiplied by µ
N(i+1)(i+1)

i+1 (1 − µi+1)
N(i+1)(i+1) in

order to get the complete expression for fi+1(µi+1, Ai+1):

fi+1(µi+1, Ai+1) = ρP (Ai)µ
N(i+1)(i+1)

i+1 (1− µi+1)
N(i+1)(i+1)+

i∑
j=1

P (Aj−1)(1− ρ)i+1−jρr(i)µ
Nj(i+1)

i (1− µi)Nj(i+1)
(13)

The right term in Eq. 13 is obtained considering that Nji +N(i+1)(i+1) =
Nj(i+1) and N ji+N (i+1)(i+1) = N j(i+1). Finally the desired expression follows
by noting that Eq. (13) is equal to

i+1∑
j=1

P (Aj−1)(1− ρ)i+1−jρr(i)µ
Nj(i+1)

i (1− µi)Nj(i+1) (14)

One problem with the density of Eq. 3 is that values P (Aj) (j = 1, . . . , i−
1) are required. Furthermore, in order to compute the posterior density, it is
needed to integrate in µi+1 and ρ in order to obtain P (Ai) (the normalization
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constant). However, if the density of ρ is a Beta distribution, we can derive
a recursive expression for these probabilities. This is stated by the following
theorem for the case of an uniform density in [0, 1] for ρ parameter.

Theorem 2. If f(ρ) is the uniform distribution, then

P (Ai) =
i∑

j=1

P (Aj−1)
(i− j)!r(i)!

(i− j + r(i) + 1)!

Nji!N ji!

(i− j + 2)!

r(i) =

{
0 if i = 1

1 otherwise

P (A0) = 1

(15)

Proof. The expression in Eq. 15 can be easily obtained from Eq. (3) taking
into account that:∫ 1

0

xα(1− x)βdx =
Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
=

α!β!

(α + β + 1)!
(16)

where Γ is the Gamma function, and α, β ≥ 0. It is also important to remark
that Nji +N ji = i− j + 1.

Finally, we can compute the estimation µ̂i as the expected value of µi
with respect to the posterior density of µi given Ai. The final expression
is simply the integral of the density (3) multiplied by µi, divided by P (Ai).
This produces the following result:

Theorem 3. If f(ρ) is the uniform distribution, then µ̂i (expected value of
µi with respect to fi(µi)) is equal to:

µ̂i =

∑i
j=1 P (Aj−1)

(i−j)!r(i)!
(i−j+r(i)+1)!

(Nji+1)!Nji!

(i−j+3)!∑i
j=1 P (Aj−1)

(i−j)!r(i)!
(i−j+r(i)+1)!

Nji!Nji!

(i−j+2)!

r(i) =

{
0 if i = 1

1 otherwise

P (A0) = 1

(17)

Proof. The result is obtained just because the numerator is the integral∫ 1

0

∫ 1

0
fi(µi, ρ, Ai)µidµidρ and the denominator is the normalization constant

P (Ai) (see Eq. 15).

7



Expressions (15) and (17) provide recursive equations allowing an exact
estimation of the parameters µi by the expectation of its posterior density.
However, the complexity of these computations increases with the length of
the sequence. Moreover, all the observations X1 = x1, . . . , Xi = xi must be
stored (we could keep in memory Nji values but this is equivalent to keep all
the observations just because xj = Nji−N(j+1)i). As a consequence this exact
procedure is unfeasible for very large data streams where a fast computation
of µ̂i is necessary each time a new observation arrives. For this reason, we
have to develop an approximate procedure.

2.2. Approximate Computation

The approximate computation of fi(µi, ρ|Ai) will be based on discretiza-
tion. We will consider two different cases: fixed value of parameter ρ and
uncertainty for both parameters (ρ and µ).

2.2.1. Fixed value of ρ

In general the estimation of a density f(x), x ∈ [a, b] will be based on
setting a value for an integer parameter K and the selection of a set of
K + 1 points (r0 = a, . . . , rK = b) with a certain probability distribution for
them (p0, . . . , pK). Given a subset A ⊆ [a, b] then P (A) and E[X] will be
approximated as:

P (A) =
∑
rk∈A

pk

E[X] =
K∑
k=0

rkpk

(18)

The points will be selected according to the following expression:

rk = F−1(
1

k
) (19)

where F is the cumulative distribution function of f and F−1 its generalized
inverse (assuming F is a continuous function). The probability distribution
assigns a probability given by pk = 1/(K + 1) to each point rk. This ap-
proximation can be quite different from the true one if, for example, A is a
subset which does not contain any of the points selected for the discretiza-
tion. The following proposition states that the error for the probability is
limited according to K.

Proposition 1. Given a certain interval [c, d] ⊆ [a, b] then:
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|P ([c, d])− P ′([c, d])| ≤ 2

K + 1
(20)

where P represents the true probability computed according to f and P ′ the
approximate one.

Proof. The proof for this relation is simple. Let us assume that P ([c, d]) ≥
P ′([c, d]). Let I denote the greatest interval containing [c, d] but without
including new points rk /∈ [c, d] (this interval can be open). Then

|P ([c, d])− P ′([c, d])| ≤ P (I)− P ′(I) (21)

Note that enlarging the interval (I enlarges [c, d]) will increase its true
probability. However P ′(I) will not change because I contains the same set
of points that [c, d]. The infimum and supremum points in I will be noted
rl and ru respectively. Then the points contained in [c, d] and I will be
rl+1, . . . , ru−1. Therefore:

P (I) =
u− l
K

P ′(I) =
(u− 1)− (l + 1) + 1

K + 1
=
u− l − 1

K + 1

(22)

Then the difference between these values is:

P (I)− P ′(I) =
u− l +K

K + 1
≤ 2

K + 1
(23)

With this last result and according to expression 21 Proposition 1 is
demonstrated.

The proof is analogous if P ([c, d]) ≤ P ′([c, d]) but now I will be a reduced
interval respect to [c, d].

The result presented in Eq. 23 shows that the quality of the approxima-
tion can be improved increasing the number of points, that is, the value of
K. A similar result can be obtained for the expected value.

Proposition 2. Having a set of points rk selected as indicated above, then
the values of the true average x and the approximate one, x′ (related to A),
hold the following relation

|x− x′| ≤ 3b− a
K + 1

(24)
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Proof. The true average x can be computed as:

x =

∫ b

a

xf(x)dx =
K−1∑
k=0

∫ rk+1

rk

xf(x)dx (25)

The approximate value, x′, is given by the following expression:

x′ =
K∑
k=0

rk
1

K + 1
(26)

For any k = 0, . . . , K − 1, we have that∫ rk+1

rk

xf(x)dx ≥ rk
1

K
≥ rk

1

K + 1∫ rk+1

rk

xf(x)dx ≤ rk+1
1

K

(27)

Taking into account Eq. 27 the difference |x− x′| can be expressed as:

|x− x′| =
K−1∑
k=0

∫ rk+1

rk

xf(x)dx−
K∑
k=0

rk
1

K + 1
≤

K−1∑
k=0

∫ rk+1

rk

xf(x)dx−
K−1∑
k=0

rk
1

K + 1
+ rK

1

K + 1

(28)

As rK = b then

|x− x′| =
K−1∑
k=0

rk+1
1

K
−

K−1∑
k=0

rk
1

K + 1
+ b

1

K + 1
=

K−1∑
k=0

[
rk+1

1

K
− rk

1

K + 1

]
+ b

1

K + 1
=

K−1∑
k=0

rk+1(K + 1)−Krk
K(K + 1)

+ b
1

K + 1
=

K−1∑
k=0

[
K(rk+1 − rk)
K(K + 1)

+
rk+1

K(K + 1)

]
+ b

1

K + 1

(29)

Observing that
∑K−1

i=0 (rk+1 − rk) = (b − a) and that rk+1 ≤ rK = b, we
obtain
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|x− x′| ≤ b− a
K + 1

+K
b

K(K + 1)
+

b

K + 1
=

b− a
K + 1

+
2b

K + 1
=

3b− a
K + 1

With these results, it is clear that the initial approximation for probability
and expected value can be improved to a desired quality by increasing the
number of points K. It is important to notice that it would have been even
simpler to consider K points instead of K + 1 with values at the center of
intervals [a + k(b − a)/K, a + (k + 1)(b − a)/K]. However we have selected
the option of K + 1 points including the intervals extremes (a and b) just
because we wanted a and b were the infimum and supremum values of the
expected value considering all the possible probability distributions pk.

Once performed the initial approximation, the variables are considered
discrete (a finite set of points in [a, b] with positive probability) and updated
accordingly each time a new observation Xi arrives. Let us call pik to the
joint probability of rk and the observations X1 = x1, . . . , Xi = xi. According
to this,

pik =

[
(1− ρ)pi−1k + (

K∑
k=0

pi−1k )
ρ

K + 1

]
rNii
k (1− rk)N ii . (30)

This allows to update the probabilities pik, starting with p0k = pk =
1/(K + 1). With them we can compute the approximate expected value
of the parameter µ̂′i after the first i observations as:

µ̂′i =

∑K
k=0 rkp

i
k∑K

k=0 p
i
k

. (31)

These formulas allow an efficient updating of the estimations, both in
time and space (with linear complexity in the number of intervals K).

2.2.2. Uncertainty about µ and ρ

Now, for the case of handling uncertainty about both parameters µ and
ρ, we also discretize ρ, by selecting L+ 1 points s0, s1, . . . , sL, and assigning
to them a probability 1/(L + 1). To select the points we consider a prior
interval for the parameter [ρ1, ρ2] and then a density in this interval which
is discretized with the same procedure used for the discretization of µ. Two
cases are considered: an uniform density as in the case of µ and an alternative
density which is concentrated in the smaller values of the interval, with the
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Figure 2: Prior density for ρ.

idea that if the prior interval is for example [0.001, 0.1], then we assume that
the density is more concentrated around the lower bound, 0.001, than in the
upper bound 0.1. In concrete we assume that ρ follows a density in [ρ1, ρ2]:

f(ρ) =
1

2(ρ2 − ρ1)

(
ρ− ρ1
ρ2 − ρ1

)−1/2
(32)

The shape of the prior density for ρ is shown in Figure 2 for the case
of the interval [0, 1]. Given L this density is discretized following the same
criteria. It is very simple to prove that the points that are obtained are
sl = ρ1 + (l/L)2(ρ2 − ρ1). It is important to remark that with this density,
we do not only concentrate the probability in the low values, but also that
the points sl are concentrated in the lower part of the interval, and the
approximation there is finer.

Initially, ρ and µ1 are independent variables, even after observing X1,
but ρ and µi are not longer independent if i ≥ 2. For this reason, we
must keep an approximation of the joint density fi(µi, ρ, Ai). This would
be done by keeping a grid of points (rk, sl) (k = 0, . . . , K; l = 0, . . . , L)
with probabilities pikl, which are the joint probabilities of (rk, sj) and Ai
approximating fi(µi, ρ, Ai). These probabilities are updated according to an
expression similar to (30), but considering different value of ρ (s0, . . . , sL):
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pikl =

[
(1− sl)pi−1kl + (

K∑
k=0

pi−1kl )
sl

K + 1

]
rNii
k (1− rk)N ii . (33)

The estimations of µi and ρ′i can be computed according to these proba-
bilities:

µ̂′i =

∑L
l=0

∑K
k=0 rkp

i
kl∑L

l=0

∑K
k=0 p

i
kl

ρ̂′i =

∑L
l=0

∑K
k=0 slp

i
kl∑L

l=0

∑K
k=0 p

i
kl

. (34)

3. Experiments

The general scheme for our experiments will be to generate a series of
4000 observations for Xi. Each Xi is an independent binary variable with
P (Xi = 1) = µi. A change in µi is carried out after each 1000 observations
and therefore a new value for µi is uniformly selected in the interval [0, 1].

First, we will illustrate how our method works by showing the real values
for µi and the estimations of the parameters computed according to Eq. (34).
Both estimations can be seen in Figures 3a and 3b, respectively.

(a) Estimation of µi (b) Estimation of ρi

Figure 3: Example: parameter estimation on a series of observations

The black line in Figure 3a represents the true values for µi, i = 1, . . . , 4000
and the red one shows the estimation obtained with our method and these
parameters: K = 300, L = 30, [ρ1, ρ2] = [0.0001, 0.1]. We can observe that
there is a fast adaption to changes in µi. Although there are oscillations in
the periods in which µi is stable we can observe two features: oscillations
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(a) Estimation with ρ = 0.00001 (b) Estimation with ρ = 0.1

Figure 4: Comparing the estimations of µi with different values of ρ

decrease as long as the periods goes on; and oscillations are bigger for ex-
treme probabilities (close to 0 or 1) than for intermediate ones (near to 0.5).
This last fact is significant as extreme probabilities are more risky and then
the estimation tries to reduce this risk (Bayesian procedures do this in an
automatic way).

In Figure 3b we can see that the estimation of ρ starts in the expected
value of the prior probability and decreases in periods without changes, in-
creasing abruptly when changes occur. Moreover, oscillations are less impor-
tant when the series progress approaching the true value (0.001).

In this problem, there is a trade-off between the capability of adaptation
to changes and the stability of the estimations in periods without changes.
In our second example, Figure 4 shows how to control the balance point by
selecting a fixed ρ. This figure includes two estimations computed with dif-
ferent values for ρ: a low value (left part) and a high one (right part). Higher
values of ρ produce bigger oscillations and better capability of adaptation.
When using a low value for ρ the procedure requires 66 observations to reach
a value under 0.3 (sample 2001 of the sequence) but only 44 are required in
the case of a high value.

To compare with other procedures we have carried out an extensive ex-
periment in which we have repeated 100 times the generation and estimation
of the probabilities in series of 4000 observations with 3 changes, as it was
described above. In each situation we have computed the averaged Kullback-
Leibler distance between the true parameter and the approximations:

KL =
1

4000

4000∑
i=1

(
µi log

(
µi
µ̂i

)
+ (1− µi) log

(
1− µi
1− µ̂i

))
(35)
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Many classic methods are based on keeping a sliding window with the
last m observations and computing an statistical test to check whether there
was a change in the last k (k < m) observations. In the case of a positive
result the window is reduced in order to keep the last k observations only.
To set the notation, let us consider that the current observation is Xn and
that l1 = n− k + 1 and l2 = n−m + 1 are the starting points of the last k
and m observations respectively. The last m observations are separated into
two subwindows: one with the last k observations and the other with the
remaining m− k ones. Let us consider that W is a variable with two values
indicating the subwindow to which each observation belongs.

X will denote the variable taking as values the last observation. To test
the homogeneity of X in both subwindows an independence test of X and
W is computed. If these variables are independent, then the knowledge
about the subwindow does not provide information about X, and therefore
X should be considered homogeneous. If the result of the test points out
dependence, then the subwindow gives information about X and this implies
the existence of a change in the last k observations. To carry out the test we
compute the contingency table of X and W :

X = 0 X = 1

W = 0 N l2(l1−1) Nl2(l1−1)

W = 1 N l1n Nl1n

We have carried out two different procedures for the independence test:

• A frequentist Chi-square test when the absolute frequencies in the table
are greater than 5, and a Fisher exact test otherwise (R implementa-
tion).

• A Bayesian independence test [1, 6]. This test computes a score for the
case of dependence, SDep:

SDep =
Γ(Nl2(l1−1) + s/4)

Γ(s/4)

Γ(N l2(l1−1) + s/4)

Γ(s/4)

Γ(Nl1n + s/4)

Γ(s/4)

Γ(N l1n + s/4)

Γ(s/4)

Γ(s/2)

Γ(k + s/2)

Γ(s/2)

Γ((m− k) + s/2)
,

(36)

where Γ is the Gamma function and s is the global sample size pa-
rameter (s = 4 in our case). Then, it computes a score for the case of
independence, SIndep:
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SIndep =
Γ(Nl1n + s/2)

Γ(s/2)

Γ(N l1n + s/2)

Γ(s/2)

Γ(s)

Γ(m+ s)
. (37)

Then, the ratio SIndep/SDep is compared with the significance level (α).
If the ratio is less than the significance level, the test determines de-
pendence and the window is reduced.

The estimation has been done with the following algorithms (all of them
implemented in R). The chosen parameters are based on preliminary exper-
iments except for our procedure (only an initial selection is carried out) and
ADWIN (the parameters are fixed to the values suggested by authors [2]).

• BAF01: Our approximate Bayesian approach with fixed values for the
parameters: ρ = 0.01 and K = 100.

• BAF001: Our approximate Bayesian approach with fixed values: ρ =
0.001 and K = 100.

• BAF0001: Our approximate Bayesian approach with fixed values:
ρ = 0.0001 and K = 100.

• BFV1: Our approximate Bayesian approach with values for ρ in the
interval [0.0001, 0.01], K = 100, L = 10 and an uniform prior density
for ρ.

• BFV2: Our approximate Bayesian approach with values for ρ in the
interval [0.0001, 0.01], K = 100, L = 10 and the density concentrated
in the low values of ρ.

• FW: A method with a fix window which only takes into account the
last 68 observations.

• FF: A method based on a fix forgetting factor of 0.97 (the past fre-
quencies are multiplied by 0.97 before new observations are added).

• SWB: Method based on a sliding window with the last m observations,
in which a Bayesian statistical test is carried out for the last k = 28
observations in order to reduce the current window. The significance
value is 0.04.

• SWF: Method based on a sliding window with the last m observations,
in which a Bayesian statistical test is carried out for the last k = 28
observations in order to reduce the current window. The significance
value is 0.006.
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• ADWIN: Method proposed by Bifet and Gavalda [2] with suggested
parameter δ = 0.2 based on a sliding window.

• SWMTF: This procedure uses a sliding window as well, but following
the strategy of Bifet and Gavalda [2], performing multiple tests instead
of only one test. More precisely, it uses the procedure described in Alg.
1 (the current window is denoted by [Xl1 . . . Xn] and therefore Xl1 will
be the first sample of the sliding window).

Algorithm 1 SWMTF strategy

1: end← false
2: C = [Xl1 . . . Xn] (current window)
3: l2 ← l1 + 1
4: while (l2 ≤ n and end == false) do
5: C1 = [Xl1 . . . Xl2 − 1], C2 = [Xl2 . . . Xn]
6: Test homogeneity of C1 and C2 with independence test
7: if dependence is detected then
8: l1 ← l1 + 1 (move forward sliding window)
9: end← true (no needed to check more partitions)

10: else
11: l2 ← l2 + 1 (consider next partition)
12: end if
13: end while

It carries out much more tests than SWF approach by considering all
the partitions of the current window (loop from lines 4 to 13 in Alg.
1). Each time the test determines dependence only one observation
is removed from the current window (line 8). Then the process starts
again by considering all the partitions of the new current window. The
significance level of the test has been set to 0.01/ log(m), where m is the
number of observations included in the current window. The division
is done to correct the significance level taking into account the number
of statistical tests.

• SWMTFIn: This is a modification of SWMTF with the idea of
making it faster. It considers a parameter l = 5 involved in the deter-
mination of the possible partitions of the current window [Xl1 . . . Xn] in
subwindows [Xl1 . . . Xl2−1], [Xl2 . . . Xn]. Therefore this procedure only
considers partitions obtained by increasing the cutting point (l2) by
l (with this change m/l partitions are considered instead of m). Ac-
cordingly, the significance level is set to 0.01/ log(m/l). In addition
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l observations are removed when the result is dependence by making
l1 ← l1 + l.

• SWMTB: Similar to SWMTF, with a single difference in the signif-
icance level of the Bayesian test (0.06 in this case).

• SWMTBIn: Similar to SWMTFIn but changing the significance
level of the Bayesian test ( 0.08).

Table 1 shows the averages of Kullback-Leibler distance and computation
time (in seconds) for 100 repetitions of the experiment. The box plot in
Figure 5 represents the average of Kullback-Leibler distances.

Method KL distance Computation time

BAF01 0.010639284 4.955781e-01
BAF001 0.005528802 4.085955e-01
BAF0001 0.006380337 4.807440e-01
BFV1 0.006033974 4.561622
BFV2 0.005858679 4.538627
FW 0.013487189 1.512650e-02
FF 0.012317891 6.546898e-02
SWB 0.009522752 3.447633e-01
SWF 0.009597048 2.713945
ADWIN 0.007932044 1.783343e+01
SWMTF 0.007322510 1.310755e+03
SWMTFIn 0.007361513 1.155341e+02
SWMTB 0.0078110880 1.757771e+02
SWMTBIn 0.009178993 2.744234e+01

Table 1: Averages of Kullback-Leibler distance and computation time

A Friedman test for differences in error (Kullback-Leibler distance) is
highly significant with p-value < 2.2e− 16. We have also carried out a post
hoc Friedman Nemenyi test finding the following facts:

• BAF001 (our approximate method with fixed ρ = 0.001) is the best
procedure and it is significantly better than any other one, except
BFV2. When the value of ρ is not the true one, then the performance
deteriorates, specially when it is too high (ρ = 0.01). To observe the
performance of this method as a function of ρ we have carried out
a complementary experiment in which we have measured the average
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Figure 5: Averages of Kullback-Leibler distance.

error as a function of ρ. The results can be seen in Figure 6. This
graphic shows that the minimum is related to ρ = 0.001 and how the
performance declines specially for high values. This method is also very
fast. The procedures FF (fixed size sliding window) and FW (constant
forgetting factor) are faster, but their performance is much worse.

• Our methods with variable ρ, BFV1 and BFV2, show a very good
performance, even with a low number of discretization points (L =
10). For example, BFV2 is not significantly worse than the best one
BAF001 and it is significantly better than the rest of methods ex-
cept BAF001 and BAF0001 (both of them present lowest p-value
in the comparisons: 6.9e − 06). Considering BFV1 and BFV2, the
last one shows lower error although the difference is not significant.
With respect to time, both BFV1 and BFV2 are slower than BAF01,
BAF001 and BAF0001; anyway, they faster than ADWIN and its
variants with Bayesian and frequentist methods.

We have carried out a complementary experiment to analyze the impact
of changing the number of discretization points (L = 20) for ρ density.
The results in average error are 0.005995166 and 0.005852139 for BFV1
and BFV2, respectively. We can see that error decreases using more
discretization points, but at the cost of increasing the average times:
5.58744716 and 5.59621713 respectively. Again better performance is
obtained when considering prior densities concentrated in lower values.

• Methods based on a sliding window of fixed size or a constant forget-
ting factor (FW and FF) are the fastest ones, but their performance
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Figure 6: Our procedure as a function of a fixed ρ

is worse (significant difference with respect to the rest of procedures
except BAF01).

• Procedures based on a sliding window of variable size using statistical
tests, SWF and SWB, are better than the method based on a sliding
window of constant size, but the time is greater. The use of a Bayesian
statistical test produces a lower error (with non significant difference)
and lower computation times.

• ADWIN is even slower than SWF and SWB, but the performance
is better (significant difference with SWF and non-significant with
SWB).

• Our implementations of the ADWIN strategy with Bayesian and fre-
quentist tests (SWMTF, SWMTFIn, SWMTB and SWMTBIn)
are not significantly better than ADWIN, being much slower at the
same time, specially in the case of frequentist tests.

A last experiment tests the evolution of Kulback-Leibler distance and
computation times as a function of K in our approximate method with a fix
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value ρ = 0.001 (100 repetitions). The results are represented in Figures 7a
and 7b for error and time respectively. Respect to the error it is observed
an exponential decay to a lower threshold (somewhat about 0.0055) even if
the differences are not very important in absolute terms. The cost in time is
linear with respect to K as expected.

(a) Kulback-Leibler distance (b) Time

Figure 7: Our procedure with fixed ρ as a function of the number of points for discretization
K

4. Conclusions

In this paper we have proposed a Bayesian approach for detecting abrupt
concept drift, which has been solved, both exactly and approximately. Only
the approximate method was implemented and compared with other exist-
ing approaches. The results show an excellent performance with respect to
error of the estimations and computation time. We have considered two
procedures: one based on a fix rate of change ρ and the other based on an
unknown value for ρ. The former is faster, but it is recommended only when
the value of ρ is known in advance (at least a close value). In other case,
we should use the later one. It also has the chance of providing a real time
estimation of the unknown value of ρ. The parameters of our methods (K
and L) allow to control the performance of the algorithm considering error
versus computation time. In the case of the method using a fix value of ρ,
the values of the parameters can graduate the capacity of adaption to new
changes against the stability in absence of changes.
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In the future, we will adapt our procedure to gradual changes in the
probabilities, by using a similar method but estimating a linear trend, which
can have abrupt changes. The proposals in this paper have been described for
the case of a binomial probability and we plan to extend them for multinomial
probabilities and general conditional probability distributions.
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[5] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Ab-
delhamid Bouchachia. A survey on concept drift adaptation. ACM
computing surveys (CSUR), 46(4):44, 2014.

[6] David Heckerman. A tutorial on learning with Bayesian networks. Tech-
nical Report MSR-TR-95-06, Microsoft Research, 1995.

[7] Antti Honkela and Harri Valpola. On-line variational Bayesian learning.
In 4th International Symposium on Independent Component Analysis
and Blind Signal Separation, pages 803–808, 2003.

[8] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-
changing data streams. In Proceedings of the seventh ACM SIGKDD

22



international conference on Knowledge discovery and data mining, pages
97–106. ACM, 2001.

[9] Ivan Koychev. Gradual forgetting for adaptation to concept drift. Pro-
ceedings of ECAI 2000 Workshop on Current Issues in Spatio-Temporal
Reasoning,, 2000.

[10] Andrés Masegosa, Thomas D Nielsen, Helge Langseth, Dario Ramos-
Lopez, Antonio Salmerón, and Anders L Madsen. Bayesian models of
data streams with hierarchical power priors. In D. Precup and Y. W.
Teh, editors, Proceedings of the 34th International Conference on Ma-
chine Learning; PMLR, volume 70, pages 2334–2343, 2017.

[11] Kevin Patrick Murphy and Stuart Russell. Dynamic Bayesian networks:
representation, inference and learning. 2002.

[12] Judea Pearl. Probabilistic Reasoning with Intelligent Systems. Morgan
& Kaufman, San Mateo, 1988.

[13] Sergio Ramı́rez-Gallego, Bartosz Krawczyk, Salvador Garćıa, Micha l
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