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Abstract. A common problem in mining data streams is that the dis-
tribution of the data might change over time. This situation, which is
known as concept drift, should be detected for ensuring the accuracy of
the models. In this paper we propose a method for concept drift detection
in discrete streaming data using probabilistic graphical models. In par-
ticular, our approach is based on the use of conditional linear Gaussian
Bayesian networks with latent variables. We demonstrate and analyse
the proposed model using synthetic and real data.
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1 Introduction

In recent years, the field of mining data streams has received an increasing atten-
tion as large amounts of data are continuously being generated. For example, at
financial sector, at social networks, etc. In general, streaming data is open ended,
i.e., continuously grows in size. An important aspect of data streams is that the
domain being modelled is often non-stationary. In other words, the distribution
governing the data changes over time. This situation is known as concept drift
[13, 15, 5] and if not carefully taken into account, the result can be a failure to
capture and interpret intrinsic properties of the data.

Here we propose a method for concept drift detection in discrete streaming
data. For that, we use the conditional linear Gaussian (CLG) model, which is
a kind of Bayesian network with continuous and discrete nodes. Our model is
based on the one proposed by Borchani et al. [1, 4], an approach using the CLG
model and latent variables that was applied to continuous variables. Basically,
we propose transforming the discrete data into continuous and then applying a
similar approach with latent variables.

The paper is organized as follows. Section 2 introduces some basic concepts.
Section 3 details our approach for concept drift detection. The empirical analysis
is presented in Section 4. Finally, the conclusions are given in Section 5.
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2 Preliminaries

2.1 Data streams with concept drift

Let us first introduce the basic notation. We use upper-case letters for random
variables and lower-case for their possible values. For example, x is a value of
a given variable X. The set of all possible values that a variable X can take is
called domain and denoted ΩX . For the sets of variables and their assignments
we use boldface letters, e.g, the set of variables X takes the values in x. In gen-
eral, a data stream is observed at time-points t1, t2, . . . where tj < tj+1 for all j.
We have at each time point t a collection of instances (a.k.a window or batch)
denoted xt := {xt[1],xt[2], . . . ,xt[Nt]}.

Data streams are usually non-stationary, which implies changes in the statis-
tical properties of the data stream over time. This is known as concept drift [13,
15, 5]. More formally, if concept drift is present in a data stream defined over X,
it holds that Ptj (x) 6= Ptk(x) where Pt(x) denotes the joint distribution over x
at time t, and where tj , and tk are 2 different time-points. In what follows we
shall consider that concept drift only happens across time and not within a set
of instances belonging to the same time-point. For a better understanding of the
idea of concept drift, let us consider Fig. 1.a which depicts the evolution of a
continuous variable Y ∼ N (µY , σY ). In particular, it shown the empirical mean
µY calculated with each batch of instances. Notice that there are substantial
shifts at batches 2, 4, 9. Similarly, Fig. 1.b shows the evolution of a distribu-
tion defined over the discrete variable X whose domain is ΩX = {x1, x2, x3}. In
batch 4, there are drastic variations in the estimated values for P (X = x1) and
P (X = x2) but not for P (X = x3). When dealing with discrete domains, the
changes in probability distributions may affect only to a subset of the domain.
On the other hand, at batch 11 the changes affect to the whole domain.
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Fig. 1. Concept drift example in (a) continuous and in (b) discrete domains.

2.2 Bayesian networks

Our approach for concept drift detection is based on Bayesian networks (BNs)
[12, 6], which are a class of PGMs representing a joint probability distribution
over a finite set of random variables. The nodes represent the variables in the
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problem being modelled, and the links represent the (conditional) dependencies
and independencies among the variables.

Definition 1 (Bayesian network). A Bayesian network (BN) is a tuple
〈X,P,G〉 where: X is a set of discrete random variables; G is a DAG where
each node represents a variable in X; P is a set of conditional probability distri-
butions, containing one distribution P (X|pa(X)) for each X ∈ X where pa(X)
is the set of parents of X according to G.

Traditionally, BNs have been defined for discrete domains, which implies
several restrictions in problems that can be modelled. For that reason, we will
consider conditional linear Gaussian (CLG) BNs [7, 8], which are an extension
of BNs allowing discrete and continuous variables. The conditional probabil-
ity distributions of continuous variables are specified as CLG distributions and
discrete variables can only have discrete parents. The conditional distribution
of each discrete variable XD ∈ X given its parents is a multinomial. On the
other hand, the conditional distribution of each continuous variable Z ∈X with
discrete parents XD ⊆X and continuous parents XC ⊆X, is given by

p(z|XD = xD,XC = xC) = N (z;α(xD) + β(xD)ᵀxC , σ(xD)), (1)

for all xD ∈ ΩXD
and xC ∈ ΩXC

,where α and β are the coefficients of a linear
regression model of Z given its continuous parents. Fig. 2 depicts two examples.
Note that the BN on the right contains a latent (i.e., hidden) variable [11]
depicted as a white node. A variable of this kind cannot be directly observed
but we may introduce it to make our model more powerful. The rest of the
variables are called observed and will be represented with nodes in grey.
.
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P (D) = (0.25, 0.75)

P (X|d1, c) = N (x; 1 + 4 · c, 1)
P (X|d2, c) = N (x; 2− 0.5 · c, 0.25)

P (C) = N (c; −2, 1)

H
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P (H) = (0.45, 0.55)

P (X|h1) = N (x; 0, 1)
P (X|h2) = N (x; 2, 1.2)

P (Y |h1) = N (y; 1, 1.3)
P (Y |h2) = N (y; 5, 0.25)
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Fig. 2. Example of 2 conditional linear Gaussian BNs.

The BN in Fig. 2.b defines a multivariate Gaussian mixture [11, page 339],
which is a latent variable model typically used for unsupervised clustering. Here,
the latent variable H represents the clusters or groups while variables X and Y
are the data attributes. Note that, if H were continuous, its interpretation would
be a variable that summarizes all the data attributes. This is the key idea in the
model here proposed for concept drift detection.

In the task of learning BNs from streaming data, the following problem ap-
pears. It is not possible to learn the model with the whole data, which might not
have been generated yet or it cannot be stored in the memory due to its size.
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For that reason, some scalable methods for learning BNs from data streams have
been developed in the last years, allowing to efficiently update the model when
new data is available. Some of these methods are variational message passing
(VMP) algorithm [16], a parallel implementation called d-VMP [9, 10] and the
streaming variational Bayes method [2].

3 Concept drift detection with latent variables

Our model for concept drift detection is based on the one proposed by Borchani
et al. [1, 4]. This previous approach is defined in the context of classification
where X = {X1, X2, . . . , Xn} is the set of (continuous) predictive attributes
and a discrete class C. Thus, we at each time point t a collection (xt[i], ct[i])
for i = 1 to Nt. Fig. 3 shows the BN with plate (a.k.a. plateau) notation [3]
proposed by Borchani et al. [1] for modelling concept drift.

Ct[i] X1t[i] X2t[i] . . . Xnt[i]

Ht

time-point t

instance i

θC θX1 θX2 θXn

θH

Fig. 3. Model for concept drift detection proposed by Borchani et al. [1].

In the previous model, the observed variables are the predictive attributes
and the class variables. A continuous latent variable Ht is set as a parent of all
the predictive attributes. In addition, the parameters are represented with each
of the nodes labelled with θ. For determining the presence of concept drift, we
must estimate the posterior distributions of the Ht-variable at each time-point.
A variation on its the expected value implies that P (X1, X2, . . . , Xn) drifts.

In the present paper we propose a method for detecting concept drift in data
streams with discrete variables. In CLG models, discrete variables cannot have
continuous parents. As a consequence, the model in Fig. 3 cannot be directly
applied to discrete domains. We propose transforming the data to continuous
data before learning the model. For that, we apply Algorithm 1 for transforming
each batch of discrete data x, into equivalent numerical data x′ that will be
considered as continuous.

For example, let us consider a data stream defined over X = {X,Y } with
ΩX = {x1, x2, x3} and ΩY = {y1, y2, y3, y4}. Then, the resulting data will be
defined over the set of continuous variables X ′ = {X1, X2, X3, Y 1, Y 2, Y 3, Y 4}.
Table 1 shows an example of this transformation.
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Algorithm 1 pre-processing

input : x := {x[1],x[2], . . . ,x[N ]} (batch of discrete instances over X)
output : x′ := {x′[1],x′[2], . . . ,x′[N ]} (batch of continuous instances X ′)

1: for i← 1 to N do
2: x′[i]← ∅
3: for each X ∈X do
4: for j ← 1 to |ΩX | do
5: Let x[i] the value of X in the instance x[i]
6: Let xj the jth state in ΩX

7: if x[i] = xj then
8: x′[i]← x′[i] ∪ {1}
9: else

10: x′[i]← x′[i] ∪ {0}
11: end if
12: end for
13: end for
14: end for
15: return x′

x[i] x′[i]

{X = x1, Y = y1} {X1 = 1, X2 = 0, X3 = 0, Y 1 = 1, Y 2 = 0, Y 3 = 0, Y 4 = 0}
{X = x3, Y = y1} {X1 = 0, X2 = 0, X3 = 1, Y 1 = 1, Y 2 = 0, Y 3 = 0, Y 4 = 0}
{X = x2, Y = y4} {X1 = 0, X2 = 1, X3 = 0, Y 1 = 0, Y 2 = 0, Y 3 = 0, Y 4 = 1}
{X = x1, Y = y3} {X1 = 1, X2 = 0, X3 = 0, Y 1 = 0, Y 2 = 0, Y 3 = 1, Y 4 = 0}

Table 1. Example of output of Algorithm 1

Once that the data is transformed, we can consider a similar model with
latent variables. Fig. 4 depicts the proposed BN for detecting concept drift in
a data stream with two discrete variables X and Y . There are however some
differences w.r.t. to the one by Borchani et al. [1]. First, the model here proposed
may contain multiple Ht-variables. Moreover, this latent variables are not parent
of all the observed variables. This allows us to detect concept drift in different
subsets of the domains in discrete variables. That is, when analysing a data
stream we might be interested only in some states in the domains while the rest
can be ignored. For example, in Fig. 4, variations in H2t implies changes in the
probability values P (X = x2), P (Y = y1) or P (Y = yn) . The number of latent
variables and their outgoing arcs are defined by the user.

X1t[i] X2t[i] . . . Xnt[i] Y 1t[i] Y 2t[i] . . . Y mt[i]

H1t H2t

time-point t

instance i

θX1 θX2 θXn. . . θY 1 θY 2 . . . θY m

θH1 θH2

Fig. 4. Model for concept drift detection in a data stream with two discrete variables.



6 R. Cabañas, A. Cano, M. Gómez-Olmedo, A. Masegosa, S. Moral

In this model none of the nodes corresponds to a class variable: it can be
either dropped from the model or treated as the rest of the discrete variables.
Thus, our model can be applied to a higher number of problems, not only to
classification tasks. In addition, this also allows to simplify the model and hence
make the processing more efficient.

4 Empirical validation

Herein we empirically test our approach. We consider a synthetic data stream
and another one including information about intrusion detection in a web server.
In both cases, we show the particular models and the evolution of the latent vari-
ables modelling concept drift. The experimentation was done using the AMIDST
Toolbox3 and all the material for its replication is available at GitHub4.

4.1 Synthetic data stream

The justification for testing our approach with a randomly generated data stream
is that we can control the underlying distributions of the data. At certain time-
points, the probability distributions used for sampling are changed in order to
simulate the presence of concept drift. Here, we consider two discrete variables
X and Y with 3 and 4 states respectively. The data set contains a total of 12000
instances sampled from the distributions shown in Table 2. We consider that
each time-step contains 1000 instances (i.e., size of the window or batch).

time-step t
1 2 3 4 5 6 7 8 9 10 11 12

P (X = x1) 0.2 0.2 0.6 0.6 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2
P (X = x2) 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5
P (X = x3) 0.6 0.6 0.2 0.2 0.2 0.2 0.8 0.8 0.3 0.3 0.3 0.3

P (Y = y1) 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.0 0.0 0.0 0.0
P (Y = y2) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.6
P (Y = y3) 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.3 0.3
P (Y = y4) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 2. Multinomial distributions for sampling the synthetic data. Values shown in
bold indicates the variations in the probabilities.

As explained in the previous section, we have to apply Algorithm 1 to each
batch in the data stream. The result is a stream defined over the set of continu-
ous variables {X1, X2, X3, Y 1, Y 2, Y 3, Y 4}. Fig. 5 shows the BN for detection
of concept drift in this data stream. Note that variations in variable H1t implies
changes in P (X = x1) or P (X = x3). On the other hand, H2t detects the vari-
ations in P (X = x2), P (Y = y2) or P (Y = y3).

3 http://www.amidsttoolbox.com
4 https://github.com/PGMLabSpain/2017-CDdiscrete-Code
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X1t[i] X2t[i] X3t[i] Y 1t[i] Y 2t[i] Y 3t[i] Y 4t[i]

H1t H2t

time-point t

instance i

θX1 θX2 θXn θY 1 θY 2 θY 3 θY 4

θH1 θH2

Fig. 5. Proposed model for concept drift detection in the synthetic data stream gen-
erated using the distributions given in Table 2.

The evolution of the expected values of the hidden variables H1t and H2t

are shown in Fig. 6. As can be observed, the changes in the probabilities of
interest are proportionally reflected in variations of the latent variables. For
example, the most significant variations in H1t correspond to the large variations
of P (X = x1) or P (X = x3) at time points 3,7 and 9. On the other hand, at
time point 5, P (X = x1) barely changes while P (X = x3) does not vary. This
implies a very small variation in H1t. If we analyse the evolution of H2t, the
single significant variation occurs at time point 9, which corresponds to a large
variation in P (X = x2). In the probabilities of P (Y = y2) and P (Y = y3) there
are not drastic variations.
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Fig. 6. Results for the synthetic data stream.

4.2 Intrusion detection data stream

Due to its simplicity, the previous data stream is useful for analysing the be-
haviour of our approach. However, now we aim to test it with large real-world
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data. Herein we use a modified version of the intrusion detection data from
KDD Cup 1999 competition5[14]. Each instance corresponds to a connection
to a web server. It contains 494021 instances with 42 variables. Yet, we only
consider the discrete variables V 1, V 2 and V 3 taking 3, 66, 11 states respec-
tively. These variables describe the connection to the server, e.g., we have that
ΩV 1 = {tcp, udp, icmp}. Fig. 7 shows the evolution of the distributions of the
discrete variables. For simplicity of the display, improbable states in variables
with large domains are not shown. In addition, the variables with temporal in-
formation in the data stream have been omitted and we consider that each time
step is made of 1000 consecutive instances.
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Fig. 7. Evolution of the probability values for the variables V 1, V 2 and V 3. For sim-
plicity, 63 improbable states of V 2 and 7 of V 3 are not shown.

The model used for this data stream is shown in Fig. 8. The first group of
probabilities (or states) that we consider are P (V 1 = tcp), P (V 1 = icmp) and

5 http://www.liaad.up.pt/kdus/downloads/kdd-cup-10-percent-dataset
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P (V 2 = http). The usual traffic in the server are HTTP packages which are sent
using TCP protocol. On the other hand, during a denegation of service attack,
the number of ICMP packages increases. For that reason, it is interesting to
concept drift in these 3 states. This is done with the hidden variable H1t. Then,
the hidden variable H2t detects the concept in P (V 3 = REJ), P (V 3 = RSTO).
For most of the time steps, these two states are not probable.

tcpt[i] udpt[i] icmpt[i] httpt[i] ecrit[i] privatet[i] SF t[i] REJt[i] S0t[i] RSTOt[i]

H1t H2t

time-point t

instance i

θtcp θudp θicmp θhttp θecri θprivate θSF θREJ θS0 θRSTO

θH1 θH2

Fig. 8. Proposed model for concept drift detection in the intrusion data stream.

Fig. 9 shows the output of the previous model. We can observe that the
changes in the distributions of the states tcp, icmp and http imply a change in
H1t. This is also a robust method which has a smoothing effect: short changes in
the distributions are ignored. For example, in P (V 3 = REJ) many probability
peaks appear in a few time points which are not reflected in H2t.
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H1 H2

Fig. 9. Results for the intrusion data stream.

5 Conclusions

In this paper we have presented a method for detecting changes in the underlying
distributions (i.e., concept drift) of discrete streaming data. Our approach is
based on the use of conditional linear Gaussian Bayesian networks. With this
approach, we can detect changes in the probabilities associated to subsets of the
variable domains. In the experimental work, we have seen that our method can
be applied to large and high dimensional data streams.



10 R. Cabañas, A. Cano, M. Gómez-Olmedo, A. Masegosa, S. Moral

Acknowledgements

Authors have been jointly supported by the Spanish Ministry of Economy and
Competitiveness and by the European Regional Development Fund (FEDER)
under the projects TIN2013-46638-C3-2-P, TIN2015-74368-JIN and TIN2016-
77902-C3- 2-P.

References

1. H. Borchani, A. M. Mart́ınez, A. R. Masegosa, H. Langseth, T. D. Nielsen,
A. Salmerón, A. Fernández, Anders L. Madsen, and R. Sáez. Modeling concept
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