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ABSTRACT 

Micron-sized particles (microbeads) dispersed in a suspension of magnetic 

nanoparticles, i.e. ferrofluids, can be assembled into different type of structures upon 

application of an external magnetic field. This paper is devoted to theoretical modeling 

of a relative motion of a pair of microbeads (either soft ferromagnetic or diamagnetic) in 

the ferrofluid under the action of applied uniform magnetic field which induces 

magnetic moments in the microbeads making them attracting to each other. The model 

is based on a point dipole approximation for the magnetic interactions between 

microbeads mediated by the ferrofluid, however the ferrofluid is considered to possess 

an anisotropic magnetic permeability thanks to field-induced structuring of its 
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nanoparticles. The model is tested against experimental results and shows generally 

better agreement with experiments than the model considering isotropic magnetic 

permeability of ferrofluids. The results could be useful for understanding kinetics of 

aggregation of microbeads suspended in a ferrofluid. From a broader perspective, the 

present study is believed to contribute to a general understanding of particle behaviors 

in anisotropic media. 

I. Introduction 

The design and control of the spatial organization of colloidal micron-sized 

particles (microbeads) with directional interactions appears as a powerful tool for the 

construction of novel structured materials which can be used in applications ranging 

from electronics to medical devices [1] In the particular case of magnetic particles, 

spatially addressable assemblies can be achieved by the application of non-contact 

magnetic fields, which induce a magnetic dipole within the particles, causing them to 

interact. However, this requires a positive, significant, response of the particles to the 

external field, such is the case of soft ferromagnetic particles or paramagnetic beads. 

This limitation can be overcome if the particles are dispersed in a carrier liquid which 

itself responds to the external field. In this way, diamagnetic particles, such as 

polymeric or silica beads as well as cells or living bacteria can be placed into 

programmed locations [2-3]. For example, assemblies of around a hundred diamagnetic 

and magnetic particles induced by microgradients of an external field in a paramagnetic 

liquid have been demonstrated [4]. Similar results can be obtained using a ferrofluid, 

i.e., a suspension of magnetic nanoparticles in a non-magnetic liquid, as the external 

medium. In practice, the ferrofluid behaves as a magnetic continuum in which the 

diamagnetic particles behave as magnetic holes and acquire an effective magnetic 
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moment. Ferrofluid-mediated structures such as rotationally symmetric colloidal 

superstructures, flower and Saturn-ring arrangements, as well as crystalline phases and 

fractal aggregates have been reported [4-14]. 

Nevertheless, to design better controllable patterns of microbeads it is necessary 

to gain understanding of the physics of the interactions between particles which direct 

the assembly. In the case of ferrofluid-mediated assemblies, all the previous theoretical 

approaches are based on the assumption that the ferrofluid behaves as an isotropic 

magnetic continuum. This assumption is based on the fact that the ferrofluid particles 

are typically too small to overcome Brownian motion and create any anisotropic 

structure under an applied magnetic field, which would result in anisotropy of the 

ferrofluid magnetic permeability. Also, changes of the ferrofluid magnetic properties 

associated with variations of the ferrofluid concentration in the vicinity of the micron-

sized particles immersed into the ferrofluid are normally neglected. However, in 

previous works we have shown that the nanoparticles of the ferrofluid can undergo 

phase transitions such as condensation, especially around the dispersed soft 

ferromagnetic particles under the application of a magnetic field [15-17]. In the present 

paper, we demonstrate that the field-induced anisotropy of the magnetic permeability 

plays an important role in the computation of the magnetostatic force between the 

assembled microbeads. By doing so, the theoretical model is able to quantitatively 

reproduce the experimental trajectories and kinetics of doublet formation for pairs of 

either soft ferromagnetic (Ni) or diamagnetic (PMMA) microbeads in a ferrofluid when 

these form assemblies guided by the external field. The enhancement of the agreement 

between theory and experiments in comparison to a previous model [14] which 
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considered an isotropic permeability constitutes a first step towards the development of 

more realistic models for the description of ferrofluid-directed assemblies. 

From a general perspective, the studied system is a new example showing that 

the anisotropy of the suspending medium affects macroscopic behavior of suspended 

particles and (or) whole suspensions. A non-exhaustive list of such effects counts: (a) 

anisotropy of hydrodynamic drag of particles in a liquid crystal [18, 19]; (b) 

enhancement of the effective viscosity of a suspension of particles dispersed in a liquid 

crystalline polymer [20]; (c) anisotropy of optical trapping forces experienced by 

colloidal particles in anisotropic biological fluids [21]; anisotropic aggregation of 

colloidal particles in a nematic micellar solution [22]; rich phase behaviors in colloidal 

rod-sphere mixtures [23, 24]. From the macroscopic point of view, in most of the 

considered systems, the behavior of suspended spherical particles is governed by the 

anisotropy of suspending medium viscosity, while in the system considered in the 

present paper, the motion of microbeads is affected by the anisotropy of magnetic 

permeability. The results of the present paper are therefore believed to contribute to a 

general understanding of particle behaviors in anisotropic media. 

II. Materials and Methods 

As liquid carrier, we used a ferrofluid consisting of a suspension of magnetite 

nanoparticles dispersed in mineral oil of a dynamic viscosity 0.039 Pas, prepared as 

described in [25]. The viscosity of the synthesized ferrofluid was =0.05 Pas as 

measured by a rotational rheometer Anton Paar Physica MCR 300. Stabilization against 

irreversible particle aggregation was achieved by steric repulsion via the adsorption of 

oleate ions on the particle surface. The particle size distribution was measured by 
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dynamic light scattering with a Zetasizer instrument (Malvern Instruments, U.K.) and is 

shown in Fig. 1. 

 

Fig. 1. Volume size distribution of ferrofluid nanoparticles. Squares correspond to the experimental curve 

and the solid line – to the log-normal fit. The relative volume occupied by the large nanoparticles, with 

diameter d>d0 undergoing chain formation, with respect to the total volume of ferrofluid nanoparticles, 

corresponds to the hatched area below the curve. Numerical value of the threshold diameter d0≈13 nm is 

found in Appendix C by fitting the theoretical value of the ferrofluid initial magnetic permeability to the 

measured value µ=1.9 [cf. Fig. 2]. 

The experimental curve [squares in Fig. 1] was fitted by the log-normal 

distribution [solid line in Fig. 1] with a mean value of the particle size dm=8.7nm: 
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where =0.5 and d=7.67 nm are two adjustable parameters (standard deviation of the 

natural logarithm of the particle diameter and median diameter, respectively). The 

distribution function, as written in Eq. (1) is normalized to unity: 
0
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Magnetization curve of the ferrofluid was measured by a vibrating sample 

magnetometer (VSM 4500 EG&G Princeton Applied Research, United States) and is 

shown in Fig. 2. The magnetization curve did not show any hysteresis confirming 



7 
 

superparamagnetic behavior of ferrofluid nanoparticles. The fit of the magnetization 

curve by the Langevin law commonly admitted for ferrofluids [26] (even taking into 

account the particle size distribution [Eq. (1)]) gave a rather strong deviation between 

the fitted and actual initial slope of the magnetization curve, as can been seen in the 

inset of Fig. 2 [blue dashed curve for the Langevin fit]. Such discrepancy occurs likely 

because of chain-like structures formed under applied magnetic field, as will be 

discussed in Sec. IV-B and Appendix C. However, an empirical Fröhlich-Kennely 

relationship fitted much better to the experimental curve and reproduced relatively well 

the initial slope [solid red line in Fig. 2]. This relationship reads [27]: 
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where H and M are algebraic values of the magnetic field and magnetization inside the 

ferrofluid, respectively, =0.9 and MS=26.9 kA/m are the two fitting parameters having 

the meaning of the initial magnetic susceptibility and saturation magnetization, 

respectively. The volume fraction, , of magnetic solids in the suspension was 

estimated by dividing the ferrofluid magnetization saturation MS by the magnetite 

particle magnetization saturation, MS,p=405 kA/m taken from the measurements in our 

previous work [25]. We obtained ≈0.066 (6.6%vol). 

As assembling microbeads, we used soft ferromagnetic Ni powder (Merck 

KgaA) and diamagnetic poly(methyl methacrylate) (PMMA) powder (Spheromers 

CA10, Microbeads). The mean diameter and density of these particles were 5 µm and 

8.9 gcm-3 for Ni powder, and 6 µm and 1.2 gcm-3 for PMMA powder.  
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Fig. 2 (Color online). Magnetization curve of the ferrofluid. Points correspond to experimental data, red 

solid line – to the fit by Fröhlich-Kennely equation (2), blue dashed line – to the fit by the Langevin law 

[26]. The inset shows a zoomed view of the magnetization curve at weak magnetic fields. 

We prepared three different kinds of suspensions of microbeads in the ferrofluid 

carrier: (i) suspensions of soft ferromagnetic (Ni) microbeads in the ferrofluid known as 

bi-disperse magnetorheological fluids [28]; (ii) suspensions of diamagnetic (PMMA) 

microbeads in the ferrofluid, known as inverse ferrofluids [29]; (iii) suspensions of Ni 

and PMMA microbeads in the ferrofluids, known as inverse magnetorheological fluids 

[30]. Note that soft ferromagnetic microbeads typically have a negligibly narrow 

magnetization hysteresis and their macroscopic magnetic behavior is described in the 

same way (i.e. by magnetic permeability and magnetization saturation) as that of 

paramagnetic microbeads, such as polystyrene beads with embedded superparamagnetic 

iron oxide nanoparticles, frequently used in biological analyses. This means that all 

results of this work will be identical for soft ferromagnetic and paramagnetic beads 

having the same magnetic permeability. The solid concentration of microbeads in the 

final suspensions was very low (of the order of 0.01 vol.%), so that it was possible to 

find isolated pairs of microbeads to monitor their dynamic under magnetic field 

application.  
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We placed a drop of the suspensions between two microscope glass slides, 

separated by glass spacers with an approximate thickness of 0.13 mm. We used an 

optical microscope (Thermo Fisher Scientific, USA) connected to a CCD camera to 

investigate the kinetics of doublet formation for a chosen pair of particles. For this aim, 

we located a pair of stationary particles. Afterwards, we applied a magnetic field in the 

perpendicular direction to the axis of the microscope with the help of a pair of 

Helmholtz coils, and monitored the particle trajectories as a function of time. The 

intensity of the applied magnetic field at the focal point of the microscope was 

approximately homogeneous with a value of H0=10 kA/m, as measured with a 

teslameter. 

III. Experimental results 

For pairs of microbeads close enough (at distances less than about ten microbead 

diameters) so that the magnetostatic interaction between them was not negligible, the 

equilibrium state was reached with the microbeads in contact (Fig. 3). Theoretically, 

there is an exception to this when the initial center-to-center line forms an angle of 90 

degrees with respect to the direction of the applied magnetic field for similar 

microbeads (Ni-Ni or PMMA-PMMA), or 0 degrees for dissimilar microbeads (Ni-

PMMA). In this case it is expected that microbeads are continuously repelled following 

a straight line. However, this situation is very difficult to be found from the 

experimental point of view, since it is an unstable equilibrium that is altered by any 

minimal perturbation giving rise to attraction. Therefore, in our experiments we always 

obtained equilibrium states with the particles in close contact (Fig. 3). For pairs of 

similar particles, equilibrium was reached with the particle center-to-center line parallel 

to the direction of the applied magnetic field (Figs. 3b and 3d). On the other hand, for 
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pairs of dissimilar particles, the particle center-to-center line was perpendicular to the 

applied field direction in the equilibrium configuration (Fig. 3f). This is explained by 

opposite mutual orientation of the apparent magnetic moments of dissimilar microbeads 

(collinear with applied field for soft ferromagnetic nickel particle and anti-collinear for 

diamagnetic PMMA particle placed into the ferrofluid), in which case the ground state 

is achieved when the center-to-center line of the pair lies perpendicularly to the applied 

field [14].  

To monitor the particle position as a function of time after application of the 

magnetic field we tracked the particle trajectories using the center of the particles as 

reference points. 

 

Fig. 3. Some snapshots illustrating the dynamics upon magnetic field application of pairs of microbeads 

dispersed in a ferrofluid: (a-b) two diamagnetic particles (white spheres), (c-d) two soft ferromagnetic 

particles (black spheres), (e-f) a soft ferromagnetic particle (black sphere) and a diamagnetic particle 

(white sphere). Snapshots shown in (a,c,e) were taken before magnetic field application (zero time). 

Snapshots shown in (b,d,f) represent the equilibrium state. The white arrows indicate the magnetic field 

direction. Bar length: 5.5 microns. 
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IV. Theory and discussion 

A. General framework 

In our previous work we developed a theoretical model that computed the 

magnetostatic force between microbeads by means of the dipole-dipole approximation, 

as well as the friction force via a Rayleigh dissipation function [14]. This simple model 

described reasonably well the experimental trajectories from the qualitative point of 

view. However, the discrepancy from the quantitative point of view between the 

experimental and theoretical trajectories was significant, as evidenced by Figure 5 of 

ref. 14. The objective of the present work was to find the physical origin of this 

discrepancy. First of all, we considered the multipolar theory in contrast to the dipolar 

approximation. As discussed in Appendix A we did not find any significant 

improvement by using the multipolar theory because multipolar magnetic interactions 

become significant only at close distance between neighboring microbeads (the gap 

between microbead surfaces typically lower than microbead radius). On the contrary, 

we found that the anisotropy of the magnetic permeability may be the cause for the 

discrepancy between predictions of our simple dipole-dipole model and the 

experimental findings.  

The basic idea consists in supposing that the ferrofluid in which the microbeads 

are dispersed may undergo a field induced structuring manifested by the appearance of 

nanoparticle chains or drop-like elongated aggregates extended along the direction of 

the applied magnetic field [15, 31, 32]. Such a structuring is expected to result in 

anisotropy of the magnetic properties of the ferrofluid, as well of the hydrodynamic 

mobility of the microbeads immersed in an anisotropic ferrofluid. The magnetic 
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permeability z and the microbead mobility bz along the structures are expected to be 

higher than the magnetic permeability x and mobility bx in transverse direction, as 

depicted schematically in Fig.4a. Such anisotropy is expected to change magnetic and 

hydrodynamic drag forces acting on microbeads and consequently the trajectories of 

their mutual approach, as compared to those in an isotropic ferrofluid [Fig. 4b]. In 

experiments, we do not clearly see appearance of bulk micron-sized aggregates in the 

ferrofluid, but this does not exclude appearance of chain-like aggregates, predicted for 

relatively low nanoparticle concentrations and magnetic fields [33, 34]. 

 

Fig. 4. A sketch of the ferrofluid with two immersed microbeads. In the case (a) the applied external 

magnetic field (of intensity H0) induces field aligned aggregates of ferroluid nanoparticles, whose size is 

exaggerated. These aggregates result in anisotropic magnetic permeability with the largest value z – 

along the aggregates, thus along the applied field and the minor value x – across the aggregates, thus 

perpendicularly to the applied field. In the case (b) there is no structuring in the ferrofluid and the 

magnetic permeability is isotropic.  

These single chains are typically composed of a dozen of nanoparticles and 

therefore invisible in optical microscope. In what follows we will check how the 

anisotropy of mobility and of magnetic permeability affects the kinetics of the 

formation of doublets of microbeads immersed in the ferrofluid. 
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At the first approximation, the field-induced anisotropy could be taken into 

account assuming that all nanoparticle chains have the same length and are oriented 

along the lines of the external uniform magnetic field H0. This implies that the 

magnitudes x, z and bx, bz are constant over the ferrofluid volume. Such homogeneous 

distribution takes place far enough from both microbeads where the magnetic field is 

homogeneous. However, neglect of possible deviation of the chains from the direction 

of H0 could generate unphysical results. The aforementioned approximation can only be 

used, after appropriate modifications, in some limiting cases considered below: 

(a)  Magnetic torque acting on nanoparticle chains is much larger than the 

hydrodynamic torque induced by local velocity fields around the microbeads. In this 

case, the nanoparticle chains are everywhere directed along the magnetic field lines. The 

average chain length is an increasing function of the local magnetic field, thus it 

changes from point to point in the vicinity of the microbeads following the magnetic 

field map. Whatever the direction of the external magnetic field H0, the chains will 

adopt the direction of the local magnetic field H around the microbeads and the local 

ferrofluid magnetization M will be collinear with the local magnetic field in each 

ferrofluid point. This collinearity implies local isotropy of the ferrofluid magnetic 

permeability, which will be independent of the orientation of the external magnetic field 

H0 with respect to the microbead. Analysis of the magnetic field distribution around 

microbeads and of the ferrofluid magnetization shows that the magnetic field variation 

around microbeads produces only a few percent spatial variation in the ferrofluid 

magnetic permeability at the distance larger than one microbead radius from its surface. 

At this condition, the magnetostatic potential  of the local magnetic field is defined by 

the Laplace equation, 2 0  =  and differs from the potential in isotropic ferrofluid by a 
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constant numerical factor. Using point dipole approximation, it is easily shown that the 

magnetic force between microbeads will have the same orientation in the structured and 

unstructured ferrofluids and the field-induced change of the magnetic permeability will 

not influence the particle trajectories. The field-induced structuring will however induce 

anisotropy of the microbead mobility because, at fixed orientation of the external field, 

H0, the mutual orientation between chains and the bead velocity v changes when the 

orientation of v changes. The chains are in average oriented along H0 direction (along z-

axis), so that bz>bx. It can be easily shown, that higher mobility bz along z axis shifts the 

bead trajectory apart from the z-axis with respect to the case of isotropic ferrofluid, in 

contrast to experimental findings. 

(b) Magnetic torque acting on nanoparticle chains is much smaller than the 

hydrodynamic torque. In this case, the nanoparticle chains are everywhere oriented 

along the fluid streamlines around moving microbeads. The orientation distribution will 

be invariant with respect to direction of the microbead motion, so that the bead mobility 

will be isotropic in this case. However, the chains make now some angle with the local 

magnetic field vector H resulting in flow-induced local anisotropy of the ferrofluid 

magnetic permeability. The average ferrofluid magnetization near the moving 

microbead will change with orientation of the external field H0, thus inducing 

anisotropy of the mean magnetic permeability averaged over the ferrofluid volume, at 

least at the length scale of hydrodynamic perturbation around moving microbeads.  

As, we will see later in Sec. IV-C, average anisotropic magnetic permeability 

allows correct predictions of the bead trajectories. However, we have to prove that our 

experimental conditions fit to the limiting case (b) and, to this purpose, in the next 
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section IV-B, we will estimate hydrodynamic and magnetic torques exerted to 

nanoparticle chains, as well as the chain orientation and length. 

B. Estimation of the chain orientation and length 

The magnetic and hydrodynamic torques strongly depend on the chain length. 

First, we have to estimate the mean number of ferrofluid nanoparticles N  per chain, 

called hereinafter the chain length, and then apply the torque balance to estimate the 

chain orientation. 

Short chains containing several nanoparticles are subject to strong Brownian 

motion; their translational Péclet number is estimated to be of the order of Pe10-2. At 

the first glance, their length is expected to be unaffected by fluid motion but governed 

by local thermodynamic equilibrium. Analysis of the average equilibrium chain length 

(detailed in Appendix B), shows that 

(a) At the given magnetic field, H0=10 kA/m and nanoparticle volume fraction, =0.066 

(6.6%vol.), the average number N  of nanoparticles per chain is only about 1.05 if the 

average nanoparticle diameter dm=8.7nm is taken for calculations; 

(b) Since the ferrofluid nanoparticles are polydisperse [Fig. 1], only the largest particles 

with a diameter larger than some threshold value d0 are expected to form chains. The 

value d0 divides the particle size distribution onto the right region of “large 

nanoparticles” [hatched area in Fig. 1] and the left region of “small nanoparticles” 

having a mean diameter and a volume fraction equal to dL, L and dS, S, 

correspondingly, with L+S=. Since theoretical evaluation of the values d0 or dL are 

related to some difficulties, we obtain them by fitting the theoretical value of the 
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ferrofluid initial magnetic permeability to the measured value =1+=1.9. To this 

purpose we develop a bi-disperse model of the ferrofluid considering the fraction of 

small particles, all having the same diameter dS and the fraction of large particles with 

the diameter dL [Appendix B]. Then, this model is applied for magnetic permeability 

calculations [Appendix C] and the single adjustable parameter, the average diameter of 

large nanoparticles is found to be equal to dL≈17 nm corresponding to the fraction of 

large particles of L/≈0.15. These values of the size and volume fraction of the large 

particles give the average chain length 5.4N =  [Appendix B], which will be kept for 

subsequent calculations. 

Before estimation of the chain orientation, we have to assess the importance of 

Brownian motion leading to orientational fluctuations. To this purpose, we evaluate the 

rotational Péclet number in the limit of large aspect ratio chains ( 1N  ) [35]: 
rPe 

33 /( )L Bd N k T , where 
214 10  JBk T −   is the thermal agitation energy,  is the 

viscosity of the liquid carrier of the ferrofluid and   /v a  is a characteristic value of 

the rate-of-strain tensor corresponding to the flow around the microbeads of a radius a 

moving at a velocity v. This velocity scales as v  /( )mF a , as estimated from the 

Stokes drag, where the magnetic force between microbeads scales as mF 
2 2

0 0H a , 

where 0=410-7 H/m is the magnetic permeability of vacuum. This gives  
2

0 0H  

and the rotational Péclet number is of the order of rPe 
32 3

0 0 /( ) 20L BH d N k T  . This 
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allows us to neglect angular fluctuations† of chains and estimate the chain orientation 

under flow and magnetic field from equilibrium of magnetic and hydrodynamic torques 

acting on nanoparticle chains. 

These torques, as well as their ratio can be estimated as follows [36]: 
mT 

32

0 0H N d ; 
hT 

3 3
N d  and /h mT T 

2
N Ma , where 

2

0 0/( )Ma H =  is 

the Mason number, which is of the order of unity, Ma1, that is simply explained by the 

fact that the microbead motion with an inherent drag force is induced by the magnetic 

attraction between microbeads, so that the drag force is of the order of magnitude of the 

magnetic force. This gives the following estimation for the torque ratio: /h mT T 

2
30N Ma  . This shows that the hydrodynamic torque is much larger than the 

magnetic one allowing us to confirm that the chains are expected to be mostly aligned 

along the streamlines around the moving microbeads.  

Even though the translational Péclet number of individual nanoparticles is much 

less then unity, Pe<<1, the hydrodynamic forces acting on chains may appear to be of 

the same order of magnitude that the magnetic forces in the same way as hydrodynamic 

and magnetic torques. We have therefore to check whether the chains are destroyed by 

the flow. We can check it for the most severe shear flow occurring in the vicinity of the 

moving microbead surface. Since the flow at the bead surface is a simple shear and the 

magnetic field is almost normal to the bead surface (in the case of highly magnetic 

microbeads), the problem reduces to the well-known case of dilute electro- or 

 
† Neglecting rotational Brownian motion of chains does not contradict to important translational 

Brownian motion of single nanoparticles. The first one is described by rotational Péclet number Per and 

the second one – by translational Péclet number Pe, with PerPe<N>3, such that we have Per>1 even for 

Pe<<1 providing that <N>3 ≈160.  
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magnetorheological suspensions with the chain length calculated from the coupled 

equations of the torque and force balance [36]. Adapting this calculation to the case of 

the chains of monodomain nanoparticles considered as rigid dipoles (the magnetic 

anisotropy energy is much higher than the thermal agitation energy kBT at particle size 

dL≈17 nm), we get the angle between the flow and the chain  
1/ 2

L −
 and the chain 

length, at which the hydrodynamic force break it, is of the order of N 
3/ 4 1/ 2

L Ma −


3/ 4 17L  , where 8 43L    is the initial magnetic susceptibility of large 

nanoparticles and the dipolar coupling parameter  given by Eq. (B-1d) in Appendix B 

is calculated for the average size dL≈17 nm of the nanoparticles constituting the chains. 

This calculation confirms that the chains make a small angle <<1 with the flow and 

shows that that the chains are not ruptured by the flow because their average 

equilibrium length 5.4N   is lower than the value 17N   obtained from the force 

balance. 

C. Model of homogeneous anisotropic magnetic permeability 

Having proved that the flow around the approaching microbeads orients the 

nanoparticle chains suspended in the ferrofluid along the streamlines and that this 

causes anisotropy of the ferrofluid magnetic permeability but not of the particle 

mobility, we can proceed now to calculations of the microbead trajectories. Local values 

of the components x and z of the magnetic permeability tensor should depend on the 

mutual orientation between the local field H and streamlines and therefore should vary 

from point to point in the ferrofluid volume. Moreover, since different trajectories make 

different angles with the external field H0, volume average values of x and z will 
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depend on the trajectory shape. Analytical solution of this problem is impossible. 

However, to capture the physical picture of the anisotropy effect, we can consider two 

extreme cases when the microbead motion is slightly deviated from the magnetic field 

direction (z axis in Fig. 4a) or slightly deviated from the direction of x axis. In the first 

case, the microbead motion will in average orient the chains along the applied field and 

we will have z>x. In the second case, the beads will orient the chains transversely to 

the applied field and we will have z<x. For these two cases, we will neglect spatial 

variations of both components z and x, thus consider them constant in all points of the 

ferrofluid. The values z and x are estimated assuming a perfect alignment of the 

chains along either z or x axes. We obtain the value 1.90 for the permeability in the 

direction of chains from direct magnetization measurements [Sec. II]. The permeability 

value in the direction transverse to the chains is estimated in Appendix C and is equal to 

1.38 such that the ratio ˆ /z x  =  is approximately equal to either 1.4 or 0.7 depending 

on the chain orientation. As we shall see at the end of this Section, the magnitude ̂  is 

the main parameter describing the ferrofluid anisotropy. In what follows, we describe in 

detail the calculations of the bead trajectories under above considered assumptions.  

Let us consider two magnetizable spherical particles; let r1 and r2 be the radius-

vectors of their centers. In the inertialess approximation, which, as a rule, is fulfilled for 

micron-sized particles moving in a viscous liquid, we get: 

1 2
1 2 2 1( ), ( ),

d d

dt dt
= −  =  = −

r r
b F r b F r r r r    (3) 

Here F is the magnetic force that the first particle exerts on the second one, b1 and b2 are 

the tensors of the particle hydrodynamic mutual mobility. In general terms, their 
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components depend on the distance r between the particles [37]. When the distance 

increases, the tensors b1,2 tend to the Stokes scalar mobilities: 

     
1,2

1,2

1

6
b

a
=      (4) 

where a1 and a2 are the particles radii. To the best of our knowledge, the explicit 

analytical forms of the tensors bi, valid for the arbitrary magnitudes of r, are unknown. 

Some useful numerical data can be found in [38]. These results show that the 

dependence of the components of bi on r is significant when the gap between the 

particles is much smaller than their diameters. The limiting formula given by Eq. (4) 

leads to a good approximation when the distance r is as large as 2.5a or longer. 

Combining the terms of Eq. (3), we get the equation for the radius-vector r: 

    
1 2( ) ( )

d
b b

dt
= +

r
F r      (5) 

In order to calculate the trajectories (i.e., solving Eq. (5)) of the microbeads, we 

have to find the magnetic force between them. We calculate the force using a point-

dipole limit, taking into account the anisotropy of the suspending liquid (ferrofluid). 

The magnetic force derives from the potential energy of the interaction between the 

microbeads, and, in the point-dipole limit, this energy can be calculated as follows: 

2 1U = − m H      (6) 

where 2 2 zm=m e  is the dipole moment of particle 2 and H1 is the magnetic field 

induced by the dipole moment m1 of the particle “1” at the location of the particle “2”. 

The force F can be calculated from Eq. (6) using the general relationship: 
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     U= −F      (7) 

In the point-dipole limit the magnetic moments m1 and m2, as well as the 

induced magnetic fields H1 and H2 are considered to be unaffected by the presence of 

the neighboring particle. Thus the induced field H1 can be simply calculated as the field 

of a point dipole m1 placed into an unbounded anisotropic magnetic medium. 

Using an electrostatic analogy, the magnetostatic potential of a dipole m1 can be 

calculated as the sum of the magnetostatic potentials φ+ and φ- of two equivalent 

charges “+q” and “-q” situated at an infinitely small distance 2d from each other (Fig.5). 

Following the reasoning of Landau and Lifshitz [39], we introduce the Cartesian 

reference frame (x’,y’,z’), where ' / xx x = , ' / yy y = , ' / zz z = . The 

magnetostatic potential of the point charge q located at the origin reads: 

04 'x y z

q

r


   
=      (8) 

where 2 2 2 2' ' ' 'r x y z= + + . Thus, the magnetostatic potential of the point dipole [Fig. 5] 

is: 
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where ' / zd d =  and cos ' '/ 'z r = . 
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Fig. 5. Definition of the reference frames (x,y,z), (r,θ) (a) and (x’,y’,z’), (r’,θ’) (b). This diagram also 

helps to calculate the magnetostatic potential generated by the dipole moment m at an arbitrary point M 

situated at a distance r>>d from the center of the dipole. 

Consider first the simplest case where the ferrofluid chains are in average 

aligned with the z-axis, such that the x and y components of the magnetic permeability 

are the same: 
x y = . Now, converting Eq. (9) into the original reference frame (x,y,z), 

introducing polar coordinates (r,θ), such that 
2 2 2r x y z= + +  and cos /z r = , and 

noting that the absolute value of the dipole moment of a pair of charges is equal to 

2m qd= , we arrive to the expression:  

3/ 2 2 3/ 2
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4
d

z x
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r g




  
=      (10) 

where 
2 2cos / sin /z xg    = + . The components of the intensity of the magnetic field 

H1 induced by a point dipole m1 are found by straightforward calculations: 
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where 1 1 21 3( )cos /x zf g  − −= + − . Replacing the last expressions in Eq. (6) we get 

the following formula for the potential energy of interaction between two point dipoles 

with dipole moments m1 and m2, as well as the following expressions for the 

components of the magnetic force between these dipoles: 

2 2

2 1 2 1 3 3/ 2

2cos sin
( cos sin )

3
r

C f
U m H m H

r h


 
 

−
= − − = − ,   (12a) 

2 2

4 3/ 2
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 + − − 
= − = − + − −   

, (12c) 

where ˆ /z x  =  is the anisotropy parameter, 2 2ˆcos sinh   = +  and 

1 2 03 /(4 )xC m m  = . 

The trajectories of the microbeads follow from Eq. (5) giving the following 

expressions for both components of the force balance: 

    
1 2( ) r

dr
b b F

dt
= +      (13a) 

    
1 2( )

d
r b b F

dt



= +      (13b) 

Eliminating time from Eqs. (13a), (13b), we obtain the equation relating two 

polar coordinates r and θ of a pair of moving microbeads: 

1
( )rFdr

r d F

 


= = ,     (14a) 
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,  (14b) 

whose solution under the initial condition r(0)=r0 and θ(0)=θ0, reads: 

    

0

0( ) exp ( )r r d





   
 

=  
 
 
 ,    (15) 

where the integral is estimated numerically. 

The case when microbeads trajectories are close to the x axis (such that the 

nanoparticle chains are oriented mostly along the x-axis) implies that the y and z 

components of the permeability tensor are equal z y =  and this breaks the symmetry 

of the problem with respect to z axis. Calculations show that 
x  in the denominator of 

the formula for the constant C should be replaced by 1/ 2( )x y  , while the anisotropy 

parameter (which is always defined as ˆ /z x  = ) should be replaced in all the above 

formulas by 2 2ˆ cos sin  + , where  is the angle that the projection onto the xy-plane 

of the line connecting the centers of the two microbeads makes with the x axis. Since, in 

experiments the trajectories are confined into the horizontal xz-plain, =0 and all the 

formulas (14), (15) for the bead trajectories remain unchanged.  

In the limiting case of an isotropic ferrofluid, ˆ 1f h = = = , and the equation of 

the particle trajectory reads: 

   

22
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D. Comparison between theory and experiments 

The comparison between theory and experiments for the particle trajectories is 

shown in Fig 6 for both anisotropic ferrofluid (solid lines) and isotropic ferrofluid with 

the parameter ̂  set to unity (dashed lines). The experimental trajectories shown by 

symbols in Figs.6a,b are rather close to the z-axis and, according to the arguments given 

in the beginning of Sec. IV-C, the bead motion is expected to orient the chains mostly 

along the z-axis. We expect that 
z x   and, using the semi-empirical value 

ˆ / 1.4z x  = =  of the anisotropy parameter [Sec. IV-C], we obtain a rather good 

agreement between the experimental and theoretical trajectories (solid lines) under 

assumption of magnetic permeability anisotropy. The experimental trajectories shown 

in Fig. 6c are closer to the x-axis then to the z-axis, and we suppose that the bead motion 

orients the chains closer to the x-direction, the components ,z x   are interchanged with 

those for the case of Figs. 6a, b, such that the anisotropy parameter is set to 

ˆ / 1/1.4 0.7z x  = =  . 
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Fig. 6 (Color online). Comparison between the experiments (symbols) and the model for anisotropic 

(solid lines) or isotropic (dashed lines) ferrofluids predicting the particle trajectories of a pair of Ni-Ni (a), 

PMMA-PMMA (b) and Ni-PMMA microbeads (c). For the anisotropic ferrofluid, the anisotropy 

parameter ̂  is set to 1.4 for (a) and (b), and to 0.7 for (c). For the isotropic ferrofluid, ˆ 1 =  and we use 

a simple equation (16). The relative particle position x=r∙sinθ and z=r∙cosθ is normalized by the mean 

particle radius (a1+a2)/2. The external magnetic field is oriented along the z-axis. Three different 

trajectories correspond to three different initial positions of particles.  

For the quantitative comparison of performances of both anisotropic and 

isotropic models, we measured deviations between experiments and both models 

defined for each experimental point as the shortest distance between a given point and 
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the theoretical curve. These deviations are shown and carefully analyzed for each 9 

experimental curves in Fig. 9 of Appendix D. Analysis of Fig. 9 shows that the model of 

anisotropic magnetic permeability gives in general a better prediction of the particle 

trajectories of pairs of similar microbeads (Ni-Ni and PMMA-PMMA), as compared to 

the model of isotropic magnetic permeability. The anisotropy model also gives a better 

prediction for those trajectories of dissimilar microbeads (Ni-PMMA) that are closer to 

the x-axis. A better agreement between experiments and anisotropic model can be 

explained by the fact that the ratio / /z xF F dz dx=  of the magnetic force components Fz 

and Fx is a decreasing function of the anisotropy parameter ̂ . This implies that the 

trajectories close to the z-axis with ˆ 1   will shift closer to the z-axis with respect to 

isotropic case, while the trajectories close to the x-axis with ˆ 1   will shift closer to the 

x-axis, as observed in experiments. 

However, the prediction of the anisotropic model is poorer for the Ni-PMMA 

pair trajectory that is quite far from both x and z axes (squares in Fig. 6c). Such 

disagreement could be explained by the fact that the components ,z x   of the magnetic 

permeability tensor are expected to be close to each other for the nanoparticle chains 

oriented along the trajectory denoted by squares, whose direction is more or less in the 

middle between the directions of both coordinate axes. Thus isotropic permeability 

should be more appropriate for the calculation of this trajectory. Another particular case 

arises with that trajectory of the Ni-Ni pair, which is the furthest from the z axis [circles 

in Fig. 6a]. The initial part of this trajectory is better fitted by the isotropic model and 

the final part – by the anisotropic model. In fact, at the beginning, the experimental 

trajectory makes an angle of about 45-60° with respect to the z-axis, which likely results 
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in the anisotropy parameter ˆ /z x  =  close to unity. At the end of microbeads 

displacement, the trajectory gets close to the z-axis, and the ratio ˆ /z x  =  becomes 

appreciable (1.4 in our model), such that the anisotropic permeability model gives a 

better prediction. 

Finally, it is worth underlying that the single macroscopic physical parameter 

(apart from initial microbeads position) affecting the microbeads trajectories is the 

anisotropy parameter, while the magnetic field intensity H0, the ferrofluid viscosity, 

magnetic permeability of the ferrofluid ( ,z x  ) and of microbeads, as well as the 

microbeads size work out from the ratio / /r rv v F F =  of the velocity components 

appearing in the trajectory equation (14). From the microscopic point of view, the 

ferrofluid nanoparticle size, or rather the size distribution, is a crucial parameter 

defining the ferrofluid microstructure and, as a consequence, the anisotropy of the 

ferrofluid magnetic permeability. As inferred from analysis in Appendix C, larger 

ferrofluid nanoparticles (or higher volume fraction L of the largest nanoparticles 

having a mean diameter dL) produce larger values of the anisotropy parameter ̂ . Thus 

the microbeads trajectories will experience a stronger deviation from the isotropic 

ferrofluid case when increasing nanoparticle size. 

E. Kinetics of doublet formation 

To theoretically compute the particle position with time – the function 

describing kinetics of doublet formation, we can either solve numerically the system of 

two differential equations (13a), (13b), or obtain a solution in quadratures by 

substitution of Eq. (15) into Eqs. (13a) and (13b). This last method will give us the 

following equation:  
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+  ,    (17) 

where r(θ) and Fθ are given by Eqs. (15) and (12c), respectively. Equation (17) is 

applied in its current form if one wants to follow the evolution of the angular position θ 

of the approaching microbeads with time. The evolution of the radial position r with 

time is obtained in a parametric form (r(θ), t(θ)), where r(θ) and t(θ) are given by Eqs. 

(15) and (17). In order to calculate the time evolution of the microbead positions, we 

need the expressions for the dipole moments m1 and m2 of the microbeads in the 

anisotropic suspending medium (ferrofluid). In the point dipole limit, these expressions 

read [39]: 
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H
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= − = − =

+ −
 (18) 

where subscript “i” refers to either the microbead 1 or the microbead 2, μi is the 

microbead magnetic permeability, vi and ai – the microbead volume and radius, Hi is the 

magnetic field intensity inside the microbead,  ( ) / 3( ( ))i i z z z i zn     = − + −  is the 

magnetic contrast factor and
zn  is the z-component of the demagnetizing factor of the 

oblate ellipsoid of revolution representing the ferrofluid anisotropy and having the semi-

axes equal to 1/ 2

z −  and 
1/ 2

x −
. In the case of the symmetry along the z-axis (

z x y   = , ˆ 1  ) the axis of symmetry of the ellipsoid is oriented along the z-axis 

and 
2 3(1 )( atan ) /z IIn n e e e e= = + −  with 1/ 2ˆ( 1)e = − . In the case of the permeability 

symmetry along the x-axis ( x z y   = , ˆ 1  )), the axis of symmetry of the ellipsoid 

is along the x-axis and 
2 3(1 ) / 2 1/ 2 (1 )( atan ) /(2 )z IIn n e e e e= − = − + −  with 1/ 2ˆ(1 )e = −
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. Thus, the constant C intervening into Eqs. (12b) and (12c) for the magnetic force 

reads: 2 3 3 2 1/ 2

0 1 2 1 2 012 /( )z x yC a a H     =  with y x =  for ˆ 1   and y z =  for 

ˆ 1.   

 

Fig. 7 (Color online). Comparison between experiments (symbols) and theory (lines) for the anisotropic 

ferrofluid of the microbead radial position (a) and angular position (b) as a function of time. For the pairs 

of similar microbeads (Ni-Ni and PMMA-PMMA), the anisotropy parameter is equal to ˆ 1.4 = . For the 

pair of dissimilar microbeads (Ni-PMMA), the anisotropy parameter is ˆ 0.7 = . The viscosity is taken to 

be 0.14 Pas for all the curves and is about three times the one of the bulk ferrofluid. The relative radial 

particle position r in (a) is normalized by the mean microbead radius (a1+a2)/2. 

The comparison between the model and experiments for the particle positions as 

a function of time is shown in Fig. 7 for the anisotropic ferrofluid with the anisotropy 

parameter ˆ 1.4 =  for the trajectories of similar particles and ˆ 0.7 =  for the trajectories 
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of dissimilar particles. Notice that the best fit of the theoretical curves to each set of the 

experimental data shown on that figure was obtained by setting the viscosity 

=0.14Pas of the suspending fluid, which is approximately three times the viscosity of 

the bulk ferrofluid (=0.05 Pas). This difference can be explained by hydrodynamic 

interactions between a moving microbead and a bottom wall of the experimental cell, 

enhancing viscous friction force exerted to the microbead. As observed, the model 

reproduces reasonably well the time dependencies of the mutual distance and of the 

mutual angle between microbeads and captures well the fact that Ni-PMMA pair gets 

much longer time to form a doublet than Ni-Ni or PMAA-PMMA pair (because of 

longer trajectories). This could be an important conclusion that must be taken into 

account while considering initial steps of the kinetics of magnetic field-induced particle 

aggregation. 

Let us now briefly inspect the effect of different physical parameters on the time 

that it will take for two microbeads to approach from their initial positions to the close 

contact between them, hereinafter called the approach time. According to Eqs. (12c), 

(17) and the definition of the constant C given below Eq. (18), the approach time T is 

proportional to 4 1/2 5 2

1 2 0( / ) /( )x y zT a H       for two microbeads of nearly the 

same radius a. First, one can notice that the approach time increases linearly with the 

ferrofluid viscosity  and decreases with the magnetic field intensity (
2

0T H − ). 

Second, the approach time strongly decreases with the bead size, as 
5T a− . This 

scaling comes from the fact that the time is inversely proportional to the product of the 

microbeads magnetic moments 
3m a  multiplied by the sum of their hydrodynamic 

mobilities 
1b a− , namely:  

1

1 2 1 2( )T m m b b
−

 + . Third, for all microbeads 
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combinations in the limit of isotropic ferrofluid, the approach time decreases with 

increasing ferrofluid magnetic permeability x y z   = = =  under assumption that it 

remains well below the magnetic permeability i (i=1 or 2) of the soft ferromagnetic 

microbead. This is explained by the fact that the magnetizable medium between 

microbeads enhances the magnetic force between them [40]. In particular, the response 

of the soft ferromagnetic microbeads to the applied magnetic field is faster when they 

are dispersed in a ferrofluid rather than in a nonmagnetic liquid. The same conclusions 

hold for anisotropic ferrofluid at the considered anisotropy parameters ˆ0.7 1.4  . 

Finally, at a given transverse component of the magnetic permeability tensor (supposed 

to be similar to the magnetic permeability  of the isotropic ferrofluid [cf. Annex C]) 

the approach time 4 1/ 2( / )x y zT     is shown to evolve with the anisotropy parameter 

as 2ˆT  −  for ˆ 1   and 1/ 2ˆT −  for ˆ 1  . This implies that the ferrofluid 

anisotropy accelerates the microbeads motion along the trajectories close to the z-axis 

and decelerates it along the trajectories close to the x-axis, with respect to the motion in 

isotropic ferrofluid. 

V. Conclusions 

We have demonstrated that the anisotropy of the magnetic permeability in 

ferrofluids strongly affects the magnetostatic force which directs the assembly of 

microbeads dispersed in the ferrofluid. The magnetic permeability anisotropy stems 

from the field induced structuring of ferrofluid nanoparticles. Indeed, a theoretical 

model based on this assumption is able to better describe the experimentally tracked 

trajectories of pairs of similar (i.e., magnetic-magnetic or non-magnetic-non-magnetic) 
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and dissimilar (i.e., magnetic-non-magnetic) particles than a model based on an 

isotropic approach.  

However, if the microbead trajectory strongly deviates from either the direction 

of the applied magnetic field (z axis) or transverse direction (x axis), the model does not 

capture well the trajectory shape probably because the mutual motion of microbeads 

generates the ferrofluid chain orientation that induces nearly equal values of the 

magnetic permeabilities along both coordinate axes, such that the isotropic theory better 

captures these trajectories. In the case when one trajectory segment strongly deviates 

from x or z directions and another one comes closer to one of these axes, the isotropic 

model fits better to the former segment and the anisotropic model – to the latter one. 

These facts (confirmed by careful comparison of the deviations between experiment and 

each of both models – see Fig. 9 in Appendix D) suggest that the anisotropy parameter 

ˆ /z x  =  likely varies along the trajectory and is not constant, as assumed in the 

present model. 

We have also found that the multi-polar approach does not significantly improve 

the theoretical analysis of the particle trajectories. Taken together our results suggest 

that ferrofluids do not necessarily behave as single phase magnetic continuum in the 

ferrofluid-directed assembly of microbeads, and that the interactions between the 

ferrofluid nanoparticles (leading to their structuring) should be taken into account in 

future theoretical descriptions of this type of assembly. 

Apart from particular application to magnetic multi-component suspensions, the 

present results are expected to contribute to a general understanding of the effects of 

suspending medium anisotropy on the behavior of suspended particles. 
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Appendix A. Multipolar theory 

In order to get a more accurate solution than the point-dipole approximation, one 

needs to consider the multipolar effects of the magnetic interparticle interaction. This 

requires solution of the standard magnetostatic problem on two magnetizable 

microbeads placed in the field H0 and calculation of magnetic fields inside each of the 

microbead. To the best of our knowledge, an analytical solution of this problem has not 

been obtained in literature. A short discussion of the theoretical efforts in this field can 

be found in [41]. In that work, the energy U of interaction between two identical linearly 

magnetizable microbeads was calculated by using computer solution of the two-particle 

problem and the following formula was suggested to fit the numerical results: 
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=

 
= − + 

− − 
    (A1) 

Here r is the distance between microbead centers normalized by their radius,  is the 

angle between the radius-vector r, linking the particle centers, and the applied field H0, 

( ) /( 2 )p f p f    = − +  is the magnetic contrast factor where p and f are 

respectively magnetic permeabilities of the microbead and of the ferrofluid; v=4a3/3 is 
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the microbead volume; pk, ak…dk are some parameters, their values are given in [41]. 

Note, that for r>>1 the formula (A1) coincides with the relation for the point-dipole 

approximation in the case of the isotropic ferrofluid. 

Combining eqs. (1), (2), (5) and (A1), we can calculate the coordinates of the 

vector r depending on the time t and determine the particle trajectory in the multipolar 

approximations. This problem can be solved numerically. The condition r>2, which 

forbids the particle interpenetration, must be taken into account. Results obtained for the 

multipolar theory did not appreciably differ from the results obtained by considering the 

point-dipole approximation in the limit of isotropic ferrofluid, as shown in Fig. 8. 

 

Fig. 8 (Color online). Comparison between multipole (solid line) and point-dipole (dashed line) 

approaches for calculation of particle trajectories for the Ni-Ni pair of microbeads. The external magnetic 

field is oriented along the vertical z-axis. The relative particle position x=r∙sinθ and z=r∙cosθ is 

normalized by the mean particle radius (a1+a2)/2. 

Appendix B. Equilibrium chain length 

In the case of monodisperse nanoparticles in thermodynamic equilibrium the 

distribution of the length of nanoparticle chains subject to an external uniform magnetic 
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field H0 can be calculated by minimizing the free energy of a gas of chains. In the dilute 

limit and at low field approximation, the following expression for the average number 

of particles per chain has been obtained using the results of the work [33]: 
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where  is the nanoparticle volume fraction,   and   are respectively the dipolar 

coupling and Langevin parameters, with 3

0 , / 6n S pm M d=  - the magnetic moment of a 

ferrofluid nanoparticle and 5

, 4.05 10  A/mS pM    - its magnetization taken to be equal 

to magnetization saturation of magnetite nanoparticles, measured in our previous work 

[25].  

In the case of the model of monodisperse ferrofluid, the nanoparticle diameter, d, 

is supposed to be equal to the average diameter dm=8.7 nm of a polydisperse sample. 

This gives us the average chain length 1.05N  , signifying that the nanoparticles of a 

diameter dm=8.7 nm cannot form the chains. This is not surprising because the dipolar 
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coupling and Langevin parameters take relatively low values for such a small 

nanoparticle size: (dm)≈0.7 and (dm)≈0.4. 

In the case of polydisperse nanoparticle sizes, only the largest particles are 

supposed to be able to form chains. They have a diameter d larger than some threshold 

value d0 and a high enough value of the dipolar coupling parameter . Since exact 

analytical theory for magnetic colloids with a continuous size distribution is still not 

well developed, we propose to model the polydisperse ferrofluid as a bi-disperse system 

consisting of two nanoparticles fractions: large nanoparticles having equal sizes and 

forming the chains and small nanoparticles also having equal sizes but remaining 

isolated. The nanoparticle diameters of both fractions are taken to be equal to the 

average sizes of polydisperse nanoparticles having diameters d≥d0 and dd0 

respectively, using the experimental nanoparticle size distribution [Eq. (1), Fig. 1]: 
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where the nanoparticle size distribution function g(d) is given by Eq. (1). The volume 

fraction of large and small nanoparticles is equal to 

0

( )L
d

g x dx 


=  ,       (B-3a) 

0

0
( )

d

S g x dx =  ,       (B-3b) 

respectively, and their sum corresponds to the volume fraction of all ferrofluid 

nanoparticles: L S  + = . As inferred from the above formulas, the magnitudes dL, L, 
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dS, S are related to the threshold diameter d0 but it is more convenient to relate the 

magnitudes L, dS, S to the diameter of large nanoparticles dL, eliminating the auxiliary 

parameter d0. From Eqs. (B-2) and (B-3), we find the following approximate correlation 

between the volume fraction of large particles and their mean size: 

1 /
exp L m

L

d d
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,    (B-4) 

where 8.7 nmmd =  is the mean diameter of all the ferrofluid particles and 0.5   is the 

size distribution parameter appearing in Eq. (1). The volume fraction and the diameter 

of small nanoparticles are are functions of dL and are given by: 

    
S L  = − ,     (B-5a) 
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In the frame of the above described bi-disperse model, the average chain length 

of a polydisperse ferrofluid is calculated by previous equations (B-1), in which the 

volume fraction  of all ferrofluid particles should be replaced by the volume fraction 

L of large particles [Eq. (B-4)] and the nanoparticle diameter d – by the diameter dL of 

large particles while calculating the dipolar coupling and Langevin parameters. Fitting 

the theoretical value of the ferrofluid magnetic permeability [Appendix C] to the 

experimental one, we find the numerical value of dL≈17 nm and then estimate L using 

Eq. (B-4a): L≈0.15≈0.01. Using these numerical values in Eqs. (B-1), we find the 

average chain length 5.4N   in frames of the bi-disperse model. Note also that the 
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dipolar coupling and Langevin parameters take the values (dL)≈5.3 and (dL)≈3.2 for 

the nanoparticles with a diameter dL≈17 nm. 

Appendix C. Estimation of the ferrofluid magnetic permeability 

The longitudinal component (  or )II z x  =  of magnetic permeability tensor 

along the nanoparticle chains can be estimated from the equilibrium free energy of the 

gas of magnetized chains described by a certain length distribution function fN. This 

function has been calculated in [33] along with a volume density F of the free energy in 

a low-to-moderate field approximation: 
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where the function Y and the parameters  and  are given by Eqs. (B-1c) – (B-1e). The 

longitudinal component of magnetization is proportional to the derivative of the free 

energy density with respect to the magnetic field intensity; this gives the following 

expression for the longitudinal component of the magnetic permeability, in the limit of 

the low magnetic fields: 
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The last formula applies when all the ferrofluid particles form the chains. In the real 

case of a polydisperse ferrofluid, we consider it as a binary mixture of chains 

constituted by large nanoparticles with an unknown diameter dL and of isolated 

nanoparticles with a diameter dS [see Appendix B]. The realistic value of 
II  for the 

polydisperse sample is estimated using a mixture rule: 

    1ch L L
II II iso

 
  

 

 
= + − 

 
   (C-4a) 

     1 8iso  +     (C-4b) 

where iso  is the magnetic permeability of a dilute isotropic mixture of small isolated 

nanoparticles. The parameter  for isolated nanoparticles [in Eq. (C-4b)] and for 

nanoparticles constituting the chains [in Eq. (C3)] is calculated by Eq. (B-1d) in which 

the particle size d should be replaced by the average sizes Sd  and dL of small and large 

nanoparticles, respectively.  

Relating L  to dL and Sd  to dL with the help of Eqs. (B-4), (B-5b), we express 

the longitudinal component of the ferrofluids magnetic permeability [Eq. (C-4a)] as 

function of a single unknown parameter dL. This parameter is found by fitting the 

theoretical value of II  to the experimental one 1.9II =  found from magnetization 

measurements [Sec. II]. We obtain dL≈17 nm, so a value approximately equal to two 

mean diameters (dm=8.7 nm) of all ferrofluids particles. This corresponds to the 

diameter of small nanoparticles dS≈7.3 nm and to volume fraction of large and small 
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nanoparticles equal to L≈0.15≈0.010 and S≈0.85≈0.056, respectively, as inferred 

from Eqs. (B-4), (B-5). The value dL≈17 nm also corresponds to the threshold 

nanoparticle diameter, separating the size distribution [Fig. 1] to classes of small and 

large nanoparticles, equal to d0≈13 nm.  

It is worth mentioning that the longitudinal component 
II  of the magnetic 

permeability is related to the average nanoparticle chain length N . To check the 

stability of our model towards small variations of N , it is estimated that 10% 

variation in the chain length around the nominal value 5.4N =  gives about 3% 

variation in the anisotropy parameter ̂ . It is checked that this produces negligible 

deviations of the calculated microbeads trajectories from the one calculated at the 

nominal values ˆ 1.4 =  or 0.7. 

 The component ⊥
 of the magnetic permeability perpendicular to the chains can 

be estimated from the simple argument that the magnetic field perpendicular to the 

chain would induce repulsive interactions between particles and the chain would be 

disintegrated into individual particles, in that case ⊥  is estimated by Eq. (C-4b) in 

which the parameter  should be calculated for the average diameter 8.7 nmmd =  of all 

the ferrofluid particles. The numerical value of ⊥  is estimated to be equal to 1.38. Note 

that such a destruction scenario should not contradict to the existence of chains mainly 

oriented along the x axis perpendicular to the applied magnetic field when the 

microbead trajectories are close to this axis. In fact, in the scale of microbeads, the local 

magnetic field around them is mostly misaligned with the chains oriented along the 

streamlines such that the chains are not expected to be destroyed by the magnetic field. 
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This has been checked for the shear flow in the vicinity of the microbeads where the 

local magnetic field is almost perpendicular to the streamlines but a small angle 

between the chains and the flow and high magnetic permeability of nanoparticles are 

sufficient to keep the integrity of the chains [cf. estimation at the end of Sec. IV-B]. 

Appendix D. Analysis of deviations between experimental and theoretical 

microbeads trajectories. 

The measured deviations iso and aniso between experimental and both 

theoretical trajectories are shown for each 9 experimental curves in Fig. 9. Recall that 

these deviations are defined for each point of the experimental trajectory as the shortest 

distance between a given point and the theoretical curve [Sec. IV-D]. Increasing 

experimental point number corresponds to the displacement from the initial trajectory 

point to the final point at the close contact of microbeads. Note that the symbol map in 

Fig. 9 is the same as the one in Fig. 6. 

Two experimental trajectories of Ni-Ni microbeads, situating closer to the z-axis 

are clearly better described by the anisotropic model giving less deviation with 

experiments along the whole trajectory (two right plots of Fig. 9a). The beginning of the 

experimental trajectory of Ni-Ni pair situating further from the z-axis is better described 

by the isotropic model, while its final part – by anisotropic model (the left plot of Fig. 

9a). Such apparent discrepancy could be explained as follows. According to our model, 

the bead motion orients the ferrofluid nanoparticle chains (in the vicinity of microbeads) 

along the fluid streamlines, thus, in average, along the trajectory [cf. Sec. IV-B]. When 

the microbeads move towards each other, the nanoparticle chain orientation in the 

vicinity of microbeads and, consequently, the magnetic permeability tensor evolve with 
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the microbeads mutual position. In the beginning of motion, the considered trajectory 

[blue circles in Fig. 6a] makes an angle about =45-60° with respect to the z-axis of the 

external magnetic field. Such chain orientation is expected to give the ferrofluid 

permeability components, z 
2 2sin cosII   ⊥+  and x 

2 2cos sinII   ⊥+  

close to each other thus, their ratio ˆ /z x  =  is expected to be close to unity, as for the 

isotropic ferrofluid. This possibly explains why the isotropic permeability model better 

captures the beginning of this trajectory. At the end of microbead displacement, the 

trajectory gets close to the field z-axis, the ferrofluid chains get mostly aligned with the 

z-axis and the ratio ˆ /z x  =  becomes appreciable (1.4 in our model), such that the 

anisotropic permeability model gives a better prediction for the end of the trajectory. 

Two of three experimental trajectories of PMMA-PMMA microbeads are much 

better described by the anisotropic permeability model (left and right plots of Fig. 9b). 

Another experimental curve seems to be better described by the isotropic model (middle 

plot of Fig. 9b) but the difference between deviations iso and aniso falls, for the most of 

the points, into the error bars (±0.1) of experimental data. 

Concerning the Ni-PMMA pair, experimental trajectory furthest from the x-axis 

(full squares in Fig 6c) is better described by the isotropic model (middle plot of Fig. 

9c), while the middle experimental trajectory (closer to the x-axis, open triangles in Fig. 

6c) is better described by the anisotropic model (right plot of Fig. 9c). In the same 

manner that for the case of Ni-Ni pair , we expect that the trajectory further from the x 

axis induces the anisotropy ratio ˆ /z x  =  closer to unity (because of the ferrofluid 

particle chain orientation induced by the bead motion), therefore this trajectory is better 

described by the isotropic model. The trajectory closer to the x-axis induces the ratio 
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ˆ /z x  =  less then unity (0.7 in our case) and is better captured by the anisotropic 

permeability model. Finally, the difference in deviations iso and aniso for the third 

curve shown by closed circles in Fig. 6c (the closest curve to the x-axis, also see left 

plot of Fig. 9c), falls within the error bars of the experimental data. 

 

Figure 9 (Color online). Deviation between experimental points of the microbeads trajectories and both 

theoretical models as function of the number of the experimental point for “Ni-Ni” pair (a), “PMMA-

PMMA” pair (b) and “Ni-PMMA” pair (c). Closed symbols correspond to the anisotropic model and open 

symbols – to isotropic model. Three columns correspond to three different trajectories (for each pair of 

microbeads) shown in Figs. 6a, 6b, 6c. 
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