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Abstract 

The paper deals with theoretical study of effect of ferrogels uniaxial elongation on magnetic 

susceptibilities of these composite materials.  We have considered the systems with magnetically 

soft ellipsoidal and spherical particles. The results show that elongation of the composites with 

the ellipsoidal particles enhances the susceptibility in the direction of the elongation, whereas the 

deformation of ferrogels  with the spherical particles decreases the susceptibility when the 

particles concentration is small enough and increases it when the concentration exceeds some 

threshold magnitude.    
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1. Introduction.  

Magnetic gels and elastomers present new kind of composite materials, consisting of fine (nano- 

or micronsized) magnetic particles embedded into polymer matrix. Combination of rich set of 

physical and mechanical properties of polymer and magnetic materials attracts considerable 

interest to these systems and to their usage in various industrial and bio-medical applications [1-

7].  In part, magnetic gels are used for address drug delivery; for industrial and biological sensors 

[8-14]; for construction of soft actuators and artificial muscles [2,15]; for cancer therapy, 

regenerative medicine and tissue engineering [16-24]. 
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From the viewpoint of biomedical applications, magnetic hydrogels are very promising 

materials due to their biocompatibility and ability to mimic some cellular functions [25].  One of 

the remarkable properties of these systems is an opportunity to change, under the action of an 

external magnetic field, their microstructure, magnetic, mechanical and other macroscopic 

properties, size and shape. This gives a possibility to control, with the help of the field, mechanic 

behavior, transport and electrical processes in these systems. In its turn, this ability presents 

significant advantage for biosensoric and other high-tech applications [8,9,20,23,25-27]. 

On the other hand, one can expect the inverse effect of macroscopic deformation of the 

composites on their magnetic properties. This effect is interesting from the viewpoint of 

development of technologies of artificial muscles and actuators, sensors, magnetocontrolled 

scaffolds for growth and engineering of biological tissues. It should be noted that the similar 

effect of inverse relationship between gel longitudinal deformation and its electrical potential has 

been recently discovered and studied in refs. [28,29].  

In this work we present results of theoretical study of effect of a ferrogel uniaxial 

elongation on its magnetic susceptibility. The systems with magnetically soft ellipsoidal and 

spherical particles are considered. In order to avoid intuitive and heuristic theoretical 

construction, we consider the systems with small concentrations of the particles. This allows us 

to develop mathematically regular approaches, which can be used as a background for theoretical 

study of more concentrated materials.  

We believe that the discussed mechanomagnetic effect have a high potential for the 

development of technologies in the area of artificial muscles, actuators, sensors, 

magnetocontrolled scaffolds and other high-tech applications of magnetic gel. 

 

2. Ellipsoidal magnetically soft particles. 

Let us consider a ferrogel sample, consisting of non Brownian magnetic ellipsoidal particles 

chaotically (gas-like) distributed in a polymer matrix. Physically this means that the gel was 

curried without action of an external field. To avoid problems connected with demagnetizing 

field, we suppose that the sample is highly elongated, magnetic field H is aligned along its major 

axis; the elongation takes place in the same direction. This situation is illustrated in Fig.1.  
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Fig.1. Illustration of the sample; u is the mean (measurable) displacement. 

Our goal is to estimate effect of the small elongation on the initial magnetic susceptibility  of 

the gel.  The generalization to the non linear magnetization of the particles is not difficult, but 

leads to cumbersome calculations and final results. We suppose the strong coupling of the 

particles with the polymer matrix and the non slipping condition on the particles surface.   

   The sketch of the particle is presented in Fig.2.  

 

Fig.2. Sketch of the ellipsoidal particle deviated from the field H. 

 

By definition, the macroscopic magnetization Mc of the composite, containing the particles, can 

be presented as: 

𝑀𝑐 = 𝜑 < 𝑀𝑖𝑛,𝑧 >                                                                                                              (1) 

Here 𝜑 is volume concentration of the particles, 𝑴𝑖𝑛   is magnetization inside the particle, 𝑀𝑖𝑛,𝑧 

is component of 𝑴𝑖𝑛 in z direction, i.e. along the applied field H; brackets mean statistical 

averaging over all orientations of the particle axis.  

The linear, with respect to the field H, magnetization 𝑴𝑖𝑛 in the particle can be determined by 

using the classical results of the theory of polarization of dielectric ellipsoids [30].  After simple 

transformations, the component  𝑀𝑖𝑛,𝑧     can be calculated as: 
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𝑀𝑖𝑛,𝑧 = 𝜒𝑝𝐻 (
cos2 𝜃

1+𝜒𝑝𝑁∥
+

sin2 𝜃

1+𝜒𝑝𝑁⊥
)    , 𝑁⊥ =

1−𝑁∥

2
                                                                          (2)              

Here 𝜒𝑝  is initial susceptibility of the particle material, angle 𝜃 is shown in Fig.2, 𝑁∥ and 𝑁⊥ are 

the components of the particle demagnetizing factor along and perpendicular to the main axis of 

the ellipsoid respectively. 

The explicit form of the demagnetizing factor is [30]: 
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Here  is aspect ratio of the ellipsoid (ratio of the ellipsoid axis of symmetry to its diameter).  

Let u be a vector of the macroscopic displacement in the composite. The uniaxial elongation of 

an incompressible sample corresponds to the following relations: 

𝜕𝑢𝑧

𝜕𝑧
= 𝜀,

𝜕𝑢𝑥

𝜕𝑥
= −

𝜀

2
,

𝜕𝑢𝑦

𝜕𝑦
= −

𝜀

2
                                                                                                 (3) 

Here 𝜀 is relative elongation of the sample, which is supposed small (𝜀 ≪ 1). 

     We will denote initial, before the sample elongation, value of the angle 𝜃  of a  given particle 

as 𝜃0.  Since the  elongation 𝜀 is supposed small, the difference 𝛿𝜃 = 𝜃 − 𝜃0 also must be small. 

By using 𝜃 = 𝜃0 + 𝛿𝜃 in eq.(2), in the linear approximation with respect to 𝛿𝜃 we get: 

𝑀𝑖𝑛,𝑧 = 𝑀𝑖𝑛,𝑧0 + 𝛿𝑀𝑖𝑛,  

𝑀𝑖𝑛,𝑧0 = 𝑀𝑖𝑛,𝑧(𝜃0),     𝛿𝑀𝑖𝑛 = −𝜒𝑝𝐻(𝜅∥ − 𝜅⊥) sin 2𝜃0 𝛿𝜃                                                    (4)         

𝜅∥,⊥ =
1

1+𝜒𝑝𝑁∥,⊥
  

 

   In order to determine the deviation angle  , we will use the results [31,32] of hydromechanics 

of suspension of elongated particles, as well as the mathematical identity of the linear Navier - 

Stokes equation and the Lame equation of the small deformations of elastic media. 

   Equations [31,32] of dynamics of a non Brownian magnetizable particle, suspended  in  a 

Newtonian liquid, can be presented as: 

𝑑𝜃

𝑑𝑡 
= −

3

2
𝜆𝜀̇ sin 𝜃 cos 𝜃 +𝜇0𝐻2 1

6𝜂𝜚
𝜒𝑝

2(𝑁⊥ − 𝑁∥) 𝜅∥𝜅⊥ sin 𝜃 cos 𝜃                                    

𝜆 =
𝜉2 − 1

𝜉2 + 1
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𝜚 =
𝜉2 + 1

4(𝑁∥(2𝜉2 − 1) + 1)
 

     Here 𝜀̇  is the rate of elongation of the suspension flow, 𝜂 is viscosity of the current fluid, 𝜇0  

is the vacuum magnetic permeability. These equations, in the inertialess approximation, 

correspond to the balance between the hydrodynamic and magnetic torques, acting on the 

particle. 

    To get the equations for the particle turn in an elastic medium, we must replace the elongation 

rate 𝜀̇ to the static elongation  𝜀; the viscosity 𝜂 to the matrix shear modulus G; the derivates 
𝑑𝜃

𝑑𝑡
 

to the deviation angle 𝛿𝜃 . In the linear approximation with respect to 𝜀  , one can get: 

 

𝛿𝜃 = −
3

4
𝜀𝜆 sin 2𝜃0 + 𝑖𝑛𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑡𝑒𝑟𝑚𝑠                                                                         (5) 

 

The mean magnetization of a particle can be calculated as:  

< 𝑀𝑖𝑛,𝑧 > =< 𝑀𝑖𝑛,𝑧0 > +< 𝛿𝑀𝑖𝑛,𝑧 >,                                                                                (6) 

< ⋯ > =
1

2
∫ … sin 𝜃0𝑑𝜃0

𝜋

0

 

 

Here brackets mean averaging over all initial orientations of the particles. 

Substituting eqs. (2), (4) and (5) into (6), we calculate the average magnetic moment of the 

particle: 

< 𝑀𝑖𝑛,𝑧0 > =  
1

3
𝜒𝑝𝐻(𝜅∥ + 𝜅⊥)                                                                                         (7) 

< 𝛿𝑀𝑖𝑛,𝑧 > =
2

5
𝜆𝜒𝑝𝐻(𝜅∥ − 𝜅⊥)𝜀 

Combining eqs.(1) and (7), one gets: 

𝜒 = 𝜒0 + 𝛿𝜒, 

𝜒0  =  
1

3
𝜒𝑝(𝜅∥ + 𝜅⊥)𝜑                                                                                                            (8) 

𝛿𝜒 = 𝑄𝜒𝑝𝜑𝜀;     𝑄 =
2

5
𝜆(𝜅∥ − 𝜅⊥) 

Some results of calculations of the coefficient Q as a function of the aspect ratio 𝜉 are shown in 

Fig.3.  
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Fig.3 The factor Q vs. the particle aspect ratio  Dashed and solid lines 𝜒𝑝 = 10  and 100 

respectively. 

 

The coefficient Q is positive for all magnitudes of the aspect ratio  Therefore elongation of the 

sample leads to increase of the composite magnetic susceptibility.   

 

3. Spherical magnetizable particles.  

In the case of the spherical particles (=1, 𝜅∥ = 𝜅⊥  ) the approximation (8) of the non interacting 

inclusions gives    𝛿𝜒 = 0 . Thus, to determine the mechanomagentic effect in the composite 

with magnetizable spheres, the interparticle interactions must be taken into account.        

   Magnetic susceptibility 𝜒  of a composite with the spherical inclusions can be calculated from 

the general relation [30,33] 

=
in

H
p

H                                                                                                           (9)                       

Here Н again is the mean (Maxwell) field inside the sample,  𝐻𝑖𝑛   is the field inside an arbitrary 

particle, the brackets <…> mean averaging over all physically possible positions of other 

particles.  

    The main problem of a theory of composite materials is account of the cooperative interaction 

between many particles.  No general results have been obtained here. However in the case of 

single non interacting particles this problem can be solved strictly [30,33,34]. For the spherical 

particles with high susceptibility  𝜒 ≫ 1   the result reads: 

           𝐻𝑖𝑛
0 ≈ 3𝐻                                                                                                       (10)                                  

The superscript 0 denotes the approximation of the non interacting particles.  
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       In order to take the interparticle interaction by using as mathematically strict results as 

possible, we will restrict ourselves by the well-known pair approximation, i.e. will take into 

account interaction only between two particles, ignoring effects of any third one.  The particles 

are illustrated in Fig.4. 

 

Fig.4. Cluster of two interacting particles. Explanations are in the text. 

 Magnetic field, induced by a particle inside the other one (say, by the particle number 2 inside 

the particle number 1 in Fig.4) can be estimated in the simplest dipole-dipole approximation. 

This approximation is quite accurate when the distance r between the particles centers 

significantly exceeds diameter of the particle, however it leads to serious mistakes at the particles 

close disposition [35,36].   

To determine the induced field, we will use here the results of [36], where energy of the 

multidipole magnetic interaction between two particles has been estimated on the basis of 

analytical extrapolation of results of numerical calculations. In the case 𝜒𝑝 ≫ 1 , the result of 

[36] reads: 

𝑊 = −𝜇0𝑣 [3 + 3 ∑ (
𝑎𝑘

(𝜌−𝑏𝑘)𝑘 +
𝑐𝑘

(𝑞−𝑑𝑘)𝑘 cos2 𝜃)7
𝑘=3 ] 𝐻2                                                   (11)           

    Here W is total energy of two linearly magnetizable particles placed in the field H; =r/a; a is 

the particle radius,    parameters ak…dk are tabulated in [36];    𝜃    is angle between the radius 

vector r, linking the particles, and the field H (see Fig.4).  The first term in the square brackets of 

(11) presents the energy of interaction of two isolated particles with the field H; the second one,  

in the extrapolation of [36], corresponds to the multipole interaction between these particles. For 

>>1 the second term in (11) coincides with the energy of the dipole-dipole interaction.  

The needed z-component of magnetization 𝑴𝑖𝑛 inside each of the particles can be calculated 

from the general thermodynamic relation between a material magnetization and its energy in an 
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external field (see, for example, [30]). Taking into account that W is energy of the two particle 

cluster, by using eq. (11), one gets: 

𝑀𝑖𝑛,𝑧 = −
1

2𝑣𝜇0

𝜕𝑊

𝜕𝐻
= [3 + 3 ∑ (

𝑎𝑘

(𝜌−𝑏𝑘)𝑘 +
𝑐𝑘

(𝑞−𝑑𝑘)𝑘 cos2 𝜃)7
𝑘=3 ] 𝐻                                               (12) 

Taking into account that 𝑀𝑖𝑛,𝑧 = 𝜒𝑝𝐻𝑖𝑛, by using eq.(9) one comes to the relation:  

H

M zin 
=

,                                                                                                                                                   (13) 

    In order to determine the magnetization  < 𝑀𝑖𝑛,𝑧 >     in (13), one must average eq. (12) over 

radius-vector r  of all physically possible positions of the second particle, shown in Fig.4.  

For simplification of the further consideration, we will present the magnetization as: 

𝑀𝑖𝑛,𝑧 = 𝑀𝑖𝑛,𝑧
0 + 𝑀𝑖𝑛,𝑧

′ , 

𝑀𝑖𝑛,𝑧
0 = 3𝐻,    𝑀𝑖𝑛,𝑧

′ = 3𝐻 ∑ (
𝑎𝑘

(𝜌−𝑏𝑘)𝑘 +
𝑐𝑘

(𝑞−𝑑𝑘)𝑘 cos2 𝜃)7
𝑘=3                                                       (14) 

Here 𝑀𝑖𝑛,𝑧
0  is magnetization of the single particle, 𝑀𝑖𝑛𝑧

′  is a part o the magnetization induced by 

the second particle inside the first one.  

Let p(r) be the density of probability  of the given relative disposition of the particle, normalized 

as:   

1→p  , at .→r   

By using standard considerations of statistical mechanics (see, for example, [37]) one can present 

the mean magnetization of the particle as:              

       < 𝑀𝑖𝑛,𝑧 >= 𝑀𝑖𝑛,𝑧
0 +

𝜑

𝑣
∫ 𝑀′

𝑖𝑛,𝑧(𝒓) 𝑝(𝒓)𝑑𝒓                                                                         (15)                                  

Combining eqs.(15) and (13), one determines the susceptibility  of the composite.  

      Let us write down the distribution function p as:  

ppp += 0                                                                                                                          (16)                                 

          The function  𝑝0  corresponds to the initial, non elongated state of the composite,    p  

reflects effect of the sample elongation on the particles relative disposition. 

           By using the results of [38], we come to the following equation with respect to p  
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( )000 )()( pdivppdivp +−=−= www                                                                                     (17) 

     Here w is the vector of displacement of the second particle with respect to the first one. 

      We will write down  0p  in the form of the pair distribution function  the gas of hard spheres 

[37]: 

ara

ar

a

r

a

r

ar

p 42,

4,1

1288

3
181

2,0

3

3

0 











+−+



=                                                                                        (18)                 

In order to determine the vector w, we will use the results of [39] of hydromechanics of 

suspensions of hard spheres in Newtonian liquids as well as the similarity between equation of 

the liquid flow and equation of the Hook deformations of elastic media. By using the spherical 

coordinate system, with the radius-vector r and the polar angle 𝜃    (see Fig.4) , and the results of 

[39] for the uniaxial elongation flow, we come to the following relation  

( ) ( )( ) ( ) ( ) 22

2
1cos3

13

2
r

dr

rdA

rr

rBrA
div −








+

−
−= 


w                                                            (19)                

( ) or p
r

wp



= 0w  

( )( )( )rrAwr 1cos31
2

2 −−= 


 

    Here 
rw  is the radial component of the vector w;   A and B are functions of the distances r 

between the particles centers, introduced and tabulated in  [39].  

   By using (13) and (15,16),  after simple transformations, one gets:   

 = '
, zin

MH 
                                                                                                        (20)         
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Combining eqs.(13) and (17- 20) we calculate the term  '
, zin

M  and, therefore,  the change  

  of the sample susceptibility .  

By using the table of numerical values of the functions A and B, given in [39], we have estimated 

the integral over r in eq. (20) in the form of the trapeze approximation of the Riemann sum. The 

integral over the angle 𝜃 in (20) is calculated analytically.  

      After these transformations, the following relation for the composite susceptibility has been 

obtained: 

𝜒 ≈ 3𝜑 + 𝛿𝜒                                                                                                               (21). 

𝛿𝜒 = −𝜀𝜑2
12

5
(1.3 − 2.8𝜑) 

The term  3𝜑   in (21)  is the susceptibility of the non deformed composite. For simplicity we 

have omitted here the term, proportional to 𝜑2. That is acceptable for the practical use when the 

concentration 𝜑 is in the frames of 10-15%. The term 𝛿𝜒 is the change of the composite 

susceptibility because of its elongation.  This result demonstrates that the term   is negative 

(i.e. effective susceptibility 𝜒 decreases while the sample elongation) if the particles 

concentration 𝜑 is small enough; in contrast, it increases when the concentration exceeds some 

threshold magnitude 𝜑𝑐 , estimated as   𝜑𝑐 ≈ 0.45. The physical reason of this change of the sign 

of   is appearance of the short ranged order of the particles spatial disposition.  One needs to 

note that the term 1.3 − 2.8𝜑 in (21) is determined by the used method of numerical calculation 

of the integral over r in (20). It can be précised if the explicit forms of the functions 

𝐴(𝑟)and 𝐵(𝑟)  are known. 

 

Conclusion. 

We present results of theoretical study of effect of ferrogels elongation on their effective 

magnetic susceptibility. In order to get mathematically regular results, free from any intuitive 

and heuristic  constructions, we have considered the systems with low concentration of the 

particles. Our results show that susceptibility of the composites with non spherical (ellipsoidal) 

inclusions enhances at the sample elongation. In the case of the systems with spherical particles, 

the mechanomagnetic effect appears because of change, at the macroscopic deformation, of the 

mutual disposition of the magnetically interacting particles. The susceptibility decreases, after 
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the sample elongation, if the concentration of the particles is low enough and increases when the 

concentration exceeds some threshold magnitude.  

     For mathematical simplicity and transparence of the physical results, we have considered the 

situation, when the applied field H is parallel to the axis of the sample elongation. The developed 

approach, without serious modifications, allows studying of the mechanomagnetic effect at the 

arbitrary orientations of the field. 

We believe that the present mathematically regular results, obtained in the asymptotic of low 

concentration of the particles, can be a robust background for development of models of this 

effect in the more concentrated magnetic gels. The studied mechanomagnetic effect can be 

promising for development of technologies of artificial muscles, actuators, sensors, 

magnetocontrolled scaffolds and tissue engineering 

     Coming back to possible biomedical applications, we would like to mention recent strong 

request for multifunctional biosensor systems where soft matters play different roles. For 

example, it was shown that ferrogel thin layer can be a good basis for enhanced cells adhesion 

[25]. We can therefore propose hypothetical situation for low invasive surgery with location of 

ferrogel implant sample carrying certain amount of cells for in-situ tissue regeneration. 

Application of external magnetic field of controlled strength can be useful for the implant size 

adjustment and this adjustment can be controlled by highly sensitive to the effective magnetic 

susceptibility magnetic field detector like giant magnetoimpedance based sensor [40]. 
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