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Abstract

In this paper, we examine the problem of building a user profile from a set of
documents. This profile will consist of a subset of the most representative terms
in the documents that best represent user preferences or interests. Inspired
by the discrete concentration theory we have conducted an axiomatic study
of seven properties that a selection function should fulfill: the minimum and
maximum uncertainty principle, invariant to adding zeros, invariant to scale
transformations, principle of nominal increase, transfer principle and the richest
get richer inequality. We also present a novel selection function based on the
use of similarity metrics, and more specifically the cosine measure which is
commonly used in information retrieval, and demonstrate that this verifies six
of the properties in addition to a weaker variant of the transfer principle, thereby
representing a good selection approach.

The theoretical study was complemented with an empirical study to com-
pare the performance of different selection criteria (weight- and unweight-based)
using real data in a parliamentary setting. In this study, we analyze the perfor-
mance of the different functions focusing on the two main factors affecting the
selection process: profile size (number of terms) and weight distribution. These
profiles are then used in a document filtering task to show that our similarity-
based approach performs well in terms not only of recommendation accuracy
but also efficiency (we obtain smaller profiles and consequently faster recom-
mendations).
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1. Introduction

The original reason behind this paper was to meet two different information
needs in a parliamentary context. Firstly, someone (e.g. a member of the public
or a journalist) might need to find a certain politician to discuss a problem with
them or simply interview them, respectively. In such cases, this person does not
need any politician but rather one who works in the area connected with the
matter concerned and who can attempt to solve the request or properly answer
the interview questions. This is related to the expert-finding task [8], which
have been the subject of substantial research over the past decade focusing on
enterprise, online communities or academic domains [2, 40, 46, 52]. Secondly,
we can consider the situation whereby a new document (e.g. a press release,
parliamentary initiative or a user’s request or petition) is lodged by parliament.
This document should then be filtered to those Members of Parliament (MPs)
that might be interested in the information contained in the document, thereby
solving the information overload problem. This concerns the document-filtering
task or content-based recommendation task [12, 41].

For both tasks, a structure such as a profile is needed to represent the topics
of interest to the MPs. This profile might be created manually (where the
users express explicitly their preferences [7, 8] or using relevance feedback [2])
or automatically (by analyzing documents created during routine work [8, 16]).
There are various reasons that advise against the use manually-based methods
[10]: people do not like having to complete long forms about their interests,
they are generally biased towards current interests and are static since people
rarely update their preferences.

So, we would use automatic methods, as in our previous paper [16], but
considering that a profile should be a subset of all the words used by the MPs in
their speeches in different parliamentary sessions.To tackle this problem, firstly
we should apply any weighting scheme in order to determine for each used word
its representativeness with respect to the MP preferences. The output of this
step is a list of words with their associated weight, possibly sorted. Nevertheless,
after this step a selection process becomes necessary to separate the wheat from
the chaff. When a ranking of the terms is returned, it is possible to establish
a threshold in order to discard the less relevant ones. Unfortunately, where to
establish the threshold is not an easy-to-solve question [13], and usually heuristic
approaches were used. So, the objective is to determine which are those terms
(among all the terms in the vocabulary) that finally will belong to the MP’s
profile (those truly representing her preferences). In this paper we will focus on
this problem, motivated mainly by some findings from our previous research.

Thus, in [16] we used the N -top ranked where N is a constant parameter.
We experimented with profiles of different fixed sizes and concluded that pro-
files with a large number of terms performed best. However, we realized that
this selection scheme might not be entirely appropriate. One reason for this
is that if an MP participates in more debates than another, then the number
of possible keywords for selection is potentially greater. There are also MPs
with more focused areas of political interest (they might, for example, specialize



1 INTRODUCTION 3

in areas such as education or employment) whereas others might have a much
wider range of interests, and might therefore require a greater number of terms.
The way MPs express themselves and their verbosity could also affect the length
of their profiles. If small profiles are preferred, we could omit a large number of
interesting terms to correctly represent those MPs with a wide range of inter-
ests. On the other hand, large profiles might include useless terms which would
introduce noise into the recommendation time. The underlying hypothesis for
this current research therefore states that the best results would be obtained if
variable size profiles are used which are better adapted to each MP.

Finding a good selection scheme is not easy because two different factors need
to be taken into account: firstly, the number of terms in the MP vocabulary, and
secondly, the representativeness of each term, which depends on how the weights
are distributed among the terms. What generally happens is that the more
concentrated the weight distribution is, the fewer the terms required to represent
the profile. Consequently, any useful scheme for evenly characterizing a profile
should consider these two factors. Thus, the selection techniques considered
in this paper can be classified into two groups: unweighted ones, which only
consider the number of terms in the profiles, and weighted ones, which take
into account the distribution of the weights among the terms. Each profile
could have a potential different size depending on the representativeness of the
selected terms.

In spite of these practical reasons for our interest, studying conceptual prob-
lems involved in the selection of the most representative items (in our case terms)
from a ranked set of them is an important problem and one that also deserves
to be studied from a theoretical point of view. Correspondingly, it is possible
to draw a parallel with the concentration theory [19] or the measurement of
inequality in econometrics [5]. In this paper we will attempt to clarify the basic
issues, to examine those properties that should be required for any employed
function, and, on the basis of these, to discuss a new approach for tackling the
selection problem based on a similarity measure. In the paper we analyze sev-
eral approaches, adapted to the problem at hand, with the aim of identifying
whether or not they satisfy the proposed principles. This analysis has provided
us with insight into the expected behavior for each selection criteria in practice.

The rest of the paper is structured as follows. The next section describes the
related work in the field of term selection. Section 3 presents those theoretical
properties that should be satisfied by a selection function. Section 4 analyzes
five cutoff functions, including our novel approach, which are based on the use of
similarity metrics. Section 5 presents an empirical study of these methods and
shows how they perform when document-based profiles are used. We continue
by focusing on a politician recommendation task in Section 6 with a general
introduction of the system used, details of the experimental design and the
results obtained. We finish this paper with Section 7 with our conclusions
about this research. The paper ends with an appendix which includes several
demonstrations.
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2. Related work

It is quite common in different disciplines to model a real world phenomenon
by considering a set of attributes to describe the examples, cases, individuals
or entities. The importance of each attribute is generally represented by a
weight and it is quite common to use vector space models to represent this
information. For instance, in a recent paper [9] on entity profiling, 60% of
the 52 papers reviewed, and which were published between 2000 and 2015, use
such a representation. The advantages are that they are easy to implement,
require much less learning work than other approaches and perform well on
tasks that involve measuring the similarity between elements [10, 49]. The
range of disciplines can vary from econometrics (the attributes might be the
workers and the weights their productivity), bibliometrics (where the items
are the books/articles and the weights might be the number of times they are
loaned out/cited) or, along the same lines as our research purposes, information
retrieval (where the items are the words and the weights their occurrence in a
given text), recommender systems (products and users ratings) or user modeling
(weighting their preferences).

In terms of domains that use documents as input, vector space models have
been used in areas such as search engines [6], document classification or clus-
tering [23], e-commerce [41], research paper similarity [26], enterprise informa-
tion seeking [2, 7]. In these domains, Zipf’s law [54] states that the frequency
of a word is approximately proportional to the reciprocal of its rank in a fre-
quency list. This law ensures dramatically skewed distributions for almost every
language-applied statistic, and power scaling ensures that most words occur very
infrequently. Nevertheless, this situation is often encountered in areas relating
to information sciences: there are few prolific scientists and most publish only
a few articles; there are few top reference journals for each scientific discipline
but many journals occasionally publish related articles; a small group of movies
are very popular and seen by many people whereas most are seen by only a few
people. When building a vector space model in such domains, some common
properties can therefore be identified: the size of the vector is quite large (it is
related to the number of terms in the vocabulary, the number of users/items,
the number of researchers, etc.); there is a severe sparse data problem since
most attributes have relatively low weights (many with the value zero) and it is
also quite normal for most of the informat

In theory, the fullest possible profile for an element would include every
attribute in the domain and an unfeasibly large vector would be obtained. As
[34] says, in practice this is not a good approach since it is difficult for the
end user to interpret its contents [32]. Identifying the most relevant attributes
can help to improve system performance by reducing noise as well as saving
computational resources [23]. The simplest way to perform such a selection is
to limit the number of vector components, keeping only the most representative
ones [49] which will help to improve system performance. For instance, in [33]
the top-200 words are used to automatically construct thesauri showing that
the number of comparisons needed greatly decreases while little precision is lost
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for this task. Similarly, in [30] different term weighting variants were used to
select the most important N% terms from each document. A threshold over
a given metric is also used to select the distinctive bigrams from a list of all
the possible combinations of two words occurring in the corpus [36]. In most
cases, the final set of attributes has usually been obtained either heuristically
or empirically but this task has hardly been studied.

Despite the approach used, this task concerns topics such as feature selection,
feature extraction and dimensionality reduction, where the variables or features
considered are the terms used in the transcripts of each MP’s speeches.

Feature selection [24] is the process of selecting a subset of relevant features
from the original set of features. However, feature extraction and dimensionality
reduction techniques [22] (such as Principal Component Analysis and in some
way topic based approaches as LDA [11]) create new features from functions
of the original features by transforming the data in a high-dimensional space
into a smaller dimensional space. In our case, and given that we shall use the
selected terms in each profile to create documents to be used by an IRS, we
are not interested in techniques that transform the features and so we focus
on feature selection. Much of the work in feature selection is related with the
field of classification. The three main categories of feature selection algorithms
are wrappers, filters and embedded methods [13, 18, 24, 29]. Wrappers use
the same model/classifier to score subsets of features according to their error
rate. Filters score subsets of features using a measure that is independent of
the chosen model. Embedded methods incorporate feature selection as part of
the model construction process (and are specific to the given model). Since we
do not rely on any given model in our case, we do not consider wrappers and
embedded methods.

Within filter methods, we focus on the so-called feature ranking methods
rather than explicitly searching for the best feature subset [13, 18]. Feature
ranking methods rank individual features independently of the context of oth-
ers, using some measure of the goodness, relevance or importance of each feature.
In order to effectively perform feature selection, feature ranking methods need
an additional criterion to determine a cutoff point in the ranking. The reason
for discarding methods that search for the best feature subset (in addition to the
greater computational cost) is that they tend to penalize redundant features.
This is appropriate for classification problems. However, in our case avoid-
ing redundant features (e.g. terms that frequently co-occur) is not necessarily
a good idea since two redundant terms might enable matching with different
documents.

When dealing with a classification problem, a number of well-known mea-
sures can be used to rank the features by computing scores between each can-
didate feature and the class variable. Examples of these measures include mu-
tual information, information gain, χ2 statistic, odds ratio and Gini coefficient
[23, 44, 53]. Since we do not have the class variable, we are not faced with a
(text) classification problem, and so these measures cannot be applied. Moreover
the objective in our research is different, since we are looking for the most repre-
sentative terms to be included in the profile (even if they are used frequently by
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several MPs), and not for those terms which are helpful for classification tasks,
which seems to be the ones distributed most differently in the sets of positive
and negative examples of the class [43]. Instead we need to resort to such term
importance measures used for indexing in the field of information retrieval as
document frequency, term frequency or inverse document frequency [4, 6, 37].
There is also related work about term selection in the context of query refor-
mulation, for example to reduce long queries [35] or to perform query expansion
for relevance and pseudo-relevance feedback [17].

The question that we ultimately ask when building a selection function is
whether a term subset is representative of the entire profile. In this paper we
will see that the answer to this question is connected with the concentration of
the term’s weights in the profile. The concept of concentration of a distribution
has been studied in many disciplines (e.g. econometrics, statistics, informetrics,
ecology) under related concepts such as inequality, diversity, variation or disper-
sion of a distribution [5, 19, 25, 27, 39]. In most cases, the main purpose is to
determine a measure which summarizes in a single value the entire distribution,
such as for example the Gini index, coefficient of variation or Theil measure.
It should be noted that these measures are mainly used to compare (or rank)
several distributions. Although the concept of concentration is frequently used
in the literature, in the paper we therefore introduce its use for designing a selec-
tion function. In this respect, and inspired by the work of L. Egghe [19, 20], we
will adapt those principles required for a concentration measure to our problem
in the following section. These principles provide a foundation for an intuitive
understanding of the selection problem, guiding the design and validation of any
function used to determine the cutoff point.

3. Theoretical foundations

Before discussing the properties, we will present some notation. Let w(t,Dj)
be a measure of the importance or weight of the term t in a document Dj within
a document collection D = {D1, . . . , DN}. We then rank the terms in Dj in de-
creasing order of importance to obtain an ordered list Lj = (t1,j , t2,j , . . . , tnj ,j),
where w(ti,j , Dj) ≥ w(ti+1,j , Dj), i = 1, . . . , nj − 1 and nj is the number
of different terms in Dj . We then select the first lj terms in this list, i.e.

D̂j = {t1,j , . . . , tlj ,j}, where lj ≤ nj represents document Dj .
The question now is how we can determine the cutoff point lj . If lj is too

small, the resulting profile might not be representative enough of the user’s real
interests. Otherwise, if lj is too large, more space and time will be required
to manage the profiles. Furthermore, it might also be also possible that the
presence of many low weighted terms decrease the performance of a system. We
therefore seek a cut function C(Lj) that returns the cutoff point lj for a given
ranking, thereby enabling us to select the most representative terms.

There are a number of similarities with the concentration theory [19], which
focus on the study of the degree of inequality or concentration in a set of positive
numbers. In our case, these numbers are the term weights. It seems natural that
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such inequalities between weights should be taken into account when designing
the selection function. If, for instance, there is a high number of terms with low
weights and a low number of terms with high weights, then with only a small
number of top-weighted terms can we can capture most of the distribution.
One example of such a situation is the common 80/20 rule (or Pareto principle)
which states that for many events 80% of the effects (in our case, the weights)
come from 20% of the causes (the terms). Inversely, if all the weights are
similar, a greater number of them are needed to capture the same proportion
of the distribution. This is because in the first case the distribution is more
concentrated than in the second.

This idea must be stated more rigorously. In general, therefore, if a distri-
bution L is more concentrated than a distribution L′, any function such that
C(L) ≤ C(L′), i.e. lj ≤ l′j , can be considered a good alternative for determining
the cutoff point. Nevertheless, many functions C(L) can be found for our pur-
pose and it is difficult to determine whether a given function is acceptable or
not. For this purpose we formulate seven basic properties which have been bor-
rowed from concentration theory [19] and which should be verified for any cutoff
function. By analyzing these properties we shall obtain a deeper understanding
of the behavior of any function that could be applied.

P1: C(Lj) is minimal in the case of minimum uncertainty, i.e. one term
concentrates all the weight, Lj = {w1, 0, . . . , 0}, with w1 > 0.

P2: C(Lj) is maximal in the case of maximum uncertainty, i.e. all the weights
are equal, Lj = {w1, w2, . . . , wn}, with wi = wj∀i, j and wi > 0

P3: invariant to adding zeros. In other words, the addition of irrelevant terms
to a document should not modify the cutoff point, i.e. C(Lj) = C(L∗j ),
where L∗j = Lj ∪ {0, . . . , 0}.
In order to illustrate why this property is important, let us consider the
case in which we have a single document and two alternative vector rep-
resentations: in the first, we only consider the terms in the document and
in the second, the vector dimension is equal to the size of the vocabulary,
assuming as usual a zero weight for all the terms which do not belong to
the document. In such a situation, if P3 does not hold, it is possible to
obtain two different sets of selected attributes (profiles) associated with
the same document, simply because we add irrelevant terms to the formal
representation. Therefore, P3 is quite a reasonable property that should
be expected for any cutoff function.

P4: invariant to scale transformation, which indicates that the cutoff point
should be independent of a scale factor (all the weights are multiplied by
a common positive factor k), i.e. C(Lj) = C(k × Lj), where k × Lj =
{kw1, kw2, . . . , kwn}.
This is an important property since it guarantees that the cutoff point is
not affected by a change in the unit of measurement. Thus, for instance,
we can normalize the weights in a distribution (e.g. by dividing by the
maximum or by the sum of all the weights) without affecting the cutoff
point. For example, therefore, this axiom ensures that the cutoff point
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obtained using raw term frequencies as a weighting criteria has the same
value as the one obtained if we instead consider their associated proba-
bilities. This axiom also ensures that in situations where the weight is
computed using logarithms, such as for example the cases of pointwise
mutual information or inverted document frequency, changing the loga-
rithm base does not affect the cutoff point. If this property is obeyed, it
is possible for the cutoff point to be used to compare different distribu-
tions and it is not necessary to worry about the scale used to compute the
weights or, otherwise, such a comparison would be more difficult.

P5: principle of nominal increase, which indicates that if the weight of each
term is increased by the same amount h, h > 0, the distribution is less
concentrated. Using econometric terminology, the wealth is better dis-
tributed (they represent a lower weight percentage) so the cutoff point
should not be decreased, i.e. C(Lj) ≤ C(Lj + h), where Lj + h =
{w1 + h,w2 + h, . . . , wn + h}.
A common situation in which this principle has to be considered appears
when estimating multinomial distributions where the space event is un-
bounded, as is usually the case when working with text documents. Sta-
tistical approaches require the estimation of the probability for each word
in a document and, in the case of having limited data, these estimations
are not accurate enough. In such situations, it is quite common to use
Laplace smoothing for computing the estimates, adding a constant pos-
itive value (pseudo-counts) to the raw frequencies before calculating the
probabilities. The relative values of pseudo-counts represent the expected
prior probabilities. The larger its value, the greater the smoothing effect
(or in terms of concentration, the less concentrated is the resultant distri-
bution). Therefore, P5 says that smoothing the probabilities should affect
the cutoff point, moreover it ensures that more terms will be included in
the profile (its size increases), as it could be expected. Note, that us-
ing very high values of h the resulting estimator will tend to the uniform
distribution, i.e. the situation with maximum uncertainty.

P6: transfer principle, which states that given two weights wa, wb with wa >
wb, if weight is taken from the lowest weighted term, wb, and given to the
heavier one, wa, then the weights are more concentrated and consequently
the cutoff point should not be increased, i.e. C(L+

j ) ≤ C(Lj), where

L+
j = {w1, . . . , wa + h, . . . , wb − h, . . . , wn}.

We shall now consider an example of a situation in which P6 applies. Let
us suppose that we have a list of document terms and we can see that
two represent the same high-level concept, such as for example two syn-
onyms or two inflected forms of a word (different gender, number, tense,
etc.). In this situation, it might be interesting to map both terms to the
high-level concept (or map the inflected forms to their root, the objective
of the stemming processes) and it is therefore necessary to compute the
weight for this concept. In this case, and without losing generality, let us
assume that term wa, which appears most frequently in the document, is
used to represent the concept (the root). We can therefore transfer the
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entire mass of weight (or a part of it) from the lowest weighted, wb, to the
canonical form. In this case, as P6 states, it would make sense that once
this transfer has been made, fewer attributes are required to represent the
same information (the cutoff point decreases) or, in other words, consid-
ering high-level concepts rather than terms ought to decrease the number
of selected attributes.
It should be noted that any function that verifies P6 should also verify P1
and P2.

P7: richest get richer inequality states that if the weight of the highest-weighted
term is increased by an amount h, h > 0, the distribution is more concen-
trated and therefore the cutoff point should not be increased i.e. C(L∗j ) ≤
C(Lj), where L∗j = {w1 + h,w2, . . . , wn}. It is worth mentioning that
the same can be said if the poorest source gets poorer by discounting an
amount, h, to the lowest weight.
One example of P7 in the poorest-gets-poorer version appears when the
lowest term (or a set of terms) is removed from the original list possibly
because this attribute is considered irrelevant for research purposes. In
terms of weights, this is equivalent to ’artificially’ setting its weight to zero,
i.e. h = wn. In such situations, since the weight’s distribution changes,
an impact on the cutoff point might be expected. The distribution be-
comes more concentrated and therefore if P7 holds, we can guarantee that
the cutoff point might decrease; otherwise, behaviour will be considered
counterintuitive.

4. Cutoff functions

In this paper we will consider two different approaches for selecting the cutoff
function: the weight-oriented approach and the unweight-oriented approach. We
will analyze both by considering whether they obey the above properties in such
a way that the more properties a selection criteria has, the better the quality of
the terms selected.

Unweight-oriented:. In this case, the terms are selected without considering how
representative they are for the document. Although these criteria are to some
extent blind, they are easy to understand on an intuitive level.

FN: The simplest way to select lj is to consider a fixed number of terms, m,
i.e. to select the m most important terms, – in this case, lj = min(m,nj).
Examples of the many papers that use this approach are [3, 14, 38, 50].
This is a ‘one size fits all’ solution and its effectiveness might be prob-
lematic. Nevertheless, there are situations where this approach might be
useful, such as, for example, if we want to compare the performance un-
der similar circumstances of different weighting criteria, i.e. different term
rankings.

Whether or not this approach verifies some of the required properties is
circumstantial in that it neither depends on the number of terms nor the
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distribution of the weights. We will not therefore discuss the properties
for this approach.

FP: Another simple way that enables a variable number of terms for each
document is to consider a fixed percentage, per, of terms. Although this
function might be considered to be a good indicator of the amount of
information contained in the profile, it only considers one of the factors
that influences the concentration: the number of terms. The cutoff point
then becomes lj = round(nj ∗ per/100). Usage examples for this method
are [47], in the context of patent retrieval, and [48], in the context of
snippet generation.

We will now analyze which properties are satisfied. Properties P1 and
P2 are not verified trivially. Moreover, FP does not verify P3 since the
addition of irrelevant terms, which provide no relevant information about
the content of document Dj , increases the value of lj . This is considered
to be an undesirable property in related tasks, such as for example the
definition of similarity [1] or concentration [19] measures. Properties P4
to P7 are verified trivially since the criteria do not consider the weight
values and so the cutoff point is unaffected by changes in distribution. We
consider this to be a circumstantial fulfillment.

Weight-oriented:. In this case, the term weights are used as a guide to deter-
mine the final cutoff point. We will present two approaches that use the weights
but they do not take into account the number of terms in the original ranking.
Once again, therefore, only one factor is considered.

VT: The first alternative should be to select those terms with a higher weight
than a fixed threshold δ (see for example [21] in the context of query
expansion), – in this case lj = max(i |w(ti,j , Dj) ≥ δ). Another exam-
ple of this technique is [42], where the specific measure w being used is
entropy (which does not depend on the document being considered) and
the threshold δ is a fixed percentage of the maximum entropy of all the
terms. We believe that fixing a common threshold δ for all the docu-
ments is quite difficult and possibly problematic as it does not take into
account any transformation on the scale (P4) as the following example
shows. Given L1 = {10, 7, 5, 3, 2, 1} and L2 = {1.0, 0.7, 0.5, 0.3, 0.2, 0.1}
and a value δ = 4, then l1 = 3 and l2 = 0, i.e. the first three terms were
selected for L1 and none for L2.

Following [42] we consider using a variable threshold δj which depends
on the document Dj , using a percentage per of the maximum weight of
the terms in Dj , maxj = w(t1,j , Dj). We then define the variable cutoff
point as lj = max(i |w(ti,j , Dj) ≥ maxj ∗per/100). This is equivalent to
normalizing all the weights by dividing by maxj (in the example below
L2 was obtained after normalizing L1) and then selecting those terms
with a normalized weight which is greater than a given threshold, δ, with
δ ∈ [0, 1]. Following on with our example, if we set δ = 0.4 (per = 40%)
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we obtain l1 = 3 and l2 = 3, which is more natural. Nevertheless, one of
the drawbacks of this approach is that it heavily depends on the weight
of the most representative term in the document.

We will now examine whether this strategy satisfies the different proper-
ties. Properties P1 and P2 hold trivially. Properties P3 and P4 also hold
because the cutoff point is unaffected once the the distribution has been
transformed. If we focus on the principle of nominal increase, while shift
transformations affect the cutoff point P5 is still obeyed (proof is trivial).
For example, if we construct L3 by adding one to all the weights in L2,
when δ = 0.4, l3 = 6, i.e. all the terms in L3 were selected. Property
P6, however, does not hold as the following example shows: assume that
L4 = {1.0, 0.7, 0.5, 0.4, 0.1, 0.1}, i.e. an amount of 0.1 was transfered from
w5 to w4 in L2. In this case, for δ = 0.4, l4 = 4 > 3 = l2, increasing the
cutoff point. Finally, P7 holds trivially.

RC: Another approach, in an attempt to avoid changes in weights after a shift
transformation, i.e. a nominal increase, is the so-called range-based term
cutoff [45], used in the context of term selection in learning a query from
examples. Let minj = w(tnj ,j , Dj) be the minimum weight of the terms
in Dj , and let per be a given percentage. The cutoff point in this case is
therefore lj = max(i |w(ti,j , Dj) > minj +per/100 ∗ (maxj −minj)). The
idea behind this method is to attempt to determine the rank of the term
after which the curve of term weights levels out, under the assumption that
terms in the flat part of the curve are not useful (for increasing precision).
It is worth mentioning that in the case of minj = 0, range-based term
cutoff and variable threshold are the same approach.

Focusing on the fulfillment of the different properties we can see that
P1 and P2 are verified. For P3, since the addition of irrelevant terms
could modify minj and therefore the cutoff point, this property does not
hold. This approach is invariant to scale and shift transformations and
consequently P4 and P5 hold (P5 more strictly so since the cutoff point
remains unchanged). With the same arguments as those used in VT, we
can see that P6 does not hold and finally P7 holds trivially.

4.1. A new approach for term selection

In this section we will propose another method for selecting terms based on
the idea of similarity between documents. Given a document Dj and its ranked
list of terms Lj = (t1,j , t2,j , . . . , tnj ,j), let us consider the sub-documents Di

j of
Dj comprising the first i terms in this list (and their corresponding weights),
i.e. Di

j = {t1,j , . . . , ti,j}. Let Sim be a similarity measure between docu-

ments and let us consider the similarities Sim(Di
j , Dj), i = 1, . . . , nj . Obviously

Sim(Di
j , Dj) ≤ Sim(Dk

j , Dj) if i < k and Sim(D
nj

j , Dj) = 1 (as D
nj

j = Dj).
Given a fixed percentage per, our proposal is therefore to determine the cutoff
point lj as lj = min(i |Sim(Di

j , Dj) ≥ per/100). This means that we select (in
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decreasing order of weight) as many terms as necessary to obtain a similarity
with the original document greater than a given percentage.

We will call this the similarity-based term cutoff approach (SC) and it de-
pends on the definition of the similarity measure Sim. For example if we use
the cosine similarity, then

Sim(Di
j , Dj) =

∑
t∈Di

j∩Dj
w(t,Di

j)w(t,Dj)√∑
t∈Di

j
w(t,Di

j)
2
√∑

t∈Dj
w(t,Dj)2

.

Assuming that w(t,Di
j) = w(t,Dj) if t ∈ Di

j ∩Dj , then we obtain

Sim(Di
j , Dj) =

∑i
k=1 w(tk,j , Dj)

2√∑i
k=1 w(tk,j , Dj)2

√∑nj

k=1 w(tk,j , Dj)2
,

which simplifies into

Sim(Di
j , Dj) =

√∑i
k=1 w(tk,j , Dj)2∑nj

k=1 w(tk,j , Dj)2
.

When the cosine measure is used, our approach is similar to the method
used in [31] in the context of text classification, which computes the sum of the
weights of all the terms and selects terms in decreasing order of their weights
until a specified fraction of the sum has been achieved.

A similar graph to the Lorenz curve can be used to illustrate how the pro-
posed similarity varies in relation to the parameter i (see Figure 1). The percent-
age of selected terms is plotted on the x-axis, i.e. i/n, and the cosine similarity,
i.e. Sim(Di, D), on the y-axis. Since the weights are considered in decreasing
order, each distribution is represented on the graph as a concave polygonal curve
that increases until the point (1,1). This graph displays the concentration of
each distribution: the higher the curve, the more concentrated the distribution
is.

We will now examine whether the different properties are verified by the
similarity-based approach. Property P1 holds trivially and P2 also holds be-
cause the curve raised the minimum possible concentration. Property P3 holds
trivially, since the addition of non-relevant terms does not modify the cosine
measure. Generally speaking, cosine is invariant to scaling (so P4 holds) but
not to shift transformations. Nevertheless, the principle of nominal increase
(P5) is a weaker property because it does not require strict equality. Property
P5 will be satisfied if the distribution L+h is less concentrated than L (as is the
case of the distribution L + h in Figure 1 which has been obtained after nom-
inally increasing all the weights in L by 40). In order to check that P5 holds,
Sim(Di, D) ≥ Sim((D + h)i, (D + h)), must be verified for each i. We should
mention that P5 does not generally hold for the cosine measure, i.e. given
any two arbitrary weighted vectors (see [20]). Nevertheless, in our case, Di is
a subvector of D, thereby enabling us to guarantee that the nominal increase
principle is verified (see Appendix A.1).
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Figure 1: The figure shows a concentration curve for the distributions
L = {14, 13, 12, 7, 6, 5, 5, 5, 5, 1}, L+ = {14, 13, 12, 11, 6, 5, 5, 5, 1, 1} and L + h =
{54, 53, 52, 47, 46, 45, 45, 45, 45, 41}.

Finally, if we focus on the transfer principle, P6 does not hold for the cosine
measure, as the following example shows:

Example 1. Consider the distribution L in Figure 1 and assume a threshold
per = 82%. In this case, the cutoff point is lj = 3 since Sim(D2, D) = 0.7081
and Sim(D3, D) = 0.8362. Let wa = 7 and wb = 5 and let L+ be the distribution
obtained after an amount of 4 was transferred from wb to wa, L+ in Figure 1.
If we consider the same threshold, l+j = 4 since Sim(D+3, D+) = 0.8099 and

Sim(D+4, D+) = 0.9010.

If we examine the L and L+ curves in Figure 1, we will see that they intersect
once, verifying that before the index associated to the value wa that receives
the transfer, the distribution L+ is less concentrated than the distribution L,
whereas after this point distribution is more concentrated. This is because the
norm of the document associated to L+ is greater than the norm of the document
associated to L, i.e. ||D+|| > ||D||, penalizing the similarity value for those
terms in positions l < la. In any case, we believe that this behavior is significant
since it reflects the fact that weight transfer affects overall distribution and this
idea is captured by cosine similarity. The following weaker transfer principle
can therefore be formulated:

wP6 weak-transfer principle which states that given Lj = {w1, . . . , wn} and two
weights wa, wb with wa > wb and given L+

j = {w1, . . . , wa + h, . . . , wb −
h, . . . , wn} obtained by transferring an amount of weight from the lowest
term, wb, to the heaviest one, wa. Let l+a be the position of wa +h in L+

j ,

then the weights are less concentrated for l < l+a and more concentrated
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Table 1: Summary of the principles satisfied by the cutoff functions. A bullet (•) means
circumstantially verified and a check mark (X) represents verified.

Principles satisfied
P1 P2 P3 P4 P5 P6 P7

FP • • • •
VT X X X X X X
RC X X X X X
SC X X X X X wP6 X

for l ≥ l+a . The cutoff point should consequently increase before l+a and
decrease after l+a , i.e.

if C(Lj) < l+a then C(Lj) ≤ C(L+
j )

if C(Lj) ≥ l+a then C(Lj) ≥ C(L+
j )

This property indicates that the effect of a transfer to the cutoff point shall
depend on the final position of the receiving term (wa) in the new ranking.
Using the example used in P6, if, following the transfer, the semantic concept
receives enough weight to be placed among the most important ones (those
below C(Lj)), the number of selected attributes might therefore be reduced,
otherwise this need not be true.

In Appendix A.2 we will demonstrate that cosine similarity verifies wP6.
Finally, in terms of the richest gets richer principle, the inequality in P7 is also
verified by cosine measure (proof is also included in Appendix A.3).

To conclude this section, Table 1 summarizes the different cutoff functions
in terms of the verified properties. From this table, we can conclude that cosine
measure is a good concentration measure and can therefore be used to determine
the cutoff point in our framework.

5. Cutoff points for document-based collections

Once we have studied the theoretical properties of the cutoff functions, we
will study their performance in practice by considering a real problem: deter-
mining the cutoff point for building profiles in a parliamentary framework. As
we said, the difficulty in defining a cutoff function arises because it comprises
two separate components: the size of the ranked list of terms, L, and the
distribution of the weights in L. The cutoff function attempts to combine
both components into a single value in such a way that the selected terms prop-
erly characterize the entire list. In this section, we will experimentally explore
the relationships between these two components when considering real data.



5 CUTOFF POINTS FOR DOCUMENT-BASED COLLECTIONS 15

Table 2: Sizes of source collections
A-Col C-Col I-Col

Number of docs 316 1192 10023
Average size 1900.30± 2108.77 1028.57± 1103.72 321.27± 216.75

5.1. Source collections

In order to test the cutoff functions under several circumstances, we have
designed three different types of source collections (s-collections) from which the
profile documents are built (as in [16]), varying the number of documents and
their sizes:

• Collection of every intervention (A-Col): a virtual document is created for
each MP containing all of her speeches when discussing initiatives1, so the
number of documents is the same as the number of MPs. Related to the
document length, it is the largest of the three collections presented.

• Collection of committee interventions (C-Col): since MPs participate on
different committees relating to specific areas of interest (agriculture, ed-
ucation, health, economy, etc.) various virtual documents are created for
each MP containing their speeches on the different commissions. If an MP
is involved on different committees, one document for each committee will
be created containing their speeches. This new collection increases the
number but decreases the size of the documents.

• Collection of single interventions (I-Col): the documents in this collection
are created on the basis of initiative. There is one document for each
initiative in which the MP is involved. If, for example, the MP intervenes
in ten initiatives, then ten documents will be created containing the cor-
responding speeches. The total number of documents is therefore larger
than committee-based ones but they are smaller in size.

The documents contained in these s-collections will be referred to as s-
documents. In Table 2 we present the number of documents in each s-collection
and their average sizes in terms of the number of keywords in the weighted
ranking L, as well as the standard deviations.

5.2. Weighting measures

In this paper we will explore four different alternatives for computing the
weights of the terms:

1In particular, we consider the Records of Parliamentary Proceed-
ings from the Spanish Andalusian Parliament for the 8th term of office
(http://irutai2.ugr.es/ColeccionPA/legislatura8.tgz).
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• Term Frequency (TF)which captures the idea that the most representative
terms for a document are the ones most frequently used, i.e. we use the
raw frequency of term t in document Dj , denoted by ftj .

TF (t,Dj) = ftj .

• Term Frequency-Inverted Document Frequency (TFIDF) [6], where rele-
vant terms are those that occur frequently in the corresponding document
(i.e. TF is high) but the term rarely occurs in other documents in the
corpus (i.e. IDF is high). IDF is measured as the logarithm of the ratio
between the number of documents in the collection, N , and the number
of documents containing the term t, i.e. Nt.

TFIDF (t,Dj) = ftj × log(N/Nt).

• Pointwise Mutual Information (PMI) [15, 49] is designed to give high
weights when there is an relevant relation between the term and the doc-
ument. PMI therefore compares the probability that a term occurring in
document Dj in terms of the one expected if we consider that both the
document and the term are statistically independent. If M is the total
number of term occurrences in the collection, it therefore follows that

PMI(t,Dj) = log
ftj/M

(
∑

j ftj)/M × (
∑

t ftj)/M
.

If there is a relationship between t and Dj , we should expect ftj/M to be
larger than it would be if it were independent, (

∑
j ftj)/M × (

∑
t ftj)/M ,

and consequently PMI is greater than zero. Otherwise, if the term is
unrelated, PMI is less than zero.

• Difference (Diff) was introduced in [51] in the context of personalized
search and was one of the weighting schemes used in [16] for building MP
profiles, and has certain similarities to the relative document frequency
proposed in [38]. The Diff measure of a term t for a document Dj is
the normalized frequency of t in Dj minus the normalized frequency of t
outside Dj (i.e. in the other documents in the collection) and is computed
as:

Diff(t,Dj) =
ftj∑
t ftj

−
∑

k 6=j ftk

M −
∑

t ftj
.

One advantage of Diff and PMI measures is that they have a natural cutoff:
if wt ≤ 0, it is because the term is more likely to occur in the context (collection)
than in the document (Dj), therefore t is not a representative term of Dj . More
specifically, if the weight of any term is less than zero, it is replaced with zero.
Throughout this paper we will use this idea for both Diff and PMI, which in the
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Figure 2: Coefficient of Variation for the different weighting criteria using C-Col.

case of PMI is called positive pointwise mutual information (PPMI). This allows
us to remove approximately 20% to 30% of the terms in a document depending
on the collection used. Nevertheless, the number of selected terms is large and,
as we will see, a further cutoff becomes useful.

5.3. Analyzing weighted-oriented cutoff functions

As we mentioned previously, our approach for determining the cutoff point is
related to the concentration of the term’s weights in the document. We expect
that the more unequal the distribution, the fewer number of terms needed to
represent the profile. The concentration will depend on the weighting measure
used, and there are various differences between them, as Figure 2 shows (for the
sake of clarity we only present the results for C-Col, although the trends are
similar for A-Col and I-Col). In this histogram, the x-axis represents the coef-
ficient of variation (CV), a well-known concentration measure of a distribution.
It should be remembered that the CV measures the dispersion of the weights
in terms of the mean and that the larger the CV, the more variable (diverse or
concentrated) the data. On the other hand, the y-axis shows how probable the
value is. Since CV is independent of the unit in which the measurement has
been taken, we are able to compare the weighting functions used. We can there-
fore obtain an ordering among the different measures: PPMI ≺ TFIDF ≺ TF
≺ Diff, where a ≺ b means that the measure a obtains more equal distributions
than measure b. It is interesting to note that for TF, TFIDF and Diff less than
20% of the distribution has a CV of below 1.0 whereas this is true for all the
distributions obtained using PPMI.

We shall now attempt to analyze the relationship between concentration
and cutoff point. In order to do so, we will focus on those cutoff functions that
consider the distribution of the weights: VT2 and SC. Figure 3 illustrates the

2We do not consider the RC criterion since in our data the minimum weight value is almost
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Figure 3: VT and SC functions versus Coefficient of Variation

dependence of the cutoff-point in terms of the percentage of the document (y-
axis) for the coefficient of variation (CV) on the x-axis. Focusing on VT, top
figures, we zoom on low values of CV. More specifically, in the top left-hand
corner we fixed the VT threshold in the figure to 50% of the maximum weight in
the ranking, and for each document, we plot its CV against the percentage of the
document selected in the profile for the different weighting measures. In the top
right-hand corner of the figure, we select PPMI and Diff as weighting measures
and use as thresholds 25% and 50% of the maximum term weight. The bottom
part of the figure shows the results obtained under similar circumstances using
SC as the cutoff function, but in this case, we fix the SC threshold to 85% and
95% of the cosine similarity.

Various conclusions can be drawn from these figures. As expected, the cutoff
point depends on the concentration of the distribution so that the greater the
concentration, the smaller the profile. This seems to be true independently of
the selected weighting measure and the selected cutoff function. Focusing on the
results, TF, TFIDF and Diff seem to perform in a similar way since they exhibit
similar trends, but PPMI performs differently, mainly because it generates fewer
dispersed distributions. Consequently, more terms will be needed to represent

zero and therefore the results for VT and RC are quite similar.
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Figure 4: Comparing Variable Threshold and Cosine Similarity criteria

the profile. For instance, when PPMI is used, 99.3% of the profiles obtained
using SC (with a threshold of 0.95) need more than 40% of the regular terms,
whereas this is true only for 23.1% of the profiles obtained using Diff. The
average sizes of the profiles when C-Col is used are 110.4, 145.4, 278.2 and
419.9 for Diff, TF, TFIDF and PPMI, respectively3.

Finally, we would like to mention that each weighting measure will output
a different ranking of terms and so the selected terms differ from each other.
Whether or not this variability in the ranking is relevant for recommending
purposes will be studied in Section 6. Nevertheless, at this point, we would
like to highlight that Diff generally performs best and so we will focus on this
weighting measure in the remainder of this section.

We shall now focus on the comparison of VT and SC. Although there is gen-
erally a clear relationship with the concentration of the distribution, differences
appear when we focus individually on each document, as Figure 4 shows. For
illustrative purposes, the scatterplot only focuses on the documents in I-Col,
displaying the relationship between the SC (x-axis) and VT (y-axis) parameters
for each document. More specifically, the values are obtained when a fixed per-
centage of terms (i.e. 50%) is used in each document (the heaviest ones) and
we plot the particular value of the parameter for both SC and VT that sets the
cutoff to this particular point. From this graph we can determine that there is a
negative correlation between both metrics. We would, however, like to focus on
the great variance between the SC scores that are related to a given VT value, as
in the case of fixing VT at around 0.33. As expected, we can therefore confirm
that VT is not able to capture properly the concentration of the weights in the
distributions (which is also suggested by the differences between the graphs in
Figure 3). This is due to the possible large value of the heaviest weight which

3Similar trends have been obtained for A-Col 104.7, 153.4, 400.0 and 818.1 and for I-Col
96.3, 105.1, 217.2 and 351.8 for Diff, TF, TFIDF and PPMI, respectively.
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Figure 5: Analyzing the performance of the SC function in terms of the document length for
each s-collection (using a log-log scale)

could conceal a huge number of terms, even the most relevant ones. From now
on, we will therefore focus on SC criterion.

Continuing with the study of the size-related dependences, a different point
of view is obtained if we fix the similarity threshold and analyze the value of the
cutoff point (in terms of the percentage of the document). In this respect, if we
look at Figure 5, it becomes apparent that the larger the document, the smaller
the percentage of terms necessary to represent the same size distribution. The
results also suggest a power law dependence. Going into the details, Figure 5
presents a plot, using logarithmic scale on both axes to display not only the
details of the small values but also the long-value trends. In these figures, each
point is a particular document. In the left-hand side of Figure 5 we fixed the
similarity threshold to 0.85% and present the log-log plot for every source col-
lection, whereas in the right-hand side we focus on committee-based collection,
C-Col4, plotting the results for three different similarity thresholds of 0.70%,
0.85% and 0.95%. In each case, the trend is for the points to lie approximately
in a negatively sloping line (values around -1.0). This is mainly due to the fact
that we obtain most of the distribution weight with a few terms and also that
there is a large number of terms with small weights, with this long tail being
greater for large documents. In order to illustrate this fact, Table 3 therefore
displays the mean cutoff point value, i.e. the raw lj , (and the standard devi-
ation) when considering a similarity threshold of 0.70%, 0.85%, 0.95%, 0.97%
and 0.99%. We generally found that there are minimal differences (in terms of
the cutoff point) among the source collections for lower thresholds. Only when
we require a large amount of distribution (with thresholds above 0.95%) is a
lower number of terms (but also a higher percentage) needed for I-Col, whereas
for C-Col and A-Col the cutoff remains the same.

4We choose C-Col because it is fairly representative as it has a relatively large number of
documents of varying lengths.
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Table 3: Mean cutoff point for the different collections

A-Col C-Col I-Col
0.70% 7.97± 5.79 8.13± 4.99 8.27± 4.75
0.85% 26.85± 16.68 27.85± 15.53 27.83± 14.23
0.95% 104.75± 54.74 110.44± 53.23 96.28± 41.96
0.97% 170.48± 85.45 174.25± 82.34 136.13± 61.15
0.99% 361.37± 198.32 340.17± 179.61 207.45± 111.01

Figure 6: Relating FN, FP and SC approaches

5.4. Analyzing unweighted-oriented cutoff functions

We will analyze the performance of the unweighted-oriented cutoff functions
by selecting a fixed number (FN) or considering a percentage of terms in the
document (FP) which help understand how the cutoff point varies according to
the number of elements (terms) in the documents. The average results for the
different s-collections are summarized in Figure 6. The x-axis represents the
case when the profiles were obtained when FN varies from 50 to 1000. Two
separate y-axes are used in this graph. The left y-axis shows the average value
of the cosine similarity obtained for each FN (solid lines). From this plot,
we can see that even for a small number of terms, a high cosine value was
obtained (even for FN=50 we obtained cosine values over 91%). Furthermore,
the increase in cosine measure is not linear although it does depend on the
number of terms in the documents. We can see that I-Col performs differently
from C-Col and A-Col and this can be explained by the smaller number of terms
in this type of document. This is demonstrated by the right y-axis (dashed
lines) that represents the percentage of terms in the document (FP) for each
FN, illustrating the variability in document length. From this data, we can see
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Figure 7: Relating FP, VT and SC approaches.

that although both A-Col and C-Col have a different number of terms, the most
significant terms are located in higher positions in the ranking, and the addition
of more terms to the profile, while affecting the FP values, does not significantly
affect SC.

We will now focus on the graph in Figure 7 which represents how SC and
VT depend on the FP. Once again, we show the mean values obtained for each
s-collection. On the x-axis we represent the percentage of selected terms (rather
than the full size), as Lorenz curves do. In terms of the y-axes, and taking into
account the differences between the selected cutoff functions (SC and VT), we
will also use two separate y-axes to represent the percentage of cosine measure
obtained when xi × 100% of items were considered for both Sim(Di

j , Dj) and
wti,j/wt1,j and these are represented on the left- and right-hand side of the
y-axis, respectively. It should be noted that for each FP value xi, the y-axes
represent the threshold values for SC and VT that set the cutoff to the point
lj = xi × nj (where nj is the size of the document Dj).

From these data we can conclude that both C-Col and A-Col behave in a
similar manner. This might be due to the fact that in both cases each source
document is obtained by aggregating different interventions into a single virtual
document. This is not the case for I-Col, where each intervention is considered
separately. Looking at the concentration curves for cosine measure (solid lines)
we can therefore say that C-Col and A-Col are more concentrated than single
interventions (I-Col). This might affect the cutoff point since if the similarity
measure percentage is fixed, then the cutoff point ought to be greater for I-Col,
or rather, a higher number of terms are needed to represent the same amount
of document information. It is also interesting to note the skewness of the
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distributions in every case, and so with a relatively low number of terms (20%)
we can represent 90% of the weights (for cosine measure). We can also observe
that the number of terms with small weights is rather large and this is a further
example of exponential distributions.

In order to conclude this section, such reasoning suggests that when document-
based profiles are considered, the cutoff point greatly depends on the size of the
document and that with a relatively small number of terms we are able to cap-
ture the essence of the distribution. This situation could possibly justify the use
of unweighted cutoff functions, such as for example by fixing the number (FN)
or percentage (FP) of terms. Nevertheless, in Section 5.3 we saw that the size of
the document is not the only factor that affects the selected terms when using a
weighted-based approach, since we obtained empirical findings to demonstrate
that the concentration of the weight’s distribution plays an important role. The
existence of large concentrations of certain terms implies the rare occurrence of
others and this can be considered as an indicator of document bias towards cer-
tain topics. The more unequal the distribution (more concentrated), the better
we can exploit it to minimize profile size (by optimizing system efficiency). In
the following section, we shall study the performance of the obtained profiles
under the recommendation task, which is related to the quality of the selected
terms.

6. Performance in the MP filtering task

Our system [16] builds MP profiles from the source collections. More specif-
ically, after applying a cutoff function to determine the most representative
terms, we transformed this set into a virtual document which will be indexed
by an information retrieval system (IRS). To this end, it is necessary to convert
each profile (i.e. a list of weighted terms) into a more standard representation
of a document (a bag of words). In this paper, this transformation consists in
removing all the unselected terms in a source document5.

When a new document (e.g. a press release, a parliamentary initiative or
a user’s request) enters the system, it is used as a query and the IRS ranks
the ”documents” (i.e. the MP profiles) and recommends the new document
to the top-ranked MPs. We will experiment with the cutoff functions and the
weighting measures considered in Section 4 and Section 5.2, respectively. In
order to measure the quality of the rankings, we use the well-known normalized
discounted cumulative gain measure[28], using only the first ten retrieved profiles
(NDCG@10)6.

Various models can be used to match documents and profiles and these gen-
erally involve a weighted aggregation of the matching terms [2, 6, 8, 26]. Our

5Another method which replicated terms proportionally to the computed weights was also
proposed in [16].

6In [16] we also used other quality measures, e.g. Recall, Mean Average Precision and
R-precision, but all these measures were shown to strongly correlate with NDCG@10.
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approach was built using the Lucene library7, and we selected its BM25 imple-
mentation since it is a state-of-the-art approach and performs better in terms of
accuracy in preliminary experiments than other approaches such as, for exam-
ple, the vector space model and language models, using their implementations
in Lucene.

6.1. Experimental setting

As in [16], we used the three source collections, but since we want an accurate
profile which truly represents the MP’s interests, we have discarded any MP or
technical guest who has participated in fewer than ten initiatives (thus keeping
132 MPs). The reduced collection will be named p-collection and in order
to differentiate this from the original source collections, the learned profiles
will be called monolithic profiles (M-Prof), committee-based subprofiles (C-
SubP) and intervention-based subprofiles (I-SubP), and these are based on A-
Col, C-Col and I-Col, respectively. Table 4 shows the number of documents in
each p-collection, their average sizes in terms of unique keywords, and standard
deviations.

Table 4: Sizes of source collections when considering those MPs with more than 10 interven-
tions

M-Prof C-SupP I-SubP
Number of docs 132 949 9759

Average size 3969.56± 1720.9 1078.87± 1166.8 281.34± 219.6

We shall use a random subset of the initiatives for the training data, to build
the different MP profiles. The remaining initiatives will be used for testing
purposes, playing the role of documents to be recommended and introduced in
the IRS as queries. We consider as ground truth the fact that a test initiative is
only relevant to participating MPs. This conservative assumption8 is necessary
if we want to make use of available “objective” relevance judgments. We use the
repeated holdout method for evaluation, i.e. this process is repeated five times
and the results are averaged using 80% and 20% of the initiatives for training
and testing, respectively.

The IRS will be fed with these p-collections of profiles. Given a query (i.e.
a test initiative), the IRS will subsequently return a ranking of MP profiles that
best match it. This MP ranking is direct if we are dealing with the monolithic
collection as there is a one-to-one relationship between MPs and profiles, but
this is not the case when working with subprofiles, as one MP could have many
subprofiles. The original ranking obtained from a query for C-SubP consists
of pairs (MP,Committee), and for I-SubP, of trios (MP,Initiative,Intervention).
In order to obtain a final ranking of MPs, a fusion process must be performed.
In this case, an MP’s final score is computed by adding the different scores of

7http://lucene.apache.org
8It is logical to suppose that an initiative might also be of interest to other MPs.
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Table 5: Results for the different weighting measures when using C-SubP.

FN=500 FN=750 SC=95% SC=99%
NDCG NDCG NDCG l σ NDCG l σ

Diff 0.701 0.702 0.589 106 55 0.670 325 187
TFIDF 0.684 0.683 0.493 278 294 0.539 671 776
TF 0.680 0.676 0.587 145 67 0.622 447 265
PPMI 0.247 0.297 0.599 420 451 0.664 632 697

their subprofiles while devaluating this value by considering their positions in
the ranking, reduced logarithmically, as the discounted cumulative gain does
in Information Retrieval evaluation [28]. By means of this devaluation, we
penalize to a certain degree the occurrence of a subprofile in lower positions of
the ranking.

6.2. Analyzing weighting measures performance

Our intention in this section is to study the quality of the terms selected
by each weighting measure (Diff, TF, TFIDF and PPMI). With this purpose in
mind, we decided to use FN as a cutoff function and fix the selected number of
terms (FN) to the best 500 and 750 returned by each weighting metric so that
all the metrics can be compared under the same conditions. The second and
third columns in Table 5 show the results obtained using the C-SupP collection,
although similar results are obtained for the other collections. From these re-
sults, we can see that Diff achieves the best performance and that poor results
are obtained for PPMI. This is because this metric is not able to capture the
representativeness of a term from the point of view of a profile: infrequent terms
which only appear in the document have a high PPMI value. Although these
terms are specific to the document context, they do not therefore represent the
user’s interests as well as more frequent terms do.

We also want to explore the performance of the proposed similarity-based
term cutoff function (SC) when using different weighting metrics. We use two
different thresholds to capture 95% and 99% of the similarity. For each one,
Table 5 shows the performance, NDCG@10, the average number of different
terms in the profile, l, and its standard deviation, σ. The results show the good
performance of Diff in terms of accuracy and number of selected terms: Diff
seems to properly measure the importance of a term in terms of user interests
and SC is also able to select the most relevant ones. The results might, however,
be considered surprising since the combined use of the PPMI metric and SC
selection criteria achieves fairly good results and so a deeper analysis is required.
Table 5 shows how these results have generally been obtained by using much
larger profiles than those used with Diff (which needs smaller profiles with less
variance). In order to better understand this performance, in Figure 8 we show
a scatterplot where the x-axis shows the size of the original profile (without
selecting terms) and the y-axis shows the raw number of terms selected by SC
(using a 95% threshold) for each weighting metric. For comparison purposes,
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Figure 8: Raw number of terms selected using SC for the different weighting metrics.

we also include the number of terms selected using FN500. In this case, it is
apparent that both PPMI and TFIDF include a large number of terms when
the original profile is large, which tallies with MPs with a large number of
parliamentary speeches. For these MPs, we are therefore able to achieve good
recommendations (particularly if we compare the results to those obtained using
only the best 500 terms, FN = 500, for each weighting criterion) but at the
expense of having much larger profiles.

6.3. Analyzing cutoff functions performance

From the previous analysis, Diff clearly performs well in terms of both the
accuracy of the recommendations and efficiency (due to the small number of
terms required) of the computations. In order to analyze the parameters asso-
ciated with the different cutoff functions, in this section we will focus on the
Diff weighting metric. We conducted preliminary experiments to obtain initial
information about which parameter values produce reasonable results and we
then searched for the best value in the selected ranges for each method. Table 6
shows the accuracy of the different selection criteria under the recommendation
task. The first row presents the results when no selection was made, i.e. we
use the full profile, whereas for the remaining rows we present the optimum
value for the parameter guiding the selection and accuracy obtained using the
resulting subset of terms.

Similar overall trends have been obtained for all of the criteria and p-
collections, and these can be summarized as follows: when the number of se-
lected terms is too small, accuracy results are not good. Nevertheless, as the
number of terms in the profiles increases, the results improve until a maximum
is reached. After this point, the addition of extra terms implies a reduction
(albeit only slight) in performance. Consequently, any value of the parame-
ters that ensures that a relatively high number of terms are selected enables us
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Table 6: Best parameter values for each selection method across p-collections and their
NDCG@10 values

M-Prof C-SubP I-SubP
full 0.7004 0.6849 0.6552
FN 1725 / 0.7069 750 / 0.7024 475 / 0.6669
FP 38% / 0.7126 99% / 0.6850 99% / 0.6526
RC 0.25%/ 0.7032 0.525% / 0.6955 6.3% / 0.6690
VT 0.25% / 0.7034 0.5% / 0.6946 6% / 0.6724
SC 99.925% / 0.7134 99.7% / 0.6930 95.9% / 0.6606

to obtain almost the best possible performance. This is because adding more
terms than necessary has a minor impact on the final score of the documents. It
should be noted that the retrieval models place more strength on the existence
of matching terms between query and profile than on those without any match,
i.e. terms in the profile but not in the query.

If we focus on the comparison of selection methods, we could say that it is
difficult to highlight the best one in absolute terms because the best performance
in each p-collection is obtained by different techniques. We have computed t-
tests among the selection techniques and chosen their best parameter values for
each p-collection in an attempt to determine if we may discover whether one
method is better than the others9. It is clear that there are no common patterns
and significance depends on the p-collection.

We would also like to point out that in order to achieve the best possible
system performance for each collection, the values to assign to cutoff function
parameters vary considerably and further experiments are needed to find these
parameters. It is worth mentioning that there are two methods that perform
well, although not the best, for the same parameter in every collection: FN with
750 terms and SC with a 99.7% threshold, which results in an average accuracy
loss of 1.76% and 1.83%, respectively, compared with the best results.

Although accuracy is important, it might therefore be interesting to ascertain
whether these methods, with their corresponding best values, are very demand-
ing and build profiles close to the maximum possible size of terms, a fact that
would clearly deteriorate performance in recommendation time. Due to obvious
space restrictions, we have chosen one of the partitions10 and in Table 7 we
show the occupancy percentages for each technique (100% means that all the

9The pattern that occurs in all the three p-collections is that there are no significant
differences in the following pairs of selection methods: (FN, FP), (FP, RC) and (FP, VT).
Additionally, for C-Prof and I-Prof, (SC, FP) do not show any significant differences, and for
M-Prof and I-Prof, the same happens with (SC, RC). Positive significant differences are to be
found in M-Prof from FN for RC and VT, from FN to VT, and SC from FP. In C-Prof, FN
is statistically better than RC, VT and RC, and RC for VT. Finally, the patterns found in
I-Prof show that there are positive significant differences from VT in RC and FN, RC with
FN, and FN with SC.

10Although similar results are obtained for the other partitions.
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Table 7: Percentage of occupancy of profiles for the p-collections and the best parameter
values in partition A. In this table the rows represent: %occ shows the average percentage of
occupancy, σ(%)occ represents the standard deviation, #p the raw number of profiles with
occupancy greater than or equal, and %p the percentage of profiles with ocuppancy greater
than or equal, respectively.

M-Prof – Avg. Prof. terms: 3969.56± 1720.94
FN1725 FP38 RC0.250 SC99.25 VT0.250

%occ 51.43 37.98 65.28 69.41 65.38
σ(%)occ 22.37 0.01 26.03 15.47 26.05

#p ≥ 90% 12 0 31 4 32
%p ≥ 90% 9.09 0.0 23.48 3.03 24.24

C-SubP – Avg. Prof. terms: 1078.87± 1166.83
FN750 FP99 RC0.525 SC99.7 VT0.5

%occ 77.76 98.69 87.39 72.84 88.59
σ(%)occ 30.16 2.13 21.61 21.59 20.96

#p ≥ 90% 563 942 714 168 731
%p ≥ 90% 59.39 99.37 75.32 17.72 77.11

I-SubP – Avg. Prof. terms: 281.34± 219.60
FN475 FP99 RC6.3 SC95.9 VT6

%occ 96.35 98.11 59.81 51.23 68.23
σ(%)occ 11.10 4.23 33.75 21.94 34.46

#p ≥ 90% 8681 9573 3295 288 4762
%p ≥ 90% 88.95 98.09 33.76 2.95 48.80

possible terms have been selected and included in the profile). We also show
the number of profiles with an occupancy that is greater than or equal to 90%
of the total terms.

The occupancy in M-Prof is halfway and there are very few profiles that
contain at least 90% of the selected terms. The FP method has the lowest
percentage but it is important to remember that this is fixed for every profile,
as occurs with FN. In C-SupP and I-SupP, the occupancy of the profiles increases
considerably, as does the number of profiles with high occupancy. In these two
p-collections, it is the SC method that keeps the smallest profiles and the fewest
profiles with high occupancy with significantly better values than RC and VT.
In M-Prof, although the percentage of profile occupancy is greater than the
values presented by RC and VT (but in a similar order), the number of profiles
with an occupancy greater than or equal to 90% is much less. This is another
interesting advantage of the SC method, which is able to keep the smallest
profiles with equally high performance.

7. Concluding remarks

In this paper, we have presented a new approach to construct profiles based
on the use of similarity metrics. We have conducted an axiomatic study of
those properties that a selection function should fulfill. In order to perform



7 CONCLUDING REMARKS 29

this study we have drawn on those properties applied in a related field, i.e. the
discrete concentration theory, to show that cosine measure satisfies most logical
properties with the exception of the “strongest” property of the concentration
theory, the transfer principle. Nevertheless, we show that a weaker variant of
such a property is verified and that it is therefore a good selection approach.
This theoretical study has been complemented with an empirical one, whereby
we compare selection methods by considering real profiles in a parliamentary
framework and have subsequently been used to recommend the most suitable
politician when requested. Parliament and have subsequently been used to
recommend the most suitable politician when requested.

We analyze the performance of five approaches that select a fixed number of
terms (FN), a fixed percentage of terms (FP), a variable number of terms de-
pending on a percentage of the term weights (RC and VT), and on a percentage
of the admissible similarity with the full set of terms (SC), under three different
test collections and using four different weighting metrics (TF, TFIDF, PPMI
and Diff).

We have examined the main two factors that affect the selection process:
the number of terms and how the weights are distributed among them. From
the experiments conducted and their results, we consider it much more appro-
priate to use a variable selection technique which adapts to the different sizes
of the source documents. We could conclude that Diff proves to be the best
alternative for computing the weight of the terms, enabling good performance
to be obtained in the MP search task with smaller profiles. With respect to the
five selection methods, there is no clear winner, although it is true that SC is
configured as a suitable approach for this selection task for a number of reasons.
Firstly, it verifies most of the desired properties, naturally integrating both fac-
tors (size and weight distribution). Secondly, in terms of performance, it is
very competitive. Furthermore, the range of percentages where this approach
achieves the best results (while there are insignificant differences between other
values) is really well bounded (around 99.7%), irrespective of the s-collection
used. Finally, since the profiles built with it are smaller, this in turn results in
smaller indexes and faster recommendations.

In terms of recommendation, all the methods presented in this study rely
on manually selecting the best value for the parameter (number of terms or
percentage) by considering the s-collection from which the profiles will be built.
This is problematic as it requires prior experimentation in order to determine
the threshold for obtaining the optimal cutoff point with the subsequent waste
of time and resources. In future lines of research, our aim will therefore be
to design a method capable of computing the best value depending on the s-
collection features.

Our next step will be to apply clustering algorithms in order to automatically
extract the MPs’ topics of interest from their speeches and build the MP profiles
with this information so that we are not limited by document discussion on
a particular committee which might be biased by political criteria. Without
doubt, eliminating this bias would be extremely beneficial.
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Appendix A. Demonstrations

Appendix A.1. Cosine similarity satisfies the property of nominal increase: P5

Principle of nominal increase: If the weight of each term is increased by
the same amount h, h > 0, the distribution is less concentrated. By using
econometric terminology the wealth is better distributed (the weights decrease
in percentage) and so the cutoff point should not be decreased, i.e. C(Lj) ≤
C(Lj + h), where Lj + h = {w1 + h,w2 + h, . . . , wn + h}.

Proof. We must prove that C(L) ≤ C(L+ h), or equivalently that Sim((D+
h)i, (D + h)) ≤ Sim(Di, D), for all i ∈ {1, . . . , n}.

This is equivalent to proving that∑i
k=1(wk + h)2∑n
k=1(wk + h)2
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and after applying some basic manipulation this becomes
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Since the right-hand side of the inequality does not depend on i, it can be
considered constant. The equality holds trivially when i = n. It is therefore
sufficient to demonstrate that (ih+ 2

∑i
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2
k is an increasing func-

tion (in terms of i, i.e. the greater i, the greater its value). We can prove this
by showing that
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which after some manipulation becomes
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and by grouping terms we obtain

h(iw2
i+1 −
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w2
k) ≤ 2wi+1((
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w2
k)− (

i∑
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Since the weights are ordered decreasingly, wi+1 ≤ wk,∀k <= i, and the
weights are positive, we can see that (iw2

i+1 ≤
∑i

k=1 w
2
k) and also that (

∑i
k=1 w

2
k) ≥

(
∑i

k=1 wk)wi+1, and therefore the inequalities are true. Consequently, P5 holds.

Appendix A.2. Cosine similarity satisfies the weak transfer principle: wP6

Weak-transfer principle: Given Lj = {w1, . . . , wn} and two weights wa, wb

with wa > wb and given L+
j = {w1, . . . , wa + h, . . . , wb − h, . . . , wn} obtained

by transferring an amount of weight from the lowest term, wb, to the heaviest
one, wa. Let l+a be the position of wa + h in L+

j , then the weights are less

concentrated for l < l+a and more concentrated for l ≥ l+a . Consequently, the
cutoff point should increase before l+a and decrease after l+a , i.e.

if C(Lj) < l+a then C(Lj) ≤ C(L+
j ) (A.1)

if C(Lj) ≥ l+a then C(Lj) ≥ C(L+
j ). (A.2)

Proof. We will discuss the different situations that can be obtained when
considering how l+a relates to the cutoff point. In our experimentation, we
rule out the subindex j. We will also use the subindex m and the nota-

tion
∑n\{a,b}

m=1 to represent the fact that m takes all the possible values in

{1, . . . , n} with the exception of a and b. Thus, for instance,
∑n\{a,b}

m=1 wm =
w1 + w2 + . . .+ wa−1 + wa+1 + . . .+ wb−1 + wb+1 + . . .+ wn.

• If C(L) < l+a then C(L) ≤ C(L+) :

In order to prove this property, we need to show that Sim(Di+, D+) ≤
Sim(Di, D), ∀i < l+a , i.e. ∑i

k=1 w
2
k∑n\{a,b}

m=1 w2
m + (wa + h)2 + (wb − h)2

≤
∑i

k=1 w
2
k∑n

k=1 w
2
k

We therefore only need to show that
∑n\{a,b}

m=1 w2
m + (wa +h)2 + (wb−h)2 ≥∑n

k=1 w
2
k, i.e.

∑n
k=1 w

2
k +(h2 +2wah)+(h2−2wbh) ≥

∑
k=1 w

2
k, which trivially

holds since wa ≥ wb.

• if C(L) ≥ l+a then C(L) ≤ C(L+) :

We must now see that Sim(Di+, D+) ≥ Sim(Di, D),∀i ≥ l+a .
Firstly, let us assume that q is an index value such that l+a ≤ q < l+b . We

can therefore see that
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∑q\{a}
m=1 w2

m + (wa + h)2∑n\{a,b}
m=1 w2

m + (wa + h)2 + (wb − h)2
≥

∑q
k=1 w

2
k∑n

k=1 w
2
k

i.e.

(

q∑
k=1

w2
k + (h2 + 2wah))(

n∑
k=1

w2
k) ≥ (

n∑
k=1

w2
k + (h2 + 2wah) + (h2− 2wbh))(

q∑
k=1

w2
k)

Since (
∑n

k=1 w
2
k) ≥ (

∑q
k=1 w

2
k), we only need to prove that (h2 + 2wah) ≥

(h2+2wah)+(h2−2wbh), i.e. 2wbh ≥ h2. Taking into account that by definition
h ≤ wb, this property holds.

Let us now assume that r is an index value such that r ≥ l+b . We will
therefore see that∑r\{a,b}

m=1 w2
m + (wa + h)2 + (wb − h)2∑n\{a,b}

m=1 w2
m + (wa + h)2 + (wb − h)2

≥
∑r

k=1 w
2
k∑n

k=1 w
2
k

Once again, we must show that

(

r∑
k=1

w2
k+(h2+2wah)+(h2−2wbh))(

n∑
k=1

w2
k) ≥ (

n∑
k=1

w2
k+(h2+2wah)+(h2−2wbh))(

r∑
k=1

w2
k)

which trivially holds since (
∑n

k=1 w
2
k) ≥ (

∑r
k=1 w

2
k).

Appendix A.3. Cosine similarity satisfies richest get richer inequality: P7

Richest get richer inequality states that if the weight of the highest-weighted
term is increased by an amount h, h > 0, the distribution is more concentrated,
and therefore the cutoff point should not increase, i.e. C(L∗j ) ≤ C(Lj), where
L∗j = {w1 + h,w2, . . . , wn}

Proof. We must prove that C(L∗j ) ≤ C(Lj), i.e. Sim(Di, D) ≤ Sim((D∗)i, (D∗)),
for all i ∈ {1, . . . , n}. We will therefore see that

(w1 + h)2 +
∑i

k=2 w
2
k

(w1 + h)2 +
∑n

k=2 w
2
k

≥
∑i

k=1 w
2
k∑n

k=1 w
2
k

i.e.

(h2 + 2w1h+

i∑
k=1

w2
k)(

n∑
k=1

w2
k) ≥ (

i∑
k=1

w2
k)(h2 + 2w1h+

n∑
k=1

w2
k)

which trivially holds since
∑n

k=1 w
2
k ≥

∑i
k=1 w

2
k.


