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Abstract 

This paper is concerned with the distributed filtering problem for a class of discrete-time stochastic 

systems over a sensor network with a given topology. The system presents the following main 

features: (i) random parameter matrices in both the state and observation equations are 

considered; and (ii) the process and measurement noises are one-step autocorrelated and two-

step cross-correlated. The state estimation is performed in two stages. At the first stage, through 

an innovation approach, intermediate distributed least-squares linear filtering estimators are 

obtained at each sensor node by processing available output measurements not only from the 

sensor itself but also from its neighboring sensors according to the network topology. At the second 

stage, noting that at each sampling time not only the measurement but also an intermediate 

estimator is available at each sensor, attention is focused on the design of distributed filtering 

estimators as the least-squares matrix-weighted linear combination of the intermediate estimators 

within its neighborhood. The accuracy of both intermediate and distributed estimators, which is 

measured by the error covariance matrices, is examined by a numerical simulation example where 

a four-sensor network is considered. The example illustrates the applicability of the proposed 

results to a linear networked system with state-dependent multiplicative noise and different 

network-induced stochastic uncertainties in the measurements; more specifically, sensor gain 

degradation, missing measurements and multiplicative observation noises are considered as 

particular cases of the proposed observation model. 

Usuario
Rectángulo



1. Introduction

Estimation over sensor networks systems. In the last decades, sensor net-
works have shown to be a persistent focus of research due to their successful
applications in a wide variety of areas (e.g., target tracking, habitat mon-
itoring, animal tracking, communications, etc.). Accordingly, considerable
research attention has been devoted to state estimation techniques over sen-
sor networks, not only due to the large number of potential applications but
also because they provide more information than traditional communication
systems with a single sensor. Using different approaches, a large number of
research results on the design of fusion estimation algorithms in multi-sensor
systems have been reported (see e.g., [1], [2], [3], [4], [5], [6]).

Distributed estimation problem. Usually, the information available at each
individual node of the sensor network comes not only from its own measure-
ments but also from those of its neighboring sensors according to a given
topology and, instead of sending their information to the fusion center, each
sensor node itself can perform an estimation by incorporating all the infor-
mation from its neighbors. Hence, for distributed estimation problems, it is
of fundamental importance to establish a strategy to describe how each node
communicates with its neighboring nodes according to the information pro-
vided by the network topology. Recently, the distributed filtering problem
through sensor networks has gained an ever-increasing interest and, using dif-
ferent filter structures, a great number of distributed algorithms have been
proposed (see e.g., [7], [8], [9], [10], [11]). A survey of recent advances on dis-
tributed filtering for stochastic systems over sensor networks has been given
in [12] and [13] where a comprehensive overview on this field was provided.

Incomplete information. In stochastic systems within a networked en-
vironment, certain network-induced phenomena can occur randomly due to
many reasons such as network congestion, intermittent sensor failures or acci-
dental loss of measured data, among others. These random phenomena (e.g.,
missing measurements, random communication delays or packet dropouts, to
mention a few), which are referred to in [14] as randomly occurring incom-
plete information, have a great impact on the performance of the estimators
and make it necessary to develop new distributed estimation algorithms that
take them into account. In the design of these new distributed estimation
algorithms, the difficulties caused by the coupling between the sensors ac-
cording to the given topology must be overcome in addition to those arising
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from the random phenomena induced by the network. In recent years, the
distributed estimation problem with incomplete information has become a
research topic of growing interest (see e.g., [15], [16], [17], [18]).

Random parameter matrices. Usually, some of the systems describing the
aforementioned network-induced random phenomena include stochastic pa-
rameters, so they can be transformed into systems with random parameter
matrices. Some examples are networked systems with random observation
losses [19], stochastic sensor gain degradation [20], multiplicative noises in
the observation equations [21], missing [22] and fading measurements [23],
or measurement multiplicative noises and missing measurements [24]. Also,
the original system with random delays and packet dropouts in [25] and [26]
can be transformed into an equivalent stochastic parameterized system. .
Similarly, systems with two-step random delays have been transformed into
systems with random parameter matrices in several papers, e.g., [27] and
[28]. Moreover, it is noted that systems with random state transition matri-
ces can be used, for example, to describe linear systems with state-dependent
multiplicative noise [29] or randomly variant dynamic systems with multiple
models [30]. Consequently, random state transition and measurement param-
eter matrices can model a great variety of real situations and communication
processes, as they provide a unified framework to address different simul-
taneous network-induced phenomena. Discrete-time systems with random
parameter matrices arise in areas such as digital control of chemical pro-
cesses, systems with human operators, mobile robot localization, navigation
systems, economic systems and stochastically sampled digital control systems
([31], [32]). This wide applicability has encouraged an increasing interest on
the estimation problem for systems with random parameter matrices (see
e.g., [30], [31], [32], [33], [34], [35]).

Noise correlation. In the study of estimation problems, a general assump-
tion about the system noises is that they are uncorrelated or correlated only
at the same time instant. However, this assumption is not always true and
it can be restrictive in many real-world problems where both correlation and
cross-correlation of the noises may be present. For example, when the sensors
operate in the same noisy environment, the sensor noises are usually corre-
lated. Also, when the noises are state dependent, there is cross-correlation
between the process noise and the sensor noises, as well as between the dif-
ferent sensor noises. Furthermore, the augmented systems used to describe
random delays and packet dropouts have correlated noises, and discretized
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continuous-time systems also have inherently correlated noises. Hence, both
in systems with deterministic matrices and systems with random parameter
matrices, the estimation problem with correlated and cross-correlated noises
has become a challenging research topic. In the first case, under different
correlation assumptions of the noises, centralized and distributed fusion al-
gorithms are obtained in [29], for systems with multiplicative noise in the
state equation; in [27], when multiplicative noises exist in both the state
and observation equations; in [36] for systems with fading measurements;
and in [5], for systems with finite-step correlated noises and multiple packet
dropouts. For systems with random parameter matrices and autocorrelated
and cross-correlated noises, many research efforts have been devoted to the
fusion estimation problems (see e.g., [31], [32], [33], [34], [35]).

Addressed problem. Motivated by the above considerations, this paper
is concerned with the study of the distributed state estimation problem for
systems perturbed by random parameter matrices and correlated additive
noises over a sensor network with a given topology. The design of the pro-
posed distributed filtering estimators is carried out in two stages. At the
first stage, using an innovation approach, every sensor node collects measure-
ments from neighboring sensors according to the network topology in order to
generate intermediate least-squares linear estimators. After that, at the sec-
ond stage, the intermediate estimators from neighboring sensors are further
collected to form the proposed distributed estimators as the least-squares
matrix-weighted linear combination of them. Since more measurements from
different sensors are used to generate distributed estimators in the second
stage compared with the first one, the proposed distributed method steers
each distributed estimator closer to the global optimal linear one (based on
the measurements of all the network sensors), thus improving the intermedi-
ate estimation performance and also reducing disagreements of intermediate
estimators among different sensors.

Paper contributions. The main contributions of the current study can
be highlighted as follows: (1) the considered system model includes random
parameter matrices in both state and measurement equations which provides
a unified framework comprehending, for example, multiplicative noise in the
state equation and some network-induced phenomena such as missing mea-
surements or sensor gain degradations; hence, the proposed algorithm can
be applied to these kinds of network systems with incomplete information;
(2) the random parameters are time-varying, thus allowing to cover gen-

4



eral situations involving network-induced phenomena that depend explicitly
upon time and, moreover, different random phenomena at the different sen-
sor nodes can be considered; (3) one-step autocorrelation of the noises and
also two-step cross-correlation between the process noise and different sensor
noises are considered; (4) unlike most existing papers on distributed estima-
tion, where optimal linear estimators with a given structure are obtained, in
this paper an optimal linear distributed filter is designed, without requiring a
particular structure on the estimators, but just using the mean squared error
criterion; (5) the innovation technique is used to simplify substantially the
derivation of the proposed algorithm which is recursive and computationally
simple, thus being suitable for online implementation.

Paper structure. The rest of the paper is organized as follows. In Section
2, we present the system model to be considered and the assumptions under
which the distributed estimation problem is addressed. In Section 3, using
an innovation approach, a recursive algorithm for the intermediate least-
squares linear filter is derived. In Section 4, the proposed distributed filter
is generated as a matrix-weighted linear combination of the intermediate
filtering estimators within its communication neighborhood, using the mean
squared error as optimality criterion. An illustrative example is provided in
Section 5 to show the performance of the proposed estimators. Finally, some
conclusions are drawn in Section 6.

Notation: The notation used throughout the paper is standard. Rn denotes
the n-dimensional Euclidean space. AT and A−1 denote the transpose and the
inverse of a matrix A, respectively. The shorthand Diag(Ai)i=1,...,m denotes
a block diagonal matrix with matrices A1, . . . , Am, and (A1, . . . , Am) denotes
a partitioned matrix into sub-matrices A1, . . . , Am. In is the n × n identity
matrix. If the dimensions of matrices are not explicitly stated, they are
assumed to be compatible with algebraic operations. The notation symbol ⊗
represents the Kronecker product. δk,s denotes the Kronecker delta function,
which is equal to one if s = k and zero otherwise. Finally, for any function
Gk,s, dependent of the time instants k and s, we will write Gk ≡ Gk,k for
simplicity; analogously, G(i) ≡ G(ii) will be written for any function G(ij),
dependent of the sensor nodes i and j.
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2. System formulation and problem statement

Our purpose is to study the distributed filtering problem in systems with
random parameter matrices and correlated noises, over a sensor network
with a given topology; at each sensor node, the state filtering estimators are
based not only on its own information but also on the information from its
neighboring nodes.

Consider a sensor network with a fixed topology represented by a di-
rected graph of order m, G = (V , E ,A). Here, V = {1, . . . ,m} is the set
of sensor nodes and E ⊆ V × V is the set of edges connecting some pairs
of nodes. Since the graph is directed, the edges have a specific direction;
namely, (i, j) ∈ E means that sensor i can obtain information from sensor
j. A = (aij)m×m is the weighted adjacency matrix, whose elements (the
edge weights) are nonnegative finite real numbers indicating whether pairs
of vertices are connected or not in the graph, since aij > 0 ⇔ (i, j) ∈ E .
We assume that aii = 1, ∀i ∈ V , and therefore (i, i) can be regarded as
an additional edge. The set of neighbors of node i, plus the node itself, is
denoted by Ni = {j ∈ V : aij > 0}, ∀i ∈ V , and it is assumed that each
node i knows all the relevant information from its adjacent nodes, j ∈ Ni. A
communication graph G is said to be completely connected if there is an edge
between every pair of nodes; that is, (i, j) ∈ E for all i, j ∈ V or, equivalently,
Ni = V , ∀i ∈ V .

Consider the following discrete-time linear stochastic system:

xk+1 = Fkxk + wk, k ≥ 0, (1)

where xk ∈ Rnx is the state vector at time k, {Fk; k ≥ 0} is a sequence of
random parameter matrices and {wk; k ≥ 0} is the process noise.

The state measured outputs from the different sensor nodes are described
by:

y
(i)
k = H

(i)
k xk + v

(i)
k , k ≥ 1, i = 1, . . . ,m, (2)

where y
(i)
k ∈ Rny is the output from sensor node i at time k. For i = 1, . . . ,m,

{H(i)
k ; k ≥ 1} is a sequence of random parameter matrices and {v(i)k ; k ≥ 1}

is the measurement noise of the sensor node i.
Model assumptions. The distributed filtering problem is addressed under the
following assumptions about the initial state, the random parameter matrices
and the noises involved in the system model (1)-(2):
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(i) The initial state x0 is a random vector with E[x0] = x0 and Cov[x0] =
Σ0.

(ii) {Fk; k ≥ 0} and {H(i)
k ; k ≥ 1}, i = 1, . . . ,m, are independent se-

quences of independent random parameter matrices with known means,

E[Fk] = F k, E[H
(i)
k ] = H

(i)

k , and the covariances of their entries,
Cov[fpq(k), f

p′q′
(k)], Cov[h(i)

pq
(k), h(i)

p′q′
(k)], are also assumed to be known.

fpq(k) denotes the (p, q)-th entry of matrix Fk, for p, q = 1, . . . , nx,

and h(i)
pq

(k) denotes the (p, q)-th entry of H
(i)
k , for p = 1, . . . , ny and

q = 1, . . . , nx.

(iii) The noises {wk; k ≥ 0} and {v(i)k ; k ≥ 1}, i = 1, . . . ,m, are zero-mean
sequences with known covariances and cross-covariances:

Cov[wk, ws] = Qkδk,s +Qk,k−1δk−1,s, s ≤ k,

Cov[v
(i)
k , v

(j)
s ] = R

(ij)
k δk,s +R

(ij)
k,k−1δk−1,s, s ≤ k,

Cov[wk, v
(i)
s ] = S

(i)
k δk,s+ S

(i)
k,k+1δk+1,s+ S

(i)
k,k+2δk+2,s.

(iv) For i = 1, . . . ,m, the initial state x0 and the processes {Fk; k ≥ 0}
and {H(i)

k ; k ≥ 1} are mutually independent and they are independent

of the additive noises {wk; k ≥ 0} and {v(i)k ; k ≥ 1}.

Remark 1. By denoting F̃k = Fk − F k and H̃
(i)
k = H

(i)
k −H

(i)

k , i = 1, . . . ,m,

the following identities hold for the (p, q)-th entries of the matrices E[F̃kGF̃
T
k ]

and E[H̃
(i)
k GH̃

(i)T
k ], being G an arbitrary deterministic matrix:(

E[F̃kGF̃
T
k ]
)
pq

=
nx∑
a=1

nx∑
b=1

Cov[fpa(k), f
qb

(k)]Gab, p, q = 1, . . . , nx,(
E[H̃

(i)
k GH̃

(i)T
k ]

)
pq

=
nx∑
a=1

nx∑
b=1

Cov[h(i)
pa

(k), h(i)
qb

(k)]Gab, p, q = 1, . . . , ny.

Remark 2. Assumptions (i)-(iv) lead to the following recursive formula for
Dk ≡ E[xkx

T
k ], the correlation matrix of the state vector xk (see, e.g., [31]):

Dk+1 = F kDkF
T

k + E[F̃kDkF̃
T
k ] +Qk

+F kQk−1,k +Qk,k−1F
T

k , k ≥ 1;

D1 = F 0D0F
T

0 + E[F̃0D0F̃
T
0 ] +Q0,

D0 = Σ0 + x0x
T
0 .

(3)
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Under the previous assumption that each node i has access to the in-
formation from its neighbors, we consider that the communication between
adjacent nodes is coordinated and conducted in two stages: in the first one,
every node sends out only its local measurements and, in the second stage,
every node sends out only the estimators obtained using the local measure-
ments. Our aim is to find the distributed filtering estimator, x̂

(i)
k/k, of the

state xk based on its own information and that from its neighboring nodes,
j ∈ Ni. Taking into account the communication between adjacent nodes, the
proposed estimators are performed in two steps: Step 1) An intermediate dis-
tributed optimal least-squares (LS) linear filter of the signal xk, denoted by

x̂
d(i)
k/k , is obtained using the measurements y

(j)
1 , . . . , y

(j)
k , for all j ∈ Ni. Step

2) Motivated by the fact that the neighbors of the node i have also their own

estimators for the same signal xk, the proposed distributed estimator, x̂
(i)
k/k,

is generated by a matrix-weighted linear combination of the intermediate es-
timators within its communication neighborhood, x̂

d(j)
k/k , j ∈ Ni, using the

mean squared error as optimality criterion.

2.1. Stacked observation model

For notational simplicity in the mathematical derivations, the observation
model (2) is rewritten in a stacked form as follows:

Yk = Hkxk + Vk, k ≥ 1, (4)

where

Yk =

 y
(1)
k
...

y
(m)
k

 , Hk =

 H
(1)
k
...

H
(m)
k

 , Vk =

 v
(1)T
k
...

v
(m)
k

 .

The following properties of the processes in (4) are easily inferred from the
model assumptions previously stated:

• {Hk; k ≥ 1} are independent random parameter matrices with known

means, E[Hk] = Hk =
(
H

(1)T

k , . . . , H
(m)T

k

)T
, and for any deterministic

matrix G, we have:

E[H̃kGH̃T
k ] = Diag

(
E[H̃

(i)
k GH̃

(i)T
k ]

)
i=1,...,m

where H̃k = Hk − Hk and E[H̃
(i)
k GH̃

(i)T
k ] is obtained as indicated in

Remark 1.
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• {Vk; k ≥ 1} is a zero-mean process with

E[VkV
T
s ] = Rkδk,s +Rk,k−1δk−1,s, s ≤ k,

E[wkV
T
s ] = Skδk,s + Sk,k+1δk+1,s + Sk,k+2δk+2,s,

being

Rk,s =
(
R

(ij)
k,s

)
i,j=1,...,m

, Sk,s =
(
S
(1)
k,s , . . . , S

(m)
k,s

)
.

• The initial state x0 and the random matrix sequences {Fk; k ≥ 0} y
{Hk; k ≥ 1} are mutually independent and independent of the additive
noises {wk; k ≥ 0} and {Vk; k ≥ 1}.

From these properties, the following correlation properties of the vector
noises wk and Vk are clear:

• The process noise vector wk is uncorrelated with Y1, . . . , Yk−1 and cor-
related with Yk; the correlation matrix Wk ≡ E[wkY

T
k ] is obtained

by

Wk = Qk,k−1H
T

k + Sk, k ≥ 1. (5)

• The observation noise vector Vk is uncorrelated with Y1, . . . , Yk−2 and
correlated with Yk−1; noting Vk,k−1 ≡ E[VkY

T
k−1], we have

Vk,k−1 = ST
k−2,kH

T

k−1 +Rk,k−1, k ≥ 2. (6)

• The state vector xk is correlated with the noise vector Vk and Bk ≡
E[xkV

T
k ] satisfy

Bk = F k−1Sk−2,k + Sk−1,k, k ≥ 2; B1 = S0,1. (7)

3. Intermediate distributed LS linear filter

In this section, our aim is to derive the LS linear filter that results when,
at each sensor node, not only its own measurements but also all the available
measurements from its neighboring nodes are used. Therefore, for every
sensor node i, our challenge is to obtain the filter x̂

d(i)
k/k based on all the

measurements from the nodes in its neighborhood set, Ni = {j ∈ V : aij >

0}, up to time k or, equivalently, based on those observations y
(j)
s , s ≤ k for

which aij > 0.
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To give a unified expression of the observations used at each node, let us
define cij = 1, if aij > 0, and cij = 0, otherwise; i.e., cij = 1 means that the
nodes i and j are connected and aij is the edge weight. Let us denote Ci,y the
matrix obtained by removing the all-zero rows of Diag (cij)j=1,...,m⊗ Iny and

Z
(i)
s = Ci,yYs. As Ys is the stacked observation vector (4), Z

(i)
s is the vector

constituted only by those observations y
(j)
s such that cij = 1 or, equivalently,

those observations coming from the neighboring nodes of sensor i. Then, the
aim is to derive a recursive algorithm to obtain the LS linear filter of the
state xk based on {Z(i)

s , s ≤ k}.

Innovation approach. For each i = 1, . . . ,m, the recursive algorithm for
the LS linear filter, x̂

d(i)
k/k , is derived by using an innovation approach. The

innovation at time k is defined as µ
(i)
k = Z

(i)
k − Ẑ

d(i)
k/k−1 = Ci,y

(
Yk − Ŷ d(i)

k/k−1

)
,

where Ŷ
d(i)
k/k−1 is the LS linear estimator of Yk based on Z

(i)
s , s ≤ k − 1.

Replacing the observation process {Z(i)
k ; k ≥ 1} by the innovation one,

{µ(i)
k ; k ≥ 1}, and considering an arbitrary number of observations, L,

the LS linear estimator, ξ̂
d(i)
k/L, of a random vector ξk based on the obser-

vations Z
(i)
1 , . . . , Z

(i)
L , can be calculated as linear combination of the innova-

tions µ
(i)
1 , . . . , µ

(i)
L ; namely, ξ̂

d(i)
k/L =

L∑
s=1

h
(i)
k,s,Lµ

(i)
s . Using now the orthogonality

conditions, E[(ξk − ξ̂
d(i)
k/L)µ

(i)T
s ] = 0, s = 1, . . . , L, and the whiteness of

the innovation process, it is deduced that h
(i)
k,s,L = E[ξkµ

(i)T
s ](E[µ

(i)
s µ

(i)T
s ])−1;

hence, h
(i)
k,s,L is independent of L and, noting Π

(i)
s = E[µ

(i)
s µ

(i)T
s ], the following

identity holds

ξ̂
d(i)
k/L =

L∑
s=1

E[ξkµ
(i)T
s ]Π(i)−1

s µ(i)
s . (8)

This general expression for the LS linear estimators as linear combination of
the innovations is the starting point to derive the following recursive filtering
algorithm.

Theorem 1. The LS linear filter, x̂
d(i)
k/k, is given by

x̂
d(i)
k/k = x̂

d(i)
k/k−1 + X (i)

k Π
(i)−1
k µ

(i)
k , k ≥ 1; x̂

d(i)
0/0 = x0, (9)
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where the one-stage state predictor, x̂
d(i)
k/k−1, satisfies

x̂
d(i)
k/k−1 = F k−1x̂

d(i)
k−1/k−1+Wk−1C

T
i,yΠ

(i)−1
k−1 µ

(i)
k−1, k ≥ 2;

x̂
d(i)
1/0 = F 0x0.

(10)

The filtering error covariance matrix, Σ
d(i)
k/k, is given by

Σ
d(i)
k/k = Σ

d(i)
k/k−1 −X

(i)
k Π

(i)−1
k X (i)T

k , k ≥ 1; Σ
d(i)
0/0 = Σ0, (11)

where the prediction error covariance matrix, Σ
d(i)
k/k−1, is calculated by

Σ
d(i)
k/k−1 = Dk + F k−1

(
Σ

d(i)
k−1/k−1−Dk−1

)
F

T

k−1 −X
(i)
k,k−1Π

(i)−1
k−1 Ci,yWT

k−1

−Wk−1C
T
i,yΠ

(i)−1
k−1 X

(i)T
k−1 F

T

k−1, k ≥ 2;

Σ
d(i)
1/0 = D1 − F 0x0x

T
0 F

T

0 .

(12)

The matrix X (i)
k ≡ E[xkµ

(i)T
k ] is obtained by

X (i)
k =

(
Σ

d(i)
k/k−1H

T

k +M(i)
k

)
CT

i,y, k ≥ 1, (13)

where M(i)
k ≡ E[(xk − x̂d(i)k/k−1)V

T
k ] is given by

M(i)
k = Bk −X (i)

k,k−1Π
(i)−1
k−1 Ci,yVT

k,k−1, k ≥ 2;

M(i)
1 = B1,

(14)

with X (i)
k,k−1 ≡ E[xkµ

(i)T
k−1] satisfying

X (i)
k,k−1 = F k−1X (i)

k−1 +Wk−1C
T
i,y, k ≥ 2. (15)

The innovation, µ
(i)
k , is given by

µ
(i)
k = Ci,y

(
Yk −Hkx̂

d(i)
k/k−1 − Vk,k−1C

T
i,yΠ

(i)−1
k−1 µ

(i)
k−1

)
, k ≥ 2;

µ
(i)
1 = Ci,y

(
Y1 −H1x̂

d(i)
1/0

) (16)

and the innovation covariance matrix, Π
(i)
k , satisfies

Π
(i)
k = Ci,y

(
HkX (i)

k + E[H̃kDkH̃T
k ]CT

i,y + V(i)
k

)
, k ≥ 1, (17)
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where V(i)
k ≡ E[Vkµ

(i)T
k ] is obtained by

V(i)
k =

(
M(i)T

k HT

k +Rk − Vk,k−1C
T
i,yΠ

(i)−1
k−1 Ci,yVT

k,k−1

)
CT

i,y, k ≥ 2;

V(i)
1 =

(
M(i)T

1 HT

1 +R1

)
CT

i,y.
(18)

The matrices Dk, Wk, Vk,k−1 and Bk are given in (3), (5), (6) and (7),
respectively, and Ci,y is the matrix obtained by removing the all-zero rows of
Diag (cij)j=1,...,m ⊗ Iny .

Proof. From the equations (1) and (4), and the orthogonal projection

Lemma (OPL), the state predictor, x̂
d(i)
k/k−1, and the observation predictor,

Ŷ
d(i)
k/k−1, satisfy:

x̂
d(i)
k/k−1 = F k−1x̂

d(i)
k−1/k−1 + ŵ

d(i)
k−1/k−1, k ≥ 1, (19)

Ŷ
d(i)
k/k−1 = Hkx̂

d(i)
k/k−1 + V̂

d(i)
k/k−1, k ≥ 1, (20)

where ŵ
d(i)
k−1/k−1 and V̂

d(i)
k/k−1 are the LS linear estimators of wk−1 and Vk,

respectively, based on Z
(i)
s , s ≤ k−1. Note that, due to the noise correlation

assumptions, the vectors wk−1 and Vk are correlated with the observation

Z
(i)
k−1 and, hence, their estimators are not equal to zero; next, their expressions

are obtained.

Taking into account that wk is uncorrelated with Z
(i)
s , for s ≤ k− 1, and

Vk is uncorrelated with Z
(i)
s , for s ≤ k − 2, we have

E[wkµ
(i)T
k ] = E[wkZ

(i)T
k ] =WkC

T
i,y,

E[Vkµ
(i)T
k−1] = E[VkZ

(i)T
k−1 ] = Vk,k−1C

T
i,y,

where Wk and Vk,k−1 are given in (5) and (6), respectively. So, the general
expression (8) for the LS linear estimators leads to:

ŵ
d(i)
k/k =WkC

T
i,yΠ

(i)−1
k µ

(i)
k , k ≥ 1; ŵ

d(i)
0/0 = 0. (21)

V̂
d(i)
k/k−1 = Vk,k−1C

T
i,yΠ

(i)−1
k−1 µ

(i)
k−1, k ≥ 2; V̂

d(i)
1/0 = 0. (22)

• Derivation of expressions (9)- (12). Denoting X (i)
k = E[xkµ

(i)T
k ], expres-

sions (9) and (11) for the filter and the filtering error covariance matrix are

12



obvious from (8) and the OPL, respectively. Also, expression (10) for the
state predictor, withWk given in (5), is immediately obtained from (19) and

(21). Finally, from the OPL, Σ
d(i)
k/k−1 = Dk − E[x̂

d(i)
k/k−1x̂

d(i)T
k/k−1], where Dk is

given by (3), and using expression (10) we obtain (12) for the prediction error
covariance matrix.

• Derivation of expressions (13)-(15). From the OPL, we have that X (i)
k =

E[(xk−x̂d(i)k/k−1)µ
(i)T
k ] = E[(xk−x̂d(i)k/k−1)Y

T
k ]CT

i,y and, from (4) for Yk, expression

(13) for X (i)
k is obtained. Expression (14) forM(i)

k is easily deduced from the
following recursive formula for the state predictor, which is obtained from
(9) and (10), together with (15) for X (i)

k,k−1:

x̂
d(i)
k/k−1 = F k−1x̂

d(i)
k−1/k−2 + X (i)

k,k−1Π
(i)−1
k−1 µ

(i)
k−1, k ≥ 2. (23)

Finally, expression (15) for X (i)
k,k−1 is immediately obtained from (1).

• Derivation of expressions (16)- (18). From (20) and (22), the innovation
is clearly given by (16), with Vk,k−1 satisfying (6). Next, expression (17) for

Π
(i)
k = E

[
µ
(i)
k µ

(i)T
k

]
is derived. From the OPL and (4), we have that

Π
(i)
k = E[Z

(i)
k µ

(i)T
k ] = Ci,yE[Ykµ

(i)T
k ]

= Ci,y

(
HkX (i)

k + E[H̃kxkµ
(i)T
k ] + V(i)

k

)
.

Again, from the OPL and (4), together with the conditional expectation
properties, the following identities hold:

E[H̃kxkµ
(i)T
k ] = E[H̃kxkZ

(i)T
k ] = E[H̃kxkY

T
k ]CT

i,y

= E[H̃kxkx
T
k H̃T

k ]CT
i,y = E[H̃kDkH̃T

k ]CT
i,y,

and substituting this expectation into the above expression for Π
(i)
k , we obtain

(17).

Finally, using (16) for µ
(i)
k , with (4) for Yk, we easily obtain that V(i)

k =

E[Vkµ
(i)T
k ] satisfies (18), and the proof is completed. �

4. Distributed filtering estimators

At each sensor node, the optimal LS linear intermediate distributed fil-
tering estimators obtained in the previous section use the information of the

13



measurements from the node itself and its neighboring nodes. Now, this in-
formation can be complemented, since each node can access its neighbors in-
termediate filtering estimators. On this basis, our goal now is to design a new
type of distributed filter for every node, by using its own intermediate filter-
ing estimators and those of its neighbors; specifically, at each sensor node i, a
distributed filter, x̂

(i)
k/k, will be generated as a matrix-weighted sum of the in-

termediate filters, x̂
d(j)
k/k , for j ∈ Ni, in which the matrix weights are computed

to minimize the mean squared estimation error. So, since cij = 1 for j ∈ Ni,

by denoting X̂
(i)
k/k = Ci,xX̂k/k, with X̂k/k =

(
x̂
d(1)T
k/k , . . . , x̂

d(m)T
k/k

)T
and Ci,x the

matrix obtained by removing the all-zero rows of Diag (cij)j=1,...,m⊗ Inx , the

aim is to find A(i)
k such that the estimator A(i)

k X̂
(i)
k/k minimizes

E
[(
xk −A(i)

k X̂
(i)
k/k

)(
xk −A(i)

k X̂
(i)
k/k

)T]
.

As it is known, the solution of this problem is given by

A(i)
k = E[xkX̂

(i)T
k/k ]

(
E[X̂

(i)
k/kX̂

(i)T
k/k ]

)−1

, k ≥ 0. (24)

Since E[X̂k/kX̂
T
k/k] =

(
E[x̂

d(l)
k/kx̂

d(j)T
k/k ]

)
l,j=1,...,m

and, from the OPL,

E[xkX̂
T
k/k] =

(
E[x̂

d(1)
k/k x̂

d(1)T
k/k ], . . . , E[x̂

d(m)
k/k x̂

d(m)T
k/k ]

)
,

to obtain the optimal matrix A(i)
k in (24), the cross-covariance matrices be-

tween the intermediate estimators of every pair of nodes, K
(lj)
k/k ≡ E[x̂

d(l)
k/kx̂

d(j)T
k/k ],

must be calculated.

From expression (9) for the intermediate filters, it is clear that K
(lj)
k/k can

be obtained from the cross-covariance matrices between the corresponding
predictors, K

(lj)
k/k−1 ≡ E[x̂

d(l)
k/k−1x̂

d(j)T
k/k−1], if the expectations E[x̂

d(l)
k/k−1µ

(j)T
k ] and

E[µ
(l)
k µ

(j)T
k ] are known. Expressions for these expectations and for the pre-

diction and filtering cross-covariance matrices are presented as preliminaries.
The notations throughout this section are those of Theorem 1.

4.1. Preliminary results

The following lemmas 1 and 2 present expressions for the matrices L
(lj)
k ≡

E[x̂
d(l)
k/k−1µ

(j)T
k ] and Π

(lj)
k ≡ E[µ

(l)
k µ

(j)T
k ], for arbitrary l, j = 1, . . . ,m.

14



Lemma 1. For l, j = 1, . . . ,m, the expectation L
(lj)
k = E[x̂

d(l)
k/k−1µ

(j)T
k ] satis-

fies

L
(lj)
k =

[(
K

(l)
k/k−1 −K

(lj)
k/k−1

)
HT

k +
(
X (l)

k,k−1Π
(l)−1
k−1 Cl,y

−L(lj)
k,k−1Π

(j)−1
k−1 Cj,y

)
VT
k,k−1

]
CT

j,y, k ≥ 2;

L
(lj)
1 = 0,

where L
(lj)
k,k−1 = E[x̂

d(l)
k/k−1µ

(j)T
k−1 ] is given by

L
(lj)
k,k−1 = F k−1L

(lj)
k−1 + X (l)

k,k−1Π
(l)−1
k−1 Π

(lj)
k−1, k ≥ 2.

Proof. Taking into account expression (16) for µ
(j)
k , we have that

L
(lj)
k =

(
E[x̂

d(l)
k/k−1Y

T
k ]−K(lj)

k/k−1H
T

k − L
(lj)
k,k−1Π

(j)−1
k−1 Cj,yVT

k,k−1

)
CT

j,y.

Then, using (4) for Yk and (23) for x̂
d(l)
k/k−1, we obtain

E[x̂
d(l)
k/k−1Y

T
k ] = K

(l)
k/k−1H

T

k + X (l)
k,k−1Π

(l)−1
k−1 Cl,yVT

k,k−1,

and the expression of L
(lj)
k is immediately derived. The proof is completed

with the expression of L
(lj)
k,k−1, which is immediately obtained using again (23)

for x̂
d(l)
k/k−1. �

Lemma 2. For l, j = 1, . . . ,m, the innovation cross-covariance matrix, Π
(lj)
k =

E[µ
(l)
k µ

(j)T
k ], satisfies

Π
(lj)
k = Cl,y

[
Hk

(
X (j)

k − L
(lj)
k

)
+ E[H̃kDkH̃T

k ]CT
j,y

+V(j)
k − Vk,k−1C

T
l,yΠ

(l)−1
k−1 Π

(lj)
k−1,k

]
, k ≥ 2;

Π
(lj)
1 = Cl,y

(
H1X (j)

1 + E[H̃1D1H̃T
1 ]CT

j,y + V(j)
1

)
,

where Π
(lj)
k−1,k = E[µ

(l)
k−1µ

(j)T
k ], k ≥ 2, is obtained by

Π
(lj)
k−1,k =

[
Hk

(
X (l)

k,k−1 − L
(jl)
k−1

)
+ Vk,k−1

(
CT

l,y − CT
j,yΠ

(j)−1
k−1 Π

(jl)
k−1

)]T
CT

j,y.
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Proof. Using (16) for the innovation µ
(l)
k , it is clear that

Π
(lj)
k = Cl,y

(
E[Ykµ

(j)T
k ]−HkL

(lj)
k − Vk,k−1C

T
l,yΠ

(l)−1
k−1 Π

(lj)
k−1,k

)
, k ≥ 2;

Π
(lj)
1 = Cl,yE[Y1µ

(j)T
1 ].

Then, the expression for Π
(lj)
k is deduced since (see derivation of (17))

E[Ykµ
(j)T
k ] = HkX (j)

k + E[H̃kDkH̃T
k ]CT

j,y + V(j)
k , k ≥ 1;

expression for Π
(lj)
k−1,k is derived by an analogous reasoning. �

Remark 3. Note that the expressions of Lemma 1 lead to L
(ll)
k = 0 and

L
(ll)
k,k−1 = X (l)

k,k−1, which is also immediate if we apply the OPL in the definition

of these matrices. Then, it is clear that the expression of Π
(lj)
k in Lemma 2

for j = l reduces to that in (17), since Π
(ll)
k−1,k = 0.

Lemma 3. The cross-covariance matrices between the intermediate filters,
K

(lj)
k/k = E[x̂

d(l)
k/kx̂

d(j)T
k/k ], l, j = 1, . . . ,m, are computed by

K
(lj)
k/k = K

(lj)
k/k−1 + L

(lj)
k Π

(j)−1
k X (j)T

k + X (l)
k Π

(l)−1
k L

(jl)T
k

+ X (l)
k Π

(l)−1
k Π

(lj)
k Π

(j)−1
k X (j)T

k , k ≥ 1;

K
(lj)
0/0 = x0x

T
0 ,

(25)

and those between the intermediate predictors, K
(lj)
k/k−1 = E

[
x̂
d(l)
k/k−1x̂

d(j)T
k/k−1

]
,

are given by

K
(lj)
k/k−1 = F k−1K

(lj)
k−1/k−1F

T

k−1 + F k−1

(
L
(lj)
k−1

+X (l)
k−1Π

(l)−1
k−1 Π

(lj)
k−1

)
Π

(j)−1
k−1 Cj,yWT

k−1

+Wk−1C
T
l,yΠ

(l)−1
k−1 L

(jl)T
k,k−1, k ≥ 2;

K
(lj)
1/0 = F 0x0x

T
0 F

T

0 .

(26)

Proof. Expression (25) follows easily using (9) for the intermediate filters.

Now, using (10) for x̂
d(l)
k/k−1, we obtain

K
(lj)
k/k−1 = E[x̂

d(l)
k−1/k−1x̂

d(j)T
k/k−1] +Wk−1C

T
l,yΠ

(l)−1
k−1 L

(jl)T
k,k−1;

then, using again (10) for x̂
d(j)
k/k−1, and (9) to write E[x̂

d(l)
k−1/k−1µ

(j)T
k−1 ] = L

(lj)
k−1 +

X (l)
k−1Π

(l)−1
k−1 Π

(lj)
k−1, expression (26) is immediately obtained. �
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4.2. Distributed filter

The following theorem provides the proposed distributed filtering estima-
tors, x̂

(i)
k/k, and the corresponding error covariance matrices, Σ

(i)
k/k.

Theorem 2. Let X̂k/k =
(
x̂
(1)T
k/k , . . . , x̂

(m)T
k/k

)T
be the vector constituted by

the intermediate filtering estimators calculated from the recursive algorithm
in Theorem 1. Then, the distributed filter from sensor i is given by

x̂
(i)
k/k = Ξk/kC

T
i,x

(
Ci,xKk/kC

T
i,x

)−1
Ci,xX̂k/k, k ≥ 1;

x̂
(i)
0/0 = x0,

where
Ξk/k =

(
K

(11)
k/k , . . . , K

(mm)
k/k

)
, Kk/k =

(
K

(lj)
k/k

)
l,j=1,...,m

and Ci,x is the matrix obtained by removing the all-zero rows of

Diag (cij)j=1,...,m ⊗ Inx .

The error covariance matrix of the distributed filter is computed by

Σ
(i)
k/k = Dk −Ξk/kC

T
i,x

(
Ci,xKk/kC

T
i,x

)−1
Ci,xΞ

T
k/k, k ≥ 1;

Σ
(i)
0/0 = Σ0.

Proof. The proof is immediately derived from (24). �

Remark 4. Until now, we have proposed a new approach to designing the dis-
tributed fusion filter for networked systems with random parameter matrices
and correlated noises. It is worth mentioning that the random parameter ma-
trix H

(i)
k in the measurement equation can model the measurement missing

phenomenon induced by the intermittent sensor failures, which is actually an
intermittent omission fault. Therefore, our approach is capable of handling
the estimation problem when the intermittent omission faults occur in the
sensors.
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Sensor 1 

Sensor 2 Sensor 4 

Sensor 3 

Figure 1: Topological structure of the sensor network.

5. Numerical Simulation Example

Consider the following discrete-time linear networked system with state-
dependent multiplicative noise, and scalar measurements coming from four
sensor nodes:

xk = (0.95 + 0.2εk−1)xk−1 + wk−1, k ≥ 1,

y
(i)
k = H

(i)
k xk + v

(i)
k , k ≥ 1, i = 1, 2, 3, 4,

where the initial state, x0, is a standard Gaussian variable, and {εk; k ≥ 0} is
a zero-mean Gaussian white process with unit variance. The additive noises
are defined as wk = 0.6(ηk + ηk+1) and v

(i)
k = c

(i)
k (ηk−1 + ηk), i = 1, 2, 3, 4,

where c
(1)
k = 1, c

(2)
k = 0.5, c

(3)
k = 0.75, c

(4)
k = 0.85, and {ηk; k ≥ 0} is a

zero-mean Gaussian white process with variance 0.5.

Consider the sensor network displayed in Figure 1, represented by a di-
rected graph G = (V , E ,A) with set of nodes V = {1, 2, 3, 4}, set of edges E =
{ (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (2, 4), (3, 1), (3, 3), (3, 4), (4, 1), (4, 2), (4, 4) }
and adjacency matrix

A =


1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1

 .

At each sensor node, i = 1, 2, 3, 4, the random parameter matrices H
(i)
k

are defined to model different types of network-induced uncertainties: con-
tinuous and discrete gain degradation in sensors 1 and 2, respectively, missing
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measurements in sensor 3, and both missing measurements and multiplicative
noise in sensor 4; specifically these matrices are defined as follows:

• H(1)
k = 0.82λ

(1)
k , where {λ(1)k ; k ≥ 1} is a sequence of independent

random variables uniformly distributed over [0.3, 0.7].

• H(2)
k = 0.75λ

(2)
k , where {λ(2)k ; k ≥ 1} is a sequence of independent

discrete random variables with P [λ
(2)
k = 0] = 0.1, P [λ

(2)
k = 0.5] =

0.5, P [λ
(2)
k = 1] = 0.4.

• H(3)
k = 0.74λ

(3)
k , where {λ(3)k ; k ≥ 1} are independent Bernoulli vari-

ables with P [λ
(3)
k = 1] = 0.7, ∀k ≥ 1.

• H(4)
k = λ

(4)
k (0.75 + 0.95ζk), where {λ(4)k ; k ≥ 1} are independent Bernoulli

variables with P [λ
(4)
k = 1] = 0.7, ∀k ≥ 1, and {ζk; k ≥ 1} is a zero-

mean Gaussian white process with unit variance.

Finally, according to the model hypotheses, the sequences {εk; k ≥ 0},
{ηk; k ≥ 0}, {λ(i)k ; k ≥ 1}, i = 1, 2, 3, 4, and {ζk; k ≥ 1} are assumed to be
mutually independent.

To illustrate the feasibility and effectiveness of the proposed algorithms,
they were implemented in MATLAB, and one hundred iterations of the al-
gorithms were run. For i = 1, 2, 3, 4, Figure 2 shows the error variances of
the following estimators:

- The local LS linear filter at sensor node i (obtained by using only
measurements from the node i itself).

- The proposed intermediate filters at sensor nodes j within the commu-
nication neighborhood of node i (j ∈ Ni).

- The proposed distributed filter at sensor node i.

From Figure 2 it is observed that, at each sensor node i, the error variances
of the distributed filter are smaller than those of the intermediate filter, and
the error variances of the intermediate filter are significantly less than those
of the local filter. Hence, each sensor improves its local performance when the
information from its neighbors is used and this is further improved by fusing
intermediate filters from its neighborhood. Also it can be seen from Figure
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Figure 2: Error variance comparison of the local, intermediate and distributed filtering
estimators in: (a) node 1, (b) node 2, (c) node 3 and (d) node 4.

2 that the proposed distributed estimator in a sensor node i outperforms all
the intermediate filters in its neighborhood Ni. In summary, it is shown that
the proposed distributed estimation method has a satisfactory performance
in connected sensor network systems where the measured outputs may be
affected by different network-induced uncertainties.

Next, we analyze the disagreements of the proposed estimators among the
different sensor nodes. It is obvious that, even when the same type (local,
intermediate or distributed) of estimator is used, different measurements are
processed at each sensor node and, consequently, the estimators at any two
nodes may be different from each other. Clearly, a highly desirable property
of an estimator is to reduce such disagreements among different sensor nodes.
Figure 3 displays the error variances of the intermediate and distributed
filters in the four nodes, as well as the centralized global optimal linear filter
based on the measurements from all the network nodes. This figure shows
that, in comparison to the intermediate filtering estimators, the proposed
distributed filtering estimators reduce significantly the disagreements among
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Figure 3: Error variance comparison of (a) intermediate filtering estimators and (b) dis-
tributed and centralized global optimal filtering estimators.

different nodes. Moreover, the closeness between the error variances of the
global optimal filter and those of the proposed distributed filters show a
highly accurate performance of the latest.

Finally, it is noted that analogous results are obtained when other proba-
bility distributions are assumed to model the network-induced uncertainties
at the different sensor nodes. Moreover, concerning the missing measurement
phenomena in nodes 3 and 4, it can be shown that, as expected, the filtering
error variances become smaller and, hence, better estimations are obtained
as the probability of missing observations decreases.

6. Conclusions

In this paper, the distributed filtering problem has been investigated in
networked multi-sensor systems with random parameter matrices and corre-
lated noises. The main outcomes and results can be summarized as follows:

• Using an innovation approach, a recursive LS linear estimation algo-
rithm, very simple computationally and suitable for online applications,
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has been designed to obtain intermediate filtering estimators, which are
calculated at each sensor node, using not only its own measurements,
but also those from its neighboring sensors according to the network
topology.

• Once the intermediate filtering estimators have been obtained, a new
distributed estimator is designed at each sensor node as the LS matrix-
weighted linear combination of its own intermediate estimator and
those from its neighbors. The error covariance matrices of the dis-
tributed filters have been also derived.

• A numerical simulation example has shown the applicability of both
intermediate and distributed estimators. This example has also high-
lighted the usefulness of the proposed algorithms for a great variety of
sensor networked systems featuring different random network-induced
uncertainties at the different sensor nodes, such as sensor gain degrada-
tion, missing measurements or multiplicative observation noises, which
are covered by the observation model with random measurement ma-
trices considered in this paper.

• A different approach to the estimation problem in this kind of systems
with a given network topology, suggested by the anonymous reviewers,
would be to consider the filter x̂

(i)
k−1/k−1 instead of x̂

d(i)
k−1/k−1 in equation

(10), so the intermediate estimators would be based not only on the
observations coming from the adjacent nodes, but also on the local
estimators of these adjacent nodes. This new approach, as well as other
different filter structures proposed in the existing literature (see [14] and
references therein), might be interesting issues for further research.
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